The Methyl/Trifluoromethyl Substitution Effect in Boranes. A Gas-phase Electron Diffraction and Vibrational Study of Bis(dimethylamino)(trifluoromethyl)borane and Dimethylaminobis(trifluoromethyl)borane \dagger

Reneé Hausser-Wallis and Heinz Oberhammer*
Institut für Physikalische und Theoretische Chemie der Universität, 7400 Tübingen, Federal Republic of Germany
Hans Bürger* and Gottfried Pawelke
Anorganische Chemie, FB9, Universität-Gesamthochschule, 5600 Wuppertal, Federal Republic of Germany

The gas-phase structures of $\mathrm{CF}_{3} \mathrm{~B}\left(\mathrm{NMe}_{2}\right)_{2}$ and $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{BNMe}_{2}$ have been determined by electron diffraction. The vibrational spectra have been recorded by i.r. (gas) and Raman (liquid) and valence force fields have been derived. The following skeletal geometric parameters (r_{a} values with 3σ uncertainties) have been obtained: for $\mathrm{CF}_{3} \mathrm{~B}\left(\mathrm{NMe}_{2}\right)_{2}, \mathrm{~B}-\mathrm{C}=164.8(8), \mathrm{B}-\mathrm{N}=142.2(9)$, $\mathrm{C}-\mathrm{N}=145.3(4), \mathrm{C}-\mathrm{F}=135.2(3) \mathrm{pm}, \mathrm{NBN}=125.5(31), \mathrm{FCF}=105.3(4)$, and $\tau_{\mathrm{BN}}=24(3)^{\circ}\left(\tau_{\mathrm{BN}}\right.$ is the torsional angle around the $\mathrm{B}-\mathrm{N}$ bond from the planar configuration); for $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{BNMe}_{2}$, $B-C=162.3(4), \mathrm{B}-\mathrm{N}=142.5(18), \mathrm{C}-\mathrm{N}=145.3(7), \mathrm{C}-\mathrm{F}=134.3(2) \mathrm{pm}, \mathrm{CBC}=122.2(15), \mathrm{FCF}=$ $106.5(2)^{\circ}$. The $\mathrm{B}-\mathrm{C}$ bonds in the trifluoromethyl compounds are considerably longer than in the analogous methyl derivatives and this $\mathrm{CH}_{3} / \mathrm{CF}_{3}$ substitution effect is confirmed by the force constants.

Abstract

In general, shortening of adjacent bonds is observed if a methyl group which is bonded to a first-row element, X , is replaced by trifluoromethyl. The magnitude of this $\mathrm{CH}_{3} / \mathrm{CF}_{3}$ substitution effect depends on the electronegativity of $\mathrm{X}^{1,2}$ It is largest if $\mathrm{X}=$ F , where the $\mathrm{C}-\mathrm{F}$ bond shortens from $\mathrm{FCH}_{3}[139.2(1) \mathrm{pm}]^{3}$ to $\mathrm{FCF}_{3}[132.04(4) \mathrm{pm}]^{4}$ by 7.2 pm and is smaller for less electronegative central atoms. This substitution effect has been rationalized qualitatively by polar interactions. ${ }^{2}$ If the adjacent atom X carries a negative net charge, the polar interaction is attractive in the CF_{3} derivative and the bond shortens with $\mathrm{CH}_{3} / \mathrm{CF}_{3}$ substitution ($\mathrm{X}^{\dot{\delta}}-\mathrm{C}^{\dot{j}-\mathrm{H}_{3}}$ vs. $\mathrm{X}^{\delta-}-\mathrm{C}^{\delta+} \mathrm{F}_{3}$). The reverse effect, i.e. lengthening of $\mathrm{X}-\mathrm{C}$ bonds, has been observed for electropositive second-row atoms X such as Si^{5} or $\mathrm{P}^{6}{ }^{6}$ The recently synthesized CF_{3}-substituted boron compounds, ${ }^{7}$ $\mathrm{CF}_{3} \mathrm{~B}\left(\mathrm{NMe}_{2}\right)_{2}$ and $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{BNMe}_{2}$, provide the opportunity to extend the study of this $\mathrm{CH}_{3} / \mathrm{CF}_{3}$ substitution effect to first-row elements which are more electropositive than carbon. In this paper we report a gas-phase electron diffraction study, vibrational spectra, and a normal co-ordinate analysis of the above two compounds. The main interest lies in the distance and strength of the $\mathrm{B}-\mathrm{CF}_{3}$ bonds, relative to $\mathrm{B}-\mathrm{CH}_{3}$ bonds in analogous compounds.

Experimental

The compounds $\mathrm{CF}_{3} \mathrm{~B}\left(\mathrm{NMe}_{2}\right)_{2}$ and $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{BNMe}_{2}$ were prepared by methods described previously. ${ }^{7}$ Infrared and Raman spectra obtained in the gas and liquid phases, respectively, have been reported. ${ }^{7}$ For the samples used in the electron diffraction experiment no impurities were detected in the spectra.

