Reaction Paths and Kinetics in the $\mathbf{C r}^{2+}$ Reduction of the $\mathrm{Mo}_{\mathbf{2}}$ and $\mathrm{Mo}^{\prime v_{3}}$ lons $\left[\mathrm{Mo}_{2} \mathrm{O}_{\mathbf{4}}\left(\mathrm{H}_{\mathbf{2}} \mathrm{O}\right)_{6}\right]^{\mathbf{2 +}}$ and $\left[\mathrm{Mo}_{3} \mathrm{O}_{4}\left(\mathrm{H}_{\mathbf{2}} \mathrm{O}\right)_{9}\right]^{4+} \dagger$

Elaine F. Hills and A. Geoffrey Sykes*
Department of Inorganic Chemistry, The University, Newcastle upon Tyne NE1 TRU

Inner-sphere paths are observed in the Cr^{2+} reduction of $10^{-4}-10^{-3} \mathrm{M}$ solutions of $\mathrm{Mo}^{\mathbf{V}}{ }^{\text {, }}$ $\left[\mathrm{Mo}_{2} \mathrm{O}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$, and $\mathrm{Mo}^{1 \mathrm{~V}_{3}}\left[\mathrm{Mo}_{3} \mathrm{O}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{9}\right]^{4+}$, at $25^{\circ} \mathrm{C}, /=2.0 \mathrm{M}[\mathrm{Na}(\mathrm{pts})]$. In 1.9 M Hpts ($p-$ toluenesulphonic acid) and with [Cr^{2+}] in >10-fold excess the reaction of $\mathrm{Mo}_{2}{ }_{2}$ proceeds via a grey-green Cr -containing intermediate ($\approx 1 \mathrm{~min}$), to give a product with the $\mathrm{Mo}^{111}{ }_{2}$ spectrum (≈ 24 h). The rate law for formation of the intermediate is of the form $k_{1}\left[\mathrm{Cr}^{2+}\right]^{2}\left[\mathrm{Mo}_{2}\right]\left[\mathrm{H}^{2+}\right]$, with $k_{1}=9.1 \times 10^{3} \mathrm{M}^{-3} \mathrm{~s}^{-1}$. The decay of the intermediate is independent of $\left[\mathrm{Cr}^{2+}\right.$] and can be expressed as k_{2} [Intermediate] $\left[\mathrm{H}^{+}\right]$, with $k_{2}=2.0 \times 10^{-5} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ believed to correspond to a process involving loss of Cr^{111}. With a $2: 1 \mathrm{Cr}^{2+}: \mathrm{Mo}_{2}$ ratio of reactants, evidence for two intermediates is obtained ($\approx 1 \mathrm{~min}$), one (green in colour) giving a $\mathrm{Cr}:$ Mo ratio of $1: 1$, and the other the same as that generated in the reaction of excess of Cr^{2+} with $\mathrm{Mo}^{2}{ }_{2}$ giving a Cr : Mo ratio of 2:1. Some 30\% of the Mo is separated as $\mathrm{Mo}^{\mathbf{v}}$. Over longer periods ($\approx 22 \mathrm{~h}$) 60-70\% overall conversion to Mo ${ }^{1 v_{3}}$ is observed, and $24-30 \%$ of the Mo is present as $\mathrm{Mo}_{2}{ }_{2}$. In separate experiments, with Cr^{2+} in >10-fold excess, $\mathrm{Mo}_{3}{ }_{3}$ is reduced to $\mathrm{Mo}^{111,111, \mathrm{Iv}}$ in a two-stage process, complete within 1 min , and then through to $\mathrm{Mo}^{111_{3}}(\approx 40 \mathrm{~min})$. Reduction of Mo_{2} to either $\mathrm{Mo}^{1 /{ }_{2}}{ }_{2}$ or $\mathrm{Mo}^{1{ }^{\prime \prime}}{ }_{3}$ is observed therefore, depending on whether a single addition of excess of Cr^{2+} or successive additions of Cr^{2+} are made.

In aqueous acidic solutions, here $\left[\mathrm{H}^{+}\right]=0.1-2.0 \mathrm{M}, \mathrm{Mo}^{\mathrm{V}}$ is present as the orange-yellow dimer $\left[\mathrm{Mo}_{2} \mathrm{O}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+},(\mathrm{A}),{ }^{1}$ $\mathrm{Mo}^{\text {iV }}$ as the red trimer $\left[\mathrm{Mo}_{3} \mathrm{O}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{9}\right]^{4+},(\mathrm{B}),{ }^{2}$ and $\mathrm{Mo}^{\text {ili }}$ can exist as the pale yellow $\left[\mathrm{Mo}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+3}$ a green dimer established as $\left[\mathrm{MO}_{2}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right]^{4^{+}},(\mathrm{C}),{ }^{4}$ or a trimer of $4+$ or $5+$ charge with a μ-hydroxo structure, similar to (B), which is

Experimental

Reactions.- $\mathrm{The} \mathrm{Mo}^{\mathrm{v}}{ }_{2}$ ion, $\mathrm{Mo}_{2} \mathrm{O}_{4}{ }^{2+}$, was prepared by the procedure previously described. ${ }^{14}$ Final elution of $\mathrm{Mo}_{2} \mathrm{O}_{4}{ }^{2+}$ from a Dowex column was with $0.5-2.0 \mathrm{M}$ Hpts. Solutions were standardised spectrophotometrically at peak positions 384 ($\varepsilon 52$) and $295 \mathrm{~nm}\left(\varepsilon 1770 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right),{ }^{12} \varepsilon$ values per Mo. The

(A)

(B)

(C)
also green. ${ }^{5}$ Monomeric Mo^{V} has only transient existence, ${ }^{6}$ and monomeric and dimeric forms of $\mathbf{M o}^{\text {IV }}$ have not yet been identified. ${ }^{7}$ The quite different structures of successive oxidation states are noted, where these give rise to an interesting and varied redox chemistry. Kinetic studies for a number of oxidation reactions have been reported. These include: $\left[\mathrm{Mo}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ with $\left[\mathrm{IrCl}_{6}\right]^{2-},\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$, [VO$\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right]^{2+}$, and $\mathrm{O}_{2} ;{ }^{8,9}\left[\mathrm{Mo}_{2}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right]^{4+}$ with [Co$\left.\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-} ;{ }^{10}$ and $\left[\mathrm{Mo}_{3} \mathrm{O}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{9}\right]^{4+}$ and $\left[\mathrm{Mo}_{2} \mathrm{O}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ with both $\left[\mathrm{IrCl}_{6}\right]^{2-}$ and $\left[\mathrm{Fe}(\text { phen })_{3}\right]^{3+}$ (phen $=1,10-$ phenanthroline). ${ }^{11,12}$ To date there have been no corresponding studies of reactions involving reduction, and it was decided therefore to investigate the Cr^{2+} reductions of the $\mathrm{Mo}^{\mathbf{v}}{ }_{2}$ and $\mathrm{Mo}^{\mathrm{IV}}{ }_{3}$ aqua ions (A) and (B). One possible outcome of interest was the formation of stable mixed-metal Cr - and Mo-containing complexes.

