Thermal Investigation and Stereochemical Studies of Some Cyclic Diamine Complexes of Nickel(ii), Zinc(II), and Cadmium(II) in the Solid State

Langonjam Kanhai Singh and Samiran Mitra*
Department of Chemistry, Manipur University, Canchipur, Imphal-795003, India

Nickel(॥), zinc(॥), and cadmium(II) complexes of piperazine (pipz), N-methylpiperazine (mpipz),
and 1,4-diazacycloheptane (dach) with the compositions [$\left.\mathrm{NiL}_{2}(\mathrm{NCS})_{2}\right],\left[\mathrm{Ni}(\text { dach })_{2}\right][\mathrm{SCN}]_{2}$, $\left[\mathrm{ZnL}(\mathrm{NCS})_{2}\right],\left[\mathrm{Zn}(\text { dach })_{2}\right][\mathrm{SCN}]_{2},\left[\mathrm{CdL}(\mathrm{NCS})_{2}\right]$, and $\left[\mathrm{Cd}(\right.$ dach $\left.)(\mathrm{NCS})_{2}\right](\mathrm{L}=$ pipz or mpipz) have been synthesised. Attempts to prepare N, N^{\prime}-dimethylpiperazine complexes failed. Some intermediate complexes were isolated by pyrolysis. Configurational and conformational changes have been studied by elemental analyses, i.r. spectra, magnetic moment measurements, and thermal analysis. All the complexes of pipz and mpipz appear to be octahedral and those of dach to be square planar. Activation energies $\left(E_{\mathrm{a}}\right)$, enthalpy (ΔH) and entropy changes (ΔS) for the dehydration and decomposition reactions show that the order of stability of the complexes (with respect to E_{a}) follows the trend pipz $>$ mpipz $>$ dach. A linear correlation has been found between E_{a} and ΔS for the decomposition of the nickel complexes.

Acyclic diamines having the $\mathrm{N}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{~N}$ grouping act as chelating agents for transition-metal ions. ${ }^{1,2}$ Work on cyclic diamine complexes is scanty. ${ }^{1,3}$ There has been little thermal investigation of solid cyclic diamine complexes. The main aim of our work is to synthesize some cyclic diamine (six- or sevenmembered ring) complexes of transition and non-transition metals, and study stereochemical changes during thermal decomposition. In addition to six-membered cyclic diamine ligands, we have studied a seven-membered cyclic diamine to see whether the strain in the ligand could be reduced by introducing a methylene group between the amine functions, ${ }^{1}$ but have failed to draw any definite conclusion on this point.

Before heating, the pipz, mpipz, and dach ligands in the $\mathrm{Ni}^{\mathrm{II}}$ complexes and the dach ligand in the complexes of $\mathrm{Zn}^{\text {II }}$ and $\mathrm{Cd}^{\mathrm{II}}$ function as bidentate chelating agents (boat form), ${ }^{3-5}$ and in the remaining pipz and mpipz complexes of $\mathrm{Zn}^{\mathrm{II}}$ and $\mathrm{Cd}^{\mathrm{II}}$ the ligands are bridging and bidentate (chair form). ${ }^{3,6,7}$ If these complexes are heated under nonisothermal conditions they decompose via stable intermediates in which the cyclic diamine ligands may function as bridging bidentate ligands (chair form). This kind of conformational change of the ligand (boat form \longrightarrow chair form) has been confirmed by the i.r. spectral data. ${ }^{3.6}$ Thiocyanate in these complexes functions as a unidentate ligand ${ }^{8}$ but more usually as a bridging bidentate ligand. ${ }^{8-12}$ Parameters like $E_{a}, \Delta H$, and ΔS for the dehydration and decomposition reactions of the complexes in the solid state have been calculated.

Experimental

Materials and Methods.-All metal salts were of A.R. grade and used as received. Metal thiocyanates were freshly prepared by mixing alcoholic solutions of metal salts and potassium thiocyanate and subsequent crystallization from the filtrates obtained. Piperazine obtained from Merck (Germany), Nmethylpiperazine, N, N^{\prime}-dimethylpiperazine, and 1,4-diazacycloheptane obtained from Fluka (Switzerland) were used as received. Diethyl ether and ethanol were dried by standard procedures. ${ }^{13}$

