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A Group Theoretical Paradigm for describing the Skeletal Molecular Orbitals of 
Cluster Compounds. Part 2.t Bispherical Clusters 

Roy L. Johnston and D. Michael P. Mingos" 
Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX I 3QR 

Stone's Tensor Surface Harmonic Theory has been extended to capped and raft clusters where the 
cluster atoms lie on the surface of two concentric spheres. The skeletal molecular orbitals of these 
bispherical clusters possess radial as well as tangential nodes. Group theoretical techniques enable 
the symmetries and quantum numbers L of the skeletal molecular orbitals to be evaluated. The 
bonding characteristics of bispherical clusters are dominated by the bonding molecular orbitals of 
the inner polyhedron, but some additional skeletal bonding molecular orbitals may be generated 
from the orbitals of the outer polyhedron. Spherical (or pseudo-spherical) clusters are created by 
distorting the bispherical clusters until all the atoms lie approximately on the surface of one sphere. 
These clusters are characterised by (N + 1 ) skeletal electron pairs. 

The Tensor Surface Harmonic Theory, developed by Stone, l4 
constructs a set of approximate molecular orbitals from the 
solution of the Schrodinger equation for a particle on a sphere. 
The application of this methodology to deltahedral clusters has 
led to an elegant justification of the (N + 1) skeletal electron- 
pair rule,2 which is a central feature of the Polyhedral Skeletal 
Electron Pair Approach.' Subsequently this methodology has 
been ex tended to three- and four-connected polyhedral 

The group theoretical aspects of these problems 
have been discussed by Ceulemans,* Quinn and co-workers,' 
Fowler," and ourselves." As in other situations where the 
free-electron model works well, e.g. conjugated polyenes, ' * 
the ordering of energy levels is determined by the nodal 
characteristics of the orbitals rather than their detailed forms. 
Therefore, even within a semiempirical framework, such an 
approach predicts the correct ordering of molecular orbitals 
and, in particular, closed-shell requirements. ' Tensor surface 
harmonic theory is based on the assumption that all the cluster 
atoms lie on a single spherical surface and the ligands on a 
second concentric surface. In this paper the bonding in clusters 
which have metal atoms on several concentric spherical surfaces 
is discussed. 

Results and Discussion 
Bispherical Clusters.-Bispherical clusters are defined as 

those clusters having their two sets of symmetry-equivalent 
atoms lying on the surfaces of two concentric spheres of differing 
radiii4 The relationship between spherical (all atoms on the 
surface of the same sphere) and bispherical clusters is effectively 
demonstrated for a high-symmetry situation such as that shown 
in Figure 1. The rhombic dodecahedron has fourteen atoms 
effectively lying on a single sphere (actually the polyhedron is 
not quite spherical but there is an interior sphere which cuts all 
of its edges) and, therefore, its bonding can be analysed in terms 
of the (single-sphere) tensor surface harmonic theory. The 
analysis is also simplified by the octahedral symmetry of the 
polyhedron. Figure 1 also illustrates how two bispherical 
clusters of Oh symmetry can be generated from the rhombic 
dodecahedron, an octacapped octahedron and a hexacapped 
cube. Both of these bispherical clusters are examples of 
omnicapped polyhedra and are topologically related by the 
dual nature of the cube and the octahedron. 

Topological Features of Bispherical Clusters.-Two polyhedra 

7 Part 1 is ref. 14. 

Spherical 

Rhombic dodecahedron 

Octaca p ped octahedron 

Figure 1. 14-Vertex spherical and bispherical polyhedra with octa- 
hedral symmetry 

Hexacapped cube 

A and B are described as face-duals15 if the faces of A are 
replaced by vertices in B and uice versa. The polyhedra A and B 
belong to the same symmetry point group and the relationships 
between the number of vertices (V), faces (F), and edges ( E )  of 
the two dual polyhedra are VB = F A ,  FB = VA, and EB = E,, 
and the Euler relationshipl5 ( V  + F = E + 2) applies to both 
polyhedra. 

In the case under consideration polyhedron A is an 
octahedron, which is an example of a deltahedron as a11 of its 
faces are triangular. Its (face) dual B is a cube, which is a three- 
connected polyhedron as all of its vertices are connected to three 
others. In general the dual of a deltahedron, where each of the 
triangular faces has three neighhouring faces, is always a three- 
connected polyhedron, as illustrated in Figure 2. Since the dual 
relationship is reciprocal, the dual of a three-connected 
polyhedron must be a deltahedron. Figure 3 illustrates further 
examples of dual-related deltahedra and three-connected 
polyhedra. 
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The following relationships apply to deltahedra (subscript A) 

Del tahedra Three-connected polyhedra 

and three-connected polyhedra (subscript 3)- 

FA = 2(VA - 2) 
E A  = 3(VA - 2) 

F3 = (V3/2) + 2 
E3 = (3V3/2) 

EA = (3FA/2) E3 = 3(F3 - 2) 
The number of vertices in an omnicapped deltahedron ( Vomni) 

or omnicapped three-connected polyhedron is obviously the 
same when the deltahedron and three-connected polyhedron 
are duals: thus Vomni = VA + V ,  = VA + FA = F3 + V3, 
Vomni = 3VA - 4 = (3V3/2) + 2. 

