Synthesis of SS'-Bis(4'-benzo[15-crown-5])dithioglyoxime‡ and its Complexes with Copper(II), Nickel(II), Cobalt(II), Cobalt(III), Palladium(II), Platinum(II), and Platinum(IV)

Vefa Ahsen and Füsun Gökçeli

TUBITAK—Research Institute for Basic Sciences, Department of Chemistry, P.O. Box 74, Gebze-Kocaeli, Turkey Özer Bekâroğlu *.†

Department of Chemistry, Technical University of Istanbul, Maslak-Istanbul, Turkey

SS'-Bis(4'-benzo[15-crown-5])dithioglyoxime (H₂L) has been prepared from 4'-mercaptobenzo[15-crown-5], *anti*-dichloroglyoxime, and sodium bicarbonate in ethanol. Nickel(II), palladium(II), platinum(II), copper(II), cobalt(II), and cobalt(III) complexes of H₂L have a metal–ligand ratio of 1:2 and the ligand co-ordinates through the two N atoms, as do most of the *vic*-dioximes. The complex [Pt(HL)₂Cl₂·4NaClO₄] forms six-membered chelate rings and co-ordinates through N and O atoms. [Co(HL)₂(PPh₃)Cl·4NaClO₄] and [Co(HL)₂(C₅H₅N)Cl·2NaClO₄] have been prepared with triphenylphosphine or pyridine and chloride as axial ligands. The ion-extraction properties of the Ni¹¹, Pd¹¹, and Pt¹¹ complexes towards lithium, sodium, and potassium picrate from aqueous solution to dichloromethane have been measured. Extraction values, n.m.r., i.r., and u.v.–visible data are presented.

The synthesis of various *vic*-dioximes and their transition-metal complexes have been the essential topics of research carried out in our laboratory.¹ Since observations on the ion-binding ability and selectivity of crown ethers, considerable interest has been shown in incorporating these functional groups into different new compounds.² We have started to study the effect of crown ether groups on the isomerism and complex formation of *vic*-dioximes.³ Our main interest in compounds which contain both macrocyclic ether groups and a *vic*-dioxime moiety in their molecules lies in investigating the influence of transition-metal ions on the alkali-metal ion extraction capability of crown ether groups.

In the present paper we report the synthesis of a novel vicdioxime substituted with two crown ether functions and its complexes with various metal ions.

Results and Discussion

SS'-Bis(4'-benzo[15-crown-5])dithioglyoxime (H₂L) (Figure 1) was prepared by the reaction of 4'-mercaptobenzo[15-crown-5]⁴ with *anti*-dichloroglyoxime in ethanol with excess of NaHCO₃ as a buffer to neutralize HCl formed during the reaction (Scheme). Similar reaction routes were followed for the synthesis of bis(2-pyridylthio)glyoxime and [HON=CHC-(=NOH)SCH₂-]₂ from the corresponding mercapto-compounds.^{5.6}

In the ¹H n.m.r. spectrum of H_2L , the OH proton resonance appears as a singlet at 9.1 p.p.m., which disappears by deuterium exchange; two multiplets at 3.6—4.1 and 6.8—7.0 p.p.m. correspond to etheral (CH₂-CH₂-O) and aromatic protons.³ The presence of a singlet for OH is consistent with the assumption of an *s*-trans configuration for H_2L . The i.r. spectrum of H_2L exhibits v(O-H) as a broad absorption at 3 207 cm⁻¹. Bands due to C=N and N-O stretches are at 1 639 and 981 cm⁻¹ respectively.

