Chemistry of Polynuclear Metal Complexes with Bridging Carbene or Carbyne Ligands. Part 63.1 Synthesis of Eight-membered-ring Metallacycles: X-Ray Crystal Structures of $\left[\mathrm{Pt}_{4} \mathrm{~W}_{4}(\mu-\mathrm{CR})\left(\mu_{3}-\mathrm{CR}\right)_{3}(\mu-\mathrm{CO})(\mathrm{CO})_{7}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $\left[\mathrm{Ni}_{2} \mathrm{Pt}_{2} \mathrm{~W}_{4}(\mu-\mathrm{CR})\left(\mu_{3}-\mathrm{CR}\right)_{3}(\mu-\mathrm{CO})(\mathrm{CO})_{7}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)$, and $\left[\mathrm{Ni}_{2} \mathrm{Pt}_{2} \mathrm{~W}_{4}\left(\mu_{3}-\mathrm{CPh}\right)_{4}(\mathrm{CO})_{8}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4}\right] *$

Gregory P. Elliott, Judith A. K. Howard, Takaya Mise, Christine M. Nunn, and F. Gordon A. Stone Department of Inorganic Chemistry, The University, Bristol BS8 1 TS

Abstract

The reaction between $\left[\mathrm{Pt}_{3} \mathrm{~W}_{4}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{2}\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{2}(\mathrm{CO})_{8}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4}\right]$ and $\left[\mathrm{Pt}(\text { cod })_{2}\right]$ (cod = cyclo-octa-1,5-diene) in tetrahydrofuran (thf) affords the compound [$\mathrm{Pt}_{4} \mathrm{~W}_{4}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right.$)-$\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{3}(\mu-\mathrm{CO})(\mathrm{CO})_{7}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4}$. The latter may also be obtained from the reaction between the tetranuclear metal cluster $\left[\mathrm{Pt}_{2} \mathrm{~W}_{2}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{4}(\operatorname{cod})\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$ and ethylene under pressure. The structure of $\left[\mathrm{Pt}_{4} \mathrm{~W}_{4}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{3}(\mu-\mathrm{CO})-\right.$ $\left.(\mathrm{CO})_{7}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4}\right]$ has been established by X-ray diffraction. The molecule has a ring of eight metal atoms with the four platinum and four tungsten atoms in alternating positions, such that the tungsten atoms form the four points of a 'star', and the platinum atoms lie in an essentially square arrangement (mean Pt . . P Pt 2.954, mean Pt-W $2.754 \AA$). Three of the tolylmethylidyne groups triply bridge $\mathrm{Pt}_{2} \mathrm{~W}$ triangles, while the fourth edge-bridges a $\mathrm{Pt}-\mathrm{W}$ bond. Two of the $\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ groups lie on one side of the $\mathrm{Pt}_{4} \mathrm{~W}_{4}$ ring, while the third is on the other side. On this side also a CO ligand asymmetrically bridges the $\mathrm{Pt}_{2} \mathrm{~W}$ triangle which in a symmetrical isomer would have been occupied by a $\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ fragment. One CO group bridges the $\mathrm{Pt}-\mathrm{W}$ bond adjacent to that spanned by the edgebridging tolylmethylidyne ligand. The remaining six carbonyl groups semi-bridge the other six Pt-W bonds. The reaction between the trimetal compound $\left[\mathrm{PtW}_{2}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{2}(\mathrm{CO})_{4}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$ and an excess of $\left[\mathrm{Ni}(\text { cod })_{2}\right]$ affords the compound $\left[\mathrm{Ni}_{2} \mathrm{Pt}_{2} \mathrm{~W}_{4}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{3}(\mu-\mathrm{CO})\right.$ (CO) $7_{7}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4}$]. The latter is formed as a mixture of two isomers by interchange of the platinum and nickel sites. In one isomer a tolylmethylidyne ligand edge-bridges a $\mathrm{Ni}-\mathrm{W}$ bond, and in the other a Pt-W bond. An X-ray diffraction study showed that in the crystal both isomers are present, leading to disorder at the nickel and platinum sites. In the $\mathrm{Ni}_{2} \mathrm{Pt}_{2} \mathrm{~W}_{4}$ rings there is a trans $-\mathrm{Ni} \cdots \mathrm{Ni}$ and a trans $-\mathrm{Pt} \ldots \mathrm{Pt}$ arrangement, as expected from the mode of synthesis. Treatment of $\left[\mathrm{PtW}_{2}(\mu-\mathrm{CPh})_{2}-\right.$ $(\mathrm{CO})_{4}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$] with an excess of $\left[\mathrm{Ni}(\operatorname{cod})_{2}\right]$ yields an octanuclear $\mathrm{Ni}_{2} \mathrm{Pt}_{2} \mathrm{~W}_{4}$ metal complex formed as a separable mixture of three isomers: $\left[\mathrm{Ni}_{2} \mathrm{Pt}_{2} \mathrm{~W}_{4}(\mu-\mathrm{CPh})\left(\mu_{3}-\mathrm{CPh}\right)_{3}(\mu-\mathrm{CO})(\mathrm{CO})_{7}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4}\right]$ (two isomers) and $\left[\mathrm{Ni}_{2} \mathrm{Pt}_{2} \mathrm{~W}_{4}\left(\mu_{3}-\mathrm{CPh}\right)_{4}(\mathrm{CO})_{8}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4}\right]$. An X-ray diffraction study on the latter species confirmed the presence of the eight-membered metal ring in which four tungsten atoms are at the points of a 'star' and there is a central $\mathrm{Ni} \cdots \mathrm{Pt} \ldots \mathrm{Ni} \ldots \mathrm{Pt}$ fragment. Four CPh ligands triply bridge the NiPtW triangles, two lying above the mean plane through the eight metal atoms, and two below this plane. The structure has a crystallographic two-fold axis through the centre of the ring. A cluster compound $\left[\mathrm{NiPt}_{3} \mathrm{~W}_{4}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{3}(\mu-\mathrm{CO})(\mathrm{CO})_{7}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4}\right]$ (two isomers) has been prepared by addition of [$\left.\mathrm{Ni}(\mathrm{cod})_{2}\right]$ to the seven-metal-atom chain complex $\left[\mathrm{Pt}_{3} \mathrm{~W}_{4}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{2}\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{2}(\mathrm{CO})_{8}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4}\right.$. In thf at reflux temperatures, the species $\left[\mathrm{Pt}_{4} \mathrm{~W}_{4}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{3}(\mu-\mathrm{CO})(\mathrm{CO})_{7}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4}\right]$ and $\left[\mathrm{Ni}_{2} \mathrm{Pt}_{2} \mathrm{~W}_{4}(\mu-\mathrm{CR})\left(\mu_{3}-\mathrm{CR}\right)_{3}-\right.$ $\left.(\mu-\mathrm{CO})(\mathrm{CO})_{7}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4}\right]\left(\mathrm{R}=\mathrm{Ph}\right.$ or $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)$ readily isomerise to their respective symmetrical forms with four triply bridging alkylidyne groups. The ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{195} \mathrm{Pt}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. data for the various compounds are reported, and are discussed in relation to the molecular structures.

In preceding papers ${ }^{1,2}$ we have described methods for synthesising polynuclear metal complexes containing up to seven metal atoms in a chain. In these compounds $\mathrm{Pt}-\mathrm{W}, \mathrm{Pt}-\mathrm{Mo}$, or $\mathrm{Ni}-\mathrm{W}$ bonds are held together by bridging alkylidyne groups. The syntheses depend on a stepwise combination of the reagents

[^0]$\left[\mathrm{M}(\operatorname{cod})_{2}\right](\mathrm{M}=\mathrm{Ni}$ or Pt , cod $=$ cyclo-octa-1,5-diene) with molecules containing reactive $\mathrm{C}=\mathrm{W}(\mathrm{Mo})$ or $\mathrm{C} \equiv \mathrm{W}(\mathrm{Mo})$ sites.

The methodology employed is based on the isolobal model, ${ }^{3}$ leading in specific instances to carbon-metal double or triple bonds displaying ligating properties towards metal centres similar to those of alkenes or alkynes. ${ }^{4.5}$ Thus the compounds $\left[\mathrm{W}(\equiv \mathrm{CR})(\mathrm{CO})_{2} \mathrm{~L}\right]\left(\mathrm{R}=\mathrm{Me}, \mathrm{Ph}\right.$, or $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4 ; \mathrm{L}=\eta-\mathrm{C}_{5} \mathrm{H}_{5}$ or $\eta-\mathrm{C}_{5} \mathrm{Me}_{5}$) will displace the cod ligands from $\left[\mathrm{Pt}(\operatorname{cod})_{2}\right]$ to give trimetal complexes $\left[\mathrm{PtW}_{2}(\mu-\mathrm{CR})_{2}(\mathrm{CO})_{4} \mathrm{~L}_{2}\right]$ of which (1a),

[^1]
$M \quad \mathrm{~L}$
(1a) Pt $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4 \quad \eta-\mathrm{C}_{5} \mathrm{H}_{5}$
(ib) $\mathrm{Ni} \quad \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4 \quad \eta-\mathrm{C}_{5} \mathrm{H}_{5}$
(Ic) $\mathrm{Pt} \mathrm{Ph} \quad \eta-\mathrm{C}_{5} \mathrm{H}^{2}$
(ld) $\mathrm{Ni} \mathrm{Ph} \quad \eta-\mathrm{C}_{5} \mathrm{H}_{5}$

$\begin{array}{llll}\text { (le) } & \mathrm{Pt} & \mathrm{Me} & \eta-\mathrm{C}_{5} \mathrm{Me}_{5} \\ \text { (if) } & \mathrm{Ni} & \mathrm{Me} & \eta-\mathrm{C}_{5} \mathrm{Me}_{5}\end{array}$

(4a) $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4 \quad \eta-\mathrm{C}_{5} \mathrm{H}_{5}$
(4b) $\mathrm{Me} \quad \eta-\mathrm{C}_{5} \mathrm{Me}_{5}$

$\begin{array}{llll} & \mathrm{M} & \mathrm{R} & \mathrm{L} \\ \text { (2a) } & \mathrm{Pt} & \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4 & \eta-\mathrm{C}_{5} \mathrm{H}_{5}\end{array}$
(2b) $\quad \mathrm{Ni} \quad \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me-4} \quad \eta-\mathrm{C}_{5} \mathrm{H}_{5}$

$R \quad L$
(3a) $\quad \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4 \quad \eta-\mathrm{C}_{5} \mathrm{H}_{5}$
(3b)

(5a)
(5b)

$$
\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4 \quad \eta-\mathrm{C}_{5} \mathrm{H}_{5}
$$