The electron diffraction intensities were recorded with the Balzers apparatus at the University of Tübingen at two camera distances (25 and 50 cm). ${ }^{8}$ The accelerating voltage was ca. 60 kV and the electron wavelength was calibrated with ZnO diffraction patterns. The samples were kept at 20 and $18^{\circ} \mathrm{C}$ for the trifluoromethyl and bis(trifluoromethyl) compounds, respectively, and the stainless-steel inlet system and nozzle were at 30 C for both compounds. The camera pressure never exceeded 10^{-5} mbar during the experiment. Two plates for each compound and camera distance were selected and analyzed by

[^0]standard procedures. ${ }^{9}$ The averaged molecular intensities [$s \mathrm{M}(s)$] ($\mathrm{M}=$ reduced molecular intensities) for the two compounds in the scattering ranges $0.02<s<0.17$ and $0.08<s<0.35 \mathrm{pm}^{-1}$ are presented in Figures 1 and 2 in steps of $\Delta s=0.002 \mathrm{pm}^{-1}$.

Vibrational Spectra.-The vibrational spectra of both compounds have been reported and briefly discussed. ${ }^{7}$ The i.r. spectrum of $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{BNMe}_{2}$ is shown in Figure 3. Although the actual symmetry of $\mathrm{CF}_{3} \mathrm{~B}\left(\mathrm{NMe}_{2}\right)_{2}$ is not higher than C_{1}, the polarization data of the Raman lines are consistent with virtual C_{s} symmetry. In this case the NC_{2} groups are twisted out of the CBN_{2} plane in opposite directions. Virtual C_{2} symmetry requires that the NC_{2} groups are twisted in the same sense and that the CF_{3} group is freely rotating. The vibrational spectra of $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{BNMe}_{2}$ suggest either $C_{2 v}$ or C_{2} symmetry. Both point groups are in agreement with the results of the structural investigations if small rotational barriers about the B-C bonds are assumed. According to the normal co-ordinate analysis the twisting of the NC_{2} groups has no significant effect on the vibrational spectra. Therefore, the assignments for $\mathrm{CF}_{3} \mathrm{~B}(\mathrm{~N}-$ $\left.\mathrm{Me}_{2}\right)_{2}$ are based on C_{s} or ' C_{2} ' symmetry, while the final calculations were performed employing the structural parameters of the electron diffraction investigation. Only skeletal fundamentals with the notation of Table 1 are discussed in some detail. As the mass of the CF_{3} group and hence dynamic coupling effects are similar to that of a Br atom, comparison with the vibrational spectra of $\mathrm{BrB}\left(\mathrm{NMe}_{2}\right)_{2}$ and $\mathrm{Br}_{2} \mathrm{BNMe}_{2}$ (obtained in the present investigation and quoted in parentheses throughout for corresponding vibrations) is helpful.

Analysis of $\mathrm{CF}_{3} \mathrm{~B}\left(\mathrm{NC}_{2}\right)_{2}$. Large ${ }^{10 / 11} \mathrm{~B}$ shifts are revealed by v_{1} and v_{16} at $1404 / 1425(1400 / 1416)$ and $1530 / 1552$ (1536/1555) cm^{-1}. Strong i.r. absorptions at 1204 (1212) and $1148(1145) \mathrm{cm}^{-1}$ are assigned to v_{5} and v_{19}, while the symmetric components v_{4} and v_{18} are associated with i.r. and Raman features occurring at lower wavenumbers, 903-910 $(880-900) \mathrm{cm}^{-1}$. The vibration v_{6}, which has the character of a breathing mode, may be assigned to a Raman line at 565 (563) cm^{-1}. The out-of-plane modes v_{13} and v_{14} are mixed, and the component occurring at higher energy was found at 674/696 ($686 / 698$) cm^{-1}. A polarized Raman line at $1280 \mathrm{~cm}^{-1}$ and a strong i.r. band near $1110 \mathrm{~cm}^{-1}$ are assigned to v_{2} and v_{3} / v_{17},

Figure 1. Experimental (points) and calculated (-) molecular intensities $[s \mathrm{M}(s)]$ and differences for $\mathrm{CF}_{3} \mathrm{~B}\left(\mathrm{NMe}_{2}\right)_{2}$

Figure 2. Experimental (points) and calculated (-) molecular intensities $[s \mathrm{M}(s)]$ and differences for $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{BNMe}_{2}$
respectively, these vibrations being absent in $\mathrm{BrB}\left(\mathrm{NMe}_{2}\right)_{2}$. The presence of a CF_{3} group is furthermore indicated by a sharp, polarized Raman line at $716 \mathrm{~cm}^{-1}$ which is assigned to v_{7}, while v_{8} and v_{20} are associated with an absorption at $515 \mathrm{~cm}^{-1}$. The torsions v_{15}, v_{26}, and v_{27} were not observed. All other skeletal vibrations are strongly mixed, and their assignment requires the assistance of the normal co-ordinate analysis reported below.