The crystalline lithium chloride, sodium thiocyanate,

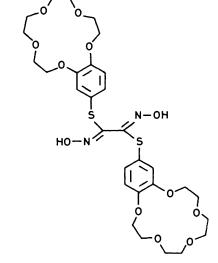
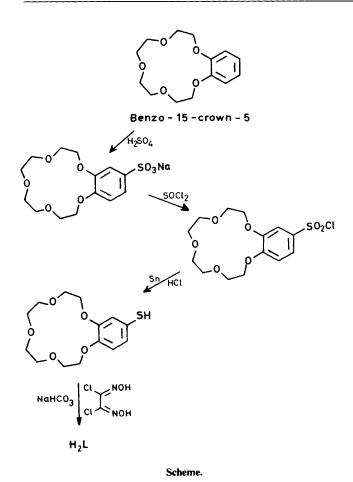


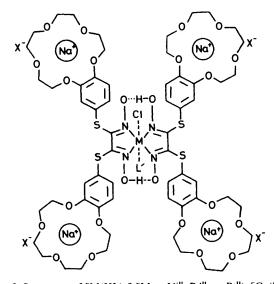
Figure 1. Structure of H₂L

potassium thiocyanate, and ammonium thiocyanate complexes of H_2L were isolated by treating H_2L with the corresponding salts in ethanol. According to elemental analyses (Table 1) it was found that two Li⁺ or Na⁺ ions are incorporated into the two cavities of H_2L . In the case of K⁺ and NH₄⁺ ions, however, alkali metal:ligand ratios are definitely 1:1, which reflects unequivocally the effect of the higher diameters of these two cations. In the i.r. spectra of the thiocyanate complexes v(SCN) bands appear at 2 070 cm⁻¹.

Reaction of H_2L with Ni^{II}, Pd^{II}, and Pt^{II} salts gives products with metal:ligand ratios of 1:2. The products obtained from the reaction of Cu^{II}, Co^{II}, and Co^{III} ions with H_2L were highly soluble in EtOH; thus they could only be precipitated as sodium perchlorate complexes.

 $[Ni(HL)_2]$, $[Pd(HL)_2]$, and $[Pt(HL)_2]$ (Figure 2).—The i.r. spectra of these three complexes exhibit v(C=N) at 1 630 cm⁻¹. This value is lower than that of the free ligand (1 639 cm⁻¹). In


[†] Present address: TUBITAK-Research Institute for Basic Sciences, Department of Chemistry, P. O. Box 74, Gebze-Kocaeli, Turkey.


[‡] 1.2-Bis(hydroxyimino)-1,2-bis(2,3,5,6,8,9,11,12-octahydro-1,4,7,10,13-benzopentaoxacyclopentadecin-15-ylthio)ethane.

Compound	M.p. [₺] (°C)	Colour	Yield (%)	Analysis (%)		
				С	н	N
H ₂ L	126	White	83	51.2 (52.6)	5.9 (5.8)	4.2 (4.1)
H ₂ L·2LiCl	125	White	62	47.6 (46.8)	5.5 (5.2)	3.9
H ₂ L·2NaSCN	201-203	White	32	44.8	4.8	(3.6) 6.5
H ₂ L·KSCN	233	White	95	(45.4) 46.7	(4.8) 5.2	(6.6) 5.4
H₂L•NH₄SCN	212-214	White	83	(47.6) 48.2	(5.2) 5.7	(5.4) 7.2
[Ni(HL) ₂]	220	Red	76	(48.9) 50.7	(5.8) 5.5	(7.4) 4.2
[Pd(HL),]	210	Orange	88	(50.5) 48.7	(5.5) 5.5	(3.9) 3.9
[Pt(HL),]	216	Red	23	(48.9) 46.3	(5.3) 5.0	(3.8) 3.6
[Cu(HL) ₂ ,4NaClO ₄]	170	Brown	26	(46.1) 38.1	(5.0) 4.3	(3.6) 3.1
				(37.5)	(4.1) 4.9	(2.9)
[Co(HL) ₂ ·2NaClO ₄]	197	Dark brown	54	42.9 (43.1)	(4.7)	3.3 (3.4)
$[Co(HL)_2(C_5H_5N)Cl \cdot 2NaClO_4]$	145	Brown	40	43.6 (43.7)	4.7 (4.7)	4.1 (3.9)
$[Co(HL)_2(PPh_3)Cl-4NaClO_4]$	181	Brown	38	41.9 (42.3)	4.2 (4.2)	2.9 (2.5)
[Pt(HL) ₂ Cl ₂ ·4NaClO ₄]	239	Yellow	47	32.1 (33.9)	3.8 (3.7)	2.8 (2.6)

Table 1. Analytical^a and physical data for the vic-dioxime and its complexes

" Required values are given in parentheses. " With decomposition.