Preparation of the Complexes. $-\left[\mathrm{NiL}_{2}(\mathrm{NCS})_{2}\right](\mathrm{L}=\mathrm{pipz}$ or mpipz). The ligand ($c a .6 \mathrm{mmol}$) in dry ethanol ($20 \mathrm{~cm}^{3}$) was added with constant stirring to a dry ethanolic solution (35

cm^{3}) containing freshly prepared nickel thiocyanate (ca. 3 mmol). The blue nickel complex was collected by filtration, washed carefully with dry diethyl ether, and dried over fused calcium chloride in a desiccator. Yield ca. 70%. The complex $\left[\mathrm{Ni}(\text { dach })_{2}\right][\mathrm{SCN}]_{2}$ was prepared similarly.
$\left[\mathrm{ZnL}(\mathrm{NCS})_{2}\right]$ and $\left[\mathrm{Zn}(\text { dach })_{2}\right][\mathrm{SCN}]_{2}(\mathrm{~L}=\mathrm{pipz}$ or mpipz). A clear solution of freshly prepared zinc thiocyanate (ca. 3 $\mathrm{mmol})$ in dry ethanol ($35 \mathrm{~cm}^{3}$) was treated with the ligand to give a turbid solution. An excess of the ligand in dry ethanol ($20 \mathrm{~cm}^{3}$) was then added till a clear solution was obtained. On addition of an excess of dry diethyl ether a cream precipitate of the zinc complex appeared. It was collected by filtration, washed with dry diethyl ether, and dried over fused calcium chloride in a desiccator. Yield $c a .40-50 \%$.
[CdL(NCS) ${ }_{2}$] (L = pipz, mpipz, or dach). Freshly prepared cadmium thiocyanate (3 mmol) in dry ethanol $\left(35 \mathrm{~cm}^{3}\right.$) was treated with the ligand (ca.3-4 mmol in $20 \mathrm{~cm}^{3}$ of dry ethanol) to give a white precipitate of the cadmium complex which was collected by filtration, washed with the dry ethanol followed by a little dry diethyl ether, and dried over fused calcium chloride in a desiccator. Yield $c a .60 \%$.

Nickel, zinc, and cadmium were estimated gravimetrically by standard procedures, ${ }^{14} \mathrm{C}, \mathrm{H}$, and N by a Perkin-Elmer 240 C elemental analyser. Elemental analyses are given in Table 1. Thermal investigations (t.g.a. and d.t.a.) was carried out on a Shimadzu DT-30 thermal analyzer under a nitrogen atmosphere, with a heating rate of $10^{\circ} \mathrm{C} \min ^{-1}$ and α-alumina as a standard. Indium metal was used as a calibrant for the evaluation of enthalpy changes. Infrared spectra were recorded with Beckmann IR 20A and Perkin-Elmer 783 spectrometers, in KBr as a medium. The effective magnetic moments were evaluated from magnetic susceptibility measurements with an EG and G PAR 155 vibrating-sample magnetometer at room temperature.

Table 1. Analytical data (calculated values in parentheses) for piperazine (L^{1}), N-methylpiperazine (L^{2}), and 1,4-diazacycloheptane (L^{3}) complexes of $\mathrm{Ni}^{\text {II }}, \mathrm{Zn}^{\text {II }}$, and $\mathrm{Cd}^{\text {II }}$

		Analysis/\%				
Compound	Colour	M	C	H	N	$\mu_{\text {eff. }}$
(1a) $\left[\mathrm{NiL}^{1}{ }_{2}(\mathrm{NCS})_{2}\right]$	Blue	16.9 (16.95)	34.5 (34.6)	5.80 (5.75)	24.2 (24.25)	3.26
(1b) $\left[\mathrm{Ni}_{2} \mathrm{~L}^{1}{ }_{3}(\mathrm{NCS})_{4}\right]$	Bluish	19.3 (19.35)	33.6 (33.6)	2.95 (2.95)	23.0 (23.05)	3.08
(2a) $\left[\mathrm{NiL}_{2}{ }_{2}(\mathrm{NCS})_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$	Bluish	14.2 (14.3)	35.1 (35.05)	6.80 (6.80)	20.4 (20.45)	3.08
(2c) $\left[\mathrm{Ni}_{2} \mathrm{~L}^{2}{ }_{2}(\mathrm{NCS})_{4}\right]$	Bluish	21.4 (21.35)	30.6 (30.6)	4.35 (4.35)	20.35 (20.4)	2.22
(3a) $\left[\mathrm{NiL}^{3}{ }_{2}\right][\mathrm{SCN}]_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	Yellow	14.3 (14.3)	35.1 (35.05)	6.80 (6.80)	20.45 (20.45)	
(4a) $\left[\mathrm{ZnL}^{1}(\mathrm{NCS})_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	White	22.8 (22.9)	25.25 (25.25)	4.20 (4.20)	19.6 (19.65)	
(5a) $\left[\mathrm{ZnL}^{2}(\mathrm{NCS})_{2}\right]$	White	23.2 (23.2)	29.8 (29.85)	4.25 (4.25)	19.95 (19.9)	
(6a) $\left[\mathrm{ZnL}^{3}{ }_{2}\right][\mathrm{SCN}]_{2}$	Cream	17.15 (17.15)	37.75 (37.75)	6.30 (6.30)	22.0 (22.05)	
(7a) $\left[\mathrm{CdL}^{1}(\mathrm{NCS})_{2}\right]$	White	35.75 (35.75)	22.9 (22.9)	3.15 (3.20)	17.8 (17.8)	
(8a) $\left[\mathrm{CdL}^{2}(\mathrm{NCS})_{2}\right]$	White	34.25 (34.2)	25.6 (25.6)	3.65 (3.65)	17.0 (17.05)	
(9a) $\left[\mathrm{CdL}^{3}(\mathrm{NCS})_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	White	32.2 (32.45)	24.6 (24.25)	4.00 (4.05)	16.05 (16.15)	