Analysis of $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{BNC}_{2}$. The vibration v_{1} is assigned to a
strong Raman line coinciding with an i.r. absorption at $1570 / 1600(1518 / 1532) \mathrm{cm}^{-1}$, while v_{24} and v_{4} are located at $1150(1140)$ and $898 / 907(875 / 885) \mathrm{cm}^{-1}$, respectively. The b_{2} stretch v_{25} appears as a strong i.r. band with a substantial ${ }^{10 / 11} \mathbf{B}$ shift at $913 / 935(833 / 875) \mathrm{cm}^{-1}$, while its a_{1} counterpart v_{5} is assigned to a polarized Raman line at 292 (315) cm^{-1}. All asymmetric stretching vibrations v_{3}, v_{11}, v_{16}, and v_{23} are associated with a broad band in the i.r. and Raman spectrum at

Table 1. Vibrational fundamentals ($s=$ symmetric, asym $=$ asymmetric) for the $\mathrm{CF}_{3} \mathrm{~B}\left(\mathrm{NC}_{2}\right)_{2}\left(C_{s}\right.$, or ' C_{2} ' in parentheses) and $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{BNC} \mathrm{N}_{2}$ skeletons ($C_{2 v}$)

	$\mathrm{CF}_{3} \mathrm{~B}\left(\mathrm{NC}_{2}\right)_{2}$		$\left(\mathrm{CF}_{3}\right)_{2} \mathrm{BNC}_{2}$			
	$\begin{gathered} a^{\prime}(a) \\ \text { (Raman, i.r.) } \end{gathered}$	$a^{\prime \prime}(b)$ (Raman, i.r.)	$\begin{gathered} a_{1} \\ \text { (Raman, i.r.) } \end{gathered}$	$\begin{gathered} a_{2} \\ \text { (Raman) } \end{gathered}$	$\begin{gathered} b_{1} \\ \text { (Raman, i.r.) } \end{gathered}$	$\begin{gathered} b_{2} \\ \text { (Raman, i.r.) } \end{gathered}$
$v(\mathrm{BN})$	v_{1}	v_{16}	v_{1}			
$v_{s}\left(\mathrm{CF}_{3}\right)$	v_{2}		v_{2}			v_{22}
$v_{\text {asym }}\left(\mathrm{CF}_{3}\right)$	v_{3}	v_{17}	v_{3}	v_{11}	v_{16}	v_{23}
$v_{s}\left(\mathrm{NC}_{2}\right)$	v_{4}	v_{18}	v_{4}			
$v_{\text {asym }}\left(\mathrm{NC}_{2}\right)$	v_{5}	v_{19}				v_{24}
$v(B C)$	v_{6}		v_{5}			v_{25}
$\delta_{s}\left(\mathrm{CF}_{3}\right)$	v_{7}		v_{6}			v_{26}
$\delta_{\text {asym }}\left(\mathrm{CF}_{3}\right)$	v_{8}	v_{20}	v_{7}	v_{12}	v_{17}	v_{27}
$\rho\left(\mathrm{CF}_{3}\right)$	v_{9}	v_{21}	v_{8}	v_{13}	v_{18}	v_{28}
$\delta\left(\mathrm{NC}_{2}\right)$	v_{10}	v_{22}	v_{9}			
$\delta\left(\mathrm{BN}_{2}\right)$	v_{11}					
δ (BNC)	v_{12}	v_{23}				V_{29}
$\delta(\mathrm{CBN})$		v_{24}				v_{30}
$\delta\left(\mathrm{BC}_{2}\right)$			v_{10}			
op(B)*	v_{13}				v_{19}	
$o p(N)^{*}$	v_{14}	v_{25}			v_{20}	
$\tau(\mathrm{BN})$	v_{15}	v_{26}		v_{14}		
$\tau\left(\mathrm{CF}_{3}\right)$		v_{27}		v_{15}	v_{21}	

* op = Out of plane.

Figure 3. Infrared spectrum of $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{BNMe}_{2}$ ($18-\mathrm{cm}$ cell): (a) 34 mbar , KBr windows; (b) 1.5 mbar, KBr windows; (c) 34 mbar, Polythene windows
$1100-1110 \mathrm{~cm}^{-1}$. The symmetric modes v_{2} and v_{22} are assigned to vibrations at 1270 and $1334 / 1344 \mathrm{~cm}^{-1}$. In this region, $\mathrm{Br}_{2} \mathrm{BNMe}_{2}$ does not show any absorptions. The presence of two CF_{3} groups follows from the occurrence of two $\delta_{\mathrm{s}}\left(\mathrm{CF}_{3}\right)$ modes, v_{6} at 729 and v_{26} at $689 \mathrm{~cm}^{-1}$. While v_{14} may be associated with a weak and broad Raman line near $100 \mathrm{~cm}^{-1}$, the other bending fundamentals were either not detected (e.g. v_{15} and v_{21}) or, according to the results of the normal co-ordinate analysis, were strongly mixed.

Normal Co-ordinate Analysis.-In order to establish the assignment of the skeletal vibrations, we have performed a normal co-ordinate analysis. Wilson's FG matrix method was employed and the computer program NORCOR applied. ${ }^{10}$ The G matrices were based on the structures determined in the present studies. The CH stretching and bending vibrations were excluded from the computations, and the carbon atoms of the CH_{3} groups were assigned a mass of 15 . Initial force constants were transferred from $\mathrm{CF}_{3} \mathrm{BF}_{3}{ }^{-}$, ${ }^{11} \quad\left(\mathrm{CF}_{3}\right)_{2} \mathrm{BF}_{2}{ }^{-,},{ }^{12}$ and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}^{13}$ and refined to an acceptable fit of the observed
vibrational wavenumbers. Tables 2 and 3 give the observed and calculated wavenumbers and quote the respective potential energy distribution in terms of inner co-ordinates. The diagonal force constants are listed in Table 4.*