Figure 2. Structures of $[M(HL)_2]$ $[M = Ni^{II}, Pd^{II}, or Pt^{II})$, $[Cu(HL)_2 \cdot 4NaX]$, $[Co(HL)_2 \cdot 2NaX]$, $[Co(HL)_2(L')Cl \cdot 2NaX]$ $(L' = C_5H_5N)$, and $[Co(HL)_2(L')Cl \cdot 4NaX]$ $(L' = PPh_3)$ $(X = ClO_4^-)$

addition the v(OH) band at 3 207 cm⁻¹ disappears. These facts suggest that the HL^- ligand is NN'-co-ordinated to Ni^{II}, Pd^{II}, and Pt^{II}.

In the n.m.r. spectrum of $[Ni(HL)_2]$ the intramolecular bridging, deuterium exchangeable, OH protons are observed at 17.4 p.p.m.^{3.7} (Table 2).

 $[Cu(HL)_2 \cdot 4NaClO_4]$ and $[Co(HL)_2 \cdot 2NaClO_4]$ (Figure 2).— These two complexes were prepared by treating equivalent Table 2. Hydrogen-1 n.m.r. spectral data for the vic-dioxime and its complexes"

Compound	O • • • • H–O ^b	N-OH ^b	H aromatic	CH ₂ -O
4'-Mercaptobenzo[15-crown-5] ^{c.d}			6.9-6.7 (m) (3 H)	4.1-3.6 (m) (16 H)
H ₂ L ^d		9.1 (s) (2 H)	7.0-6.8 (m) (6 H)	4.1—3.6 (m) (32 H)
$[\tilde{N}i(HL)_{3}]^{d}$	17.4 (br s) (2 H)		6.9-6.7 (m) (12 H)	4.13.7 (m) (64 H)
$\left[Pd(HL)_{2} \right]^{d}$	e		6.9-6.7 (m) (12 H)	4.13.6 (m) (64 H)
$[Pt(HL)_2]^d$	е		6.9-6.7 (m) (12 H)	4.1—3.7 (m) (64 H)
$[Co(HL)_2(C_5H_5N)Cl \cdot 2NaClO_4]^d$	18.1 (br s) (2 H)		6.8-6.5 (m) (12 H)	4.13.7 (m) (64 H)
			C_5H_5N : 7.9—7.1 (br m) (5 H)	
$[Co(HL)_2(PPh_3)Cl \cdot 4NaClO_4]^d$	17.7 (s)18.5 (s) (2 H)		6.8-6.4 (m) (12 H)	4.1—3.6 (m) (64 H)
			PPh ₃ : 7.9-7.1 (m) (15 H)	
$[Pt(HL)_2Cl_2\cdot 4NaClO_4]^f$		11.9 (s) (2 H)	6.8—6.7 (m) (12 H)	4.13.6 (m) (64 H)

^a Chemical shifts (δ) are reported in p.p.m. relative to SiMe₄ at 30 °C; s = singlet, m = multiplet. ^b Disappears on D₂O exchange. ^c δ (S–H) 3.5 p.p.m. ^d In CD₂Cl₂. ^e Not observed. ^f In (CD₃)₂SO.

Table 3. Characteristic i.r. bands (cm⁻¹) of the vic-dioxime and its complexes (KBr pellets)