(1c), and (1e) are examples. Similarly, the nickel compounds $\left[\mathrm{NiW}_{2}(\mu-\mathrm{CR})_{2}(\mathrm{CO})_{4} \mathrm{~L}_{2}\right]\left[\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4, \mathrm{~L}=\eta-\mathrm{C}_{5} \mathrm{H}_{5}(\mathbf{1 b}) ;\right.$ $\mathbf{R}=\mathrm{Ph}, \mathrm{L}=\eta-\mathrm{C}_{5} \mathrm{H}_{5}$ (1d); $\left.\mathrm{R}=\mathrm{Me}, \mathrm{L}=\eta-\mathrm{C}_{5} \mathrm{Me}_{5}(\mathbf{1 f})\right]$ have also been prepared from reactions between the complexes $\left[\mathrm{W}(\equiv \mathrm{CR})(\mathrm{CO})_{2} \mathrm{~L}\right]$ and $\left[\mathrm{Ni}(\operatorname{cod})_{2}\right]^{2}$ These trimetal compounds contain reactive $\mathrm{C}=\mathrm{W}$ groups to which $\mathrm{Pt}(\mathrm{cod})$ fragments, isolobal with carbene, may be attached. Depending on whether one or two $\mathrm{Pt}(\mathrm{cod})$ groups are added the products are tetra- or penta-nuclear metal complexes, e.g. [$\mathrm{MPtW}_{2}(\mu-\mathrm{CR})\left(\mu_{3}\right.$-CR)-$\left.(\mathrm{CO})_{4}(\operatorname{cod})\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]\left[\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4 ; \mathrm{M}=\mathrm{Pt}(2 \mathrm{a})\right.$ or Ni (2b)] or $\left[\mathrm{Pt}_{3} \mathrm{~W}_{2}\left(\mu_{3}-\mathrm{CR}\right)_{2}(\mathrm{CO})_{4}(\operatorname{cod})_{2} \mathrm{~L}_{2}\right] \quad\left[\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right.$, $\mathrm{L}=\eta-\mathrm{C}_{5} \mathrm{H}_{5}(3 \mathrm{a}) ; \mathrm{R}=\mathrm{Me}, \mathrm{L}=\eta-\mathrm{C}_{5} \mathrm{Me}_{5}$ (3b)]. Moreover, the cod ligand in (2a) may be displaced by $\left[\mathrm{W}\left(\equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\right.$ -$\left.(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ to yield the diplatinumtritungsten compound $\left[\mathrm{Pt}_{2} \mathrm{~W}_{3}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{2}\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{6}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3}\right]$
(4a). The related compound $\left[\mathrm{Pt}_{2} \mathrm{~W}_{3}(\mu-\mathrm{CMe})_{2}\left(\mu_{3}-\mathrm{CMe}\right)\right.$ -$(\mathrm{CO})_{6}\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{3}$] (4b) can be prepared by a similar method. Species of types (3) and (4) $)^{2}$ may be used as precursors to complexes having a chain of six or seven metal atoms. Examples of compounds in these two categories include $\left[\mathrm{Pt}_{3} \mathrm{~W}_{3}(\mu-\mathrm{CR})\right.$ -$\left.\left(\mu_{3}-\mathrm{CR}\right)_{2}(\mathrm{CO})_{6}(\operatorname{cod}) \mathrm{L}_{3}\right]\left[\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4, \mathrm{~L}=\eta-\mathrm{C}_{5} \mathrm{H}_{5}(5 \mathrm{a})\right.$; $\left.\mathrm{R}=\mathrm{Me}, \mathrm{L}=\eta-\mathrm{C}_{5} \mathrm{Me}_{5}(5 \mathrm{~b})\right]$ and $\left[\mathrm{M}_{2} \mathrm{M}^{\prime} \mathrm{W}_{4}(\mu-\mathrm{CR})_{2}\left(\mu_{3}-\mathrm{CR}\right)_{2^{-}}\right.$ $\left.(\mathrm{CO})_{8} \mathrm{~L}_{4}\right]\left[\mathrm{M}=\mathrm{M}^{\prime}=\mathrm{Pt}, \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4, \mathrm{~L}=\eta-\mathrm{C}_{5} \mathrm{H}_{5}(6 \mathrm{a})\right.$; $\mathbf{R}=\mathrm{Me}, \mathrm{L}=\eta-\mathrm{C}_{5} \mathrm{Me}_{5}$ (6b); $\mathrm{M}=\mathrm{M}^{\prime}=\mathrm{Ni}, \mathrm{R}=\mathrm{Me}, \mathrm{L}=$ $\eta-\mathrm{C}_{5} \mathrm{Me}_{5}$ (6c); $\mathbf{M}=\mathrm{Pt}, \mathbf{M}^{\prime}=\mathrm{Ni}, \mathbf{R}=\mathrm{Me}, \mathrm{L}=\eta-\mathrm{C}_{5} \mathrm{Me}_{5}$ (6d)]. ${ }^{1}$

The complexes with four to seven metal atoms exist in solution as mixtures of diastereoisomers resulting from different conformations of the metal atom chains. All the possible
conformations are not always observed, due presumably to the steric effects of the ligands encasing the metal chains. However, it was anticipated that with a sufficiently long metal-atom chain a stereochemical arrangement might be favoured which would result in chain cyclisation rather than growth. This occurred during attempts to prepare compounds containing chains of eight metal atoms from precursors containing seven. Moreover, it was also found that metallacycles with eight metal atoms could be prepared by dimerisation of species with four metal atoms, and that addition of an excess of $\left[\mathrm{Ni}(\operatorname{cod})_{2}\right]$ to certain PtW_{2} compounds afforded clusters containing NiWPtWNiWPtW rings. Preliminary accounts of the work have been given. ${ }^{6}$

Results and Discussion

Addition of $\left[\mathrm{Pt}(\operatorname{cod})_{2}\right]$, dissolved in ethylene-saturated tetrahydrofuran (thf), to a solution of (6a) in the same solvent gave the black crystalline complex $\left[\mathrm{Pt}_{4} \mathrm{~W}_{4}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\right.$ -$\left.\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{3}(\mu-\mathrm{CO})(\mathrm{CO})_{7}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4}\right](7 a)$. Data characterising this complex are summarised in Tables 1-3. Compound (7a) is also formed in the reaction between $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{3}\right]$ and (1a), or by treating (2a) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with ethylene (ca. 50 atm). Yields in these syntheses are variable, and the reaction mixtures contain other products not separable by column chromatography, as well as unreacted starting materials.
The previously reported ${ }^{1} X$-ray diffraction study on (6a) revealed a configuration of the $\mathrm{Pt}_{3} \mathrm{~W}_{4}$ spine not conducive to

Table 1. Analytical ${ }^{a}$ and physical data for the new complexes

Compound ${ }^{\text {b }}$	Yield (\%)	$v_{\text {max. }}(\mathrm{CO})^{c} / \mathrm{cm}^{-1}$	Analysis (\%)	
			C	H
(7a) $\left[\mathrm{Pt}_{4} \mathrm{~W}_{4}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{3}(\mu-\mathrm{CO})(\mathrm{CO})_{7}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4}\right]$	42	1851 s br, 1811 m br (sh)	29.6 (29.9)	2.0 (2.0)
(7b) $\left[\mathrm{Pt}_{4} \mathrm{~W}_{4}\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{4}(\mathrm{CO})_{8}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4}\right]$	$88^{\text {d }}$	1840 s br	30.0 (29.9)	2.2 (2.0)
(8a) $\left[\mathrm{Ni}_{2} \mathrm{Pt}_{2} \mathrm{~W}_{4}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{3}(\mu-\mathrm{CO})(\mathrm{CO})_{7^{-}}\right.$ $\left.\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4}\right]$	89	$1842 \mathrm{~s} \mathrm{br}$,1815 m (sh), 1775 m (sh)	33.6 (33.7)	2.3 (2.3)
(8b) $\left[\mathrm{Ni}_{2} \mathrm{Pt}_{2} \mathrm{~W}_{4}\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{4}(\mathrm{CO})_{8}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4}\right]$	90^{d}	1832 s br	33.5 (33.7)	2.2 (2.3)
(9a) $\left[\mathrm{Ni}_{2} \mathrm{Pt}_{2} \mathrm{~W}_{4}(\mu-\mathrm{CPh})\left(\mu_{3}-\mathrm{CPh}\right)_{3}(\mu-\mathrm{CO})(\mathrm{CO})_{7}\left(\mathrm{\eta}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4}\right]$	45	$1847 \mathrm{~s} \mathrm{br}$,1814 m (sh), 1780 m (sh)	32.5 (32.3)	2.3 (1.9)
(9b) $\left[\mathrm{Ni}_{2} \mathrm{Pt}_{2} \mathrm{~W}_{4}\left(\mu_{3}-\mathrm{CPh}\right)_{4}(\mathrm{CO})_{8}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4}\right]$	$90^{\text {d }}$	1838 s br	32.3 (32.3)	2.2 (1.9)
(10) $\left[\mathrm{NiPt}_{3} \mathrm{~W}_{4}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{3}(\mu-\mathrm{CO})(\mathrm{CO})_{7^{-}}\right.$	44	$1848 \mathrm{~s} \mathrm{br}$,1815 m (sh), 1780 m (sh)	32.8 (31.7)	2.6 (2.1)

${ }^{a}$ Calculated values are given in parentheses. ${ }^{b}$ All the compounds are black in colour. ${ }^{c}$ Measured in $\mathbf{C H}_{2} \mathbf{C l}_{2}$. ${ }^{d}$ Essentially quantitative yield via thermal isomerisation of the precursor (see text).