It is evident that the ${ }^{10 / 11} \mathrm{~B}$ shifts of the BN stretching vibrations are poorly reproduced by our calculations, the calculated shifts being significantly larger. The reason for this discrepancy is mainly the mixing of v_{1} and v_{16} with the CH_{3} bending vibrations, which are close, but which were not considered in the calculations. Therefore some of the off-diagonal elements of the F matrix could not be determined. Nevertheless, the assignment of the skeletal vibrations appears to be well founded. The stretching force constants listed in Table 4 are consistent with values of related molecules, e.g. $f(\mathrm{BN})$ of $\mathrm{B}\left(\mathrm{NMe}_{2}\right)_{3}$, ca. 550$)^{14}$ $f(\mathrm{CN})$ of $\mathrm{NMe}_{3}, 530,{ }^{15}$ and $f(\mathrm{BC})$ and $f(\mathrm{CF})$ of $\mathrm{CF}_{3} \mathrm{BF}_{3}{ }^{-}$, 363 and $485 \mathrm{~N} \mathrm{~m}^{-1},{ }^{11}$ respectively.

Structure Analysis.-The radial distribution functions (Figures 4 and 5) were calculated with an artificial damping constant, $\gamma=19 \mathrm{pm}^{2}$. In the least-squares analyses the molecular intensities were modified with a diagonal weight matrix ${ }^{9}$ and scattering amplitudes and phases from ref. 16 were used. In both compounds $C_{3 v}$, symmetry for the CF_{3} and CH_{3} groups and a planar configuration of the dimethylamino groups was assumed. Planarity of $-\mathrm{NH}_{2}$ and $-\mathrm{NMe}_{2}$ groups bonded to boron has been demonstrated by ab initio calculations ${ }^{17,18}$ and experiments. ${ }^{19-22}$ The methyl groups were assumed to deviate slightly from the exact staggered position (with respect to the $\mathrm{B}-\mathrm{N}$ bond). The torsional angle around the $\mathrm{N}-\mathrm{C}$ bonds was set to 10°, the value derived for $\mathrm{B}\left(\mathrm{NMe}_{2}\right)_{3},{ }^{22}$ with the two CH_{3} groups rotated in opposite directions (i.e. C_{2} symmetry for $-\mathrm{NMe}_{2}$). A value of $\tau_{\mathrm{NC}}=0$ corresponds to the position with two $\mathrm{C}-\mathrm{H}$ bonds staggering the $\mathrm{B}-\mathrm{N}$ bond. Test calculations demonstrated that this torsional angle has only a small effect on the quality of the fit between experiment and model and does not affect the optimized structural parameters.

Structure of $\mathrm{CF}_{3} \mathrm{~B}\left(\mathrm{NMe}_{2}\right)_{2}$. With the above constraints the geometry of this compound is characterized by five bond

[^1]Table 2. Observed and calculated vibrational wavenumbers $\left(\mathrm{cm}^{-1}\right)$ for the $\mathrm{CF}_{3} \mathrm{~B}\left(\mathrm{NC}_{2}\right)_{2}$ skeleton with their potential energy distribution in terms of internal co-ordinates (only contributions $\geqslant 10 \%$) ($\mathrm{op}=$ out of plane)

Observed	Calculated	BC	BN	NC	CF	CBN	NBN	BNC	CNC	BCF	FCF	$o p(N)$	op(B)	$\tau(\mathrm{BN})$
$1530 / 1552$	$1515 / 1569$		88			17								
$1404 / 1425$	$1400 / 1438$	23	35	19			16	19						
1280	1280	26	16		27					12	25			
1204	1200			77	17									
1148	$1144 / 1149$		18	76										
1110	1123			32	66						18			
1108	$1100 / 1102$				96					16	26			
907/920	912/917			93										
903/907	903/905			98										
716	716				36						16			
674/696	676/699				15			18		19			34	
565	567/568		40				12	39	36					
563	559/560				29	11		15	22		11			
515	519				20						77			
512	507							12	19		66			
385	387	27						25	18		12			
380	376							70	17	20				
345	350							23	42	32				
340	335									42		28	12	
290	299							36	37			24		
285	280	19						23	15			40		
175	160					43		29		15				
135	135											56	39	
135	129					21	36	41				28		
	78													96
	75													97

Table 3. Observed and calculated vibrational wavenumbers $\left(\mathrm{cm}^{-1}\right)$ for the $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{BNC}_{2}$ skeleton with their potential energy distribution in terms of internal co-ordinates (only contributions $\geqslant 10 \%$) ($o p=$ out of plane)

Symmetry	Observed	Calculated	BC	BN	NC	CF	CBN	BNC	CNC	CBC	BCF	FCF	op(N)	op(B)	$\tau(\mathrm{BN})$
a_{1}	$1570 / 1600$	$1560 / 1609$		38		13				20	11				
	1270	$1269 / 1272$	24	12		41						22			
	1110	$1110 / 1112$		29	18	46						21			
	898/907	890/905			81	24									
	729	727				41						14			
	564	565		31		31			26			16			
	495	494		22				16	60			52			
	350	351			17			13	51		16	27			
	292	292	35				15					25			
	138	138					14			34	100				
a_{2}	1090	1088				107					11	25			
	528	526				17						73			
	275	273									106	20			
	101	101													98
h_{1}	1110	$1118 / 1122$				95					17	23			
	690/710	688/709				25					24		13	31	
	505	505/506										82			
	351	351/353									46	13	56		
	138	136									32		25	63	
h_{2}	$1334 / 1344$	$1332 / 1347$	15		48	10	30	13							
	1150	$1146 / 1154$	50		28	29					10	19			
	1106	1107	14			77					11	25			
	913/935	914/934	24			47	16								
	689	689/691				25					13	28			
	520	523				16						75			
	348	346	45					33				10			
	270	275						15			88	20			
	138	139					45	64			19				