A 
Face -duality &- A 

Deltahedron (triangular faces) 

Figure 2. The face-duality relationship between deltahedra and three- 
connected polyhedra 

Three- connected polyhedron 
(trivalent vertices 1 

vA= 4 

FA= 4 
EA= 6 

VA = 5 
5 =  6 

EA = 9 

The bispherical omnicapped polyhedra may be converted 
into spherical polyhedra by simultaneously expanding the inner 
sphere and contracting the outer sphere until all of the atoms lie 
on the same sphere. This does not change the point-group 
symmetry of the polyhedron since it is the radial and not the 
angular disposition of the cluster vertices which is changed by 
this process. In the spherical limit, Vomni = V,,, and the above 
relationships apply, with Vomni replaced by Vsph. Since three- 
connected polyhedra must possess an even number of vertices, 
V3 takes the values 4, 6, 8, 10, erc. which, from the equations 
above, results in Vomni (or V,,,) values of 8, 11, 14, 17, etc. Thus 
bispherical or spherical clusters, which are composites of a 
deltahedron and its three-connected dual, are characterised by 
(3x  + 5) atoms (x = 1,2,3,  etc.). Examples of spherical clusters 
of this type are illustrated in Figure 4. It should be noted that 
these spherical polyhedra are all rhombohedra (possessing 
square or rhombic faces, Vsph = Vo) and as such are the duals of 
four-connected polyhedra. The spherical clusters can be 
distorted in two distinct ways to generate bispherical clusters 
with either the deltahedron or its three-connected dual lying on 
the inner sphere. 

Group TheoreticaZ Analysis.-The molecular orbitals of the 
individual polyhedra in a bispherical cluster (inner and outer 
spheres) can, by employing the tensor surface harmonic 
methodology, be expressed as spherical harmonic expansions 
and assigned La, L", . . . quantum numbers. Rules for 

Face - d ual Deltahedra (A) - Three-connected polyhedra (3) 

V A =  6 
F A =  8 

E = 12 A 

v3 = 4 
5 = 4  
E 3 =  6 

V3 = 6 
5 = s  
E3 = 9 

V3 = 8 

5 = 6  

E3 = 12 

Figure 3. Some face-dual deltahedra and t hree-connected polyhedra 
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Cube (rhombic hexahedron) Rhombic enneahedron Rhombic dodecahedron Rhombic triacontahedron 
V ,  = VA(4)  + V J 4 )  = 8 

F,, = V - 2 = E = E3 = 6 F ,  = 9 F ,  = 12 F ,  = 30 

V ,  = VA(5) + V3(6) = 1 1  V ,  = VA(6)  + V3(8) = 14 V ,  = VA(12) + V3(20)  = 32 
V ,  = 3x + 5 (X = 1) x = 2  x= 3 x = 9  

n 
N.B. The number of faces (F,) of a rhombohedron is equal to the number of edges (Ea = E3)  of its constituent (dual) polyhedra because the 
rhombohedra are the face-duals of the (four-connected) polyhedra derived by placing a vertex at the midpoint of each edge of the deltahedra or three- 
connected polyhedra (i.e. edge-duals). 

E ,  = 2F,, = En + E3 = 12 E ,  = 18 E ,  = 24 E ,  = 60 

Figure 4. 'Spherical' rhombohedra as the composites of three-connected polyhedra and their dual deltahedra 

Table 1. Symmetries of the spherical harmonics in some finite point groups 

R3, I h  Oh Td D3 

s,., (r;) A ,  A , ,  A ,  A ,  
P,", P," Tiu 7 - 1  Y T2 A ,  + E 
0;. 09" H g  E, + T2, E + T,  A ,  + 2E 
F,", F," TzY + G, A,, + T I ,  + TzY A ,  + T ,  + T2 A ,  + 2A, + 2E 
G,;, G,; G, + H ,  2A ,  + A ,  + 3E A , ,  + E, + TI, + T,, A ,  + E + T ,  + T2 

ruo A ,  A , ,  A2 A ,  
pg" TI 9 TI B Tl A2 + E 
0." H ,  E. + T2Y E + T ,  A ,  + 2E 
F9" T2, + G, A, ,  + TI, + T2* A2  + TI + T2 A ,  + 2A2 + 2E 
G,n 2A,  + A ,  + 3E G,  + H ,  A , ,  + E,, + TI, + T,, A ,  + E + T ,  + T2 

obtaining these orbitals, employing group theoretical tech- 
niques, are presented below.9p' ' 

(1) The reducible representation (r,) resulting from the 
permutation of radial (0) orbitals, under the operations of the 
cluster point group, is decomposed into its constituent 
irreducible representations: r, = a r ,  + br, + cr,, etc. 

(2) The L" labels are obtained by consulting a correlation 
table (see Table 1 for example) for the descent in symmetry from 
spherical ( R3,J to the appropriate cluster point-group 
symmetry. The lowest L values are chosen which generate all the 
constituent irreducible representations of r,. 

(3) The irreducible representations spanned by the L" and 
en orbitals are obtained from those of the L" orbitalsg by 
the relationship ( 1) where 0 indicates tensor multiplication. 

This equation derives from the fact that at any atom position 
linear combinations of p x ,  p y ,  and p z  atomic orbitals may be 
taken so as to generate one radial ( p " )  and two tangential 
(2p" = p e  + p")  components. In axial point groups this 
equation may be simplified as in (2) and (3) (where R, indicates 

r:+; = (r, o r,} o r: = I-, o rRZ (3) 

rotation about the 2 axis)," provided that there are no axial 
atoms (as p z  becomes purely radial in character on the principal 
rotation axis); r: is the irreducible representation (which is 

symmetric with respect to all proper rotations of the point 
group but antisymmetric with respect to all improper rotations) 
corresponding to the _parity-invers_ion operation (8)' which 
interconverts L" and L": L" A L". For clusters, belonging 
to axial point groups, possessing no atoms in the equatorial 
plane (with or without axial atoms) the relevant equation is (4). 

(4) 

Once the irreducible representations spanned by the 
tangential orbitals (I-"+;) are known then the L" and t" orbitals 
are obtained by consulting a correlation table (Table 1) which 
includes P a s  well as L" (r, = rn r,"). The L" and 1" functions 
must be equal in number and parity related. 