Because of the reactivity of $\mathrm{Mo}^{111}{ }_{2}$ with $\mathrm{ClO}_{4}{ }^{-},{ }^{13} p$-toluenesulphonic acid, Hpts (Sigma Chemicals), a strong acid and poor donor, was used as supporting electrolyte.

[^0]preparation of $\mathrm{Mo}^{\mathrm{IV}}$ as $\mathrm{Mo}_{3} \mathrm{O}_{4}{ }^{4+}$ has also been described. ${ }^{14}$ Final solutions eluted from a Dowex column with 2.0 M Hpts were typically 0.01 M in $\mathrm{Mo}^{\mathbf{1 v}}{ }_{3}$. These were standardised spectrophotometrically at the 505 nm peak ($\varepsilon 63 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$ per Mo). ${ }^{11}$

Solutions of $\mathrm{Cr}^{2+}(\approx 0.05 \mathrm{M})$ were obtained by electrochemical reduction of $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ in 0.5 M Hpts at a $\mathrm{Hg}-$ pool cathode as in previous papers from this laboratory. When solutions of higher concentration were required $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ in $0.5 \mathrm{M} \mathrm{HClO}_{4}$ was loaded onto an air-free Dowex 50 W -X2 column, the $\mathrm{ClO}_{4}{ }^{-}$removed by washing with 0.1 M Hpts (100 cm^{3}), and Cr^{2+} eluted with 2.0 M Hpts. Using this method stock solutions of $\left[\mathrm{Cr}^{2+}\right]>0.2 \mathrm{M}$ were obtained. Standardisation was at the 715 nm peak of $\mathrm{Cr}^{2+}\left(\varepsilon 4.8 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$; any $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ present gave peaks at $408(15.8)$ and 574 nm ($13.3 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$). ${ }^{15}$ Subsequently solutions were also obtained from solid $\mathrm{CrCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O} .{ }^{16}$
p-Toluenesulphonic acid (Sigma Chemicals) was converted into the sodium salt, $\mathrm{Na}(\mathrm{pts})$, by neutralising with NaOH and recrystallising twice. Solutions were standardised by exchanging onto an IR(H)120 Amberlite resin column, and titrating the H^{+} released with standard 0.10 M NaOH .

Table 1. Product analyses after $\approx 22 \mathrm{~h}$ for the reaction of $\mathrm{Cr}^{2+}(0.039 \mathrm{M})$ with $\mathbf{M o}^{\mathbf{v}}{ }_{2}(0.0017 \mathrm{M})$ following Sephadex $\mathrm{C} 25-120$ column separation

$\left[\mathrm{H}^{+}\right] / \mathrm{M}$	Mo as $\mathrm{Mo}_{2}{ }_{2}$ $(\%)$	Mo as $\mathrm{Mo}^{\mathrm{Iv}}{ }_{3}$ $(\%)$
1.0	24	70
1.0	30	60
2.0	25	65

Figure 1. U.v.-visible spectra for the $\mathrm{Cr}^{2+}\left(2.9 \times 10^{-2} \mathrm{M}\right)$ reduction of $\mathrm{Mo}^{\mathrm{v}}{ }_{2}\left(1.6 \times 10^{-3} \mathrm{M}\right)$ at $25^{\circ} \mathrm{C},\left[\mathrm{H}^{+}\right]=1.00 \mathrm{M}, I=2.00 \mathrm{M}[\mathrm{Na}(\mathrm{pts})]$ (path length 2 mm). The initial spectrum (----) was calculated from known absorbances of the reactants, that of the intermediate $(-\cdot-\cdot-)$ was recorded ≈ 1 min after mixing, and the final spectrum (\cdots) after $\approx 24 \mathrm{~h}$

All the reactions with Cr^{2+} require rigorous air-free techniques. These were using N_{2} gas, further purified by passing through Cr^{+}solutions, rubber seals, Teflon tubing, and nylon syringes.

Products of the Reaction of Cr^{2+} with $\mathbf{M o}^{\mathbf{v}}{ }_{2}$.- Reduction of $\mathrm{Mo}^{\mathbf{v}}{ }_{2}$ with Cr^{2+} [>10-fold excess, equation (1)] gave an intermediate ($\approx 1 \mathrm{~min}$) followed by the slow formation ($t_{\frac{1}{4}} 5$ 24 h depending on $\left[\mathrm{H}^{+}\right]$) of a product with the spectrum of aqua $\mathrm{Mo}^{\text {¹II }}{ }_{2}$, (C), Figure $1 .{ }^{46.10}$ The spectrum of the

$$
\begin{equation*}
4 \mathrm{Cr}^{2+}+\mathrm{Mo}^{\mathrm{V}} \longrightarrow 4 \mathrm{Cr}^{\mathrm{III}}+\mathrm{Mo}^{\mathrm{IIII}}{ }_{2} \tag{1}
\end{equation*}
$$

intermediate is independent of $\left[\mathrm{Cr}^{2+}\right](2.1-5.4) \times 10^{-2} \mathrm{M}$, and $\left[\mathrm{H}^{+}\right], 0.50-1.92 \mathrm{M}$, and has a peak at 360 nm , $\varepsilon=639 \pm 15 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$ per Mo, Figure 1. The reaction of Cr^{2+} with $\mathrm{Mo}^{\mathbf{v}}{ }_{2}$ (2:1 ratio) gave for the same $\mathrm{Mo}^{\mathbf{v}}{ }_{2}$ concentration an intermediate of about half the intensity of that in Figure 1 as shown in Figure 2 with a peak at 400 nm (≈ 1 min), and after $\approx 22 \mathrm{~h}$ a final solution (red in colour) indicating substantial amounts of $\mathbf{M o}^{\mathbf{I V}}{ }_{3},(\mathbf{B})$. Addition of excess of Cr^{2+} after 1 min resulted in a more intense absorption approaching that obtained for a 10 -fold Cr^{2+} excess. For the $2: 1$ addition the existence of $\mathrm{Mo}^{i v}{ }_{3}$ was confirmed by separating the products on a Sephadex C25-120 column under air-free conditions which yielded three bands: the first (orange-yellow) eluted with 0.10 M Hpts $+0.10 \mathrm{M} \mathrm{Li}(\mathrm{pts})$ was identified as $\mathrm{Mo}^{\mathrm{v}}{ }_{2}$, the second (blue) eluted with $0.10 \mathrm{M} \mathrm{Hpts}+0.40 \mathrm{M} \mathrm{Li}(\mathrm{pts})$ as $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$, and the third (red) with $0.10 \mathrm{M} \mathrm{Hpts}+1.9 \mathrm{M}$ $\mathrm{Li}(\mathrm{pts})$ as $\mathrm{Mo}^{\mathrm{IV}}{ }_{3}$. Details of product analyses are as indicated in Table 1, with $\mathbf{> 9 0 \%}$ Mo recovery and no apparent dependence on $\left[\mathrm{H}^{+}\right]$. No unreacted Cr^{2+} or green $\mathrm{Cr}^{\mathrm{III}_{2}}$ formed by air oxidation of Cr^{2+} was observed in these experiments. ${ }^{17}$