Table 4. Diagonal inner force constants ($\mathrm{N} \mathrm{m}^{-1}$ scaled to 100 pm) for the $\mathrm{CF}_{3} \mathrm{~B}\left(\mathrm{NC}_{2}\right)_{2}$ and $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{BNC}_{2}$ skeletons

	$\mathrm{CF}_{3} \mathrm{~B}\left(\mathrm{NC}_{2}\right)_{2}$	$\left(\mathrm{CF}_{3}\right)_{2} \mathrm{BNC}_{2}$
$f(\mathrm{BC})$	355	360
$f(\mathrm{BN})$	600	600
$f(\mathrm{NC})$	520	520
$f(\mathrm{CF})$	485	490
$f(\mathrm{CBN})$	134	159
$f(\mathrm{CBC})$		186
$f(\mathrm{NBN})$	116	
$f(\mathrm{BNC})$	107	74
$f(\mathrm{CNC})$	101	139
$f(\mathrm{BCF})$	115	98
$f(\mathrm{FCF})$	194	174
$f_{\text {op }}(\mathrm{B})$	25	31
$f_{\text {op }}(\mathrm{N})$	12	26
$f_{\mathrm{r}}(\mathrm{BN})$	14	24

Figure 4. Experimental radial distribution function and difference curve for $\mathrm{CF}_{3} \mathrm{~B}\left(\mathrm{NMe}_{2}\right)_{2}$

Figure 5. Experimental radial distribution function and difference curve for $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{BNMe}_{2}$
lengths, four bond angles ($\mathrm{HCH}, \mathrm{FCF}, \mathrm{CNC}$, and NBN) and the torsional angles τ_{BN}, by which the dimethylamino groups are rotated around the $\mathrm{B}-\mathrm{N}$ bonds from the planar configuration (Figure 6). The two $-\mathrm{NMe}_{2}$ groups are rotated in opposite directions resulting in C_{2} symmetry for the $\mathrm{B}\left(\mathrm{NMe}_{2}\right)_{2}$ moiety.

Table 5. Geometric parameters ${ }^{a}$ for $\mathrm{CF}_{3} \mathrm{~B}\left(\mathrm{NMe}_{2}\right)_{2}$ and $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{BNMe}_{2}$

	$\mathrm{CF}_{3} \mathrm{~B}\left(\mathrm{NMe}_{2}\right)_{2}$	$\left(\mathrm{CF}_{3}\right)_{2} \mathrm{BNMe}_{2}$
$\mathrm{~B}-\mathrm{C}$	$164.8(8)$	$162.3(4)$
$\mathrm{B}-\mathrm{N}$	$142.2(9)$	$142.5(18)$
$\mathrm{C}-\mathrm{N}$	$145.3(4)$	$145.3(7)$
$\mathrm{C}-\mathrm{F}$	$135.2(3)$	$134.3(2)$
$\mathrm{C}-\mathrm{H}$	$109.3(5)$	$107.9(9)$
NBN	$125.5(31)$	
CBC		$122.2(15)$
CNC	$114.6(19)$	$110.7(37)$
FCF	$105.3(4)$	$106.5(2)$
HCH	$109.2(11)$	$108.9(14)$
$\tau_{\mathrm{NC}}{ }^{b}$	10^{c}	10^{c}
$\tau_{\mathrm{BN}}{ }^{d}$	$24(3)$	$0{ }^{c}$
$\tau_{\mathrm{BC}}{ }^{e}$	f	$15.1(11)$

${ }^{a} r_{\mathrm{a}}$ Values, bond lengths in pm and angles in ${ }^{\circ}$. Estimated uncertainties are 3σ values and include possible systematic errors (see text). ${ }^{b}$ Torsional angle around NC bonds; for $\tau_{\mathrm{NC}}=0$ two CH bonds stagger the BN bond. ${ }^{\text {c }}$ Not refined. ${ }^{d}$ Torsional angle around the BN bond; $\tau_{\mathrm{BN}}=0$ corresponds to the planar heavy-atom skeleton. ${ }^{e}$ Torsional angle around the B-C bonds; for $\tau_{\mathrm{BC}}=0$ two CF bonds stagger the BN bond. ${ }^{\rho}$ Free internal rotation of CF_{3} group.

Figure 6. Molecular model of $\mathrm{CF}_{3} \mathrm{~B}\left(\mathrm{NMe}_{2}\right)_{2}$ with atomic numbering
The radial distribution function in the range $260<r<350$ pm is very sensitive towards the torsional position of the CF_{3} group. The initial assumption of $\tau_{B C}=0$, i.e. one $\mathrm{C}-\mathrm{F}$ bond perpendicular to the molecular plane, leads to poor agreement between experiment and model. The experimental intensities can be fitted almost equally well with a rigid model and an 'effective' torsional angle for the CF_{3} group $\tau_{\mathrm{BC}}=31(5)^{\circ}$ or with a non-rigid model with free internal rotation of the CF_{3} group. This torsional potential has six fold symmetry and such potentials are known to have very low barriers.

