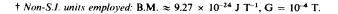

Water-soluble Schiff-base Complexes of Vanadyl(IV) and Vanadium(III) †

Dennis F. Evans * and Paul H. Missen

Inorganic Chemistry Laboratories, Imperial College, London SW7 2AY

Dicaesium [NN'-ethylenebis(salicylideneimine-5'-sulphonato)(4-)]oxovanadate(iv) is obtained from aqueous solution as a red-pink trihydrate. On heating, the blue anhydrous form is obtained. The electronic reflectance spectra indicate that, in the trihydrate, a water molecule is co-ordinated to the vanadium. Aqueous solutions of the complex are thermochromic, being red-pink at 1 and blue at 90 °C. From the electronic absorption spectra, it is concluded that there is an equilibrium between the five-co-ordinate species, and a six-co-ordinate complex formed by axial co-ordination of a water molecule. The corresponding vanadium(iii) complex has been characterized in aqueous solution.

Transition-metal complexes of quadridentate Schiff-base ligands formed from salicylaldehyde and 1,2- or 1,3-diamines have been extensively studied.¹ The ligands, and most of the metal complexes, are insoluble in water. By using salicylaldehyde-5-sulphonate in place of salicylaldehyde, watersoluble ligands and complexes can be obtained.²⁻⁴ The complexes can be prepared from the transition-metal ion and either the pre-formed ligand, or a mixture of sals and the diamine. The two methods are, in fact, equivalent, since the water-soluble Schiff-base ligands are extensively hydrolysed in aqueous solution to give sals and the diamine.⁴ The present work is concerned with complexes of the ligand Na₂(H₂salens) $[H_2 \text{salens} = NN' \text{-ethylenebis}(\text{salicylideneimine-5'-sulphon-})$ ate)] with V^{IV}O and V^{III}. Complexes of the non-sulphonated ligand NN'-ethylenebis(salicylideneiminate) (salen) with V^{III} , 5,6 $V^{IV}O$, 5,7 and V^{V5} are well characterized.



Na₂(H, salens)

Results and Discussion

 $[V^{IV}O(salens)]^{2^-}$.—Solid-state studies. The compound $Cs_2[V^{IV}O(salens)]$ crystallizes from aqueous solution as a redpink trihydrate. On heating at 100 °C in vacuo the blue anhydrous form is obtained. Exposure of the anhydrous form to water vapour at atmospheric pressure rapidly regenerates the red-pink colour, with 3 mol of water being taken up in *ca.* 10 min. The reflectance spectrum of the red-pink form shows maxima at 530 and 765 nm, and the blue form at 570 and 725 nm, with a shoulder at *ca.* 450 nm. This suggests that in the trihydrate one of the water molecules is axially co-ordinated to the vanadium to give a six-co-ordinate complex (see below).

The i.r. spectrum of the blue form shows a band at 998 cm⁻¹ which is not present for the red-pink form, Na₂(H₂salens), or Na₂[Ni(salens)],³ and can be attributed to the V=O stretch. In [V^{IV}O(salen)] the corresponding band is at 990 cm^{-1.8}

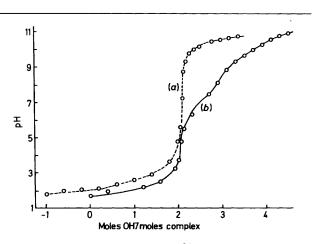


Figure 1. The pH titrations of (a) the VO²⁺, salens system and (b) the V³⁺, salens system at 25 °C. The solutions were 0.01 mol dm⁻³ with respect to metal and ligand

Assignment of the V=O stretch in the trihydrate is more difficult. Two possible candidates are bands at 978 and 950 cm⁻¹.

Aqueous solution studies. Figure 1 shows the pH titration of the $V^{IV}O^{2+}$, Na₂(H₂salens) system with aqueous KOH. The $[V^{IV}O(salens)]^{2}$ complex is stable over the approximate pH range 6-10. This was confirmed from measurements of the electronic absorption spectra at various values of pH. The solutions are thermochromic, being red-pink at 1 and blue at 90 °C. Figure 2 presents the electronic absorption spectra at a number of different temperatures. At 1 °C two maxima appear at 526 (ϵ 152) and *ca*. 810 nm (ϵ 43 dm³ mol⁻¹ cm⁻¹), while at 90 °C there is a maximum at 549 (ε 120 dm³ mol⁻¹ cm⁻¹) and a shoulder at ca. 650 nm. The addition of ethanol at room temperature produces effects very similar to those caused by a rise in temperature of the aqueous solution. The electronic spectra of vanadyl(IV) complexes have been quite extensively studied both experimentally and theoretically.9 Most five-coordinate species are blue or green, whilst many six-co-ordinate complexes are orange or red. Farmer and Urbach¹⁰ have concluded that axial co-ordination of a ligand to a five-coordinate complex will cause a blue shift of the lowest-energy transition $({}^{2}B_{2} \rightarrow {}^{2}E$ in C_{4v} symmetry), and a red shift of the next transition $({}^2\bar{B}_2 \rightarrow {}^2B_1)$. It therefore seems that the thermochromism of aqueous solutions of $[V^{IV}O(salens)]^2$ arises from an equilibrium between the five-co-ordinate species and a six-co-