Composition of Intermediates.-Some 5 min after mixing the reactants, with the Cr^{2+} in large excess, $\left[\mathrm{Mo}^{\mathbf{v}}{ }_{2}\right]=0.0173$,

Figure 2. U.v.- visible spectra for the $\mathrm{Cr}^{2+}\left(3.7 \times 10^{-2} \mathrm{M}\right)$ reduction of $\mathrm{Mo}^{\mathbf{v}}{ }_{2}\left(1.7 \times 10^{-2} \mathrm{M}\right)$ at $25^{\circ} \mathrm{C},\left[\mathrm{H}^{+}\right]=2.0 \mathrm{M}$ (path length 1 mm). The initial spectrum ($-\cdots$) was calculated from known absorbances of reactants, that of the intermediate ($-\cdot \cdot \cdot \cdot \cdot$) was recorded ≈ 1 min after mixing, and the final spectrum (\cdots) after $\approx 20 \mathrm{~h}$

Figure 3. U.v.-visible spectra of fractions obtained following the separation of intermediates obtained in the reaction of Cr^{2+} $\left(9.6 \times 10^{-2} \mathrm{M}\right)$ with $\mathrm{Mo}^{\mathrm{v}}{ }_{2}\left(4.6 \times 10^{-2} \mathrm{M}\right)\left(2: 1\right.$ ratio) at $25^{\circ} \mathrm{C}$, in 2.00 M Hpts (path length 1 cm). The column was loaded after 5 min reaction and the spectra correspond to the first $(-)$ and second intermediates (----)
$\left[\mathrm{Cr}^{2+}\right]=0.56 \mathrm{M}$, and in $2: 1$ excess, $\left[\mathrm{Mo}^{\mathbf{v}}{ }_{2}\right]=0.046,\left[\mathrm{Cr}^{2+}\right]$ $=0.096,[\mathrm{Hpts}]=0.60-9.96 \mathrm{M}$, solutions were loaded onto air-free ice-cooled Sephadex G10-120 gel filtration columns ($90 \times 1 \mathrm{~cm}$) pre-equilibrated in 0.5 M HCl . The columns were washed with 0.5 M HCl , and gave ($\approx 5 \mathrm{~h}$) in the first case greygreen and blue bands merging into each other. Three fractions of the grey-green band were collected. The first gave a spectrum very similar in appearance to CrIII_{2} with peaks at 415 and 580 nm . The peak ratio of $1.9: 1$, compared to the literature value of 1.2:1, ${ }^{18}$ suggested that the band is predominantly but not pure $\mathrm{Cr}^{\mathrm{II}}{ }_{2}$. This component is most likely formed by reaction of Cr^{2+} with traces of O_{2}. Analysis of the second and third fractions of the grey-green band gave Cr : Mo ratios of 3.3:1 and 3.2:1. Ratios $>2: 1$ are regarded as unrealistic, in view of the overall $\mathrm{Mo}^{\mathbf{v}}{ }_{2} \longrightarrow \mathrm{Mo}^{\mathrm{III}}{ }_{2}$ change, and suggest some contamination by $\mathrm{Cr}^{\mathrm{III}}{ }_{2}$. Analyses for Cr and Mo were carried out by oxidising both metals to the Vl state by heating with concentrated HNO_{3}, and then Br_{2}. The solution (in HCl) was then analysed on a model 2380 Perkin-Elmer atomic absorption spectrometer, to give ratios having an estimated accuracy of $\pm 15 \%$. From its spectrum, the blue band was identified as Cr^{2+}. From runs with

Figure 4. U.v. -visible spectra for the $\mathrm{Cr}^{2+}\left(5.0 \times 10^{-2} \mathrm{M}\right)$ reduction of $\mathrm{Mo}^{\mathbf{I V}}{ }_{3}\left(2.5 \times 10^{-3} \mathrm{M}\right)$ at $25^{\circ} \mathrm{C},\left[\mathrm{H}^{+}\right]=1.50 \mathrm{M}, I=2.00 \mathrm{M}$ [$\mathrm{Na}(\mathrm{pts})$] (path length 10 mm). The initial spectrum ($-\cdots-)^{\text {) was }}$ calculated from known absorbances of reactants, that of the intermediate $(\cdots \cdots$,$) recorded \approx 1 \mathrm{~min}$ after mixing corresponds to that of $\mathrm{Mo}^{\mathrm{III}, \mathrm{II}, \mathrm{Iv}}$ at $\left[\mathrm{H}^{+}\right]=1.5 \mathrm{M}$, and the final spectrum (\cdots) after $\approx 40 \mathrm{~min}$ to $\mathrm{Mo}^{\mathrm{III}}{ }_{3}$
a 2:1 ratio of the reactants, incompletely separated green and grey-green components were collected prior to a (small) red $\mathrm{Mo}^{\mathbf{I v}}{ }_{3}$ and yellow $\mathrm{Mo}^{\mathbf{v}}{ }_{2}$ bands. Analyses of the green and grey-green fractions gave Cr :Mo ratios of 1.1:1 and 2.2:1 respectively, thus identifying two intermediates. Spectra of these two fractions are shown in Figure 3. The spectrum of the greygreen 2.2:1 band corresponds to that of the intermediate shown in Figure 1.