For both models the geometric parameters agree within their standard deviations and the values in Table 5 correspond to the non-rigid analysis. The vibrational amplitudes were grouped according to their distances and constraints are evident from Table 6. Amplitudes for distances involving hydrogens were not refined. With these assumptions ten geometric parameters and ten vibrational amplitudes were refined simultaneously in the final analysis. The following correlation coefficients had values larger than $|0.6|: \mathrm{CF} / \mathrm{BN},-0.75 ; \mathrm{CF} / \mathrm{NC}, 0.75 ; \mathrm{BN} / \mathrm{NC},-0.92$; CF/FCF, 0.88; BN/FCF, -0.71 ; NC/FCF, 0.68. The estimated uncertainties in Tables 5 and 6 are based on 3σ values and include possible systematic errors due to the constraints for

Table 6. Interatomic distances and vibrational amplitudes (pm) for $\mathrm{CF}_{3} \mathrm{~B}\left(\mathrm{NMe}_{2}\right)_{2}$ (excluding distances involving hydrogens) ${ }^{a}$

Atom pair	Distance	Amplitude	Atom pair	Distance	Amplitude
$\mathrm{C}-\mathrm{H}$	109	6.9(5)	N...F	284-311	19(6)
C-F	135	$4.9{ }^{\text {b }}$	C...F	258-329	12(3)
B-N	142		$\mathrm{C}(2) \cdots \mathrm{C}(5)$	302	
$\mathrm{N}-\mathrm{C}$	145	$4.7{ }^{\text {b }}$	C(1) ... C(3)	307	11(3)
B-C	165		$\mathrm{N}(1) \ldots \mathrm{C}(3)$	307	
F...F	215	5.8(3)	N...F	357-378	16(6)
$\mathrm{C}(1) \cdots \mathrm{C}(2)$	245		$\mathrm{C}(1) \cdots \mathrm{C}(4)$	382 2	10(2)
B . . F F	251		$\mathrm{C}(1) \cdots \mathrm{C}(5)$	396	10(2)
B...C(1)	252	8.7(5)	C...F	412-471	11(4)
N•.. N	253		C...F	493-501 $\}$	10(3)
$\mathrm{N} \cdot \mathrm{C}$ (5)	262		$\mathrm{C}(2) \cdots \mathrm{C}(5)$	$505\}$	10(3)

${ }^{a}$ Atom numbering is shown in Figure 6. Error limits are 3σ values. ${ }^{b}$ Not refined.

Table 7. Interatomic distances and vibrational amplitudes (pm) for $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{BNMe}_{2}$ (excluding distances involving hydrogens) ${ }^{a}$

Atom pair	Distance	Amplitude	Atom pair	Distance	Amplitude
C-H	108	7.4(12) (l_{1})	N...F(1)	320	17(
C-F	134	4.9(2) (l_{2})	C(3) . . F (1)	333	17
B-N	143 \}	$4.7{ }^{\text {b }}$	$\mathrm{C}(2) \cdots \mathrm{F}(1)$	365	
N-C	145	$4.7{ }^{\text {b }}$	$F(2) \cdot \cdots \mathrm{F}(4)$	367	16(3) (l_{8})
B-C	162	4.1(9) (l_{3})	N...F(2)	375	
F...F	215	6.2(2) (l_{4})	C(2) . . F (3)	385	17(5) (l_{9})
$C(3) \cdots \mathrm{C}(4)$	239		$F(3) \cdots \mathrm{F}(5)$	419	14(3) (l_{10})
B . . F	247	$7.9(11)\left(l_{5}\right)$	$F(3) \cdots F(4)$	435	
B . . C C 3)	255	$7.9(11)\left(l_{5}\right)$	$\mathrm{C}(3) \cdots \mathrm{F}(2)$	435	$21(4)\left(l_{11}\right)$
$\mathrm{C}(1) \cdots \mathrm{C}(2)$	284		$\mathrm{C}(3) \cdots \mathrm{F}(6)$	439	
$F(2) \cdots \mathrm{F}(5)$	265	$12^{\text {b }}$	$\mathrm{C}(3) \cdots \mathrm{F}(4)$	456	
$\mathrm{C}(3) \cdots \mathrm{F}(3)$	288		$F(1) \cdots F(4)$	470	24(8) (l_{12})
N...F(3)	298	12(2) (l_{6})	$F(3) \cdots \cdot F(6)$	491	(3) (l_{13})
$\mathrm{C}(1) \cdots \cdot \mathrm{F}(5)$	302		$\mathrm{C}(3) \cdots \mathrm{F}(5)$	$500\}$	$3)$
$\mathrm{C}(1) \cdots \mathrm{C}(3)$	304	$10^{\text {b }}$			
$\mathrm{C}(2) \cdots \mathrm{C}(3)$	401)	10			

${ }^{a}$ Atom numbering is shown in Figure 7. Error limits are 3σ values. ${ }^{b}$ Not refined.