(4) Finally for bi- or multi-spherical clusters ( Z ) ,  or spherical 
clusters consisting of two or more distinct sets of symmetry- 
equivalent atoms (A, B, C, etc), the irreducible representations 
spanned by L" and L " / P  are obtained by summing those of the 
constituent polyhedra. Forexample, T,(Z) = TJA) + T,(B) + 
T,(C) + etc. Again a correlation table, such as_ Table 1, is used 
to evaluate the L values for the L", L", and L" orbitals of the 
multispherical cluster. The principle of always taking the lowest 
possible L values may lead to L" orbitals of the multispherical 
cluster which are not symmetry matched by the L" orbitals of its 
constituent polyhedra. Instead these orbitals correspond to 
combinations of P orbitals of the constituent polyhedra. The 
parity-inversion operation ensures that there will be a parity- 
related combination of L" orbitals which end up as t" for the 
multispherical cluster. 

Taking the rhombic dodecahedron as an example (the 
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symmetries of the orbitals of the hexacapped cube and the 
octacapped octahedron will be identical), the L", L", and t" 
orbitals of its constituent polyhedra (cube and octahedron) may 
be evaluated. For the cube, r,(cube) = a,, + t , ,  + t,, + a2u 
and r,+,(cube) = c , ,  + t,, + e, + t l ,  + t,, + e,. The cube 
possesses 12 skeletal electron pairs,6 S"(u,,) + P.'+x(tlu) + 
P(e,  + t,,) + b"(t,,) (see Table 2), six of which are in 
roughly non-bonding orbitals, D"(t,,) + D(t , , ) .  The occu- 
pied skeletal molecular orbitals are topologically equivalent to 
the 12 edges of the cluster and can be alternatively generated as 
linear combinations of edge-bonding (nodeless) localised 
orbitals. The unoccupied orbitals, on the other hand, may be 
expressed as linear combinations of edge-antibonding (singly 
noded) localised orbitals. In general a three-connected poly- 

Table 2. The L", L", and p orbitals (and their symmetries) of the cube, 
octahedron, and rhombic dodecahedron (0, symmetry) 

L" 
S" 
P" 
D" 
F" 
G" 

L" 
P" 
D" 
F" 

P 
P" 
D" 
F" 

Octahedron Rhombic dodecahedron 

A,# 
7-1 Y 

E, 

P"ct,,) -- 

hedron has 3 V3/2 (= E,) skeletal electron pairs, ( V3 - 2) 
of which are non-bonding [made up of ( V3/2)  - 1 L" orbitals 
and their ( V 3 / 2 )  - 1 tn parity-inverted  counterpart^].^ 
For the octahedron, r,(octahedron) = ulg + t , ,  + e, and 
r,+,(octahedron) = t,, + tzg + t , ,  + z,,,. The octahedron, as 
a deltahedron, possesses seven (= VA + 1) skeletal bonding 
molecular orbitals, S"(al,) + P"+x( t lu )  + DK(f2,)  (see Table 
2), and no non-bonding orbitals. Finally, for the rhombic 
dodecahedron, r,(rhombic dodec.) = 2a1, + 2t1, + t , ,  + e, 
+ a,, and r,+,(rhombic dodec.) = 2t , ,  + 2tzg + 2t,, + 
2t2, + e, + e,. Employing Table 1, L values may be assigned 
to the above orbitals, yielding the results shown in Table 2. It 
should be noted that the two sets (one from the cube and one 
from the octahedron) of b"(t,,) orbitals give rise, in the rhombic 
dodecahedron, to one set of odd parity (B") and one set of even 
parity (F"). Similarly the t,, orbitals give rise to D" and P 
com binations. 

Inner Sphere-Outer Sphere Interactions.-In the limit of no 
interaction between the orbitals of the outer and inner spheres 
(for instance when the outer-sphere radius tends to infinity) the 
spectrum of molecular orbitals of the bispherical cluster is 
identical to that of the isolated inner-sphere polyhedron plus 
additional degenerate non-bonding orbitals belonging to the 
outer-sphere polyhedron. Figure 5 illustrates these non- 
interacting bispherical extremes for the octacapped octahedron 
and the hexacapped cube. The cluster atoms possess three 
valence orbitals (1 o-type and 2 x-type) which give rise to cluster 
molecular orbitals of the type i", L", and t". In this limit the 
omnicapped deltahedron is characterised by ( V ,  + 1) skeletal 
bonding molecular orbitals and the omnicapped three- 
connected polyhedron by (3 V J 2 )  skeletal bonding molecular 
orbitals.2*6 

As the outer-sphere radius is reduced the molecular orbitals 
of the inner- and outer-sphere polyhedra (with matching 

ezm y m ~  - Non- bonding orbitals 
localised exclusively on/ 
the capping atoms 

( V , / 2 )  skeletal I electron pairs 

-P'+rr(f,u) 
CV,+l) skeletal 
electron pairs 

(7) 

Hexacapped cube Octacapped octahedron 

Figure 5. Molecular orbital schemes for the bispherical extremes of the hexacapped cube and the octacapped octahedron, with no interaction 
between the orbitals of the inner- and outer-sphere polyhedra 
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IS" = sU( inner)+f(outer) 

z t  

1987 

t 

I 

Figure 6. Bispherical tensor surface harmonic wavefunctions (La and 
t") possessing radial as well as angular nodes 

symmetry characteristics) begin to interact. The effect of this 
interaction is to introduce radial as well as tangential nodes 
into the cluster wavefunctions. The primary interactions 
correspond to the overlap of inner- and outer-sphere molecular 
orbitals having matching L quantum numbers. Figure 6 
illustrates these interactions for L" and L" orbitals of a 
generalised bispherical cluster and emphasises how additional 
radial nodes are introduced. Generalised molecular-orbital 
interaction diagrams, for L", L" (and p) orbitals, are presented 
in Figure 7. Since the atoms of the outer-sphere polyhedron are 
further apart than those of the inner sphere, the spread of 
molecular orbitals is narrower for the outer sphere. For L" and 
L" this generally results in the in-phase combinations being 
predominantly localised on the inner sphere while the radially 
noded an ti bonding com binations are predominantly localised 
on the outer sphere (see Figure 6 for example). For L" orbitals 
with high L values, however, the orbitals of the inner sphere are 
high in energy due to the large number of angular nodes in the 
wavefunction, thus the in-phase inner sphere-outer sphere 
combination is predominantly localised on the outer-sphere 
atoms. The orbitals are generally more antibonding for the 
inner than the outer sphere so their bonding combination (see 
Figure 7) is mainly localised on the outer sphere. 