Compound	v(O-H)	v(C=N)	v(C _{aromatic} -O-C)	v(C-O-C)	v(N-O)	$v(ClO_4)$
H ₂ L	3 207	1 639	1 255-1 219	1 131-1 046	981	
H ₂ L·2LiCl	3 200	1 635	1 255-1 220	1 130-1 045	980	
H ₂ L·2NaSCN	3 210	1 628	1 255-1 215	1 1351 045	978	
H ₂ L·KSCN	3 210	1 630	1 255-1 220	1 131-1 046	985	
HĴL∙NH₄SCN	3 200	1 630	1 255-1 220	1 130-1 045	980	
$[\tilde{N}i(HL)_{j}]$		1 630	1 259-1 220	1 133—1 048	981	
[Pd(HL)]]		1 630	1 259-1 221	1 132-1 054	982	
$[Pt(HL)_{2}]$		1 630	1 257-1 220	1 130-1 055	980	
[Cu(HL) ₂ ·4NaClO ₄]		1 630	1 257-1 216	1 122-1 055	980	640626
[Co(HL) ₂ ·2NaClO ₄]		1 630	1 257—1 216	1 130 1 055	980	635625
$[Co(HL)_{2}(C,H,N)Cl-2NaClO_{4}]$		1 630	1 257-1 216	1 130-1 055	980	635625
[Co(HL) ₂ (PPh ₃)Cl-4NaClO ₄]		1 630	1 257—1 216	1 140 1 055	980	635630
[Pt(HL) ₂ Cl ₂ ·4NaClO ₄]	3 210	1 630	1 255-1 215	1 122 1 050	980	635

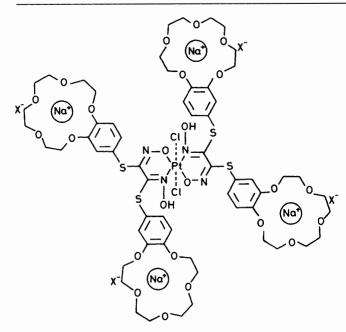


Figure 3. Structure of $[Pt(HL)_2Cl_2 \cdot 4NaX] (X^- = ClO_4^-)$

amounts of H_2L and the corresponding metal salt in ethanol with NaOH solution and subsequently adding a saturated solution of NaClO₄ in ethanol to ensure complete precipitation. The difference in solubility of both complexes causes various numbers of sodium perchlorate ion pairs to incorporate into the crown ether groups of H_2L . The v(C=N) bands are observed at 1 630 cm⁻¹ for both complexes (Table 3). $[Co(HL)_2(C_5H_5N)Cl\cdot2NaClO_4]$ and $[Co(HL)_2(PPh_3)Cl\cdot4NaClO_4]$.—These cobalt(III) complexes were prepared similarly to a previously reported complex of *NN'*-bis(4'-benzo[15-crown-5])diaminoglyoxime.³ The triphenylphosphine and pyridine ligands are co-ordinated axially to the metal in these octahedral complexes^{3,8,9} (Figure 2). The deuterium exchangeable, intramolecular bridging, OH protons appear as a singlet at 18.1 p.p.m. for the pyridine derivative. Both complexes exhibit v(C=N) absorptions at 1 630 cm⁻¹. The v(Co-P) band for the triphenylphosphine derivative appeared at 520 cm⁻¹.^{3,10}

Schrauzer and Kohnle⁹ showed that a dimethylglyoxime complex of Co^{III} could be reduced to a Co¹ compound which was used to prepare many alkylcobaloximes. When $[Co(HL)_2(PPh_3)Cl \cdot 4NaClO_4]$ was treated with NaBH₄ in a N₂ atmosphere, a blue solution of a Co¹ complex was obtained. This property might be taken to indicate the superiority of thioglyoximes over aminoglyoximes which decompose under these reducing conditions.³ The S atoms of H₂L probably stabilize the six-co-ordinate metal core of the complex.

[Pt(HL)₂Cl₂·4NaClO₄] (*Figure 3*).—This compound was prepared by treating H₂L with a saturated solution of NaClO₄ in ethanol and subsequently adding Na₂PtCl₆·6H₂O. The ¹H n.m.r. spectrum shows one singlet at 11.9 p.p.m. Since the formation of O-H ··· O bonds results in a shift to lower field, the ligand should form a six-membered chelate ring by coordinating to Pt through the N and O atoms as shown in Figure 3. The presence of a broad and strong OH vibration at 3 210 cm⁻¹ also confirms the proposed structure.

In all the perchlorate containing complexes bands due to ClO_4^- are present as doublets at 625---640 cm⁻¹.