Products of Reaction of Cr^{2+} with $\mathbf{M o}^{\mathbf{1 V}}{ }_{3}$.-For the reaction of Cr^{2+} ($\geqslant 10$-fold excess) with $\mathrm{Mo}^{\mathbf{1 v}}{ }_{3}$ spectra indicate $\mathrm{Mo}^{\mathrm{III}}{ }_{3}$ as the sole Mo-containing product (40 min), with absorption peaks $/ \mathrm{nm}\left(\varepsilon / \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right.$ per Mo) at $420(\mathrm{sh})(100), 635(80)$, and 825 (45). The spectrum observed after $\approx 1 \mathrm{~min}$, Figure 4, corresponds reasonably well to that of Mo ${ }^{\text {IIIIIIIIV }}, 398$ (230) and $495 \mathrm{~nm}\left(115 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right),{ }^{5}$ bearing in mind that $\left[\mathrm{H}^{+}\right]=1.5 \mathrm{M}$. The reaction can therefore be summarised by equations (2)-(3).

$$
\begin{align*}
& 2 \mathrm{Cr}^{2+}+\mathrm{Mo}_{3}^{I \mathrm{~V}} \longrightarrow 2 \mathrm{Cr}^{\mathrm{III}}+\mathrm{Mo}^{\mathrm{III}, \mathrm{III}, \mathrm{IV}} \tag{2}\\
& \mathrm{Cr}^{2+}+\mathrm{Mo}^{\mathrm{III}, \mathrm{III}, \mathrm{Iv}} \longrightarrow \mathrm{Cr}^{\mathrm{III}}+\mathrm{Mo}_{3}^{\mathrm{III}} \tag{3}
\end{align*}
$$

Previous work ${ }^{5}$ has demonstrated that the $\mathrm{Mo}^{\mathrm{III}}{ }_{3}$ product is difficult to elute from Dowex columns (a charge of $4+$ or $5+$ is indicated), and ion-exchange separation of the products was not attempted therefore. Also at $\left[\mathrm{H}^{+}\right]<4.0 \mathrm{M}, \mathrm{Mo}^{\mathrm{III}, \mathrm{II}, \mathrm{IV}}$ disproportionates to give $\mathrm{Mo}^{\mathrm{III}}{ }_{3}$ and $\mathrm{Mo}^{1 \mathrm{l}}{ }_{3} .{ }^{5}$. This will have the effect of shifting the 495 nm peak to a higher wavelength as is observed in Figure 4. At $\left[\mathrm{H}^{+}\right]<0.5 \mathrm{M},<30 \%$ of the Mo ${ }^{\text {III, III,IV }}$ remains. No evidence has been obtained for the Mo ${ }^{\text {ill,iv,iv }}$ mixed-valence state. ${ }^{5,6}$

Kinetic Studies.-Reactions of $\mathrm{Mo}^{\mathbf{v}}{ }_{2}$ and $\mathrm{Mo}^{\mathrm{Iv}}{ }_{3}$ with Cr^{2+} in >10-fold excess were studied at $25^{\circ} \mathrm{C}, I=2.00 \mathrm{M}[\mathrm{Na}(\mathrm{pts})]$. The formation of the intermediate in both cases was monitored in a Dionex D110 stopped-flow spectrophotometer using online procedures as described in other papers from this laboratory. In the case of the $\mathrm{Mo}^{\mathbf{v}}{ }_{2}$ reaction the decay of the intermediate was studied using a Perkin-Elmer Lambda 5 spectrophotometer. Reactions were generally monitored at peak positions (as indicated). First-order plots of absorbance changes $\ln \left(A_{\infty}-A_{t}\right)$ against time were linear to at least three half-lives. The slopes of such plots gave first-order rate constants $k_{\text {obs. }}$ In the case of the Cr^{2+} reduction of $\mathrm{Mo}^{\mathbf{v}}{ }_{2}$, when

Figure 5. The dependence of first-order rate constants, $k_{\text {1obss }}\left(25^{\circ} \mathrm{C}\right)$, for the first stage (formation of the intermediate) of the Cr^{2+} (>10 fold excess) reduction of $\mathrm{Mo}^{\mathbf{v}}{ }_{2}(1.0-5.0) \times 10^{-4} \mathrm{M}$ on the concentration of $\mathrm{Cr}^{2+},\left[\mathrm{H}^{+}\right]=1.50(\mathbf{\Delta})$ and $1.95 \mathrm{M}(\bigcirc), I=2.00 \mathrm{M}$ [$\mathrm{Na}(\mathrm{pts})$]
at the lower $\left[\mathrm{H}^{+}\right]$values the second stage of reaction can take up to 80 h to reach completion (and A_{∞} values were difficult to determine), the Guggenheim method was also used to evaluate $k_{\text {obs. }}{ }^{19}$ Errors were determined using an unweighted linear leastsquares program.

Results

Excess of Cr^{2+} with $\mathrm{Mo}^{\mathbf{v}}{ }_{2}$.-First-order rate constants $k_{1 \text { obs. }}$ are listed in Table 2. A linear second-order dependence on $\left[\mathrm{Cr}^{2+}\right],(0.86-8.36) \times 10^{-2} \mathrm{M}$, is observed, Figure 5. From the slope the third-order rate constant is $(9.6 \pm 0.6) \times 10^{3} \mathrm{M}^{-2}$ s^{-1} at $\left[\mathrm{H}^{+}\right]=1.50 \mathrm{M}$ and $(16.8 \pm 2.0) \times 10^{3} \mathrm{M}^{-2} \mathrm{~s}^{-1}$ at $\left[\mathrm{H}^{+}\right]=1.95 \mathrm{M}$. Intercepts are small, e.g. $0.3 \pm 0.4 \mathrm{~s}^{-1}$ at $\left[\mathrm{H}^{+}\right]=1.5 \mathrm{M}$, and probably not meaningful. The first-order dependence of $k_{\text {1obs. }}$. (Table 3) on $\left[\mathrm{H}^{+}\right]$is illustrated in Figure 6. There was no dependence of $k_{1 \text { obs. }}$ on the wavelength at which the reaction was monitored (Table 3). Equation (4) defines the

$$
\begin{equation*}
\text { Rate }=k_{1}\left[\mathrm{Cr}^{2+}\right]^{2}\left[\mathrm{Mo}_{2}\right]\left[\mathrm{H}^{+}\right] \tag{4}
\end{equation*}
$$

full rate law. At $25^{\circ} \mathrm{C}, I=2.00 \mathrm{M}[\mathrm{Na}(\mathrm{pts})]$, the rate constant k_{1} is $(9.1 \pm 0.3) \times 10^{3} \mathrm{M}^{-3} \mathrm{~s}^{-1}$.