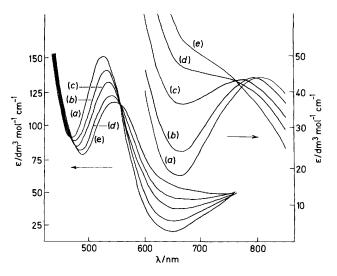


Figure 2. The electronic absorption spectra of $[VO(salens)]^{2-}$ in aqueous solution as a function of temperature: (a) 1, (b) 24, (c) 50, (d) 70, and (e) 90 °C at pH 7.7 (0.2 mol dm⁻³ N'-2-hydroxyethylpiperazine-N-ethanesulphonic acid buffer)

ordinate complex formed by axial co-ordination of one water molecule. It is not possible to determine the equilibrium quantitatively, but it seems that at $1 \,^{\circ}$ C the aquated form predominates, whilst at 90 $^{\circ}$ C the six-co-ordinate species is mainly present.

At room temperature the addition of the strongly coordinating solvents pyridine (up to 65% v/v), dimethyl sulphoxide (90% v/v), hexamethylphosphoramide (90% v/v), and tetramethylene sulphoxide (90% v/v) gave blue-green solutions whose electronic spectra resembled that of the five-coordinate species. This apparent reluctance to complex may be due to steric effects. The electronic spectra of the nonsulphonated species [V^{IV}O(salen)] in co-ordinating solvents show no evidence for complex formation.⁸

The magnetic moment of $[VO(salens)]^{2-}$ in aqueous solution is 1.76 B.M. (pH 8.4). The e.s.r. spectrum showed the characteristic eight-line pattern due to hyperfine splitting by ⁵¹V (99.8% abundant, $I = \frac{7}{2}$). At room temperature g_0 was 1.971 \pm 0.001 and A_0 was 92.4 \pm 0.5 G. For a solution in acetonitrile-water (67% v/v CH₃CN), where the electronic spectrum showed that the five-co-ordinate species was mainly present, g_0 was 1.972 \pm 0.001 and A_0 was 96.7 \pm 0.5 G. Axial co-ordination of water thus causes a reduction in A_0 . A similar reduction has been observed for other vanadyl(1v) complexes such as $[V^{IV}O(acac)_2]^{11}$ (acac = acetylacetonate) in going from non-co-ordinating to co-ordinating solvents. However, changes in hydrogen bonding to the V=O group may also play some part.¹²

[V^{III}(salens)]⁻.—This complex ion was studied only in aqueous solution. Figure 1 presents the pH titration of the V³⁺– Na₂(H₂salens) system with aqueous KOH, and shows the formation of the [V^{III}(salens)]⁻ complex. At higher pH, further protons are lost, presumably from axial water molecules. The magnetic moment μ of the [V^{III}(salens)]⁻ ion (2.80 B.M.) is close to the spin-only value of 2.83 B.M. The electronic absorption spectrum shows a maximum at 323 nm (ϵ 8 100 dm³ mol⁻¹ cm⁻¹). This band increases in intensity at higher pH values, and shifts to 353 nm. The non-sulphonated complex (as the disulphato anion) gives a peak at 352 nm (ϵ 9 800 dm³ mol⁻¹ cm⁻¹) in CH₃OH solution.⁵ In all cases, the expected *d*–*d* transitions are observed by the tails of the charge-transfer absorptions.

Experimental

Sodium salicylaldehyde-5-sulphonate (sals) was prepared as described previously.³

Na₂(H₂salens).—The salt sals (0.51 g, 0.0021 mol) was added to ethanol (75 cm³) and heated to 60 °C. Water was added dropwise until the solid just dissolved, followed by ethylenediamine (74 μ l, 0.0011 mol) in ethanol (2 cm³).The mixture was stirred at 60 °C for 1 h and then cooled to 0 °C. The solid was filtered off, washed with ethanol and diethyl ether, and air dried. Yield 0.15 g (30%) (Found: C, 40.55; H, 3.05; N, 6.00. C₁₆H₁₄N₂Na₂O₈S₂ requires C, 40.7; H, 3.00; N, 5.95%).