Extraction.-The extraction of metal salts into organic

Table 4. % Extraction of alkali-metal picrates from aqueous solution to dichloromethane *

	Li+	Na ⁺	Κ+
Benzo[15-crown-5]	0.9	18.2	33.7
$[Ni(HL)_2]$	7.1	8.5	79.3
$[Pd(HL)_2]$	23.6	26.5	99.2
$[Pt(HL)_2]$	10.2	8.5	15.6

* Organic phase: [crown ether unit] = 7.0×10^{-4} mol dm⁻³; aqueous phase: 0.1 mol dm⁻³ MOH-7.0 $\times 10^{-5}$ mol dm⁻³ picric acid.

solvents by neutral, ion-binding molecules has been described in detail by Haines *et al.*¹¹ According to their procedure we have measured the ability of dichloromethane solutions of Ni^{II}, Pd^{II}, and Pt^{II} complexes of H₂L to extract alkali-metal picrates from aqueous solution. Due to the good solubility of H₂L in alkaline, aqueous media (formation of metal salt of *vic*-dioxime) we were not able to include this compound in our extraction experiments. For comparison, however, we measured the extraction capability of benzo[15-crown-5]. The results are given in Table 4.

Two points are worthy of mention. First, the percentage extractions for K^+ are the highest and secondly the Ni^{II} and Pd^{II} complexes exhibit a higher selectivity for K^+ than the Pt^{II} complex. It is well known that poly- and bis-(crown ether)s containing pendant crown ether moieties exhibit a type of cooperative effect in complexing metal cations, especially in forming sandwich type 2:1 complexes.⁴ The greater ionic radius of Pt^{II} than the other d^8 metal ions might be expected to prevent parallel alignment of the two crown ether units of the same molecule completely to envelope alkali-metal cations. Thus we can attribute the high extractability of K^+ ions by the crowned vic-dioxime complexes of Ni^{II} and Pd^{II} to the fact that these two compounds exhibit a remarkable capability for forming 1:2 potassium ion-crown sandwich-type complexes. This might be a result of the suitable direction of the crown ether groups for sandwich-type complex formation due to the NN-chelated metal core of the molecule.

In conclusion, we were able to show the effect of different transition metals on the alkali-metal ion extraction ability of the new crown ether containing *vic*-dioxime complexes.

Investigations into the preparation of new Co–alkyl derivatives through the reduction of $[Co(HL)_2(PPh_3)Cl-4NaClO_4]$ into Co¹ complexes is the topic of continuing research in this laboratory.

Experimental

The ¹H n.m.r. spectra were recorded on a Bruker spectrometer at 360 MHz. Infrared spectra were recorded on a Perkin-Elmer 330 spectrophotometer in KBr pellets. The u.v.-visible spectra were recorded on a Varian DMS 90 spectrophotometer (1-cm quartz cells). Elemental analyses were performed on a Perkin-Elmer 240 C elemental analyzer. 4'-Mercaptobenzo[15-crown-5] was prepared according to a literature procedure.⁴

SS'-Bis(4'-benzo[15-crown-5])dithioglyoxime (H₂L).--4'-Mercaptobenzo[15-crown-5] (1 600 mg, 5.33 mmol) was dissolved in ethanol (70 cm³) and NaHCO₃ (895 mg, 10.65 mmol) added under an atmosphere of N₂. A solution of dichloroglyoxime (418 mg, 2.66 mmol) in ethanol (60 cm³) was added dropwise. The reaction was allowed to continue for 1 h at room temperature and then 1 h at 50-60 °C. After cooling to room temperature, water (ca. 1 l) was added. The resulting white precipitate was filtered off, washed with water, and then recrystallized from ethanol. λ_{max} .(MeOH): 210 ($\epsilon = 56495 \text{ dm}^3 \text{ mol}^{-1} \text{ cm}^{-1}$), 254 (19 203), and 282 nm (11 042).

H₂L·KSCN.—To a stirred solution of H₂L (50 mg, 0.073 mmol) in ethanol (5 cm³) was added potassium thiocyanate (709 mg, 7.3 mmol) in ethanol (7 cm³). The resulting white precipitate was filtered off and washed with ethanol. $\lambda_{max.}$ (MeOH): 209 ($\epsilon = 56747$ dm³ mol⁻¹ cm⁻¹), 252 (17784), and 284 nm (90 961) (sh).