Figure 7. Molecular model of $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{BNMe}_{2}$ with atomic numbering
bonded vibrational amplitudes. These systematic errors were estimated by varying these amplitudes by $\pm 0.5 \mathrm{pm}$.

Structure of $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{BNMe}_{2}$. Model calculations demonstrate that the heavy-atom skeleton (without fluorines) is planar or nearly planar (Figure 7). Thus, in addition to the geometric constraints described above, the torsional angle around the $\mathrm{B}-\mathrm{N}$ bond was set to zero. Since the choice of the model, rigid or non-rigid, had no effect on the fit or on the values for the
geometric parameters in the case of $\mathrm{CF}_{3} \mathrm{~B}\left(\mathrm{NMe}_{2}\right)_{2}$, only a rigid model was used for $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{BNMe}_{2}$. For compounds with two or more large-amplitude motions (CF_{3} torsions in this case) nonrigid models increase the computational expense drastically. The CF_{3} groups were assumed to be rotated around the $\mathrm{B}-\mathrm{C}$ bonds (τ_{BC}) in opposite directions, resulting in C_{2} overall symmetry. These torsional angles have to be considered as 'effective' values. Constraints for the vibrational amplitudes are evident from Table 7. With these assumptions ten geometric parameters and 13 vibrational amplitudes were refined simultaneously. The following correlation coefficients had values larger than $|0.6|: \mathrm{BN} / \mathrm{NC},-0.80 ; \mathrm{BN} / \mathrm{CNC}, 0.62$; $\mathrm{CBC} / \mathrm{CNC},-0.72 ; \mathrm{BN} / l_{2}, 0.63 ; \mathrm{CBC} / l_{9}, 0.63 ; \mathrm{CBC} / I_{11}, 0.66$. The final results are listed in Tables 5 and 7. The uncertainties have been estimated by the same procedure as described above.

Results and Discussion

The most interesting structural parameter in these CF_{3}. substituted boranes is the $\mathrm{B}-\mathrm{C}$ bond lengths. Comparison with the analogous CH_{3} derivatives, ${ }^{23} \mathrm{CH}_{3} \mathrm{~B}(\mathrm{NHMe})_{2}$ and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{BNHMe}$, demonstrates considerable lengthening of these bonds upon $\mathrm{CH}_{3} / \mathrm{CF}_{3}$ substitution: from 158.6 (3) to $164.8(8) \mathrm{pm}$ in the methylborane and from 158.6(2) to $162.3(4)$ pm in the dimethylborane. A similar effect has been observed previously in the crystal structures of the borates $\mathrm{K}\left[\mathrm{CH}_{3} \mathrm{BF}_{3}\right]^{24}$ and $K\left[\mathrm{CF}_{3} \mathrm{BF}_{3}\right]^{11}$ where the $\mathrm{B}-\mathrm{C}$ bond lengthens from $157.5(3)$ to $162.5(5) \mathrm{pm}$. The observation of longer $\mathrm{B}-\mathrm{C}$ bonds in the CF_{3} derivatives relative to $\mathrm{BMe}_{3}[\mathrm{~B}-\mathrm{C}=157.8(2) \mathrm{pm}]^{25}$ is consistent with the $f(\mathrm{BC})$ stretching force constants which
decrease from $384 \mathrm{~N} \mathrm{~m}^{-1}$ in $\mathrm{BMe}_{3}{ }^{26}$ to 355 and $360 \mathrm{~N} \mathrm{~m}^{-1}$ in the CF_{3} compounds.

The lengthening of the $\mathrm{B}-\mathrm{C}$ bonds with fluorination is in agreement with the simple concept of polar interactions. Since the electropositive boron atom carries a positive net charge, the polar interaction changes from slightly attractive in the methyl compounds (methyl carbon is assumed to carry a small negative net charge) to strongly repulsive in the CF_{3} derivatives. If polar effects are indeed dominant in determining the $\mathrm{B}-\mathrm{CF}_{3}$ bond lengths, the difference between $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{BNMe}_{2}[162.3(4) \mathrm{pm}]$ and $\mathrm{CF}_{3} \mathrm{~B}\left(\mathrm{NMe}_{2}\right)_{2}$ [164.8(8) pm] indicates stronger repulsion, i.e. a higher positive boron net charge in the latter compound. Such an increase in the boron net charge with an increasing number of amino groups has been predicted by $a b$ initio calculations ${ }^{27}$ on $\mathrm{H}_{2} \mathrm{BNH}_{2}\left(q_{\mathrm{B}}=+0.36\right.$ e) and $\mathrm{HB}\left(\mathrm{NH}_{2}\right)_{2}$ ($q_{\mathrm{B}}=+0.70 \mathrm{e}$), but is not obvious for the CF_{3}-substituted compounds. The slightly, but significantly longer $\mathrm{C}-\mathrm{F}$ bonds in $\mathrm{CF}_{3} \mathrm{~B}\left(\mathrm{NMe}_{2}\right)_{2}$, however, are consistent with a higher positive net charge in this compound.