1449 

Inner sphere Outer sphere 

La 

/ 
/ / 

I 

/ 
/ 

/ 
/ 

Figure 7. Interaction between orbitals of the inner- and outer-sphere 
polyhedra in bispherical clusters. The 'cluster orbital principal 
quantum number' is given in parentheses; thus the interaction of 
S"(inner) and S"(outer) (L = . O )  yields the bonding orbital 1s" and 
the antibonding orbital 2s" 

The nomenclature employed follows that for atomic orbitals, 
thus the 1s" cluster orbital possesses no radial nodes while 2s" 
and 3s" (needed in a trispherical cluster) possess one and two 
radial nodes respectively. Similarly, 2P" and 2P" possess no 
radial nodes and 3P " and 3 P It have one radial node. In general 
nLm.n.i has (n - L - 1) radial nodes, as for atomic orbitals. In 
this context it is interesting that the atomic orbital property that 
the maximum in the radial part of the wavefunction moves to 
greater radius as n increases is neatly mimicked in our model (at 
least for L" orbitals with low L values) by the localisation of the 
maximum of electron density on successively larger spheres as 
the n quantum number increases (see Figure 6 for example). 

Upon interaction of the L" and L" orbitals of the inner and 
outer spheres, the resulting orbital with the fewer radial nodes 
(lowest n) is more strongly bonding. As a result of the parity- 
inversion operation (t) which relates L" and pi and 
interconverts their bonding  characteristic^,^ the opposite 
situation applies for the c" orbitals of a bispherical cluster, i.e. 
the greater the number of radial nodes (higher n) the lower is the 
energy of nt". These conclusions are summarised in Figure 7. 
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Cube Hexac a pped cube Octahedron Octahedron 0 cfac a ppe d Cube 
( inner sphere 1 (outer sphere) (inner sphere) (outer sphere) / Octahedron P"(t 1- 

' 9  / 
/ 

Figure 8. Molecular orbital (inner sphere-outer sphere) interaction diagrams for the hexacapped cube and the octacapped octahedron 

~ L x d ~ ~  sphere Section of outer 

wb I n n e r  sphere 

( Flattened -out perspective) 

Figure 9. The 6 orbitals for spherical and bispherical clusters based on a prismatic (three-connected) inner-sphere polyhedron 

The consequences of these inner sphere-outer sphere ponding destabilisation of those of the outer sphere. In itself this 
interactions are shown in Figure 8 for the omnicapped would lead to no change in the number of skeletal electron pairs, 
octahedron and cube. An important feature to note is that in which is indeed observed when polyhedra are capped on only a 
both cases the interaction leads effectively to stabilisation of the few of their faces f ie.  when there are not many atoms on the 
bonding orbitals of the inner-sphere polyhedron and corres- outer sphere) and forms the basis of the capping princip1e.l6 
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Bispherical 
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Spherical 

F z  ( 0 el t a h ed r on 1 

Section of 
outer sphe 

Inner sphere 

re 

Figure 10. The and & orbitals for spherical and bispherical clusters 
based on an antiprismatic (deltahedral with respect to the equator) 
inner-sphere polyhedron 

When the capping atoms form a complete polyhedron, however, 
the bonding combination of certain of the ez orbitals may be 
sufficiently low in energy to be occupied. For three-connected 
polyhedra the t" orbitals of interest are p. As shown in Figure 
8 the three 3P"(t,,) orbitals of the hexacapped cube possess 
overall bonding character. Three-connected polyhedra, in 
general, have the Pu orbitals as the lowest unoccupied 
molecular orbitals (1.u.m.o.s) because of the Ir-bonding inter- 
action they exhibit across the equatorial plane. Figure 9(a) 
illustrates this bonding interaction for one component of the P" 
orbitals (P;). When a ring of capping atoms (outer sphere) is 
introduced (creating a toroidal topology for the bispherical 
cluster) their Pg orbital interacts strongly with that of the three- 
connected polyhedron to create a slightly bonding 3P;  orbital 
[Figure 9(b)J. In the case of an omnicapped three-connected 

2s* 

2 9  

n 

Figure 11. The conversion of radial nodes (in cluster molecular 
orbitals) into additional angular nodes on going from bispherical to 
spherical topology 

polyhedron this process is repeated (in three perpendicular 
planes) for all three P" orbitals and three extra skeletal bonding 
molecular orbitals result which become the highest occupied 
molecular orbitals (h.o.m.0.s). This leads to a skeletal electron- 
pair count of (3VJ2)  + 3 for omnicapped three-connected 
polyhedra (1 5 for the hexacapped cube). The parity-related 3P 
orbitals (antibonding combination of P" on the two spheres) are 
the 1.u.m.o.s. Generally these orbitals are fairly low lying and, 
therefore, potentially accessible. 

The P' orbitals are more strongly antibonding for deltahedra 
than for three-connected polyhedra because, as shown in Figure 
10(a), the interaction across the equator is antibonding rather 
than bonding. The 1.u.m.o.s of the octahedron are & &  (with 
the octahedron viewed down the three-fold axis). Figure 1qb) 
illustrates the & orbital of a deltahedron which is now bonding 
across the equator (it is strongly antibonding for a three- 
connected prism). As Figure 1O(c) shows, overlap oTthis orbital 
with the fi; orbital of the outer sphere will lead to a significant 
bonding interaction. When this interaction is repeated in three 
dimensions all three D;, orbitals interact strongly to yield 
three additional bonding orbitals (46;. l-i2u) and a total of 
(V,  + 4 = 10) skeletal electron pairs for the octacapped 
octahedron (see Figure 8). 