Lithium, sodium, and ammonium complexes of H_2L were prepared similarly. H_2L ·2LiCl: λ_{max} .(MeOH), 210 ($\epsilon = 63\,937$ dm³ mol⁻¹ cm⁻¹), 255 (22 478) (sh), and 284 (12 961) (sh); H_2L ·2NaSCN: λ_{max} .(MeOH), 209 (57 759), 256 (16 257), and 282 (10 000) (sh); H_2L ·NH₄SCN: λ_{max} .(MeOH), 210 (57 472), 252 (18 333) (sh), and 283 nm (10 305) (sh).

[Ni(HL)₂].—To an ethanol (20 cm³) solution of H₂L (200 mg, 0.292 mmol) was added a solution of NiCl₂·6H₂O (34.7 mg, 0.146 mmol) in ethanol (7 cm³) at room temperature. A solution of triethylamine (2.92 cm³, 0.1 N in ethanol) was added dropwise, while heating this mixture (60 °C). The resulting red precipitate was filtered off and washed with ethanol. λ_{max} .(CH₂Cl₂): 227 ($\epsilon = 57$ 143 dm³ mol⁻¹ cm⁻¹) (sh), 249 (55 143), 283 (41 086), 390 (11 657), and 435 nm (11 943).

[Pd(HL)₂].—A mixture of PdCl₂ (26 mg, 0.1466 mmol) and LiCl(12.6 mg, 0.296 mmol) was dissolved in ethanol (25 cm³) and added dropwise into a solution of H₂L (200 mg, 0.292 mmol) in ethanol (20 cm³). An orange precipitate was observed during the stirring at 60 °C. A triethylamine solution (2.92 cm³, 0.1 N in ethanol) was added to the mixture to complete the complex formation. The resulting orange precipitate was filtered off and washed with ethanol. λ_{max} (CH₂Cl₂): 229 ($\varepsilon =$ 61 886 dm³ mol⁻¹ cm⁻¹), 247 (63 486), 283 (35 886), 325 (8 968) (sh), and 384 nm (5 716).

[Pt(HL)₂].—H₂L (100 mg, 0.146 mmol) was dissolved in ethanol (20 cm³) and K₂PtCl₄ (30.3 mg, 0.073 mmol) added. The mixture was stirred and heated to 60 °C. Water was added to the mixture, maintained at this temperature, until the K₂PtCl₄ had dissolved (the mixture must be clear at this point). The colour of the mixture turned red and the pH was adjusted to 6 with KOH (0.1 N in ethanol). The precipitate was filtered off and washed with a small amount of ethanol. $\lambda_{max.}$ (CH₂Cl₂): 228 ($\epsilon = 59 257 \text{ dm}^3 \text{ mol}^{-1} \text{ cm}^{-1}$), 246 (49 631), 284 (29 004) (sh), 331 (9 876), and 406 nm (10 001).

[Cu(HL)₂·4NaClO₄] and [Co(HL)₂·2NaClO₄].—To a stirred solution of H₂L (100 mg, 0.146 mmol) in ethanol (20 cm³) was added a solution of the metal salt (CuCl₂·2H₂O or CoCl₂·6H₂O) (3.65 cm³, 0.02 N in ethanol). The mixture was heated to 60 °C and NaOH (1.46 cm³, 0.1 N in ethanol) added dropwise. The reaction was allowed to continue for 15 min at 60 °C. In order to precipitate the complex a saturated solution of NaClO₄ (5 cm³) in ethanol was added. The precipitate was filtered off and washed with ethanol and then diethyl ether. [Cu(HL)₂·4NaClO₄]: λ_{max} .(CH₂Cl₂), 229 (ε = 63 137 dm³ mol⁻¹ cm⁻¹), 245 (62 549), 285 (39 706) (sh), and 340 (23 529) (sh); [Co(HL)₂·2NaClO₄]: λ_{max} .(CH₂Cl₂), 228 (ε = 54 952), 249 (58 019), 285 (37 125) (sh), and 347 nm (18 722) (sh).