Table 2. Hydrogen-1 and carbon-13 n.m.r. data ${ }^{a}$ for the complexes

Complex
${ }^{1} \mathrm{H}(\delta){ }^{b}$
(7a) ${ }^{d} 2.17$ ($\left.\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}-4\right), 2.19$ (s, $3 \mathrm{H}, \mathrm{Me}-4$), 2.25 (s, $3 \mathrm{H}, \mathrm{Me}-4$), 2.43 $(\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}-4), 4.66\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 5.03\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 5.18(\mathrm{~s}$, $\left.5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 5.41\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 6.37-7.64\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right)$
(7b) ${ }^{d} 2.21(\mathrm{~s}, 12 \mathrm{H}, \mathrm{Me}-4), 5.07\left(\mathrm{~s}, 20 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 6.55,6.93\left[(\mathrm{AB})_{2}, 16 \mathrm{H}\right.$, $\left.\mathrm{C}_{6} \mathrm{H}_{4}, J(\mathrm{AB}) 8\right]$
(8a) $\quad 2.12-2.41(\mathrm{~m}, 24 \mathrm{H}, \mathrm{Me}-4), 4.60\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.84(\mathrm{~s}, 5 \mathrm{H}$, $\mathrm{C}_{5} \mathrm{H}_{5}$), $5.05\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 5.09\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 5.10(\mathrm{~s}, 5 \mathrm{H}$, $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right), 5.12\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 5.34\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 5.37(\mathrm{~s}, 5 \mathrm{H}$, $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right), 6.23-7.93\left(\mathrm{~m}, 32 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right)$
(8b) $\quad 2.19$ (s, $12 \mathrm{H}, \mathrm{Me}-4), 5.04\left(\mathrm{~s}, 20 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 6.56,7.19\left[(\mathrm{AB})_{2}, 16 \mathrm{H}\right.$, $\left.\mathrm{C}_{6} \mathrm{H}_{4}, J(\mathrm{AB}) 8\right]$
(9a) $\quad{ }^{d} 4.58\left(\mathrm{~s}, 5 \mathrm{H}_{5} \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.81\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 5.09\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 5.13$ $\left(\mathrm{s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 5.14\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 5.15\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 5.35(\mathrm{~s}, 5 \mathrm{H}$, $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right) 5.38\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 6.40-8.10(\mathrm{~m}, 40 \mathrm{H}, \mathrm{Ph})$
(9b) $\quad 5.05\left(\mathrm{~s}, 20 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 6.75-7.35(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ph})$
(10) 2.09 (s, $3 \mathrm{H}, \mathrm{Me}-4$), 2.12 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}-4$), 2.18 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}-4$), 2.22 (s , $3 \mathrm{H}, \mathrm{Me}-4$), 2.28 (s, $3 \mathrm{H}, \mathrm{Me}-4$), 2.35 (s, $3 \mathrm{H}, \mathrm{Me}-4$), 2.38 (s, 3 H , Me-4), 2.46 (s, $3 \mathrm{H}, \mathrm{Me}-4$), 4.74 (s, $5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}$), $4.80\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right.$), $5.00\left(\mathrm{~s}, 5 \mathrm{H}_{5} \mathrm{C}_{5} \mathrm{H}_{5}\right), 5.09\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 5.12\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 5.18(\mathrm{~s}$, $5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}$), $5.35\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 5.42\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 6.36-7.85$ (m, $32 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}$)
${ }^{13} \mathrm{C}(8){ }^{c}$
${ }^{d} 313.0[\mu-\mathrm{C}, J(\mathrm{WC}) 160, J(\mathrm{PtC}) 920], 279.3\left[\mu_{3}-\mathrm{C}, J(\mathrm{WC}) 120, J(\mathrm{PtC})\right.$ 545, 612], 268.9 [$\left.\mu_{3}-\mathrm{C}, J(\mathrm{WC}) 115, J(\mathrm{PtC}) 603,670\right], 265.2$ [$\mu_{3}-\mathrm{C}$, $J(\mathrm{WC}) 112, J(\mathrm{PtC}) 582], 240.7$ [CO, $J(\mathrm{WC}) 160], 234.5,233.8,232.9$, 229.2 (CO), $228.7(2 \times \mathrm{CO}), 222.4$ [CO, $J(\mathrm{WC})$ 154], 155.9, 154.7, 153.6, $153.5\left[\mathrm{C}^{1}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right], 136.3-123.2\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 94.4\left(2 \times \mathrm{C}_{5} \mathrm{H}_{5}\right), 94.0$, $93.9\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 21.6,21.5(\mathrm{Me}-4), 21.4(2 \times \mathrm{Me}-4)$ ${ }^{e} 95.0\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 27.3(\mathrm{Me}-4)$
326.4, 314.0 ($\mu-\mathrm{C}), 297.6,297.2,290.8,288.2,288.0,284.8\left(\mu_{3}-\mathrm{C}\right), 264.4$, 248.2, 247.7, 246.6, 246.0, 245.7, 242.0, 241.0, 236.4, 235.3, 234.3, 233.8, $232.9,229.7,228.6,228.2$ (CO), 160.1, 159.3, 159.2 [$\left.\mathrm{C}^{1}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right]$, $157.8\left[2 \times \mathrm{C}^{1}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right], 157.3,156.7,156.3\left[\mathrm{C}^{1}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right], 136.9-122.4$ $\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 95.1\left(4 \times \mathrm{C}_{5} \mathrm{H}_{5}\right), 94.7,94.3\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 94.2\left(2 \times \mathrm{C}_{5} \mathrm{H}_{5}\right), 21.8$ ($8 \times \mathrm{Me}-4$)
305.7 ($\left.\mu_{3}-\mathrm{C}\right), 246.7,233.9(\mathrm{CO}), 157.9$ [$\left.\mathrm{C}^{1}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right], 136.1,127.7,127.0$ $\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 95.5\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 27.3(\mathrm{Me}-4)$
325.6, 313.6 ($\mu-\mathrm{C}$), 297.6, 297.3, 290.7, 287.7, 287.0, 284.5 ($\mu_{3}-\mathrm{C}$), 264.1, $248.3,247.4,246.1,245.0,241.8,240.1,239.9,236.2,235.1,234.1,233.6$, 232.7, 229.3, 227.9, 227.5 (CO), 162.8, 161.4, 161.3, 159.5, 159.2, 159.1 $\left[\mathrm{C}^{1}(\mathrm{Ph})\right], 158.2\left[2 \times \mathrm{C}^{1}(\mathrm{Ph})\right], 128.5-122.1(\mathrm{Ph}), 95.3\left(2 \times \mathrm{C}_{5} \mathrm{H}_{5}\right)$, $95.1\left(3 \times \mathrm{C}_{5} \mathrm{H}_{5}\right), 94.7\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 94.3\left(2 \times \mathrm{C}_{5} \mathrm{H}_{5}\right)$
$299.4\left(\mu_{3}-\mathrm{C}\right), 246.3,233.3(\mathrm{CO}), 159.3$ [$\left.\mathrm{C}^{1}(\mathrm{Ph})\right], 126.9,126.7,126.5$ $(\mathrm{Ph}), 95.2\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)$
316.0, 315.8 ($\mu-\mathrm{C}$), 297.7, 287.2, 283.2, 280.4, 271.0, 268.6 ($\mu_{3}-\mathrm{C}$), 263.9, $246.5,246.3,240.3,240.0,235.8(\mathrm{CO}), 235.5(2 \times \mathrm{CO}), 234.3,232.8$, 231.2, 230.8, 230.5, 229.6, 227.5, 223.9 (CO), 159.3, 157.7, 156.7, 156.5, $155.4,155.3,153.9,153.6\left[\mathrm{C}^{1}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right], 137.4-123.9\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 95.3,95.2$, 95.1, 95.0, 94.7, 94.5, 94.4, $94.3\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 21.9,21.8$ (Me-4), 21.7 ($2 \times \mathrm{Me}-4$), 21.6 ($3 \times \mathrm{Me}-4$), $21.5(\mathrm{Me}-4)$
${ }^{a}$ Chemical shifts (δ) in p.p.m., coupling constants in Hz . ${ }^{b}$ Measured in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ unless otherwise stated. ${ }^{c}$ Hydrogen-1 decoupled, chemical shifts are positive to high frequency of SiMe_{4}. Measurements are in $\mathrm{CD}_{2} \mathrm{Cl}_{2}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ unless otherwise stated. ${ }^{d}$ Measured in CDCl_{3}. ${ }^{\boldsymbol{e}} \mathrm{Quality}$ of spectrum limited by very poor solubility, hence all peaks are not listed.
ring closure to form (7a) without a significant rearrangement of the metal atom framework. It may be that a different diastereoisomer of ($6 a$) is involved in the ring-closure process upon addition of $\left[\mathrm{Pt}(\operatorname{cod})_{2}\right]$. It cannot be assumed that the structure established for (6a) in the solid state corresponds to the most abundant species in solution, since relative solubilities of isomers and their ease of crystallisation will have an indeterminate effect on the crystals isolated. The ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. studies on solutions of (6a) indicated that only one isomer was present. However, surprisingly the ${ }^{195} \mathrm{Pt}-\left\{{ }^{1} \mathrm{H}\right\}$ spectrum clearly showed the presence of two isomers in solution. Hence the mechanism of formation of (7a) must remain obscure.
Examination of the n.m.r. data for compound (7a) revealed that the complex had an unsymmetrical structure. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectra (Table 2) showed that the four tolyl-
methylidyne groups were in different environments. Thus the ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ spectrum showed resonances for the ligated carbon nuclei of the alkylidyne ligands at $\delta 265.2,268.9,279.3$, and 313.0 p.p.m. The latter signal is in the region expected for a tolylmethylidyne group bridging two metal centres, while the other three peaks are in the range for the ligand bridging three metal atoms. ${ }^{7}$ The ${ }^{195} \mathrm{Pt}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum (Table 3) showed the presence of four distinct platinum environments. However, the spectrum is complicated, and discussion is deferred until the results of the X-ray diffraction study are presented.

The structure of (7a) is shown in Figure 1, and selected bond distances and angles are listed in Table 4. It will be immediately apparent that the structure is based on a ring of eight metal atoms. Moreover, three of the $\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ groups triply bridge $\mathrm{Pt}_{2} \mathbf{W}$ triangles, while the fourth such group edge-bridges a

Table 3. Platinum-195 n.m.r. data ${ }^{\text {a }}$ for the new complexes

Compound ${ }^{\text {b }}$	δ^{c}	$J(\mathbf{W P t})$	$J(\mathrm{PtPt})$	Compound	δ^{\prime}	$J(\mathbf{W P t})$	$J(\mathrm{PtPt})$
(7a) ${ }^{\text {d }}$	1693 (A)		2522 (AB)	(9a)	1740	126	413
	1665 (B)		1216 (AC)		1648	410	242
	947 (C)		- 508 (AD)		1138	100	413
	859 (D)		-295 (BC)		1004	121	242
			1194 (BD)	(9b)	1245	73.105	
			1467 (CD)	(10)	1604 (A)	137	361 (AB)
(8a)	1726	136	410		1062 (B)		1338 (AC)
	1641	420	234		904 (C)		1553 (BC)
	1138	117	410				
	1002	108	234				
(8b)	1236						

${ }^{\text {a }}$ Chemical shifts are in p.p.m., coupling constants are in Hz . Measurements are in $\mathrm{CD}_{2} \mathrm{Cl}_{2}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ unless otherwise indicated. ${ }^{\text {b }}$ Compound (7b) too insoluble for measurement. ${ }^{c} \delta$ Values are to high frequency of $\Xi\left({ }^{195} \mathrm{Pt}\right)=21.4 \mathrm{M} \mathrm{Hz}$. ${ }^{d}$ Measured in CDCl_{3}.

(i)

(ii)

	M	R
(7a)	Pt	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$
(8a)	Ni	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$
(9a)	Ni	Ph

platinum-tungsten bond $[\mathrm{Pt}(2)-\mathrm{W}(2)]$. The n.m.r. data, which revealed non-equivalent platinum sites, and three $\mu_{3}-\mathrm{C}$ and one μ-C environments, are thus readily explained.