(N-Methylpiperazine)
(1a), (2a), (2b)

(1b)

(2c)

$M=\mathrm{Zn}$ or Cd
(4a), (5a)(7a), and (8a)

Scheme.

Results and Discussion

$\left[\mathrm{Ni}(\mathrm{pipz})_{2}(\mathrm{NCS})_{2}\right](\mathbf{1 a})$.-This complex was reported earlier by Mel'nik et al. ${ }^{15}$ who found that it exists in the dimeric form. On heating, we found that it first loses one molecule of the ligand in the temperature range $200-255^{\circ} \mathrm{C}$. The corresponding d.t.a. curve shows one exotherm with a peak at $255{ }^{\circ} \mathrm{C}$. The intermediate product $\left[\mathrm{Ni}_{2} \mathrm{~L}_{3}(\mathrm{NCS})_{4}\right]$ (1b) (Scheme) is stable over the range $255-300^{\circ} \mathrm{C}$, but loses ligand in the range $300-$ $320^{\circ} \mathrm{C}$ showing two exothermic (d.t.a.) peaks at 305 and $318{ }^{\circ} \mathrm{C}$ and giving $\mathrm{Ni}(\mathrm{SCN})_{2}$ (Figure).

The parameter E_{a} has been evaluated from the t.g.a. curve using Horowitz and Metzger's equation ${ }^{16}$ and the d.t.a. curve by Borchardt and Daniels' equation. ${ }^{17}$ The values for the conversion of complex (1a) into (1b) from the t.g.a. and d.t.a. curves are 183 and $259 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively and that for the conversion of ($\mathbf{1 b}$) into $\mathrm{Ni}(\mathrm{SCN})_{2}$ from the t.g.a. curve is 742 kJ mol^{-1}. The latter high value (Table 2) may be due to the polymeric nature ${ }^{6,11,18,19}$ of complex (1b) as compared with (1a). For the first step, ΔH is found to be $21 \mathrm{~kJ} \mathrm{~mol}^{-1}$, and ΔS, evaluated from $\Delta H / T_{\mathrm{m}}$ where $T_{\mathrm{m}}=$ d.t.a. peak temperature in K^{20} is $39 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$.