Intermediate between these two extremes of bispherical 
clusters lies the spherical cluster, where all of the cluster atoms 
lie on the surface of the same sphere. Because the cluster is 
spherical its molecular orbitals may be adequately described in 
terms of spherical harmonic functions (LO, L", p, eic.) with no 
radial nodes. Figure 11 shows that, on merging the inner and 
outer spheres to create a spherical cluster, radial nodes are 
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Hexacapped cube Rhombic dodecahedron Octacupped octahedron 
(bi s pher ical ) (spherical) (bispherical )  

* Orbitals predominantly Localised on cube atoms; 
0 orbitals predominantly localised on octahedron atoms, 

Figure 12. Correlation of the (15" and F )  skeletal molecular orbitals of the (spherical) rhombic dodecahedron with those of 
extremes (hexacapped cube and octacapped octahedron) 

the two bispherical 

Table3. Rhombohedra] clusters as the topological composites of three-connected polyhedra and their deltahedral duals (s.e.p. = skeletal electron pair) 

Three-connected polyhedron (3) Deltahedron (A) Rhombohedron (0) (Figure 4) 
Tetrahedron ( V3 = 4) Tetrahedron (VA = 4) Cube(V0 = 8) 
6 (3V3/2) s.e.p. 6 s.e.p. 12 [(3V3/2) + 6) s.e.p. 

ex .  C1r,(CO), 2 1  a [Ni8(PPh)6(C0)81 

Trigonal prism ( V3 = 6) 
9 (3V3 /2 )  s.e.p. 

Trigonal bipyramid ( VA = 5) 
6 s.e.p. (VA + 1) 

Rhombic enneahedron ( Vo = 1 1 )  
12 [(3 V3/2) + 31 s.e.p. 

e.g. [Rh,C(C0),,]2-' C 0 S , ( C 0 ) , 5 1  

Cube(V3 = 8) 
12 (3 V3/2 )  s.e.p. 

Octahedron ( VA = 6) 
7 s.e.p. (VA + 1) 

M. R. Churchill and J. P. Hutchinson, Inorg. Chem., 1978,17,3528. * L. D. Lower and L. F. Dahl, J. Am. Chem. Soc., 1 9 7 6 , s  5046. V. G. Albano, 
D. Braga, and S.  Martinengo, J. Chem. Soc., Dalron Trans., 1981,717. C.  R. Eady, B. F. G. Johnson, J. Lewis, B. E. Reichert, and G. M. Sheldrick, 
J. Chem. Soc., Chem. Commun., 1976,271. ' M. McPartlin, C. R. Eady, B. F. G. Johnson, and J. Lewis, J. Chem. SOC.. Chem. Commun., 1976,883. 

Rhombic dodecahedron ( V O  = 14) 
15 [(3V3/2) + 31 s.e.p. 

e.g. [Ni8(PPh),(CO)8] ~ ~ ~ 6 ( ~ ~ ) 1  g12-e CRhi s(CO)3013-' 

Ref. 17. 

converted into extra angular nodes. The L values of the Figure 12. A notable feature is the transformation (in both 
resulting orbitals depend critically on the disposition of the cases) of the bonding character of 3P" and 3P" on going from 
atoms and, in particular, the number of layers of atoms in the the bispherical to the spherical topology. In the spherical cluster 
structure. the 3P" orbitals become bonding (F") while the 3P" orbitals 

A diagram correlating the molecular orbitals of the octa- become antibonding (P). Going from the hexacapped cube to 
capped octahedron (bispherical), rhombic dodecahedron the rhombic dodecahedron there is, therefore, no change in the 
(spherical), and hexacapped cube (bispherical) is presented in number ofskeletalelectron pairs,(3 V J 2 )  + 3 = Vsph + 1 [since 
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V,,h = (3V3/2) + 2) and the spherical polyhedron has the 
expected (N + 1) skeletal electron-pair On going from 
the octacapped octahedron to the rhombic dodecahedron five 
extra orbitals become bonding: D"(e,, localised exclusively on 
the cube atoms) and 3P" [becoming F"(t,,)J. The cluster 
[Rh, s(CO)30]3- has a rhombic dodecahedra1 structure, with an 
additional metal atom at the centre of the cluster.I7 It possesses 
198 cluster valence electrons, corresponding to the occupation 
of 15 (N + 1,  where N is the number of surface atoms) skeletal 
bonding molecular orbitals and (14N + 2) electrons. The 
(14N + 2) count comes from (2N + 2) skeletal bonding 
electrons and 12 electrons per (outer) metal which are either 
non-bonding (localised on the metals) or involved in metal- 
ligand bonding.' The presence of an interstitial metal atom 
effectively leads to another type of bispherical cluster with 
atoms or cluster units completely enclosed by an outer sphere of 
metal atoms. Such encapsulated clusters have been discussed by 
Mingos'* and will be the subject of a subsequent publication.lg 
The orbitals of the interstitial atom interact with those of the 
cluster in such a way that its electrons are donated to the cluster. 
The presence of interstitial atoms will, of course, stabilise more 
spherical structures by way of strong radial bonds to the outer 
atoms. 

As mentioned above, omnicapping a three-connected poly- 
hedron leads to a bispherical cluster with 3P" and 3P" in the 
frontier-orbital region. On omnicapping a tetrahedral cluster 
(six skeletal electron pairs) and then distorting the bispherical 
cluster, so that all the atoms lie on the surface of the same 
sphere, a cube (rhombic hexahedron) is formed. Cubic clusters 
(0, symmetry) are characterised by 12 skeletal electron pairs 
and the six 'additional' electron pairs occupy orbitals [DX(t lg)  
and D"(r,u)] which are roughly non-bonding6 and which 
correspond to the 3P"(r2) and 3P"(t,) orbitals of the 
(bispherical) tetracapped tetrahedron ( T J .  This should be 
contrasted with the rhombic dodecahedron which only 
possesses three skeletal electron pairs in excess of the 12 
possessed by the cube, from which it is derived. Table 3 gives 
examples of three-connected clusters and their (spherical) 
rhombohedra1 derivatives, which may be regarded as distorted 
omnicapped (bispherical) three-connected polyhedra. 