Compound (7a) contains three $\mu_{3}-\mathrm{CPt}_{2} \mathrm{~W}$ groups, a fragment first observed by X-ray analysis in the complex $\left[\mathrm{Pt}_{2} \mathrm{~W}\right.$ -$\left.\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{4}\left(\mathrm{PMePh}_{2}\right)_{2}\left(\eta_{-} \mathrm{C}_{5} \mathrm{H}_{5}\right)\right][\mathrm{Pt} \ldots \mathrm{Pt} 2.989-$ (3), Pt-W 2.785(3), μ_{3}-C-Pt 2.05(4), and $\left.\mu_{3}-\mathrm{C}-\mathrm{W} 2.04(4) \AA\right] .^{8}$ In (7a) the mean values of the corresponding distances are very similar: $\mathrm{Pt} \cdots \mathrm{Pt} 2.954, \mathrm{Pt}-\mathrm{W} 2.754, \mu_{3}-\mathrm{C}-\mathrm{Pt} 2.07$, and $\mu_{3}-\mathrm{C}-\mathrm{W} 2.01 \AA$. The $\operatorname{Pt}(2)[\mu-\mathrm{C}(21)] \mathrm{W}(2)$ ring in (7a) [$\mathrm{Pt}(2)-\mathrm{W}(2)$ 2.792(2), $\mathrm{Pt}(2)-\mathrm{C}(21)$ 1.99(2), W(2)-C(21), 1.90 (3) \AA] is found also in $\left[\mathrm{PtW}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}(\eta-\right.$ $\mathrm{C}_{5} \mathrm{H}_{5}$)] with similar internuclear separations: Pt-W 2.751(1), $\mu-$ $\mathrm{C}-\mathrm{Pt} 1.997(9)$, and $\mu-\mathrm{C}-\mathrm{W}$ 1.967(6) $\AA^{5}{ }^{5}$

The Pt … Pt distances in (7a) (mean $2.954 \AA$) most probably result from the bonding requirements of the various $\mu-\mathrm{C}-\mathrm{W}$ fragments, rather than from direct metal-metal interactions. The eight metal atoms in the metallacycle are not coplanar. Atoms $W(2)$ and $W(4)$ show the maximum deviations, 0.43 and $0.35 \AA$, respectively, from the best mean plane through the metal atoms.

It will be observed that two of the $\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ ligands lie on one side of the metal ring, with one $\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ group on
the other. On this side also is a carbonyl group [$\mathrm{C}(2) \mathrm{O}(2)$], which asymmetrically bridges the $\operatorname{Pt}(2) \operatorname{Pt}(3) \mathrm{W}(2)$ triangle $\left[\mathrm{W}(2)-\mathrm{C}(2)-\mathrm{O}(2) \quad 168(3)^{\circ}, \quad \mathrm{W}(2)-\mathrm{C}(2) \quad 1.99(2), \quad \mathrm{Pt}(2)-\mathrm{C}(2)\right.$ $2.58(3), \mathrm{Pt}(3)-\mathrm{C}(2) 2.43(4) \AA]$. Another carbonyl ligand $[\mathrm{C}(20) \mathrm{O}(20)]$ bridges the $\mathrm{Pt}(3)-\mathrm{W}(2)$ bond $[\mathrm{W}(2)-\mathrm{C}(20)-\mathrm{O}(20)$ $\left.153(3)^{\prime \prime}, \mathrm{W}(2)-\mathrm{C}(20) 2.10(4), \mathrm{Pt}(3)-\mathrm{C}(20) 2.12(2) \AA\right]$. The remaining carbonyl groups semi-bridge the various $\mathrm{Pt}-\mathrm{W}$ bonds, as shown, with $\mathrm{W}-\mathrm{C}-\mathrm{O}$ angles of $160-169^{\circ}$.
At $\mathrm{Pt}(1), \mathrm{Pt}(4)$, and $\mathrm{Pt}(2)$ the angles between the $\mathrm{Pt}(\mu-\mathrm{C}) \mathrm{W}$ planes are 80,82 , and 89°, respectively. The corresponding angle between the planes $P \mathrm{Pt}(3)\left[\mu_{3}-\mathrm{C}(31)\right] \mathrm{W}(3)$ and $\mathrm{Pt}(3)[\mu-\mathrm{C}(20)] \mathrm{W}(2)$ is 89°.

The observation that (7a) could also be obtained from (1a) and $\left.\left[\mathrm{Pt}_{(} \mathrm{C}_{2} \mathrm{H}_{4}\right)_{3}\right]$ prompted a study of the reaction between (1a) and [$\left.\mathrm{Ni}(\operatorname{cod})_{2}\right]$, in an attempt to obtain a compound structurally akin to (7a), but with three different transition elements in the ring. Treatment of (1a) with an excess of [$\mathrm{Ni}(\operatorname{cod})_{2}$] in thf afforded the black crystalline complex $\left[\mathrm{Ni}_{2} \mathrm{Pt}_{2} \mathrm{~W}_{4}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{3}(\mu-\mathrm{CO})(\mathrm{CO})_{7}-\right.$ $\left.\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4}\right](8 \mathrm{a})$, data for which are given in Tables 1--3.

It was apparent from the n.mr. measurements that (8a) was formed as a mixture of two isomers, and that these isomers were

Table 4. Selected interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ for the compound $\left[\mathrm{Pt}_{4} \mathrm{~W}_{4}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{3}(\mu-\mathrm{CO})(\mathrm{CO})_{7}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4}\right] \cdot$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (7a)

$\mathrm{Pt}(1) \cdots \mathrm{Pt}(2)$	3.020(2)	$\mathrm{Pt}(2) \cdots \mathrm{Pt}(3)$	2.888(2)	$\mathrm{Pt}(3) \cdot \cdots \mathrm{Pt}(4)$	2.970(2)	$\mathrm{Pt}(1) \cdots \mathrm{Pt}(4)$	2.937(2)
Pt(1)-W(1)	2.733(2)	Pt(2)-W(1)	2.745(2)	Pt(2)-W(2)	2.792(2)	$\mathrm{Pt}(3)-\mathrm{W}(2)$	2.735(2)
$\mathrm{Pt}(3)-\mathrm{W}(3)$	2.781(2)	$\mathrm{Pt}(4)-\mathrm{W}(3)$	2.737(2)	Pt(4)-W(4)	2.765(1)	Pt(1)-W(4)	2.745(2)
W(1)-C(11)	2.02(3)	$\mathrm{Pt}(1)-\mathrm{C}(11)$	2.12(2)	$\mathrm{Pt}(2)-\mathrm{C}(11)$	2.05(2)	W(3)-C(31)	2.00(2)
$\mathrm{Pt}(3)-\mathrm{C}(31)$	2.01(3)	$\mathrm{Pt}(4)-\mathrm{C}(31)$	2.10(2)	W(4)-C(41)	2.00(3)	$\mathrm{Pt}(4)-\mathrm{C}(41)$	2.11(3)
$\mathrm{Pt}(1)-\mathrm{C}(41)$	2.04(2)	W(2)-C(21)	1.90 (3)	$\mathrm{Pt}(2)-\mathrm{C}(21)$	1.99(2)	W(1)-C(1)	1.96(2)
$\mathrm{Pt}(1)-\mathrm{C}(1)$	2.27(3)	W(1)-C(10)	2.05(3)	$\mathrm{Pt}(2)-\mathrm{C}(10)$	2.41(3)	W(3)-C(3)	1.97(2)
$\mathrm{Pt}(4)-\mathrm{C}(3)$	2.39(3)	W (3)-C(30)	2.04(4)	$\mathrm{Pt}(3)-\mathrm{C}(30)$	2.56(3)	W(4)--C(4)	1.98(4)
$\mathrm{Pt}(4)-\mathrm{C}(4)$	2.30 (3)	W(4)-C(40)	1.99(3)	$\mathrm{Pt}(1)-\mathrm{C}(40)$	2.42(3)	W(2)-C(2)	1.99(2)
$\mathrm{Pt}(2)-\mathrm{C}(2)$	2.58(3)	$\mathrm{Pt}(3)-\mathrm{C}(2)$	2.43(4)	W(2)-C(20)	2.10(4)	$\mathrm{Pt}(3)-\mathrm{C}(20)$	2.12(2)
W(1)-C(cp)*	2.35	$\mathrm{W}(2)-\mathrm{C}(\mathrm{cp})^{*}$	2.34	W(3)-C(cp)*	2.37	W(4)-C(cp)*	2.36
$\mathrm{Pt}(1)-\mathrm{Pt}(2)-\mathrm{Pt}(3)$	87.7(1)	$\mathrm{Pt}(2)-\mathrm{Pt}(3)-\mathrm{Pt}(4)$	93.1(1)	$\mathrm{Pt}(3)-\mathrm{Pt}(4)-\mathrm{Pt}(1)$	87.7(1)	$\mathrm{Pt}(4)-\mathrm{Pt}(1)-\mathrm{Pt}(2)$	91.1(1)
$\mathrm{Pt}(1)-\mathrm{W}(1)-\mathrm{Pt}(2)$	66.9(1)	$\mathrm{Pt}(2)-\mathrm{W}(2)-\mathrm{Pt}(3)$	63.0 (1)	$\mathrm{Pt}(3)-\mathrm{W}(3)-\mathrm{Pt}(4)$	65.1(1)	$\mathrm{Pt}(4)-\mathrm{W}(4)-\mathrm{Pt}(1)$	64.4(1)
$\mathrm{W}(1)-\mathrm{Pt}(2)-\mathrm{W}(2)$	154.1(1)	$\mathrm{W}(2)-\mathrm{Pt}(3)-\mathrm{W}(3)$	150.9(1)	$\mathrm{W}(3)-\mathrm{Pt}(4)-\mathrm{W}(4)$	155.4(1)	$\mathrm{W}(4)-\mathrm{Pt}(1)-\mathrm{W}(1)$	154.3(1)
$\mathrm{W}(1)-\mathrm{C}(11)-\mathrm{C}(12)$	140(2)	$\mathrm{Pt}(2)-\mathrm{C}(11)-\mathrm{C}(12)$	122(2)	$\mathrm{Pt}(2)-\mathrm{C}(11)-\mathrm{C}(12)$	121(1)	$\mathrm{W}(3)-\mathrm{C}(31)-\mathrm{C}(32)$	133(2)
$\mathrm{Pt}(3)-\mathrm{C}(31)-\mathrm{C}(32)$	125(1)	$\mathrm{Pt}(4)-\mathrm{C}(31)-\mathrm{C}(32)$	121(1)	W(4)-C(41)-C(42)	138(1)	$\mathrm{Pt}(4)-\mathrm{C}(41)-\mathrm{C}(42)$	120(1)
$\mathrm{Pt}(1)-\mathrm{C}(41)-\mathrm{C}(42)$	125(2)	W (2)-C(21)-C(22)	144(2)	$\mathrm{Pt}(2)-\mathrm{C}(21)-\mathrm{C}(22)$	124(1)	$\mathrm{W}(1)-\mathrm{C}(1)-\mathrm{O}(1)$	160(2)
$\mathrm{W}(1)-\mathrm{C}(10)-\mathrm{O}(10)$	165(2)	$\mathrm{W}(3)-\mathrm{C}(3)-\mathrm{O}(3)$	166(3)	$\mathrm{W}(3)-\mathrm{C}(30)-\mathrm{O}(30)$	166(3)	$\mathrm{W}(4)-\mathrm{C}(4)-\mathrm{O}(4)$	164(2)
$\mathrm{W}(4)-\mathrm{C}(40)-\mathrm{O}(40)$	169(2)	$\mathrm{W}(2)-\mathrm{C}(2)-\mathrm{O}(2)$	168(3)	$\mathrm{W}(2)-\mathrm{C}(20)-\mathrm{O}(20)$	153(3)	$\mathrm{C}(1)-\mathrm{W}(1)-\mathrm{C}(10)$	91(1)
$\mathrm{C}(1)-\mathrm{W}(1)-\mathrm{C}(11)$	104(1)	$\mathrm{C}(10)-\mathrm{W}(1)-\mathrm{C}(11)$	106(1)	C(2)-W(2)-C(20)	106(1)	$\mathrm{C}(2)-\mathrm{W}(2)-\mathrm{C}(21)$	105(1)
$\mathrm{C}(20)-\mathrm{W}(2)-\mathrm{C}(21)$	101(1)	$\mathrm{C}(3)-\mathrm{W}(3)-\mathrm{C}(30)$	92(1)	C(3)-W(3)-C(31)	105(1)	C(30)-W(3)-C(31)	106(1)
C(4)-W(4)-C(40)	94(1)	C(4)-W(4)-C(41)	105(1)	C(40)-W(4)-C(41)	106(1)		

* Mean distance to cyclopentadienyl ring-carbon atoms.