In the blue dimeric complex (1a), the ligand functions as a chelating agent in the boat form as shown by the appearance of
more i.r. bands between 700 and $1400 \mathrm{~cm}^{-1}$ (Table 3) than for the free ligand which exists in the chair form. ${ }^{3.6 \cdot 21}$ Thiocyanate acts as a bridging bidentate ligand as shown by the very strong band of $v(\mathrm{CN})$ at $2120 \mathrm{~cm}^{-1}$. Complex (1b) has an octahedral structure as indicated by the value of its magnetic moment (Table 1) and characteristic i.r. bands showing that the ligand is both bridging bidentate and chelating (Table 3). The thiocyanate is also both bridging bidentate and terminal unidentate, as shown by the bands ${ }^{4,8}$ at 2140 and $2080 \mathrm{~cm}^{-1}$ for $v(\mathrm{CN})$ and $480 \mathrm{~cm}^{-1}$ for $\delta(\mathrm{NCS})$. The decomposition path and structure of complexes (1a) and (1b) are given in the Scheme.
$\left[\mathrm{Ni}(\mathrm{mpipz})_{2}(\mathrm{NCS})_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (2a).-This complex was not reported earlier. It has two molecules of lattice water as confirmed by i.r. spectral bands at $3440,3260[v(\mathrm{OH})]$ and 1670 $\mathrm{cm}^{-1}[\delta(\mathrm{HOH})]$. Further the weight loss in the t.g.a. curve of complex (2a) in the range $100-140^{\circ} \mathrm{C}$ and the endothermic peak (d.t.a.) at $130^{\circ} \mathrm{C}$ (Table 2) correspond to two molecules of lattice water. The complex is expected to be dimeric ${ }^{12,18}$ like complex (1a). The anhydrous complex [Ni(mpipz) $)_{2}$ $(\mathrm{NCS})_{2}$] (2b) is converted into $\mathrm{Ni}(\mathrm{SCN})_{2}$ via the formation of [$\left.\mathrm{Ni}(\mathrm{mpipz})(\mathrm{NCS})_{2}\right]$ (2c) in two steps in the ranges $140-210$ and $210-290^{\circ} \mathrm{C}$ respectively. The corresponding d.t.a. curve

Figure. Thermal decomposition curves of $12.26 \mathrm{mg}\left[\mathrm{Ni}(\mathrm{pipz})_{2}(\mathrm{NCS})_{2}\right](-), 12.71 \mathrm{mg}\left[\mathrm{Ni}(\mathrm{mpipz})_{2}(\mathrm{NCS})_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}(--\longrightarrow)$, and 9.68 mg $\left[\mathrm{Ni}(\text { dach })_{2}\right][\mathrm{SCN}]_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(-\cdots-\cdots-)$

Table 2. Thermal parameters of cyclic diamine complexes of $\mathrm{Ni}^{11}, \mathrm{Zn}^{\mathrm{II}}$, and $\mathrm{Cd}^{\mathrm{II}}$ (ligands as in Table 1)

		Peak temperature (${ }^{\circ} \mathrm{C}$)		$E_{\mathrm{a}} / \mathrm{kJ} \mathrm{mol}^{-1}$		$\Delta H / \mathrm{kJ} \mathrm{mol}^{-1}$	$\underset{\mathrm{mol}^{-1}}{\Delta S / \mathrm{J} \mathrm{~K}^{-1}}$
Decomposition reaction	Temperature range (${ }^{\circ} \mathrm{C}$)	Endo.	Exo.	t.g.a.	d.t.a.		