Bispherical Clusters with Toroidal Topologies.-So far the 
discussion has concerned omnicapped polyhedral structures. 
Other types of bispherical polyhedra are possible, however, 
where the outer sphere may consist of a number of atoms which 
is less than the number of faces of the inner polyhedron. Such 
examples include edge-bridged polyhedra and capped (but not 
omnicapped) polyhedra. 

The tricapped trigonal prism is the simplest example of a 
three-connected cluster which has a planar ring of capping 
atoms around the equator (i.e. only one plane of the outer 
sphere is utilised) thereby possessing a toroidal rather than 
spherical topology. As mentioned in the previous discussion and 
el~ewhere,'~ the interaction between the P" orbitals of the two 
spheres leads to one component of 3P"(3Pg) becoming weakly 
bonding while 3P; is weakly antibonding. On forming the 
spherical (four-connected) polyhedron (l), by stretching the 
trigonal prism and pushing in the capping atoms, tkese two 
orbitals cross over to make F;  (bonding) and F t  (anti- 
bonding),6 so that both the bispherical cluster and the spherical 
cluster possess the same number of skeletal electron pairs: 
(3 V J 2 )  + 1 = V ,  + (V,/2) + 1 (i.e. V,,h + l), where ( V3/2) is 
the number of capping atoms around the equator. A similar 
situation pertains to the tetracapped cube (with D,, symmetry) 
which can be distorted into the four-connected spherical 
cuboctahedron (note here the symmetry is actually increased to 
0,) with 13 ( N  + 1) skeletal electron pairs.' 

Capping an octahedron around the equator yields a 

bispherical cluster with an outer sphere of six atoms forming a 
puckered ring. By analogy with the omnicapped octahedron, it 
is apparent that only one component ( 4 6 3  of the 46" orbitals is 
sufficiently bonding to be occupied and a polyhedron with eight 
(V,  + 2) skeletal electron pairs results. An example of such 
a cluster is [Fe,Pd6(CO)24H]3- (2).,O Examples of capped 
polyhedral clusters, where the capping atoms adopt polyhedral 
or polygonal (planar or puckered) arrangements and where 
certain L? orbitals may be sufficiently stabilised to be occupied, 
are given in Table 4. In agreement with the theoretical analysis, 
those clusters which have an incomplete set of capping atoms 
either possess the same number of skeletal bonding molecular 
orbitals as the parent polyhedra or have an additional electron 
pair occupying one component oft". The only clusters which 
do not appear to conform to this analysis are [Ni,,C,(CO),,]" 
and [Pd,,(C0),,(PEt3),,] (see Table 4). The Nil, cluster has a 
distorted tetracapped cuboctahedral structure and has four 
skeletal electron pairs in addition to the 13 characteristic of 
a cuboctahedral cluster. The distortion in this instance may 
be sufficient for this cluster to be classified as spherical with 
(N + 1 = 17) skeletal electron pairs. The Pd23 cluster has a 
trispherical geometry based on a centred cuboctahedron which 
is capped on all its square faces, so that the capping atoms define 
an octahedron, and has a set of four edge-bridging PdL, groups. 
If these edge-bridging groups donate two electrons to the cluster 
(thereby forming localised two-centre two-electron bonds to the 
central cuboctahedral unit) the bispherical cluster which 
remains would be expected, from the analysis developed above, 
to have 16 skeletal electron pairs. This electron-pair count 
corresponds to the occupation of the 13 skeletal bonding 
orbitals of the cuboctahedron and three orbitals which are the 
bonding combinations of 6; ,, - 2(t2Y) (with the orbitals defined 
relative to a C, axis) on the cuboctahedron and the octahedron 
[4Dn(t2,)]. The Pd23 cluster, however, actually possesses 15 
skeletal electron pairs, which is attributable to the lowering of 
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symmetry (to D,,), due to the presence of the four edge-bridging 
palladium atoms, and the consequent splitting of the b"(t,,) 
orbitals into e, and b2u. 

In those clusters where a ring of capping atoms exists but no 
'new' skeletal bonding orbitals are introduced facile two- 
electron electrochemical reduction processes might reasonably 
be expected. 

Ruff Clusters-Raft clusters' may be described as a subclass 
of bi- (or multi-) spherical clusters with all of the atoms of the 

cb 
/ \  

'Fe 

CCu5Fe,(CO),, 13- 

inner and outer spheres lying on concentric rings in the same 
plane. Evans and Mingos2, identified the 1.u.m.o. in 90-electron 
[Os,(CO),,(P(OMe),},]21 as being low lying and of u2' 
symmetry (3). In terms of bispherical tensor surface harmonics 
this orbital may be identified as 3 8 .  If this orbital is unoccupied 
then a 90-electron cluster results [arising from the 48 electrons 
characteristic of a triangle and 42 electrons (3 x 14) corres- 
ponding to the 14 electrons in metal-carbonyl bonding and 
metal ( d )  non-bonding orbitals associated with the outer metal 
atoms]. Occupation of 36;  leads to a 92-electron cluster based 
on a 50-electron triangular unit. This situation is clearly 
analogous to the tricapped trigonal prism where an analogous 
3P; orbital is occupied. Such a cluster has been prepared by the 
reduction of a 90-electron ~luster. '~ A related cluster is the 
platinum-iron complex [Fe,Pt,(CO), J2- (4) which has 86 
cluster valence electrons24 consisting of 44 electrons for the 
(inner) Pt,(CO), triangle and 42 electrons [14 from each 
Fe(CO), unit] for the outer ring. The characteristic electron 
count for a Pt,L, triangle is 42 so this cluster has an additional 
pair of electrons which again reside in the 3 P ;  orbital.', The 
recently reported raft cluster [ C U ~ F ~ ~ ( C O ) , ~ ] ~  -, which has 
Fe(CO), groups bridging a Cu, triangle,25 only possesses 84 
cluster valence electrons. This may be explained in terms of the 
3 P ;  orbital being inaccessible for Cu because it possesses more 
p" atomic orbital character than in the platinum case, where the 
terminal CO ligand induces d n-pK mixing. Extended raft clusters 
are known which either have metal atoms lying on more than two 
concentric rings or a central metal atom. Examples of such 
clusters are [{Os,(CO), IHgf3]26 and [CU,F~,(CO), , ]~-~~ (5). 
The bonding in these clusters can be analysed by an extension of 
the principles developed above. 