The much slower decay of the intermediate (intermediate 2 in this scheme) was studied by conventional spectrophotometry at 360 nm . First-order rate constants $k_{\text {2obs. }}$ (Table 4) give a linear dependence on $\left[\mathrm{H}^{+}\right]$, Figure 7, but are independent of $\left[\mathrm{Cr}^{2+}\right]$, $(2.1-5.4) \times 10^{-2} \mathrm{M}$. The rate law is as in equation (5), and at

$$
\begin{equation*}
\text { Rate }=k_{2}[\text { Intermediate }]\left[\mathbf{H}^{+}\right] \tag{5}
\end{equation*}
$$

$25^{\circ} \mathrm{C}, I=2.00 \mathrm{M}[\mathrm{Na}(\mathrm{pts})], k_{2}=(2.0 \pm 0.3) \times 10^{-5} \mathrm{M}^{-1} \mathrm{~s}^{-1}$. From the least-squares treatment it is concluded that the intercept, $-(0.17 \pm 0.45) \times 10^{-6} \mathrm{~s}^{-1}$, makes no contribution.

Table 2. Variation of first-order rate constants, $k_{\text {1obs. }}\left(25^{\circ} \mathrm{C}\right)$, with $\left[\mathrm{Cr}^{2+}\right]$ for the first stage of the reaction of $\mathrm{Mo}^{\mathbf{v}}{ }_{2}$ with $\mathrm{Cr}^{2+},\left[\mathrm{Mo}^{\mathbf{v}}{ }_{2}\right]=$ $(1.0-5.0) \times 10^{-4} \mathrm{M}, I=2.0 \mathrm{M}[\mathrm{Na}(\mathrm{pts})], \lambda=298 \mathrm{~nm}$ (except as indicated)
$\left[\mathrm{H}^{+}\right] \quad 10^{2}\left[\mathrm{Cr}^{2+}\right]$

M		$k_{1 \mathrm{obs} .} / \mathrm{s}^{-1}$
1.50	0.86	0.7
1.50	1.00	1.3
1.50	1.48	2.3
1.50	1.77	2.9
1.50	2.12	4.5
1.50	2.25	5.4
1.50	2.91	7.7
1.50	3.33	10.8
1.50	3.86	13.6
1.95	2.03	8.3*
1.95	2.67	11.8*
1.95	3.04	15.6*

* $\lambda=360 \mathrm{~nm}$.

Table 3. Variation of the first-order rate constants, $k_{\text {tobs. }}\left(25^{\circ} \mathrm{C}\right)$, with $\left[\mathrm{H}^{+}\right]$for the first stage of the reaction of $\mathrm{Mo}^{\mathbf{v}}{ }_{2}$ with $\mathrm{Cr}^{2+},\left[\mathrm{Cr}^{2+}\right]=$ $0.03 \mathrm{M},\left[\mathrm{Mo}^{\mathbf{v}}{ }_{2}\right]=(2.0-2.8) \times 10^{-4} \mathrm{M}, I=2.0 \mathrm{M}[\mathrm{Na}(\mathrm{pts})]$

λ / nm	$\left[\mathrm{H}^{+}\right] / \mathrm{M}$	$k_{\text {1obs } /} / \mathrm{s}^{-1}$
360	0.50	4.8
298	0.57	4.7
360	0.65	6.2
400	0.70	6.6
360	0.85	7.5
400	1.15	9.7
400	1.40	12.5
360	1.60	13.5
400	1.65	14.8
400	1.95	16.1

Table 4. Variation of the first-order rate constants, $k_{2 \text { obs. }}\left(25^{\circ} \mathrm{C}\right)$, with $\left[\mathrm{H}^{+}\right]$for the second stage of the reaction of $\mathrm{Mo}^{\mathbf{v}}{ }_{2}$ with $\mathrm{Cr}^{2+}, I=2.0 \mathrm{M}$ [Na (pts)], $\lambda=360 \mathrm{~nm}$

$\left[\mathrm{H}^{+}\right]$	$10^{2}\left[\mathrm{Cr}^{2+}\right]$	$10^{3}\left[\mathrm{Mo}^{\mathbf{v}}{ }_{2}\right]$	
	\mathbf{M}	M	
	$10^{6} k_{\text {2obs }} / \mathrm{s}^{-1}$		
0.50	2.1	1.2	9.7
0.75	2.3	2.0	15.8
1.00	2.9	1.6	19.9
1.50	3.9	2.1	30.7
1.80	5.4	3.0	36.7
1.93	2.2	1.1	39.1

Cr^{2+} With $\mathrm{Mo}^{\mathbf{v}}{ }_{2}(2: 1)$.-No kinetic studies were attempted on the first stages complete within 1 min . Decay of the intermediate was monitored at two wavelengths. At 505 nm a single bimolecular process complete in $\approx 5 \mathrm{~h}$, and at 350 nm a bimolecular process complete in $\approx 20 \mathrm{~h}$ was observed. The first of these is believed to correspond to the reaction of the first intermediate to give $\mathbf{M o}^{\mathbf{1 v}}{ }_{3}$

Excess of Cr^{2+} with $\mathrm{Mo}^{\mathbf{I v}}{ }_{3}$.- The reaction is summarised in equations (2) and (3). Stopped-flow studies on (2) monitored at 575 nm , the cross-over point for $\mathrm{Mo}^{\mathrm{IIIIIII}, \mathrm{IV}}$ and $\mathrm{Mo}^{\mathrm{III}}{ }_{3}$, gave an absorbance increase (complete in 0.1 s) followed by a decrease (complete in $\approx 5 \mathrm{~s}$). The two are sufficiently well separated for most of the range to be studied as two distinct (first-order)

[^1]

Figure 6. Dependence of first-order rate constants, $k_{\text {tobs. }}\left(25^{\circ} \mathrm{C}\right)$, on $\left[\mathrm{H}^{+}\right]$for the first stage (formation of the intermediate) of the Cr^{2+} $(0.030 \mathrm{M})$ reduction of $\mathrm{Mo}^{\mathrm{v}}{ }_{2},(2.0-2.8) \times 10^{-4} \mathrm{M}, I=2.00 \mathrm{M}$ [$\mathrm{Na}(\mathrm{pts})$]