The correlation between $\mathrm{C}-\mathrm{F}$ bond lengths in CF_{3} groups and the electronegativity or net charge of the adjacent atom, i.e. lengthening with increasing positive net charge, has been established previously. ${ }^{2.28}$ The $\mathrm{C}-\mathrm{F}$ bonds in the boron compounds are long but typical for CF_{3} groups bonded to electropositive atoms [e.g. 134.8(1) pm in $\mathrm{CF}_{3} \mathrm{SiH}_{3}{ }^{5}$ or 135.4(2) pm in $\mathrm{CF}_{3} \mathrm{HgCH}_{3}{ }^{29}$]. The FCF angles [105.3(4) and 106.5(2) ${ }^{\circ}$] are considerably smaller than tetrahedral but are in perfect agreement with a previously established correlation between these angles and the C-F bond lengths: ${ }^{2.28}$ the FCF angles decrease with increasing $\mathrm{C}-\mathrm{F}$ bond lengths, resulting in remarkably constant non-bonded F \ldots F distances of 215 ± 1 pm . These $\mathrm{F} \cdots \mathrm{F}$ distances are 215.0(6) and 215.2(4) pm in $\mathrm{CF}_{3} \mathrm{~B}\left(\mathrm{NMe}_{2}\right)_{2}$ and $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{BNMe}_{2}$, respectively.

The remaining geometric parameters are not affected by fluorination. The $\mathrm{B}-\mathrm{N}$ and $\mathrm{N}-\mathrm{C}$ bond lengths are equal in both CF_{3} derivatives and within experimental uncertainties they are equal to the corresponding values in other dimethyl- or methylaminoboranes. The only exception is the $\mathrm{B}-\mathrm{N}$ bond in $\mathrm{Me}_{2} \mathrm{BNHMe}$ of 139.4(2) pm. ${ }^{23}$

Acknowledgements

Financial support by the Fonds der Chemischen Industrie is gratefully acknowledged.

References

1 A. Yokozeki and S. H. Bauer, Top. Curr. Chem., 1975, 53, 71.
2 H. Oberhammer, J. Fluorine Chem., 1983, 23, 147.
3 K. Oyanagi and K. Kuchitsu, Seventh Austin Symposium on Gas Phase Molecular Structure, Austin, Texas, 1978, paper A15.
4 M. Fink, C. W. Schmiedekamp, and D. J. Gregory, Chem. Phys., 1979, 71, 5238.
5 H. Beckers, H. Bürger, R. Eujen, B. Rempfer, and H. Oberhammer, J. Mol. Struct., 1986, 140, 281.
6 C. J. Marsden and L. S. Bartell, Inorg. Chem., 1976, 15, 2713.
7 H. Bürger, M. Grunwald, and G. Pawelke, J. Fluorine Chem., 1986, 31, 89.
8 H. Oberhammer, in 'Molecular Structures by Diffraction Methods,' The Chemical Society, London, 1976, vol. 4, p. 24.
9 H. Oberhammer, H. Willner, and W. Gombler, J. Mol. Struct., 1981, 70, 273.
10 D. Christen, J. Mol. Struct., 1978, 48, 101.
11 D. J. Brauer, H. Bürger, and G. Pawelke, Inorg. Chem., 1977, 16, 2305; J. Chem. Phys., 1965, 42, 3076.
12 D. J. Brauer, H. Bürger, and G. Pawelke, J. Organomet. Chem., 1980, 192, 305.
13 A. Y. Hirakawa, M. Tsuboi, and T. Shimanouchi, J. Chem. Phys., 1972, 57, 1236.
14 H. J. Becher, Z. Anorg. Allg. Chem., 1956, 287, 285.
15 B. Beagley and A. R. Medwid, J. Mol. Struct., 1977, 28, 229.
16 J. Haase, Z. Naturforsch., Teil A, 1970, 25, 936.
17 O. Gropen and H. M. Seip, Chem. Phys. Lett., 1974, 25, 206.
18 J. D. Dill, P. v. R. Schleyer, and J. A. Pople, J. Am. Chem. Soc., 1975, 97, 3402.
19 M. Sugie, H. Takeo, and C. Matsumura, Chem. Phys. Lett., 1979, 64, 573.

20 L. R. Thorne and W. D. Gwinn, J. Am. Chem. Soc., 1982, 104, 3822.
21 F. B. Clippard and L. S. Bartell, Inorg. Chem., 1970, 9, 2439.
22 A. H. Clark and G. A. Anderson, Chem. Commun., 1969, 1082.
23 A. Almenningen, G. Gundersen, M. Mangerud, and R. Seip, Acta Chem. Scand., Ser. A, 1981, 35, 341.
24 D. J. Brauer, H. Bürger, and G. Pawelke, J. Organomet. Chem., 1982, 238, 267.
25 L. S. Bartell and B. L. Carrol, J. Chem. Phys., 1965, 42, 3076.
26 H. J. Becher and F. Bramsiepe, Spectrochim. Acta, Part A, 1979, $35,53$.
27 T. Fjeldberg, G. Gundersen, T. Jonvik, H. M. Seip, and S. Saebo, Acta Chem. Scand., Ser. A, 1980, 34, 547.
28 V. Typke, M. Dakkouri, and H. Oberhammer, J. Mol. Struct., 1978, 44, 85.
29 H. Günther, H. Oberhammer, and R. Eujen, J. Mol. Struct., 1980, 64, 249.

[^0]: \dagger Non-S.I. units employed: $\mathrm{e} \approx 1.602 \times 10^{-19} \mathrm{C}$, bar $=10^{5} \mathrm{~Pa}$.

[^1]: * Complete force field data are available on request from H. B.