Figure 1. The molecular structure of $\left[\mathrm{Pt}_{4} \mathrm{~W}_{4}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\right.$ -$\left.\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{3}(\mu-\mathrm{CO})(\mathrm{CO})_{7}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4}\right]$ (7a) showing the atom labelling scheme
produced in approximately equal amounts, based on relative peak intensities in the spectra. The ${ }^{13} \mathrm{C}$ - $\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum was particularly informative (Table 2) showing two signals for alkylidyne carbon nuclei spanning two metal centres ($\delta 326.4$ and 314.0 p.p.m.), and six resonances for alkylidyne carbons bridging three metal atoms ($\delta 297.6,297.2,290.8,288.2,288.0$, and 284.8 p.p.m.). Moreover, there were 16 CO peaks in the spectrum of the mixture, eight corresponding to each isomer. In the ${ }^{195} \mathrm{Pt}-\left\{{ }^{1} \mathbf{H}\right\}$ n.m.r. spectrum two pairs of platinum signals are observed (Table 3) corresponding to the presence of two inequivalent platinum nuclei in each isomer. The data strongly suggested that the two isomers should be formulated as (8a)(i) and (8a)(ii), i.e. with trans- $\mathrm{Ni} \cdots \mathrm{Ni}$ and trans- $\mathrm{Pt} \cdots \mathrm{Pt}$ configurations, but with a tolylmethylidyne group bridging a $\mathrm{Pt}-\mathrm{W}$ bond in isomer (i) and a $\mathrm{Ni}-\mathrm{W}$ bond in (ii).
An X-ray diffraction study was carried out on a suitable crystal

Figure 2. The molecular structure of $\left[\mathrm{Ni}_{2} \mathrm{Pt}_{2} \mathrm{~W}_{4}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\right.$ -$\left.\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{3}(\mu-\mathrm{CO})(\mathrm{CO})_{7}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4}\right]$ (8a) showing the atom labelling scheme
of (8a). The structure was disordered (60:40) with alternating nickel and platinum sites. Data for the major component (60%) are given in Table 5; Figure 2 shows the structure of this form, with the tolylmethylidyne ligand bridging the $\operatorname{Pt}(2)-\mathrm{W}(2)$ bond [i.e. isomer (8a)(i), the other form in the crystal being (8a)(ii)].

The structure is identical in most respects with that of (7a), apart from the substitution of two platinum by two nickel atoms. Thus one carbonyl ligand [$\mathrm{C}(2) \mathrm{O}(2)$] asymmetrically bridges the $\mathrm{Ni}(3) \mathrm{W}(2) \mathrm{Pt}(2)$ triangle, which is edge-bridged by another carbonyl group $[\mathrm{C}(20) \mathrm{O}(20)]$. The triply bridging carbonyl ligand is on the same side of the metal ring as one of the tolylmethylidyne groups, while the other two lie on the other side. Six of the CO groups semi-bridge $\mathrm{Pt}-\mathrm{W}$ or Ni-W bonds. As with (7a), the tungsten atoms $\mathrm{W}(2)$ and $\mathrm{W}(4)$ deviate most from the mean plane of the eight metal atoms, by 0.35 and 0.30 \AA, respectively.

Table 5. Selected interatomic distances (\AA) and angles (${ }^{\circ}$) for the compound $\left[\mathrm{Ni}_{2} \mathrm{Pt}_{2} \mathrm{~W}_{4}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\left(\mu_{3}-\mathrm{CC} 6 \mathrm{H}_{4} \mathrm{Me}-4\right)_{3}(\mu-\mathrm{CO})(\mathrm{CO}) 7(\eta-\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{a})^{a}$

$\mathrm{Ni}(1) \cdots \mathrm{Pt}(2)$	2.843(5)	$\mathrm{Ni}(3) \cdot \cdots \mathrm{Pt}(2)$	2.717(4)	$\mathrm{Ni}(3) \cdots \mathrm{Pt}(4)$	2.788(5)	Ni(1) . . P Pt(4)	2.796(4)
Ni(1)-W(1)	2.654(4)	Pt(2)-W(1)	2.701(3)	Pt(2)-W(2)	2.733(4)	$\mathrm{Ni}(3)-\mathrm{W}(2)$	2.644(5)
Ni(3)-W(3)	$2.716(4)$	Pt(4)-W(3)	2.687(3)	Pt(4)-W(4)	2.711(3)	$\mathrm{Ni}(1)-\mathrm{W}(4)$	2.684(5)
W(1)-C(11)	1.98(3)	$\mathrm{Ni}(1)-\mathrm{C}(11)$	1.99(5)	$\mathrm{Pt}(2)-\mathrm{C}(11)$	1.96(4)	W(3)-C(31)	2.01(6)
$\mathrm{Ni}(3)-\mathrm{C}(31)$	2.02(5)	$\mathrm{Pt}(4)-\mathrm{C}(31)$	2.13(5)	W(4)-C(41)	1.94(5)	$\mathrm{Pt}(4)-\mathrm{C}(41)$	2.02(4)
$\mathrm{Ni}(1)-\mathrm{C}(41)$	2.00(6)	W(2)-C(21)	1.84(8)	$\mathrm{Pt}(2)-\mathrm{C}(21)$	1.94(8)	W(1)-C(1)	2.05(6)
$\mathrm{Ni}(1)-\mathrm{C}(1)$	2.26(4)	W(1)-C(10)	2.03(9)	$\mathrm{Pt}(2)-\mathrm{C}(10)$	2.44(7)	W(3)-C(3)	1.92(6)
$\mathrm{Pt}(4)-\mathrm{C}(3)$	2.30(5)	W(3)-C(30)	1.99(5)	$\mathrm{Ni}(3)-\mathrm{C}(30)$	2.45(6)	W(4)-C(4)	1.97(4)
$\mathrm{Pt}(4)-\mathrm{C}(4)$	2.29(6)	W(4)-C(40)	2.09(5)	$\mathrm{Ni}(1)-\mathrm{C}(40)$	2.34(5)	W(2)-C(2)	$2.15(5)$
$\mathrm{Pt}(2)-\mathrm{C}(2)$	2.49(5)	$\mathrm{Ni}(3)-\mathrm{C}(2)$	2.30(4)	W(2)-C(20)	2.03(5)	$\mathrm{Ni}(3)-\mathrm{C}(20)$	2.07(6)
$\mathrm{W}(1)-\mathrm{C}(\mathrm{cp})^{\text {b }}$	2.36	W(2)-C(cp) ${ }^{\text {b }}$	2.32	W(3)-C(cp) ${ }^{\text {b }}$	2.35	W(4)-C(cp) ${ }^{\text {b }}$	2.38
$\mathrm{Ni}(1)-\mathrm{Pt}(2)-\mathrm{Ni}(3)$	88.8(1)	$\mathrm{Pt}(2)-\mathrm{Ni}(3)-\mathrm{Pt}(4)$	92.3(1)	$\mathrm{Ni}(3)-\mathrm{Pt}(4)-\mathrm{Ni}(1)$	88.4(1)	$\mathrm{Pt}(4)-\mathrm{Ni}(1)-\mathrm{Pt}(2)$	89.5(1)
$\mathrm{Ni}(1)-\mathrm{W}(1)-\mathrm{Pt}(2)$	64.1(1)	$\mathrm{Pt}(2)-\mathrm{W}(2)-\mathrm{Ni}(3)$	60.7(1)	$\mathrm{Ni}(3)-\mathrm{W}(3)-\mathrm{Pt}(4)$	62.1(1)	Pt(4)-W(4)-Ni(1)	62.4(1)
$\mathrm{W}(1)-\mathrm{Pt}(2)-\mathrm{W}(2)$	151.8(1)	$\mathrm{W}(2)-\mathrm{Ni}(3)-\mathrm{W}(3)$	148.5(2)	W(3)-Pt(4)-W(4)	152.3(2)	$\mathrm{W}(4)-\mathrm{Ni}(1)-\mathrm{W}(1)$	152.6(1)
$\mathrm{W}(1)-\mathrm{C}(11)-\mathrm{C}(12)$	136(3)	$\mathrm{Ni}(1)-\mathrm{C}(11)-\mathrm{C}(12)$	124(3)	$\mathrm{Pt}(2)-\mathrm{C}(11)-\mathrm{C}(12)$	121(2)	W(3)-C(31)-C(32)	140(3)
$\mathrm{Ni}(3)-\mathrm{C}(31)-\mathrm{C}(32)$	127(4)	$\mathrm{Pt}(4)-\mathrm{C}(31)-\mathrm{C}(32)$	122(3)	W(4)-C(41)-C(42)	139(4)	$\mathrm{Pt}(4)-\mathrm{C}(41)-\mathrm{C}(42)$	122(3)
$\mathrm{Ni}(1)-\mathrm{C}(41)-\mathrm{C}(42)$	120(3)	$\mathrm{W}(2)-\mathrm{C}(21)-\mathrm{C}(22)$	144(6)	$\mathrm{Pt}(2)-\mathrm{C}(21)-\mathrm{C}(22)$	121(4)	$\mathrm{W}(1)-\mathrm{C}(1)-\mathrm{O}(1)$	163(4)
$\mathrm{W}(1)-\mathrm{C}(10)-\mathrm{O}(10)$	169(9)	$\mathrm{W}(3)-\mathrm{C}(3)-\mathrm{O}(3)$	164(4)	$\mathrm{W}(3)-\mathrm{C}(30)-\mathrm{O}(30)$	170(6)	$\mathrm{W}(4)-\mathrm{C}(4)-\mathrm{O}(4)$	161(5)
$\mathrm{W}(4)-\mathrm{C}(40)-\mathrm{O}(40)$	166(5)	$\mathrm{W}(2)-\mathrm{C}(2)-\mathrm{O}(2)$	165(4)	$\mathrm{W}(2)-\mathrm{C}(20)-\mathrm{O}(20)$	157(6)	$\mathrm{C}(1)-\mathrm{W}(1)-\mathrm{C}(10)$	92(3)
$\mathrm{C}(1)-\mathrm{W}(1)-\mathrm{C}(11)$	102(2)	$\mathrm{C}(10)-\mathrm{W}(1)-\mathrm{C}(11)$	106(2)	$\mathrm{C}(2)-\mathrm{W}(2)-\mathrm{C}(20)$	103(2)	$\mathrm{C}(2)-\mathrm{W}(2)-\mathrm{C}(21)$	103(3)
$\mathrm{C}(20)-\mathrm{W}(2)-\mathrm{C}(21)$	102(3)	$\mathrm{C}(3)-\mathrm{W}(3)-\mathrm{C}(30)$	94(2)	$\mathrm{C}(3)-\mathrm{W}(3)-\mathrm{C}(31)$	105(2)	$\mathrm{C}(30)-\mathrm{W}(3)-\mathrm{C}(31)$	108(2)
C(4)-W(4)-C(40)	92(2)	C(4)-W(4)-C(41)	104(2)	$\mathrm{C}(40)-\mathrm{W}(4)-\mathrm{C}(41)$	105(2)		

${ }^{a}$ Distances and angles refer to the major disordered component shown in Figure 2. ${ }^{b}$ Mean distance to cyclopentadienyl carbons.