Figure 7. Dependence of first-order rate constants, $k_{20 b s}\left(25^{\circ} \mathrm{C}\right)$, on $\left[\mathrm{H}^{+}\right]$for the second stage (decay of the intermediate) of the $\mathrm{Cr}^{2+}(2.1-$ $5.4) \times 10^{-2} \mathrm{M}$, reduction of $\mathrm{Mo}^{\mathbf{v}},(1.1-3.0) \times 10^{-3} \mathrm{M}, I=2.00 \mathrm{M}$ [$\mathrm{Na}(\mathrm{pts})]$
processes. Rate constants $k_{\text {3obs. }}$ (Table 5) for the first stage are dependent on $\left[\mathrm{Cr}^{2+}\right]$ and $\left[\mathrm{H}^{+}\right]^{-1}$,* and the rate law is therefore as in equation (6). The $\left[\mathrm{H}^{+}\right]$dependence is illustrated in

$$
\begin{equation*}
\text { Rate }=k_{3}\left[\mathrm{Cr}^{2+}\right]\left[\mathrm{Mo}^{\mathrm{Iv}}{ }_{3}\right]\left[\mathrm{H}^{+}\right]^{-1} \tag{6}
\end{equation*}
$$

Table 5. Rate constants $k_{\text {3obs. }}$ and $k_{4 \mathrm{obs} .}$ for the first and second stages (respectively) of the reduction of $\mathrm{Mo}^{\mathrm{IV}}{ }_{3}$ by $\mathrm{Cr}^{2+},\left[\mathrm{Mo}^{\mathrm{IV}}{ }_{3}\right]=5 \times 10^{-4}$ $\mathrm{M}, l=2.0 \mathrm{M}[\mathrm{Na}(\mathrm{pts})], \lambda=575 \mathrm{~nm}$

$10^{2}\left[\mathrm{Cr}^{2+}\right]$	$\left[\mathrm{H}^{+}\right]$		$k_{\text {3obs. }}$	$k_{\text {4obs. }}$	
	M			s^{-1}	
1.5	1.00		110		3.0
1.5	1.25		82	2.5	
1.5	1.50		64	2.1	
1.5	1.75		56		1.8
2.0	1.50		86		1.5
2.5	1.50		109		1.2
2.8	1.60				1.1

Figure 8. From a least-squares treatment $k_{3}=(64 \pm 3) \times 10^{2}$ s^{-1} at $25^{\circ} \mathrm{C}, I=2.00 \mathrm{M}[\mathrm{Na}(\mathrm{pts})]$. Rate constants $k_{40 b s}$. for the second stage (Table 5) also give an $\left[\mathrm{H}^{+}\right]^{-1}$ dependence, with no meaningful dependence on $\left[\mathrm{Cr}^{2+}\right]$. Since at $\left[\mathrm{H}^{+}\right]<4.0 \mathrm{M}$, $\mathbf{M o}{ }^{\text {III,III.IV }}$ is known to disproportionate to an equilibrium mixture as in equation (7), ${ }^{5}$ we did not further investigate this or the reduction of $\mathrm{Mo}^{\mathrm{III}, \mathrm{III}, \mathrm{IV}}$ to $\mathrm{Mo}^{\mathrm{III}}{ }_{3}$.

$$
\begin{equation*}
3 \mathrm{Mo}^{\mathrm{III}, I I I . I V} \longrightarrow 2 \mathrm{Mo}^{\mathrm{III}}{ }_{3}+\mathrm{Mo}_{3}^{\mathrm{IV}} \tag{7}
\end{equation*}
$$

Discussion

At least two intermediates, $\mathrm{Cr}:$ Mo ratios $1: 1$ and $2: 1$, are formed in the Cr^{2+} reduction of $\mathrm{Mo}_{2}{ }_{2}$. Both are strongly held by Dowex (X2) columns indicating high charge, and are sufficiently long-lived to enable separation on Sephadex columns. Such column separations are not easy to carry out in the presence of Cr^{2+}, and require rigorous air-free conditions to limit formation of $\mathrm{Cr}^{\text {III }}{ }_{2}$, which is eluted at a similar rate to the intermediates. In the case of the Cr^{2+} excess runs we were unable to avoid some $\mathrm{Cr}^{\mathrm{III}}{ }_{2}$ contamination. The most meaningful analyses were for the $\mathrm{Cr}^{2+}: \mathrm{Mo}^{\mathbf{v}}{ }_{2}$ experiments with 2:1 ratio of reactants. Although not completely separated on a $90-\mathrm{cm}$ column two distinct fractions were obtained, the one green with Cr : Mo ratio $1: 1$ and the other grey-green with Cr : Mo ratio 2:1. The spectra of these two forms are indicated in Figure 3. In further experiments we attempted to explore the decay of these intermediates and reactions with $\mathbf{M o}_{2}{ }_{2}$, but observed the formation of brown products of uncertain composition. It would appear that, over long time intervals in the absence of excess of Cr^{2+} (which serves to scavenge O_{2}), reactions of the intermediates with traces of O_{2} impurity occur.

Although inner-sphere reductions by Cr^{2+} give products with substitution-inert Cr^{111} attached, the nature of the ligands involved and associated thermodynamic stabilities will determine whether the $\mathrm{Cr}^{\text {III }}$ is retained over long periods. Examples to note are the Cr^{2+} reductions of $\left[\mathrm{IrCl}_{6}\right]^{2-}$ and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{pfb})\right]^{2+}$ (in the latter case p-formylbenzoate is coordinated via the carboxylate, and the Cr^{2+} attacks the formyl group). In both reactions (at $25^{\circ} \mathrm{C}$) loss of $\mathrm{Cr}^{I I I}$ from the product occurs within a few minutes of formation. ${ }^{20,21}$ We have no evidence in the studies here described for outer-sphere Cr^{2+} reduction, which is much less common and would give $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ directly as product. ${ }^{22}$

The rate law (4) for the first stage of the reduction of $\mathrm{Mo}^{\mathbf{v}}$ with excess of Cr^{2+} is dependent on $\left[\mathrm{Cr}^{2+}\right]^{2}$ and $\left[\mathrm{H}^{+}\right]$. Therefore $\mathrm{Mo}_{2}{ }_{2}$ appears to be reduced to at least the $\mathrm{Mo}^{\mathbf{I V}}{ }_{2}$ state. The grey-green intermediate generated in this process has the u.v.--visible spectrum of the $2: 1 \mathrm{Cr}$: Mo product, suggesting further rapid reduction within the first phase of reaction $(<1$ min) to the $\mathrm{Mo}_{2}{ }_{2}$ state. The product has a peak at $360 \mathrm{~nm}(\varepsilon 639$ $\mathbf{M}^{-1} \mathrm{~cm}^{-1}$ per Mo), Figure 1, which is similar to that of the $\mathrm{Mo}^{\text {III }}{ }_{2}$, (C), peak at $360 \mathrm{~nm}\left(\varepsilon 455 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right.$ per Mo). The rate