$\left[\mathrm{NiL}^{1}{ }_{2}(\mathrm{NCS})_{2}\right] \longrightarrow\left[\mathrm{NiL}^{1}{ }_{1.5}(\mathrm{NCS})_{2}\right]$	200-255		255	183	259	21	39
$\left[\mathrm{NiL}^{1}{ }_{1.5}(\mathrm{NCS})_{2}\right] \longrightarrow \mathrm{Ni}(\mathrm{SCN})_{2}$	300-320		305, 318	742		61, 206	106, 349
$\left[\mathrm{NiL}^{2}{ }_{2}(\mathrm{NCS})_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O} \longrightarrow\left[\mathrm{NiL}^{2}{ }_{2}(\mathrm{NCS})_{2}\right]$	100-140	130		172	144	112	278
$\left[\mathrm{NiL}^{2}{ }_{2}(\mathrm{NCS})_{2}\right] \longrightarrow\left[\mathrm{NiL}^{2}\left(\mathrm{NCS}_{2}\right]\right.$	140-210		210	82		71	147
$\left[\mathrm{NiL}^{2}(\mathrm{NCS})_{2}\right] \longrightarrow \mathrm{Ni}(\mathrm{SCN})_{2}$	210-290		250, 285	138	146	27, 46	52, 82
$\left[\mathrm{NiL}^{3}{ }_{2}\right][\mathrm{SCN}]_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O} \longrightarrow\left[\mathrm{NiL}^{3}\right][\mathrm{SCN}]_{2}$	160-210	195		183			
cis- $\left[\mathrm{NiL}^{3}{ }_{2}\right][\mathrm{SCN}]_{2} \longrightarrow$ trans $-\left[\mathrm{NiL}^{3}{ }_{2}\right][\mathrm{SCN}]_{2}$	210-230	220					
trans $-\left[\mathrm{NiL}^{2}\right][\mathrm{SCN}]_{2} \longrightarrow \mathrm{Ni}(\mathrm{SCN})_{2}$	230-490	247	300, 430	42			
$\left[\mathrm{ZnL}^{1}(\mathrm{NCS})_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O} \longrightarrow\left[\mathrm{ZnL}^{1}(\mathrm{NCS})_{2}\right]$	120-220	150		18		14	
$\left[\mathrm{ZnL}^{1}(\mathrm{NCS})_{2}\right] \longrightarrow \mathrm{Zn}(\mathrm{SCN})_{2}$	240-440	280	300	75			
$\left[\mathrm{ZnL}^{2}(\mathrm{NCS})_{2}\right] \longrightarrow\left[\mathrm{ZnL}^{2}{ }_{0.5}(\mathrm{NCS})_{2}\right]$	60-169	160		39	203	64	147
$\left[\mathrm{ZnL}^{\mathbf{2} .5}(\mathrm{NCS})_{2}\right] \longrightarrow \mathrm{Zn}(\mathrm{SCN})_{2}$	169-400		250, 335	99			
$\left[\mathrm{ZnL}^{3}{ }_{2}\right][\mathrm{SCN}]_{2} \longrightarrow\left[\mathrm{ZnL}^{3}(\mathrm{NCS})_{2}\right]$	40-227	125	170	14			
$\left[\mathrm{ZnL}^{3}(\mathrm{NCS})_{2}\right] \longrightarrow \mathrm{Zn}(\mathrm{SCN})_{2}$	227-410		255	62			
$\left[\mathrm{CdL}^{1}(\mathrm{NCS})_{2}\right] \longrightarrow \mathrm{Cd}(\mathrm{SCN})_{2}$	200-420	270	280	146			
$\left[\mathrm{CdL}^{2}(\mathrm{NCS})_{2}\right] \longrightarrow\left[\mathrm{CdL}_{0.5}^{2}(\mathrm{NCS})_{2}\right]$	150-260	218, 240	254	81		34	64 *
$\left[\mathrm{CdL}^{2}{ }_{0.5}(\mathrm{NCS})_{2}\right] \longrightarrow \mathrm{Cd}(\mathrm{SCN})_{2}$	260-295		285	296	186	17	30
$\left[\mathrm{CdL}^{3}(\mathrm{NCS})_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O} \longrightarrow\left[\mathrm{CdL}^{3}(\mathrm{NCS})_{2}\right]$	140-245	236		96			
$\left[\mathrm{CdL}^{3}(\mathrm{NCS})_{2}\right] \longrightarrow \mathrm{Cd}(\mathrm{SCN})_{2}$	245-320		245	49		66	128