Conclusions 
The L", Ln, and skeletal molecular orbitals of bispherical 
clusters have been derived from those of the constituent 
spherical polyhedra. The addition of successive spherical shells 
leads to skeletal molecular orbitals with radial as well as 
angular nodes. On deforming bispherical clusters into a 
spherical topology these radial nodes are converted into 
additional angular nodes. 

Table 4. Examples of bispherical clusters (capped structures)* 

Description 
Octahedron 
Capped octahedron 
Bicapped octahedron 
Tet racapped octahedron 

Hexacapped octahedron 

Octahedront 
Tetracapped octahedron 

cube 
Pentacapped cube 
(cent red) 
Rhombic dodecahedron/ 
hexacapped cube (centred) 
Pentagonal prism 
Tetracapped pentagonal 
prism (centred) 
( 2 0  + 2 0 ) t  

Square anti prism 0 
Tetracapped square 
antiprism (46) 

Ref. Ni 
a 6  
b 6  
c 6  
d 6  
e 6  

20 6 

f 6  
g, 25 6 

h 6  

i 8  

i k }  
17 8 

I 10 
m 10 

n 8  
0 8  

No N,  s.e.p. Extra s.e.p. 
0 6 7 ( N i  + 1) 
1 7 7 (Ni + 1 = N,) 0 
2 8 7(Ni + 1) 0 
4 10 7 ( N i  + 1) 0 
4 10 8 (Ni f 2) 1 
6 12 8 (Ni  + 2) 1 

- 

0 6 6 ( N i )  
4 10 6 (Ni) 
4 10 6 ( N J  

- 
0 
0 

0 8 12 (3Ni/2) - 
5 13 12 (3Ni /2 )  0 

6 14 15 [ (3Ni /2 )  + 3 = N ,  + 1) 3 

0 10 15 (3Ni/2) 
4 14 16 [ (3Ni /2 )  + 13 

0 8 9 (Ni + I )  (closo) 
4 12 10 (Ni + 2) 

- 
1 

- 
1 
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Table 4 (continued) 

Description 
Square antiprism 

Trigonal prism 

Capped (and edge- 
bridged) trigonal prism 
( 1 0 )  
Bicapped trigonal 
prism (2A)  
Tricapped trigonal 
prism ( 3 0 )  

Square-face-sharing 
fused trigonal prisms (A) 
Bicapped A ( 2 0 )  

Twinned cuboctahedron 
(centred) 
Cuboctahedron 
Distorted tetracapped 
cuboctahedron ( 4 0 )  
Hexacapped (and edge- 
bridged) cuboctahedron 
(centred) ( 6 0 )  

1987 

Example 

[Ni6C(C0) 1 6i2- 
[ Bi + 

Extra s.e.p. Ref. Ni No N ,  s.e.p. 

o 8 0 8 1 1  (Ni + 3) (arachno) - 
p 8 0 8 1 1  (Ni + 3) (arachno) - 

0 6 9 (3NJ2) 

1 7 9 (3Ni/2) 

- 

0 

t 6 2 8 9 (3Ni/2) 0 

1 

2 

6 3 9 10 [(3Ni/2) + 1 = N ,  + 13 

1 1  [(3Ni/2) + 2 = N ,  + 21 
v .  W' "1 
x 8 0 8 1 0  - 

y 8 2 10 1 1  

2 12 0 12 13 ( N i  + 1) 