 $[Co(HL)_2(C_5H_5N)Cl \cdot 2NaClO_4]$ and $[Co(HL)_2(PPh_3)Cl \cdot 4NaClO_4]$.—H₂L (100 mg, 0.146 mmol) was dissolved in ethanol (20 cm³) and a solution of CoCl₂·6H₂O (17.4 mg, 0.073 mmol) in ethanol (5 cm³) added. The mixture was heated with stirring to 70 °C. A solution of pyridine (48 mg, 0.6 mmol) or triphenylphosphine (157 mg, 0.6 mmol) in ethanol was added and air bubbled through the mixture for 30 min. A saturated solution of NaClO₄ in ethanol (5 cm³) was added. The brown

precipitate was filtered off and washed with ethanol. $[Co(HL)_2-(C_5H_5N)Cl \cdot 2NaClO_4]$: $\lambda_{max}(CH_2Cl_2)$, 230 ($\epsilon = 64551$ dm³ mol⁻¹ cm⁻¹), 244 (64 370), 279 (37 897) (sh), and 338 (15 866) (sh); $[Co(HL)_2(PPh_3)Cl \cdot 4NaClO_4]$: $\lambda_{max}(CH_2Cl_2)$, 230 ($\epsilon = 67838$), 242 (64 122), 282 (36 068) (sh), and 350 nm (18 514).

 $[Pt(HL)_2Cl_2\cdot4NaClO_4]$.—To a solution of H_2L (100 mg, 0.146 mmol) in ethanol (20 cm³) was added a saturated solution of NaClO₄ in ethanol (5 cm³) followed by a solution of Na₂PtCl₆-6H₂O (41 mg, 0.073 mmol) in ethanol (15 cm³). The mixture was stirred at 60 °C for 30 min. The yellow precipitate was filtered off and washed with ethanol.

Acknowledgements

We are grateful to Professor Dr. J. Dabrowski of the Department of Organic Chemistry, Max-Planck Institute für Medizinische Forschung, Heidelberg for n.m.r. spectra. One of us (Ö. B.) thanks the Deutscher Akademischer Austauschdienst and the Deutsche Gesellschaft für Technische Zusammenarbeit for a valuable gift of an i.r. spectrophotometer

References

- 1 A. Gül, A. I. Okur, A. Cihan, N. Tan, and Ö. Bekâroğlu, J. Chem. Res., 1986, (S) 90; (M) 0881.
- 2 C. J. Pedersen, J. Am. Chem. Soc., 1967, 89, 7017; E. M. Hyde, B. L. Shaw, and I. Shepherd, J. Chem. Soc., Dalton Trans., 1978, 1696.
- 3 A. Gül and Ö. Bekâroğlu, J. Chem. Soc., Dalton Trans., 1983, 2537. 4 S. Shinkai, T. Minami, Y. Araragi, and O. Manabe, J. Chem. Soc.,
- Perkin Trans. 2, 1985, 503.
 5 Y. Gök and Ö. Bekâroğlu, Synth. React. Inorg. Metal-Org. Chem., 1981, 11, 621.
- 6 M. Koçak and Ö. Bekâroğlu, Synth. React. Inorg. Metal-Org. Chem., 1984, 14, 689.
- 7 A. Nakamura, A. Konishi, and S. Otsuka, J. Chem. Soc., Dalton Trans., 1979, 490; S. B. Pederson and E. Larsen, Acta Chem. Scand., 1973, 27, 3294.
- 8 A. Chakravorty, Coord. Chem. Rev., 1974, 13, 12.
- 9 G. N. Schrauzer and J. Kohnle, Chem. Ber., 1964, 97, 3056.
- 10 K. Nakamoto, 'Infrared Spectra of Inorganic and Coordination Compounds,' J. Wiley, New York, 1970, p. 205.
- 11 A. H. Haines, I. Hodgkisson, and C. Smith, J. Chem. Soc., Perkin Trans. 1, 1983, 311.

Received 1st August 1986; Paper 6/1568