* For evaluation of $\Delta S, 527 \mathrm{~K}$ is considered.
shows one exothermic peak at $210^{\circ} \mathrm{C}$ for the second step (Figure). In complex (2a) the ligand functions as a chelate and exists in the boat form [as in complex (1a)] while the thiocyanate acts as a bridging bidentate ligand as shown by the
band ${ }^{8}$ at $2100 \mathrm{~cm}^{-1}$ (Table 3). The blue colour of the complex and its magnetic moment value indicate an octahedral structure (Scheme).

The intermediate complexes (2b) and (2c) were unstable.

Table 3. I.r. spectral data (cm^{-1}) for cyclic diamine complexes of $\mathrm{Ni}^{\mathrm{II}}, \mathrm{Zn}^{\mathrm{II}}$, and $\mathrm{Cd}^{\text {II }}$ (ligands as in Table 1)*

Table 3 (continued)

Compound	$v\left(\mathrm{NH}_{2}\right)$	$v\left(\mathrm{CH}_{2}\right)$	$v(\mathrm{CN})$	$\delta\left(\mathrm{NH}_{2}\right)$	$\delta\left(\mathrm{CH}_{2}\right)$	$\rho_{\omega}\left(\mathrm{CH}_{2}\right)$	$\begin{gathered} \tau\left(\mathrm{NH}_{2}\right)+ \\ \rho_{\omega}\left(\mathrm{NH}_{2}\right)+ \\ \tau\left(\mathrm{CH}_{2}\right) \end{gathered}$	Stretching vibrations of skeleton $v(\mathrm{C}-\mathrm{N})+$ $v(\mathrm{C}-\mathrm{C})$	$\rho_{\text {¢ }}\left(\mathrm{CH}_{2}\right)$	$v(C S)$	$\begin{gathered} \rho_{\tau}\left(\mathrm{CH}_{2}\right) \\ + \\ \stackrel{\mathrm{MN}}{ } \text {) } \end{gathered}$	$\delta(\mathrm{NCS})$
(8a)	3460 br	3000 vw	2110 vs	1690 vw	1470 m	1370 w	1330 vw	1100 m	995w	890m	530w	470w
	3250 m	2980 m	2060 (sh)	1670 vw	1455 m	1355 vw	$1280 w$	1045 (sh)	950s	840s		460 (sh)
		2950 vw		1640 vw	1440 m		1 180w	1040w	910 (sh)	780 m		
		2930 vw		1620 br	1415 w		1 145w	1015 m		770w		
		2870 vw								650w		
(9a)	3460 br	2940 m	2075 vs (sp)	1550 s	1475 (sh)	$1370 w$	1300 br	1060 vw	980 (sh)	880ww	550 br	475m
	3230 br	2860 w		1520 w	1450 m	1360 w	1290 (sh)	1050 br	975 (sh)	855vw	520 br	
				1515 (sh)	1420 ms	1340 (sh)	1270 (sh)	1040 vw	970 (sh)	830w		
				1490w			1250 (sh)	1020 w	965m	800w		
							1230 w		960 (sh)	785 (sh)		
							1145 w		910vw	780w		
							1 130w		900vw			
							1115w					
							1110 vw					

* For complexes containing $\mathrm{H}_{2} \mathrm{O}$ molecules bands for $v\left(\mathrm{NH}_{2}\right)$ and $\delta\left(\mathrm{NH}_{2}\right)$ overlapped with $v(\mathrm{OH})$ and $\delta(\mathrm{HOH})$, respectively, in some cases. vs $=$ very strong, $s=$ strong, $m=$ medium, $b r=$ broad, $w=$ weak, $s h=$ shoulder, and $s p=s p l i t$.

However, they could be isolated at 140 and $210^{\circ} \mathrm{C}$ respectively by keeping the rate of heating at $1^{\circ} \mathrm{C} \min ^{-1}$ in the respective temperature ranges. In both the complexes the ligand exists in the boat form ${ }^{3-5}$ as shown by the i.r. spectral data (Table 3) and the probable structures are shown in the Scheme.

The values of $E_{\mathbf{a}}$ for the conversions (2a) $\longrightarrow \mathbf{(2 b) , (2 b)} \longrightarrow$ $(2 \mathrm{c})$, and $(2 \mathrm{c}) \longrightarrow \mathrm{Ni}(\mathrm{SCN})_{2}$ are shown in Table 2. Complex (1a) is more stable than (2a); N -alkylation * of the ligand might have been expected to increase stability due to the increased basicity but this is offset by steric effects. ${ }^{22-26}$
$\left[\mathrm{Ni}(\text { dach })_{2}\right][\mathrm{SCN}]_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (3a).-This complex was not reported earlier. It is yellow, diamagnetic, and has a planar geometry. A purple complex (expected to be a tris complex ${ }^{2}$ and existing in solution) was observed when the bluish filtrate obtained from the separation of complex (3a) was treated with an excess of the ligand but it could not be isolated. Complex (3a) has two molecules of lattice water as in (2a). After dehydration it is converted into $\left[\mathrm{Ni}(\text { dach })_{2}\right][\mathrm{SCN}]_{2}$ (3b). The latter undergoes a transition in the range $210-230{ }^{\circ} \mathrm{C}$ (Figure) and then is converted into $\mathrm{Ni}(\mathrm{SCN})_{2}$ in a single step between 230 and $490^{\circ} \mathrm{C}$. As the dehydration peak and the peak for cis \longrightarrow trans transformation merge it is not possible to evaluate ΔH and ΔS for each step.

In complex (3a) the ligand (dach) functions as a chelate in the boat conformation ${ }^{3.5}$ and as shown by the i.r. data (Table 3). I.r. evidence suggests that the complex has the cis configuration. ${ }^{26-33}$ The transition at $220^{\circ} \mathrm{C}$ in the d.t.a. curve where there is no weight loss in the t.g.a. curve could then correspond to a change to a trans structure. ${ }^{34}$
$\left[\mathrm{Zn}(\mathrm{pipz})(\mathrm{NCS})_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}(4 \mathrm{a})$ and $\left[\mathrm{Cd}(\mathrm{pipz})(\mathrm{NCS})_{2}\right]$ (7a).These complexes were reported by Grecu et al. ${ }^{35}$ Our thermal investigation has confirmed that the lattice water in (4a) (Tables 2 and 3) is lost in the range $120-220^{\circ} \mathrm{C}$. The decompositions of $\left[\mathrm{Zn}(\mathrm{pipz})(\mathrm{NCS})_{2}\right](\mathbf{4 b})$ and $\left[\mathrm{Cd}(\mathrm{pipz})(\mathrm{NSC})_{2}\right]$ (7a) into the corresponding metal thiocyanates take place in single steps as reflected by the t.g.a. curves in the ranges $240-440$ and $200-420^{\circ} \mathrm{C}$ respectively but their d.t.a. curves show multiple peaks (Table 2).
In complexes (4a) and (7a) both piperazine (in the chair form) and thiocyanate are bridging bidentate ${ }^{3,6,7}$ as indicated by