$M \quad R$
(7b) Pt $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$
(8b) $\mathrm{Ni} \quad \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$
(9b) Ni Ph

During the syntheses of (7a) and (8a) evidence was obtained for the formation of small amounts of the symmetrical isomers $\left[\mathrm{Pt}_{4} \mathrm{~W}_{4}\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{4}(\mathrm{CO})_{8}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4}\right]$ (7b) and $\left[\mathrm{Ni}_{2} \mathrm{Pt}_{2}-\right.$ $\left.\mathrm{W}_{4}\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{4}(\mathrm{CO})_{8}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4}\right]$ (8b). Thus during chromatography of reaction mixtures which afforded (7a) a trace of a pink coloured band was sometimes observed preceding (7a) on the alumina column, but it was only obtained in amounts sufficient for i.r. identification. This same product was observed on repurification of samples of (7a) which had been stored for several weeks. Similarly in preparations of (8a) traces of the species ($\mathbf{8 b}$) were sometimes detected by n.m.r. measurements.

These results suggested that (7b) and (8b) were the thermodynamically more stable isomers, and prompted studies in which (7a) and (8a) were refluxed in thf. Isomerisation to the symmetric isomers ($\mathbf{7 b}$) and (8b) occurred quantitatively under these conditions. Compound (7b) proved to be exceedingly insoluble and hence satisfactory n.m.r data could not be obtained even when using a $400-\mathrm{MHz}$ spectrometer. However, satisfactory n.m.r. studies on (8b) were possible and the results (Tables 2 and 3) were in agreement with the complex having the structure indicated, with four symmetrically disposed triply bridging alkylidyne groups, two on either side of the eightmembered metal ring. Thus in the ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum the ligated carbon nuclei of the tolylmethylidyne groups show a single resonance at $\delta 305.7$ p.p.m., and in accord with the symmetrical structure, the ${ }^{195} \mathrm{Pt}-\left\{{ }^{1} \mathrm{H}\right.$; n.m.r. spectrum also shows a single peak at $\delta 1236$ p.p.m.

It was thought important to carry out an X-ray diffraction study on an eight-membered-ring metal complex having four symmetrically disposed triply bridging alkylidyne groups. However, neither (7b) nor (8b) afforded suitable crystals, and this led to experiments using (1c) and (1d) as precursors to an eight-membered-ring metallacycle. It was thought that a change from $\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ to CPh substituents in a cluster might improve the chance of obtaining crystals suitable for X-ray diffraction studies.

The reaction between (1c) and an excess of $\left[\mathrm{Ni}(\operatorname{cod})_{2}\right]$ in thf gave a ca. 1:1 mixture of the isomeric compounds $\left[\mathrm{Ni}_{2} \mathrm{Pt}_{2} \mathrm{~W}_{4}{ }^{-}\right.$ $\left.(\mu-\mathrm{CPh})\left(\mu_{3}-\mathrm{CPh}\right)_{3}(\mu-\mathrm{CO})(\mathrm{CO})_{7}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4}\right]$ (9a) and $\left[\mathrm{Ni}_{2} \mathrm{Pt}_{2}-\right.$ $\mathrm{W}_{4}\left(\mu_{3}-\mathrm{CPh}\right)_{4}(\mathrm{CO})_{8}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4}$] (9b), separable as two distinct fractions by column chromatography. Moreover, when dissolved in refluxing thf, (9a) was quantitatively converted into (9b). A mixture of (9a) and (9b) is also obtained by treating (1d) with $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{3}\right]$, but the yields of product are much lower. Also formed are brown products which could not be characterised, and which revert to (1d). It is tempting to assign these brown species as unstable $\mathrm{Ni}_{2} \mathrm{PtW}_{4}$ chain compounds, intermediates on the way to (9).

The n.m.r. data for (9a) and (9b) are summarised in Tables 2 and 3. Those for (9b) indicated the symmetrical structure, with

Table 6. Selected interatomic distances (\AA) and angles (${ }^{\circ}$) for the compound $\left[\mathrm{Ni}_{2} \mathrm{Pt}_{2} \mathrm{~W}_{4}\left(\mu_{3}-\mathrm{CPh}\right)_{4}(\mathrm{CO})_{8}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4}\right](9 b)^{a}$

$\mathrm{Ni} \cdot \ldots$ Pt	2.777(4)	$\mathrm{Ni}^{\prime} \cdots \mathrm{Pt}$	2.749(3)	Ni-W(1)	2.657(4)	Pt-W(1)	2.711(2)
$\mathrm{Ni}-\mathrm{W}(2)$	2.634(4)	$\mathrm{Pt}^{\prime}-\mathrm{W}(2)$	2.771(2)	W(1)-C(11)	1.98(2)	$\mathrm{Ni}-\mathrm{C}(11)$	2.01(3)
$\mathrm{Pt}-\mathrm{C}(11)$	2.12(3)	$\mathrm{W}(2)-\mathrm{C}(21)$	1.93(3)	$\mathrm{Ni}-\mathrm{C}(21)$	2.00(3)	$\mathrm{Pt}^{\prime}-\mathrm{C}(21)$	2.05(3)
W(1)-C(1)	2.09(3)	$\mathrm{Pt}-\mathrm{C}(1)$	2.44(3)	W(1)-C(10)	2.00 (3)	$\mathrm{Ni}-\mathrm{C}(10)$	2.20(3)
$\mathrm{W}(2)-\mathrm{C}\left(2^{\prime}\right)$	1.88(3)	$\mathrm{Pt}^{\prime}-\mathrm{C}\left(2^{\prime}\right)$	2.38(3)	$\mathrm{W}(2)-\mathrm{C}(20)$	1.89(3)	$\mathrm{Ni}-\mathrm{C}(20)$	2.19(4)
$\mathrm{W}(1)-\mathrm{C}(\mathrm{cp})^{\text {b }}$	2.36	$\mathrm{W}(2)-\mathrm{C}(\mathrm{cp})^{\text {b }}$	2.34				
$\mathrm{Pt}-\mathrm{Ni}-\mathrm{Pt}^{\prime}$	81.7(1)	$\mathrm{Ni}-\mathrm{Pt}-\mathrm{Ni}^{\prime}$	96.9(1)	Ni-W(1)-Pt	62.3(1)	$\mathrm{Ni}-\mathrm{W}(2)-\mathrm{Pt}^{\prime}$	61.1(1)
W(1)-Ni-W (2)	155.2(1)	$\mathrm{W}(1)-\mathrm{Pt}-\mathrm{W}\left(2^{\prime}\right)$	147.6(1)	$\mathrm{W}(1)-\mathrm{C}(11)-\mathrm{C}(12)$	137(2)	$\mathrm{Ni}-\mathrm{C}(11)-\mathrm{C}(12)$	124(2)
$\mathrm{Pt}-\mathrm{C}(11)-\mathrm{C}(12)$	128(2)	$\mathrm{W}(2)-\mathrm{C}(21)-\mathrm{C}(22)$	133(2)	$\mathrm{Ni}-\mathrm{C}(21)-\mathrm{C}(22)$	127(2)	$\mathrm{Pt}^{\prime}-\mathrm{C}(21)-\mathrm{C}(22)$	124(2)
$\mathrm{W}(1)-\mathrm{C}(1)-\mathrm{O}(1)$	164(2)	$\mathrm{W}(1)-\mathrm{C}(10)-\mathrm{O}(10)$	163(2)	$\mathrm{W}(2)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{O}\left(2^{\prime}\right)$	165(2)	$\mathrm{W}(2)-\mathrm{C}(20)-\mathrm{O}(20)$	162(3)
$\mathrm{C}(1)-\mathrm{W}(1)-\mathrm{C}(10)$	90(1)	$\mathrm{C}(1)-\mathrm{W}(1)-\mathrm{C}(11)$	110(1)	$\mathrm{C}(10)-\mathrm{W}(1)-\mathrm{C}(11)$	103(1)	$\mathrm{C}\left(2^{\prime}\right)-\mathrm{W}(2)-\mathrm{C}(20)$	94(1)
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{W}(2)-\mathrm{C}(21)$	105(1)	$\mathrm{C}(20)-\mathrm{W}(2)-\mathrm{C}(21)$	101(1)				

${ }^{a}$ Atoms with a prime label are related to those without by a two-fold rotation axis. ${ }^{b}$ Mean distance to cyclopentadienyl ring-carbon atoms.

Figure 3. The molecular structure of $\left[\mathrm{Ni}_{2} \mathrm{Pt}_{2} \mathrm{~W}_{4}\left(\mu_{3}-\mathrm{CPh}\right)_{4}(\mathrm{CO})_{8^{-}}\right.$ $\left.\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4}\right]$ (9b) showing the atom labelling scheme
the appearance of only one resonance in the ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum at $\delta 299.4$ p.p.m., for the μ_{3} - C nuclei, and correspondingly one peak in the ${ }^{195} \mathrm{Pt}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum at $\delta 1245$ p.p.m. The n.m.r. data for (9a), however, were similar to those of (7a) and (8a), showing resonances due to the presence in solution of isomers with trans $\mathrm{Ni} \ldots \mathrm{Ni}$ and trans $\mathrm{Pt} \ldots \mathrm{Pt}$ arrangements in the metallacycle, but with a phenylmethylidyne group bridging a $\mathrm{Pt}-\mathrm{W}$ bond in one isomer (9a)(i) and a $\mathrm{Ni}-\mathrm{W}$ bond in the other (9a)(ii). Thus the ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum (Table 2) shows two resonances for edge-bridging C Ph groups, six signals for triply bridging CPh ligands, and 16 peaks for CO groups. In agreement, the ${ }^{195} \mathrm{Pt}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum shows (Table 3) two sets of two resonances, the platinum atoms in each isomer being in different environments.
Suitable crystals of ($\mathbf{9 b}$) became available, and the results of an X-ray diffraction study are summarised in Table 6, with the molecular structure shown in Figure 3. The eight metal atoms form a ring, as inferred for (9a)(i) and (9a)(ii), and the four triply bridging phenylmethylidyne groups lie alternately above and below the ring. The conformation is highly symmetric, displaying a crystallographic two-fold axis of symmetry through the centre of and perpendicular to the metal ring. We have used the description 'star cluster' to describe such polynuclear metal species. ${ }^{6}$ As with the compounds (7a) and (8a), the metal atoms
in ($\mathbf{9 b}$) only approximate to coplanarity. The atoms deviating most from the mean plane are $\mathrm{W}(1)(0.37 \AA)$ and $\mathbf{W}(2)(0.33 \AA)$, being directed away from their associated CPh groups.