Figure 8. Dependence of first-order rate constants, $k_{3 \mathrm{obs} .}\left(25^{\circ} \mathrm{C}\right)$, on $\left[\mathrm{H}^{+}\right]$for the first stage of the reduction of $\mathrm{Mo}^{\mathrm{IV}}{ }_{3}\left(5.0 \times 10^{4} \mathrm{M}\right)$ with $\mathrm{Cr}^{2+}(0.015 \mathrm{M}), I=2.0 \mathrm{M}[\mathrm{Na}(\mathrm{pts})]$
law for the slow conversion of this intermediate to a product having the $\mathrm{Mo}^{\mathrm{III}}{ }_{2}$ spectrum gives a first-order $\left[\mathrm{H}^{+}\right]$dependence, consistent with proton-induced aquation of $\mathrm{Cr}^{\mathrm{III}}$ at a μ-hydroxo (or μ-oxo) bridge. We were not able to ascertain how aquation of the other $\mathrm{Cr}^{\mathrm{lll}}$'s takes place, and it is possible that this is in a statistical manner. Contributions of Cr^{111} to the spectrum are relatively small, and it is possible that some $\mathbf{C r}^{111}$ remains attached and is not detectable in the final spectra.

For the experiments with $2: 1 \mathrm{Cr}^{2+}$ to $\mathrm{Mo}^{\mathbf{v}}{ }_{2}$ an intermediate with a $1: 1 \mathrm{Cr}$: Mo ratio has been identified. This suggests a product incorporating $\mathrm{Mo}^{\mathrm{IV}}{ }_{2}$, although the absorption spectrum has no features which clearly support this rather than $\mathbf{M o}^{\mathrm{III}, \mathrm{v}}$, or some other combination of oxidation states in which the Cr is not necessarily in the in state. We believe this intermediate to be precursor of the $2: 1 \mathrm{Cr}$: Mo intermediate, and the reaction Scheme shown is tentatively suggested. In this Scheme bimolecular decay of the first intermediate to give

Scheme. (i) Cr^{2+}; (ii) O_{2} or solvent water; (iii) $\mathrm{Mo}^{\mathbf{v}}{ }_{2}$ (?); (iv) H^{+}
$\mathrm{Mo}^{\mathrm{IV}}{ }_{3}$ is indicated. Such a process would lead to the formation of highly reactive monomeric $\mathbf{M o}^{\mathbf{I V}}$ which would be oxidised with either solvent water or traces of O_{2} to give $\mathrm{Mo}^{\mathbf{v}}{ }_{2}$, thus giving a maximum 75% yield of $\mathrm{Mo}^{\mathrm{IV}}{ }_{3}$ as product along with $\mathrm{Mo}^{\mathrm{v}}{ }_{2}$. A second stage in which $\mathrm{Mo}^{\mathrm{v}_{2}}$ reacts with the second intermediate to give (eventually) $\mathrm{Mo}^{\mathrm{IV}}{ }_{3}$ is also possible although the evidence here is less well founded.

The rate law (4) obtained for the first stage of reaction with a large excess of Cr^{2+} provides further information. There are three possible sites on $\mathrm{Mo}^{\mathbf{v}}{ }_{2}$ for inner-sphere Cr^{2+} reduction. Reaction at an $\mathrm{H}_{2} \mathrm{O}$ is unlikely without an $\left[\mathrm{H}^{+}\right]^{-1}$ dependence which is not observed. Also the bridging oxo ligands are unlikely sites because of their inaccessibility. Therefore the most likely site for Cr^{2+} attack is a terminal oxo ligand. The $\left[\mathrm{Cr}^{2+}\right]^{2}$ dependence suggests that a single Cr^{2+} is not sufficiently strong to reduce Mo^{v}, and that the presence of a second Cr^{2+} is essential. Involvement of $\left[\mathrm{H}^{+}\right]$in the rate law indicates that one of the oxo groups which the Cr^{2+} attacks becomes protonated. The reaction sequence is accordingly as in (8) and (9) where the product (8) is believed to be with Cr^{2+} bound to $\mathrm{Mo}^{\mathrm{v}}{ }_{2}$. The rate

$$
\begin{gather*}
\mathrm{Cr}^{2+}+\mathrm{Mo}_{2} \stackrel{K}{\rightleftharpoons} \mathrm{Mo}^{\mathrm{v}} \mathrm{Cr}^{\mathrm{II}} \tag{8}\\
\mathrm{Cr}^{2+}+\mathrm{Mo}^{\mathbf{v}}{ }_{2} \mathrm{Cr}^{\mathrm{II}}+\mathrm{H}^{+} \xrightarrow{k} \text { products } \tag{9}
\end{gather*}
$$

constant k_{1} in (4) is equal to $k K$ here defined. The product from two inner-sphere reductions will have a composition $\mathrm{Mo}^{\mathrm{IV}}{ }_{2}{ }^{-}$ $\mathrm{Cr}^{\mathrm{III}}{ }_{2}$. Subsequently, rapid reduction by two further moles of Cr^{2+} is required to give an intermediate in the $\mathrm{Mo}^{\text {III }}{ }_{2}$ state. The high positive charge implied by the Cr : Mo ratio is consistent with the difficulty experienced in eluting the intermediate from Dowex columns.