[^0]their i.r. spectral bands (Table 3). They are probably polymeric ${ }^{3,6,18,19,36,37}$ as shown in the Scheme.
$\left[\mathrm{Zn}(\mathrm{mpipz})(\mathrm{NCS})_{2}\right](5 a)$ and $\left[\mathrm{Cd}(\mathrm{mpipz})(\mathrm{NCS})_{2}\right](8 a)$ These white complexes were not reported earlier. Both decompose via the intermediates $\left[\mathrm{ZnL}_{0.5}(\mathrm{NCS})_{2}\right]$ (5b) and $\left[\mathrm{CdL}_{0.5}(\mathrm{NCS})_{2}\right](8 \mathrm{~b})$ in the ranges $60-169$ and $150-260^{\circ} \mathrm{C}$ in t.g.a. and their corresponding d.t.a. curves show a single endothermic peak at $160^{\circ} \mathrm{C}$, and two endothermic peaks at 218 and $240^{\circ} \mathrm{C}$ and one exothermic peak at $254^{\circ} \mathrm{C}$ respectively. Complexes ($\mathbf{5 b}$) and ($\mathbf{8 b}$) decompose into the corresponding metal thiocyanates in the ranges $169-400$ and $260--295^{\circ} \mathrm{C}$. The structures of complexes (5a) and (8a) are probably similar to those of (4a) and (7a) (Scheme).
$\left[\mathrm{Zn}(\text { dach })_{2}\right][\mathrm{SCN}]_{2} \quad$ (6a) and $\quad\left[\mathrm{Cd}(\right.$ dach $\left.)(\mathrm{NCS})_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ (9a).-These complexes were not reported earlier. The former is cream while the latter is white with one molecule of lattice water. Complex (6a) after losing one ligand molecule in the range $40-227^{\circ} \mathrm{C}$ is converted into $\left[\mathrm{Zn}(\right.$ dach $\left.)(\mathrm{NCS})_{2}\right](6 b)$. Complex (9a) loses its water molecule in a single step (140$245^{\circ} \mathrm{C}$) and is converted into $\left[\mathrm{Cd}(\right.$ dach $\left.)(\mathrm{NCS})_{2}\right]$ (9b). Complexes ($\mathbf{6 b}$) and ($\mathbf{9 b}$) decompose into their corresponding metal thiocyanates in a single step in the ranges 227-410 and $245-320^{\circ} \mathrm{C}$ respectively and the corresponding d.t.a. peak (exothermic) appears at 255 and $245^{\circ} \mathrm{C}$ respectively. The i.r. spectral data (Table 3) show that the ligand (dach) in complexes (6a) and (9a) acts as a bidentate chelate in the boat form. ${ }^{3-5}$ Further, these complexes may exist in the cis configuration. ${ }^{1,27-33}$ Both may be similar in structure to complex (3a).

If we consider the activation energy (evaluated from the t.g.a. curves), the order of stability of the complexes follows the trend pipz $>$ mpipz $>$ dach (Table 2). Further, a linear correlation is observed upon plotting E_{a} versus ΔS for the decomposition reactions of the pipz and mpipz complexes of Ni^{11}. A system having a higher entropy change will require less energy, E_{a}, for its thermal decomposition. ${ }^{20}$

Acknowledgements

We thank the Indian Association for the Cultivation of Science, Calcutta for instrumental help and the Goverment of Manipur for financial support (to L. K. S.) under the Faculty Improvement Programme.

References

1 W. K. Musker and M. S. Hussain, Inorg. Chem., 1969, 8, 528.
2 G. De P. K. Biswas and N. Ray Chaudhuri, J. Chem. Soc., Dalton Trans., 1984, 2591.
3 P. J. Hendra and D. B. Powell, J. Chem. Soc., 1960, 5105.
4 R. A. Walton, J. Chem. Soc. A, 1967, 1852.
5 G. W. A. Fowles, D. A. Rice, and R. A. Walton, J. Inorg. Nucl. Chem., 1969, 31, 3119.
6 G. W. A. Fowles, D. A. Rice, and R. A. Walton, J. Chem. Soc. A, 1968, 1842.