1 

- 

12 0 12 13(Ni + 1) - 

aa 12 4 16 17 (Ni + 5 = N ,  + 1) 4 

bb 12 6 18 15 (Ni + 3) 2 

1455 

* N i  = Number of inner-sphere atoms (central core); No = number of outer-sphere (capping) atoms (not counting edge-bridging groups which form 
essentially localised two-centre two-electron bonds to the inner-sphere polyhedron); N ,  = total number of cluster atoms (not counting 
central/interstitial atoms or edge-bridging atoms, which donate all their valence electrons to the cluster). 
t Polyhedral clusters of the Group 1B and 2B metals generally have one skeletal electron pair less than normal. Octahedral clusters of this type are 
therefore characterised by 84 cluster valence electrons. Another example of a bispherical cluster based on an 84-electron octahedron is 
[Ag,(Fe(C0),)3 ((Ph2P),CH}] which has three faces capped by Fe(CO), groups and the other capped by a tripodal phosphine ligand (C. E. Briant, 
R. G. Smith, and D. M. P. Mingos, J. Chem. SOC., Chem. Commun., 1984,586). $ The numbers in brackets refer to the number and type of face which is 
capped, in those cases where the inner-sphere polyhedron possesses more than one type of face. Q The square antiprism may be regarded as either a 
four-connected polyhedron (in which case it should possess N + 1 = 9 s.e.p.s as for a closo cluster) or an arachno deltahedron (characterised by 
N + 3 = 1 1  s.e.p.s).' a- For the cluster both 3P; and 3 P ;  are occupied (3P; is a fairly low-lying 1.u.m.o. for [B9H912-); refs. 6, 14, and K. 
Wade and M. E. O'Neill, Polyhedron, 1983,2,963. a M. McPartlin, C. R. Eady, B. F. G. Johnson, and J. Lewis, J. Chem. Soc., Chem. Commun., 1976, 
883. C. R. Eady, B. F. G. Johnson, J. Lewis, R. Mason, P. B. Hitchcock, and K. M. Thomas, J. Chem. SOC., Chem. Commun., 1977,385. P. F. Jackson, 
B. F. G. Johnson, J. Lewis, and P. R. Raithby, J.  Chem. Sac., Chem. Commun., 1980,60. P. F. Jackson, B. F. G. Johnson, J. Lewis, W. J. H. Nelson,and 
M. McPartlin, J. Chem. SOC., Dalton Trans., 1982,2099. E. G. Mednikov, N. K. Eremenko, S. P. Gubin, Yu. L. Slovokhotov, and Yu. T. Struchkov, J.  
Organomel. Chem., 1982, 239,401. M. R. Churchill, S. A. Bezman, J. A. Osborn, and J. Wormald, Znorg. Chem., 1972, 11, 1818. G. Doyle, B. T. 
Heaton, and E. Ochiello, Organometallics, 1985,4,1224. R. A. Jones, F. M. Real, G. Wilkinson, A. M. R. Galas, and M. B. Hursthouse,J. Chem. SOC., 
Dalton Trans., 1981, 126. L. D. Lower and L. F. Dahl, J. Am. Chem. SOC., 1976,98, 5046. J G. Ciani, A. Sironi, and S. Martinengo, J. Organomet. 
Chem., 1980,192, C42. Ir S. Martinengo, G. Ciani, and A. Sironi, J. Chem. SOC., Chem. Commun., 1980, 1 1 4 0 .  ' P. E. Eaton, Y. S. Or, and S. J. Branca, J. 
Am. Chem. SOL.., 1981,103,2134. V. G.  Albano, M. Sansoni, P. Chini, S. Martinengo, and D. Strumulo, J. Chem. SOC., Dalton Trans., 1976,970. V. 
G. Albano, P. Chini, G. Ciani, S. Martinengo, and M. Sansoni, J.  Chem. SOC., Dalton Trans., 1978,463. ' G. Longoni, A. Ceriotti, R. Della Pergola, M. 
Manassero, M. Perego, G. Piro, and M. Sansoni, Philos. Trans. R. Soc. London, A, 1982,308,47. J. D. Corbett, Inorg. Chem., 1968,7,198; B. Krebs, M. 
Hucke, and C. J. Brendel, Angew. Chem., Int. Ed. Engl., 1982,21,445.O T. J. Katz and N. Acton, J. Am. Chem. SOC., 1973,95,2738. V. G. Albano, D. 
Braga, and S. Martinengo, J. Chem. SOC., Dalton Trans., 1981, 717. P. R. Raithby, in 'Transition Metal Clusters,' ed. B. F. G. Johnson, Wiley, New 
York, 1980, ch. 2, p. 63. ' V. G. Albano, D. Braga, S. Martinengo, P. Chini, M. Sansoni, and D. Strumulo, J. Chem. Soc., Dalton Trans., 1980, 52. " F. 
Klanberg and E. L. Muetterties, Znorg. Chem., 1966,51955. " R. C. Burns and J. D. Corbett, J. Am. Chem. SOC., 1982,104,2804. A. Herschaft and 
J. D. Corbett, Inorg. Chem., 1963,2,979; R. M. Friedman and J. D. Corbett, Inorg. Chim. Acta, 1973,7,525. A. Arrigoni, A. Ceriotti, R. Della Pergola, 
G. Longoni, M. Manassero, N. Masciocchi, and M. Sansoni, Angew. Chen:., Int. Ed. Engl., 1984,23,322. A. Ceriotti, G. Longoni, M. Manassero, N. 
Masciocchi, L. Resconi, and M. Sansoni, J. Chem. SOC., Chem. Commun., 1985, 181. G. Ciani, A. Sironi, and S. Martinengo, J.  Chem. Soc., Dalton 
Trans., 1981,519. '' A. Ceriotti, G. Longoni, M. Manassero, N. Masciocchi, G. Piro, L. Resconi, and M. Sansoni, J. Chem. Soc., Chem. Commun., 1985, 
1402. bb E. G. Mednikov, N. K. Eremenko, Yu. L. Slovokhotov, and Yu. T. Struchkov, J. Organomet. Chem., 1986, 301, C35. 

In the  bispherical extremes the  clusters a re  characterised by  a 
skeletal electron-pair count  corresponding t o  the  occupation of 
the  bonding molecular orbitals of the  inner polyhedron a n d  
certain En orbitals (predominantly localised on the  outer 
sphere) which a re  lowered d u e  t o  a bonding  interaction between 
the  molecular orbitals of the  two polyhedra. T h e  number  of 
additional skeletal bonding molecular orbitals depends upon 
the  topology of the  a t o m s  lying on the  outer  sphere and the  
mismatch in symmetry between the  L" molecular orbitals of the 
inner-sphere polyhedron a n d  the  En molecular orbitals of the  

outer-sphere polyhedron. In the case where the  outer-sphere 
polyhedral topology is spherical, three addi5onal  orbitals a r e  
generally stabilised. These orbitals are P" if the  central 
polyhedron is three-connected and D", F", efc. if it is a 
deltahedron. If, however, the  topology of the  outer-sphere 
a t o m s  is toroidal (planar or puckered rings) only one 
component  of these orbitals is lowered. These concepts have 
also been applied t o  the  study of planar raft clusters where again 
only o n e  additional orbital  (PG) is stabilised. 

A rhombohedra1 'spherical' cluster lies a t  the  midpoint 
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between the two (omnicapped) bispherical extremes. This 
cluster is characterised by (N + 1) skeletal electron pairs and its 
molecular orbitals may be correlated with those of the 
bispherical clusters. 
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