The eight carbonyl ligands semi-bridge the $\mathrm{Ni}-\mathrm{W}$ and $\mathrm{Pt}-\mathrm{W}$ bonds, with $\mathrm{W}-\mathrm{C}-\mathrm{O}$ angles of $162-165^{\circ}$. The ligating $\mu_{3}-\mathrm{C}-\mathrm{W}$ groups at the Ni or Pt centres occupy sites which lead to dihedral angles between the respective $\mathbf{M}\left(\mu_{3}-\mathrm{C}\right) \mathbf{W}$ planes of 76° at $\mathrm{M}=\mathrm{Ni}$ and 81° at $\mathrm{M}=\mathrm{Pt}$.

The central $\mathrm{Ni}_{2} \mathrm{Pt}_{2}$ fragment is slightly distorted from a square arrangement with $\mathrm{Ni}-\mathrm{Pt} 2.777(4)$ and $\mathrm{Ni}^{\prime}-\mathrm{Pt} 2.749(3) \AA$, and with $\mathrm{Pt}-\mathrm{Ni}-\mathrm{Pt}^{\prime} 81.7(1)$ and $\mathrm{Ni}-\mathrm{Pt}-\mathrm{Ni}^{\prime} 96.9(1)^{\circ}$. The $\mathrm{W}(1)-\mathrm{Ni}-\mathrm{W}(2)$ angle $\left[155.2(1)^{\circ}\right]$ is less than the $\mathrm{W}(1)-\mathrm{Pt}-\mathrm{W}\left(2^{\prime}\right)$ angle $\left[147.6(1)^{\circ}\right]$. As expected, the $\mathrm{Pt}-\mathrm{W}$ bonds (mean $2.741 \AA$) are somewhat longer than the $\mathrm{Ni}-\mathrm{W}$ (mean $2.646 \AA$).

The reaction between (6a) and $\left[\mathrm{Ni}(\operatorname{cod})_{2}\right]$ was investigated with the object of obtaining a cluster with a $\mathrm{NiPt}_{3} \mathrm{~W}_{4}$ core. In this manner the complex $\left[\mathrm{NiPt}_{3} \mathrm{~W}_{4}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\right.$ -$\left.\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{3}(\mu-\mathrm{CO})(\mathrm{CO})_{7}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4}\right] \quad(10)$ was isolated, after chromatography of the crude reaction mixture. The yield of (10) was relatively low and variable, and other unidentified products were observed. As mentioned earlier, when discussing the synthesis of (7a) from (6a), it is possible that only one isomer of the latter can ring-close effectively. Data for (10) are given in Tables 1 - 3 . It was apparent from the ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum that (10) was formed as a mixture of two isomers. It is likely that in one form the tolylmethylidyne group edge-bridges a Ni-W bond [10(i)], and in the other a $\mathrm{Pt}-\mathrm{W}$ bond [10(ii)]. However, it was evident from relevant peak intensities that one isomer predominated. Moreover, in the ${ }^{195} \mathrm{Pt}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum, discussed below, only one predominant isomer was observed and the resonances assigned.

Refluxing thf solutions of (10) affords a black insoluble compound [v_{co} (max.) at $1834 \mathrm{~s} \mathrm{br} \mathrm{cm}{ }^{-1}$ (in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$)], but n.m.r. data for this species could not be obtained. The insolubility, and i.r. spectrum in the CO region compared with that of ($7 \mathbf{b}$) (Table 1), suggest that this product is an isomer of (10) with a symmetrical $\mathrm{NiPt}_{3} \mathrm{~W}_{4}\left(\mu_{3}-\mathrm{C}\right)_{4}$ framework.

The ${ }^{195} \mathrm{Pt}-\left\{{ }^{1} \mathbf{H}\right\}$ n.m.r. spectra (Table 3) of the unsymmetrical complexes (7a), (8a), (9a), and (10) are complicated, due to the various ${ }^{195} \mathrm{Pt}-{ }^{195} \mathrm{Pt}$ couplings (Table 3). For (7a) a complete analysis and simulation of the spectrum has been possible, leading to classification of the spin system as ABXY. ${ }^{9}$ For (7a) it will be seen that the observed chemical shifts fall into two groups with resonances in the vicinity of $c a . \delta 1670$ or 900 p.p.m. It has not been possible to assign unambiguously each Pt signal to a particular platinum site (Figure 1). However, consideration of the spectrum of (10) is helpful, since one isomer predominates in solution with only three well resolved ${ }^{195} \mathrm{Pt}-\left\{{ }^{1} \mathbf{H}\right\}$ n.m.r. resonances being observed. The method used to prepare (10),

Table 7. Crystal data and experimental parameters*

Compound Formula	(7a) $\mathrm{C}_{60} \mathrm{H}_{48} \mathrm{O}_{8} \mathrm{Pt}_{4} \mathrm{~W}_{4} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$	(8a) $\mathrm{C}_{60} \mathrm{H}_{48} \mathrm{Ni}_{2} \mathrm{O}_{8} \mathrm{Pt}_{2} \mathrm{~W}_{4} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$	(9b) $\mathrm{C}_{56} \mathrm{H}_{40} \mathrm{Ni}_{2} \mathrm{O}_{8} \mathrm{Pt}_{2} \mathrm{~W}_{4}$
M	2497.7	2224.9	2083.9
Crystal system	Triclinic	Triclinic	Monoclinic
Crystal habit	Prisms	Prisms	Hexagonal prisms
Colour	Black	Black	Black
Space group	$P \mathrm{I}$	$P \overline{1}$	C2/c
a / \AA	12.122(4)	11.853(4)	12.977(10)
b / \AA	13.658(5)	12.796(5)	22.134(15)
c / \AA	22.068(9)	21.758(15)	19.306(14)
$x /{ }^{\circ}$	105.01(3)	105.85(5)	
$\beta{ }^{\circ}$	90.56(3)	89.80(4)	93.77(6)
$\gamma /^{\circ}$	59.52(2)	114.06(3)	
U / \AA^{3}	3009 (2)	$2877(3)$	5 533(7)
Z	2	2	4
$D_{\text {c }} / \mathrm{g} \mathrm{cm}^{-3}$	2.76	2.57	2.50
$F(000)$	2244	2044	3792
T/K	293	190	293
$\mu\left(\mathrm{Mo}-K_{\alpha}\right) / \mathrm{cm}^{-1}$	172.82	138.22	142.70
Crystal size (mm)	$0.10 \times 0.175 \times 0.25$	$0.20 \times 0.20 \times 0.50$	$0.40 \times 0.50 \times 0.50$
$2 \theta_{\text {min., max }} / /^{\circ}$	2.9, 50	3.0, 50	3.0, 40
Data recorded	7436	10345	3469
Data unique	7054	9868	2614
Data used	4619	5556	2356
n in $I \geqslant n \sigma(I)$	4	4	1
Absorption correction	Empirical	Empirical	Empirical
Mean μR used	1.6	3.05	3.00
No. of refined parameters	335	295	257
g in weighting scheme			
$w^{-1}=\left[\sigma^{2}(F)+g\|F\|^{2}\right]$	0.0015	0.0010	0.0008
$R\left(R^{\prime}\right)$	0.041 (0.044)	0.100 (0.106)	0.068 (0.072)

* All data were collected on a Nicolet $P 3 m$ automated diffractometer, operating in the $\omega-2 \theta$ scan mode, Mo- $K_{\alpha} X$-radiation (graphite monochromator, $\bar{\lambda}=0.71069 \AA$). Refinement was by blocked-cascade least-squares methods.

(i)

(ii)
and the established structure of (8a), suggests that the nickel atoms are disposed as indicated, viz. (10)(i) or (10)(ii). It is to be expected that isomer (ii) would be the more readily formed, since in a ring-closure process to produce (i) from (6a) breaking of a $\mu-\mathrm{C}-\mathrm{Pt}$ bond and forming of a $\mu-\mathrm{C}-\mathrm{Ni}$ bond would be required, steps which could be energetically less favourable. The observed ${ }^{195} \mathrm{Pt}-\left\{{ }^{1} \mathrm{H}\right\}$ resonances for (10) may thus be reasonably assigned, with their associated ${ }^{195} \mathrm{Pt}-{ }^{195} \mathrm{Pt}$ coupling constants, as in Figure 4. Based on these assignments, it is possible to make tentative ${ }^{195} \mathrm{Pt}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. assignments for (7a) also, as depicted in Figure 4.

Thus for (7a) the ${ }^{195} \mathrm{Pt}$ resonances at $\delta 1693$ and 1665 p.p.m. are assigned to nuclei at the 'asymmetric' end of the molecule, while those at 947 and 859 p.p.m. are assigned to ${ }^{195} \mathrm{Pt}$ atoms ligated by two $\mu_{3}-\mathrm{C}$ groups. $\mathrm{The} \operatorname{Pt}(2)-\operatorname{Pt}(3)$ coupling (2 522 $\mathrm{Hz})$ also differs the greatest from the other coupling constants and relates to the shortest $\mathrm{Pt} \ldots \mathrm{Pt}$ separation (Table 4).

As discussed above, the compounds (8a) and (9a) exist as two distinct isomers, corresponding to an interchange of the nickel and platinum sites. The observed ${ }^{195} \mathrm{Pt}-\left\{{ }^{1} \mathrm{H}\right\}$ chemical shifts for these species, and the ${ }^{195} \mathrm{Pt}^{195} \mathrm{Pt}$ couplings, are either very similar, or in one instance the same. This is not surprising, since

Table 8. Atomic positional parameters (fractional co-ordinates) ($\times 10^{4}$) with estimated standard deviations in parentheses for (7a)