The kinetic law (6) for the first stage of the Cr^{2+} reduction of $\mathrm{Mo}^{\mathrm{IV}}{ }_{3}$, with dependences on $\left[\mathrm{Cr}^{2+}\right]$ and $\left[\mathrm{H}^{+}\right]^{-1}$, is assigned to an inner-sphere process involving Cr^{2+} attack of a conjugatebase form of $\mathrm{Mo}^{\mathbf{I V}}{ }_{3}$ obtained by acid dissociation of an $\mathrm{H}_{2} \mathrm{O}$ ligand. ${ }^{23}$ The nature of the second stopped-flow stage leading to $\mathrm{Mo}^{\text {III.III.IV }}$ formation is uncertain. This study is complicated by the tendency of $\mathrm{Mo}^{\mathrm{uII}, \mathrm{IILIV}}$ to disproportionate at $\left[\mathrm{H}^{+}\right]<4.0 \mathrm{M}$ to $\mathrm{Mo}^{\mathrm{III}}{ }_{3}$ and $\mathrm{Mo}^{\mathrm{IV}}{ }_{3}$, with $<30 \%$ Mo ${ }^{\text {III.,II.IV }}$ remaining at $\left[\mathrm{H}^{+}\right]<0.5 \mathrm{M} .{ }^{5}$ The other mixed-valence form Mo ${ }^{\text {IIIIV, iv }}$ has yet to be identified.
To summarise, it has been demonstrated that >10-fold excess of Cr^{2+} reduces $\mathrm{Mo}^{\mathbf{v}}{ }_{2}$ through to $\mathrm{Mo}^{\text {III }}{ }_{2}$ via a long-lived Cr-containing intermediate, Cr : Mo ratio of $2: 1$. With a $2: 1$ ratio of $\mathrm{Cr}^{2+}: \mathbf{M o}^{\mathbf{v}}$ t two intermediates have been identified, and after $\approx 22 \mathrm{~h} 60-70 \%$ formation of $\mathrm{Mo}^{\text {IV }}{ }_{3}$ is observed. On further addition of Cr^{2+} the $\mathrm{Mo}^{\mathbf{1 V}}{ }_{3}$ is reduced to $\mathrm{Mo}^{\mathrm{III}}{ }_{3}$. Thus, depending on whether the excess of Cr^{2+} is added in one or two amounts, the product obtained can be $\mathrm{Mo}^{\mathrm{III}}{ }_{2}$ or $\mathrm{Mo}^{\mathrm{III}}{ }_{3}$. Formation of $\mathrm{Mo}^{\mathbf{1 V}}{ }_{3}$ is particularly noteworthy since the oxidations of $\left[\mathrm{Mo}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ and $\mathrm{Mo}^{\text {III }}{ }_{2}$, with e.g. $\left[\mathrm{IrCl}_{6}\right]^{2-}$, proceed through to $\mathrm{Mo}^{\mathbf{v}}{ }_{2}$ without detection of any $\mathbf{M o}^{\mathbf{1 V}}{ }_{3}$. Similarly with O_{2} as oxidant $\mathrm{Mo}^{\mathbf{v}}{ }_{2}$ is obtained, although here it has been noted that when O_{2} is bubbled through high concentrations of $\left[\mathrm{Mo}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}\left(2.3 \times 10^{-2} \mathrm{M}\right) 10 \%$ of $\mathrm{Mo}^{1 \mathrm{~V}}{ }_{3}$ is obtained. ${ }^{9}$

Acknowledgements

We thank the S.E.R.C. for a post-graduate research studentship (to E. F. H.).

References

1 M. Ardon and A. Pernick, Inorg. Chem., 1973, 12, 2484; B. JezowskaTrzebiatowska, Russ. J. Inorg. Chem., 1977, 22, 1950; Y. Sasaki and A. G. Sykes, J. Chem. Soc., Dalton Trans., 1974, 1468; see also G. R. Cayley and A. G. Sykes, Inorg. Chem., 1976, 15, 2882; S. Khalil, B. Sheldrick, A. B. Soares, and A. G. Sykes, Inorg. Chim. Acta, 1977, 25, 283.

2 A. Bino, F. A. Cotton, and Z. Dori, J. Am. Chem. Soc., 1979, 101, 3842; E. O. Schlemper, M. S. Hussain, and R. K. Murmann, Cryst. Struct. Commun., 1982, 11, 89; R. K. Murmann and M. E. Shelton, J. Am. Chem. Soc., 1980, 102, 3984.
3 A. R. Bowen and H. Taube, Inorg. Chem., 1974, 13, 2245; Y. Sasaki and A. G. Sykes, J. Chem. Soc., Dalton Trans., 1975, 1048.
4 (a) G. G. Kneale, A. J. Geddes, Y. Sasaki, T. Shibahara, and A. G. Sykes, J. Chem. Soc., Chem. Commun., 1975, 356; (b) S. P. Cramer, P. K. Eiden, M. T. Paffett, J. R. Winkler, Z. Dori, and H. B. Gray, J. Am. Chem. Soc., 1983, 105, 799.
5 D. T. Richens and A. G. Sykes, Inorg. Chem., 1982, 21, 418.
6 M. T. Paffett and F. C. Anson, Inorg. Chem., 1983, 17, 2418.
7 D. T. Richens and A. G. Sykes, Comments Inorg. Chem., 1981, 1, 141.
8 D. T. Richens, M. A. Harmer, and A. G. Sykes, J. Chem. Soc., Dalton Trans., 1984, 2099.
9 E. F. Hills, P. R. Norman, T. Ramasami, and D. T. Richens, J. Chem. Soc., Dalton Trans., 1986, 157.
10 M. A. Harmer and A. G. Sykes, Inorg. Chem., 1980, 20, 3963.
11 M. A. Harmer, D. T. Richens, A. B. Soares, A. T. Thornton, and A. G. Sykes, Inorg. Chem., 1981, 20, 4155.
12 G. R. Cayley, R. S. Taylor, R. K. Wharton, and A. G. Sykes, Inorg. Chem., 1977, 16, 1377.
13 E. F. Hills and A. G. Sykes, Polyhedron, 1986, 5, 511; E. F. Hills, C. Sharp, and A. G. Sykes, Inorg. Chem., 1986, 25, 2566.
14 D. T. Richens and A. G. Sykes, Inorg. Synth., 1985, 23, 130.
15 A. T. Thornton, K. Wieghardt, and A. G. Sykes, J. Chem. Soc., Dalton Trans., 1976, 147.
16 D. G. Holah and J. P. Fackler, Inorg. Synth., 1969, 10, 26.
17 M. E. Thompson and R. E. Connick, Inorg. Chem., 1981, $20,2279$.
18 J. Laswick and R. Plane, J. Am. Chem. Soc., 1959, 81, 3564.
19 A. A. Frost and R. G. Pearson, 'Kinetics and Mechanism,' 2nd edn., Wiley, New York, 1961, p. 49.
20 A. G. Sykes and R. N. F. Thorneley, J. Chem. Soc. A, 1970, 232; W. S. Melvin and A. Haim, Inorg. Chem., 1977, 16, 2016.
21 A. Zanella and H. Taube, J. Am. Chem. Soc., 1972, 94, 6403.
22 M. R. Hyde and A. G. Sykes, J. Chem. Soc., Dalton Trans., 1974, 1550; A. B. Hoffman and H. Taube, Inorg. Chem., 1968, 7, 1971.
23 N. Sutin, Acc. Chem. Res., 1968, 1, 225; A. Haim, Prog. Inorg. Chem., 1983, 30, 273.

[^0]: + Non-S.I. unit employed: $\mathbf{M}=\mathrm{mol} \mathrm{dm}^{-3}$.

[^1]: * An alternative $\left[\mathrm{H}^{+}\right]$dependence of the form $a+b\left[\mathrm{H}^{+}\right]^{-2}$ is consistent with the data obtained, but seems less likely in view of the absence of an $\left[\mathrm{H}^{+}\right]^{-1}$ contribution alongside the a and b terms.