7 G. W. A. Fowles, D. A. Rice, and R. A. Walton, Spectrochim. Acta, Part A, 1970, 26, 143.
8 K . Nakamoto, 'Infrared and Raman Spectra of Inorganic and Coordination Compounds,' 3rd edn., Wiley-Interscience, New York, 1978, pp. 208, 209, 270, and 274.
9 J. L. Cox, W. Marprida, H. Stockton, and J. Howatrou, J. Inorg. Nucl. Chem., 1976, 38, 1217.
10 B. W. Dockum, G. A. Eisman, E. H. Wilten, and W. M. Reiff, Inorg. Chem., 1983, 22, 150.
11 G. De and N. Ray Chaudhuri, Bull. Chem. Soc. Jpn., 1985, 58, 715.
12 R. J. H. Clark and C. S. Williams, Spectrochim. Acta, 1966, 22, 1081.
13 A. I. Vogel, 'A Text Book of Practical Organic Chemistry,' 4th edn., ELBS and Longman, London, 1980, pp. 269 and 272.
14 A. I. Vogel, 'A Text Book of Quantitative Inorganic Analysis,' 3rd edn., ELBS and Longmans, London, 1968, pp. 389, 390, and 480.
15 G. S. Mel'nik, M. V. Artemenko, E. S. Sereda, and P. A. Suprumenko, Ukr. Khim. Zh. (Russ. Ed.), 1981, 47, 590.
16 H. H. Horowitz and G. Metzger, Anal. Chem., 1963, 35, 1464.
17 H. J. Borchardt and F. Daniels, J. Am. Chem. Soc., 1957, 79, 41.
18 C. Postmus, J. R. Ferraro, A. Quattrochi, K. Shobatake, and K. Nakamoto, Inorg. Chem., 1969, 8, 1851.

19 M. Goldstein and W. D. Unsworth, Inorg. Chim. Acta, 1970, 4, 342. 20 R. Roy, M. Chaudhury, S. K. Mondal, and K. Nag, J. Chem. Soc., Dalton Trans., 1984, 1681.
21 F. G. Mann and H. R. Watson, J. Chem. Soc., 1958, 2772.
22 F. Basolo and R. K. Murmann, J. Am. Chem. Soc., 1952, 74, 5343.
23 F. Basolo and R. K. Murmann, J. Am. Chem. Soc., 1954, 76, 211.
24 H. Irving and J. M. M. Griffiths, J. Chem. Soc., 1954, 213.
25 J. E. Huheey, 'Inorganic Chemistry,' 3rd edn., Harper International, New York, 1983, pp. 298 and 299.
26 W. K. Musker and M. S. Hussain, Inorg. Chem., 1966, 5, 1416.
27 M. E. Baldwin, J. Chem. Soc., 1960, 4369.
28 J. A. McLean, A. F. Schreiner, and A. F. Laethem, J. Inorg. Nucl. Chem., 1964, 26, 1245.
29 J. M. Rigg and E. Sherwin, J. Inorg. Nucl. Chem., 1965, 27, 653.
30 M. N. Hughes and W. R. McWhinnie, J. Inorg. Nucl. Chem., 1966, 28, 1659.

31 S. Kida, Bull. Chem. Soc. Jpn., 1966, 39, 2415.
32 E. B. Kipp and R. A. Haines, Can. J. Chem., 1969, 47, 1073.
33 D. A. Buckingham and D. Jones, Inorg. Chem., 1965, 4, 1387.
34 F. Basolo and R. G. Pearson, 'Mechanism of Inorganic Reactions,' 2nd edn., Wiley, New York, 1967, p. 424.
35 I. Grecu, E. Curea, and M. Pitis, Acad. Repub. Pop. Rom., Fil. Cluj, Stud. Cercet. Chim., 1962, 13, 35.
36 R. D. Willet and R. E. Rundle, J. Chem. Phys., 1964, 40, 338.
37 J. Macicek, V. K. Trunov, and R. I. Machkhosvili, Zh. Neorg. Khim., 1981, 26, 1690.

[^0]: *The same trend is also observed in complexes of $\mathrm{Zn}^{\text {II }}$ and $\mathrm{Cd}^{\mathrm{II}}$ (Table 2).