Cs₂[V^{IV}O(salens)]·3H₂O.—To a stirred solution of sals (0.48 g, 0.002 mol) in water (4 cm³) was added vandyl sulphate (0.23 g, 0.001 mol), followed by ethylenediamine (67 μ l, 0.001 mol). Aqueous 1 mol dm⁻³ NaOH was added to bring the pH to 8—9, followed by a saturated aqueous solution of CsCl (*ca*. 5 cm³). The solid was washed with 25% CsCl solution, methanol, ethanol, and diethyl ether, and air dried. Yield 0.6 g (73%) (Found: C, 23.85; H, 1.95; N, 3.40. C₁₆H₈Cs₂N₂O₁₂S₂V requires C, 23.7; H, 2.25; N, 3.45%).

Cs₂[V^{IV}O(salpns)]·3H₂O.—This was prepared similarly, using 1,2-diaminopropane in place of ethylenediamine. Yield 0.3 g (36%) (Found: C, 24.3; H, 2.05; N, 3.30. C₁₇H₂₀Cs₂N₂O₁₂S₂V requires C, 24.75; H, 2.45; N, 3.40%). Its properties were very similar to those of Cs₂[V^{IV}O(salens)]·3H₂O.

In both cases, the presence of three molecules of water was confirmed by the loss of weight on heating.

Hydrated vanadyl sulphate (B.D.H. Ltd.) was analysed by titration in 2N H₂SO₄ with 0.1N KMnO₄. The formula corresponded to VO(SO₄)(H₂O)_{3.55}. Vanadium trichloride (B.D.H. Ltd.) was analysed by addition of the solid to an excess of [NH₄][Fe(SO₄)₂] in 1N H₂SO₄. and subsequent titration with 0.1N KMnO₄. The purity was 97–98% (based on V^{III}).

For physical measurements, solutions containing V^{III} or V^{IV}O were normally handled in an argon atmosphere. Electronic spectra were measured on Perkin-Elmer 551 and Pye-Unicam 108 spectrometers. Variable-temperature measurements were made as described previously.⁴ The e.s.r. spectra were measured on a Varian E12 spectrometer operating at *ca.* 9.2 GHz using a 'flat' quartz cell and 0.001 mol dm⁻³ solutions. Magnetic susceptibility determinations were made using an n.m.r. method ¹³ on a Perkin-Elmer R32 spectrometer.

At pH ca. 5, an aqueous solution of $[V^{III}(salens)]^-$ was quantitatively oxidized by I_3^- to $[V^{IV}O(salens)]^{2-}$ over ca. 20 min, as shown by the electronic absorption spectra. At the same pH, dioxygen also caused quantitative oxidation to $[V^{IV}O(salens)]^{2-}$ in ca. 4 h (24 h with air). An aqueous solution of $[V^{IV}O(salens)]^{2-}$ was quantitatively reduced to $[V^{III}(salens)]^$ by H_2 in the presence of Pd on asbestos.

Acknowledgements

We thank the S.E.R.C. for a maintenance grant (to P. H. M.).

References

- 1 M. D. Hobday and T. D. Smith, Coord. Chem. Rev., 1972, 9, 311.
- 2 K. J. Berry, F. Berry, F. Moya, K. S. Murray, A. B. van den Bergen, and B. O. West, J. Chem. Soc., Dalton Trans., 1982, 109.
- M. Botsivali, D. F. Evans, P. H. Missen, and M. W. Upton, J. Chem. Soc., Dalton Trans., 1985, 1147.
- 4 D. F. Evans and P. H. Missen, J. Chem. Soc., Dalton Trans., 1985, 1451.
- 5 H. J. Beilig and F. Bayer, Liebigs Ann. Chem., 1953, 580, 135.
- 6 J. H. Swinehart, Chem. Commun., 1971, 1443.

- 7 P. Pfeiffer, Th. Hesse, H. Pfitzner, W. Scholl, and H. Thielet, Liebigs Ann. Chem., 1933, 503, 84.
- 8 J. Pasini and M. Gullotti, J. Coord. Chem., 1974, 3, 319.
- 9 J. Selbin, Coord. Chem. Rev., 1966, 1, 293.
- B. L. Farmer and F. L. Urbach, *Inorg. Chem.*, 1974, 13, 587.
 Bernal and P. H. Reiger, *Inorg. Chem.*, 1963, 2, 256; F. A. Walker, R. L. Carlin, and P. H. Rieger, *J. Chem. Phys.*, 1966, 45, 4181.
- 12 N. M. Atherton, P. J. Gibbon, and M. C. B. Schohoji, J. Chem. Soc., Dalton Trans., 1982, 2289.
- 13 D. F. Evans, J. Chem. Soc., 1959, 2003; D. F. Evans and T. A. James, J. Chem. Soc., Dalton Trans., 1979, 723.

Received 21st July 1986; Paper 6/1466