Atom	x	y	z	Atom	x	y	z
$\mathrm{Pt}(1)$	-957(1)	-2422(1)	-3 236(1)	C_{cp} (24)	-7505	875	-1610
$\mathrm{Pt}(2)$	- 3 811(1)	-705(1)	-2769(1)	$\mathrm{C}_{\mathrm{cp}}(25)$	-6823	330	-1150
$\mathrm{Pt}(3)$	-3 101(1)	445(1)	-1682(1)	C(31)	-1745(20)	736(18)	-1955(9)
$\mathrm{Pt}(4)$	-298(1)	-1071(1)	-2 190(1)	$\mathrm{C}(33)^{\text {a }}$	- 3 114(13)	2 181(14)	-2 557(8)
W(1)	$-2847(1)$	-2 551(1)	-3872(1)	C(34)	-3 318	3053	-2838
W(2)	$-5529(1)$	785(1)	-1647(1)	C(35)	-2308	3222	-2958
W(3)	-1 225(1)	771(1)	-1092(1)	C(36)	-1095	2520	-2796
W(4)	$1557(1)$	-3 200(1)	-3038(1)	C(37)	-892	1649	-2514
C(11)	-2 577(22)	-1 174(19)	-3 561(10)	C(32)	-1902	1480	-2 394
$\mathrm{C}(13)^{a}$	- 3 701(12)	555(14)	-3958(8)	C(38)	-2 542(29)	4 291(24)	- 3 205(13)
C(14)	-3711	1338	-4 261	C(3)	534(26)	-632(23)	-1 236(12)
C(15)	-2573	1315	-4391	$\mathrm{O}(3)$	1 612(20)	-1 307(18)	- 1221 (9)
C(16)	-1425	509	-4218	C(30)	-1993(24)	2(22)	-710(11)
C(17)	-1415	-274	-3915	$\mathrm{O}(30)$	- $2313(20)$	-370(17)	-394(8)
C(12)	-2553	-251	-3786	$\mathrm{C}_{\mathrm{cp}}(31)^{\text {a }}$	-2 532(18)	2 657(21)	-373(11)
C(18)	- 2562 (29)	2 138(25)	-4 725(13)	$\mathrm{C}_{\mathrm{cp}}(32)$	-2084	2819	-909
C(1)	-1238(24)	-3 919(22)	-3771(11)	$\mathrm{C}_{\mathrm{cp}}(33)$	-723	2298	-943
$\mathrm{O}(1)$	-355(19)	-4 942(16)	-3865(9)	$\mathrm{C}_{\mathrm{cp}}(34)$	-331	1815	-427
$\mathrm{C}(10)$	- 3821 (23)	-2 523(21)	-3 108(11)	$\mathrm{C}_{\mathrm{cp}}(35)$	-1449	2037	-75
$\mathrm{O}(10)$	-4 416(21)	-2 662(18)	-2 783(10)	C(41)	1(21)	-2 797(19)	-2486(10)
$\mathrm{C}_{\mathrm{cp}}(11)^{a}$	-4 399(18)	-1 807(15)	-4 548(10)	$\mathrm{C}(43)^{a}$	-111(17)	-2995(14)	-1389(7)
$\mathrm{C}_{\mathrm{cp}}(12)$	-4363	-2815	-4 458	C(44)	-324	-3525	-978
$\mathrm{C}_{\mathrm{cp}}(13)$	-3112	-3824	-4719	C(45)	-727	-4330	-1199
$\mathrm{C}_{c p}(14)$	-2 375	-3439	-4970	C(46)	-917	-4604	-1831
$\mathrm{C}_{\mathrm{cp}}(15)$	-3170	-2 193	-4864	C(47)	-704	-4073	-2 241
C(21)	- $5642(24)$	637(22)	-2 523(11)	C(42)	-300	-3269	-2020
$\mathrm{C}(23)^{\text {a }}$	-6 906(17)	214(11)	- 3 352(8)	C(48)	-987(29)	-4 909(26)	-774(13)
C(24)	-7769	539	-3788	C(4)	1 543(26)	-1 696(23)	-2 847(12)
C(25)	-8310	1665	-3870	$\mathrm{O}(4)$	$1794(21)$	-969(16)	-2835(12)
C(26)	-7987	2466	-3516	C(40)	1 043(26)	-3140(24)	-3895(12)
C(27)	-7124	2141	-3080	$\mathrm{O}(40)$	965(19)	-3 214(18)	-4 425(8)
C(22)	-6584	1015	-2998	$\mathrm{C}_{\mathrm{cp}}(41)^{\text {a }}$	3 092(20)	-5 223(17)	-3 451(8)
C(28)	-9281(26)	2014 (24)	-4 320(12)	$\mathrm{C}_{\mathrm{cp}}(42)$	2752	- 5021	-2798
C(2)	-4017(25)	-758(22)	-1 619(11)	$\mathrm{C}_{\mathrm{cp}}(43)$	3155	-4262	-2441
O(2)	- 3261 (17)	-1 697(17)	- $1539(9)$	$\mathrm{C}_{\mathrm{cp}}(44)$	3744	-3995	-2875
C(20)	-4 944(28)	2 025(25)	-1406(13)	$\mathrm{C}_{\mathrm{cp}}(45)$	3706	-4589	-3499
$\mathrm{O}(20)$	- $5143(22)$	3 014(19)	-1215(11)	$\mathrm{C}_{\text {sol }}{ }^{\text {b }}$	4 595(39)	3 063(35)	$1279(18)$
$\mathrm{C}_{\mathrm{cp}}(21)^{a}$	-6685(22)	1 183(22)	-684(9)	$\mathrm{Cl}(1)^{b}$	$4976(13)$	$2322(12)$	459(6)
$\mathrm{C}_{\mathrm{cp}}(22)$	-7283	2255	-855	$\mathrm{Cl}(2)^{\text {b }}$	4 401(15)	4 452(11)	$1408(7)$
$\mathrm{C}_{\mathrm{cp}}(23)$	-7790	2065	-1427				

${ }^{a}$ Atom of a rigid group; remaining atoms of group have identical standard deviations. ${ }^{b}$ Solvent molecule.

(7a)

Figure 4. Platinum-195 n.m.r. assignments for complexes (7a) and (10) (ii) with chemical shifts (δ) in p.p.m. and coupling constants in Hz
(8a) and (9a) differ only by the former containing tolylmethylidyne groups and the latter phenylmethylidyne groups. Each isomer of each complex has two pairs of resonances, due to the two inequivalent platinum nuclei. In Table 3 the members of
each pair are assigned on the basis of their ${ }^{195} \mathrm{Pt}-{ }^{195} \mathrm{Pt}$ coupling constants. Although no unambiguous assignment of the ${ }^{195} \mathrm{Pt}$ resonances to particular platinum sites can be made, in the light of the above discussions it is likely that signals in the range ca. δ

Table 9. Atomic positional parameters (fractional co-ordinates) ($\times 10^{4}$) with estimated standard deviations in parentheses for (8a)

Atom	x	y	z	Atom	x	y	z
$\mathrm{Pt}(1)$	6590 (3)	2 555(3)	$1778(2)$	C_{cp} (22)	4503	7163	3599
$\mathrm{Ni}(1)$	6590 (3)	2 555(3)	$1778(2)$	C_{cp} (23)	5108	7237	4182
Pt (2)	5 569(2)	4 239(2)	2 255(1)	C_{cp} (24)	4502	6115	4305
$\mathrm{Ni}(2)$	5 569(2)	4 239(2)	2 255(1)	$\mathrm{C}_{\mathrm{cp}}(25)$	3522	5348	3798
$\mathrm{Pt}(3)$	7 333(3)	5 293(3)	3 296(2)	C(31)	9 047(47)	$5748(43)$	3 012(26)
$\mathrm{Ni}(3)$	7 333(3)	5 293(3)	3 296(2)	$\mathrm{C}(33)^{a}$	$10765(26)$	$6659(25)$	2 465(16)
$\mathrm{Pt}(4)$	8 570(2)	$3877(2)$	$2768(1)$	C(34)	11420	7558	2186
$\mathrm{Ni}(4)$	8570 (2)	3 877(2)	$2768(1)$	C(35)	10843	8210	2012
W(1)	4 572(2)	2 398(2)	1 161(1)	C(36)	9610	7962	2117
W(2)	$5357(2)$	5769 (2)	3 356(1)	C(37)	8955	7063	2396
W(3)	9 548(2)	5666 (2)	3 874(1)	C(32)	9532	6411	2570
W(4)	$8331(2)$	$1778(2)$	$1925(1)$	C(38)	11 663(51)	$9307(46)$	$1764(26)$
C(11)	6 247(32)	3 732(30)	$1464(18)$	C(3)	$9812(44)$	4230 (40)	3 679(24)
$\mathrm{C}(13)^{a}$	$8375(27)$	4 692(25)	$1085(16)$	O(3)	$10241(32)$	3 530(30)	3 652(18)
C(14)	9155	5484	774	C(30)	8 005(47)	4 995(43)	4 274(26)
C(15)	8757	6231	567	$\mathrm{O}(30)$	7 222(34)	4 562(31)	4 554(18)
C(16)	7579	6187	671	$\mathrm{C}_{\mathrm{cp}}(31)^{\text {a }}$	11 513(35)	6 674(35)	$4511(21)$
C(17)	6798	5396	982	$\mathrm{C}_{\mathrm{cp}}(32)$	11538	7192	4008
C(12)	7196	4648	1189	$\mathrm{C}_{\mathrm{cp}}(33)$	10684	7724	4105
C(18)	$9692(53)$	7 159(49)	240(30)	$\mathrm{C}_{\mathrm{cp}}(34)$	10130	7535	4668
C(1)	$4852(42)$	954(39)	$1233(23)$	$\mathrm{C}_{\mathrm{cp}}(35)$	10642	6886	4919
O(1)	$4756(29)$	9(27)	$1155(16)$	C(41)	$7227(43)$	$2185(40)$	$2506(24)$
C(10)	3 632(77)	2 415(69)	$1945(42)$	$\mathrm{C}(43)^{a}$	6 863(22)	1956 (26)	$3611(14)$
$\mathrm{O}(10)$	2 986(41)	2 400(36)	$2304(22)$	C(44)	6140	1431	4045
$\mathrm{C}_{\mathrm{cp}}(11)^{a}$	4 586(29)	2 721(31)	155(22)	C(45)	4897	622	3848
$\mathrm{C}_{\mathrm{cp}}(12)$	3693	3099	453	C(46)	4376	337	3218
$\mathrm{C}_{\mathrm{cp}}(13)$	2707	2087	556	C(47)	5098	862	2784
$\mathrm{C}_{\mathrm{cp}}(14)$	2991	1083	323	C(42)	6341	1672	2981
$\mathrm{C}_{\mathrm{cp}}(15)$	4152	1475	75	C(48)	$4063(42)$	187(42)	4 286(25)
C(21)	$5151(64)$	5 601(58)	2 492(35)	C(4)	$9795(46)$	3 319(42)	$2060(25)$
$\mathrm{C}(23)^{a}$	$3379(30)$	5 145(23)	$1688(18)$	$\mathrm{O}(4)$	10 800(33)	$4003(30)$	$2094(18)$
C(24)	2802	5478	1266	C(40)	7 721(37)	$1816(35)$	$1035(21)$
C(25)	3425	6583	1152	O(40)	7 570(31)	$1751(28)$	538(17)
C(26)	4626	7354	1459	$\mathrm{C}_{\mathrm{cp}}(41)^{\text {a }}$	$7874(27)$	-267(28)	$1514(14)$
C(27)	5202	7021	1880	$\mathrm{C}_{\mathrm{cp}}(42)$	7673	-67	2172
C(22)	4579	5916	1995	$\mathrm{C}_{\mathrm{cp}}(43)$	8837	709	2552
C(28)	$2829(43)$	$7117(41)$	683(24)	$\mathrm{C}_{\mathrm{cp}}(44)$	9757	990	2130
$\mathrm{C}(2)$	$5314(39)$	4 077(36)	3 368(22)	$\mathrm{C}_{\mathrm{cp}}(45)$	9162	386	1489
$\mathrm{O}(2)$	$5087(29)$	3 197(27)	3 443(16)	$\mathrm{C}_{\text {sol }}{ }^{\text {b }}$	12 299(46)	$1782(42)$	3 751(26)
C(20)	7 189(50)	6 913(46)	3 608(27)	$\mathrm{Cl}(1)^{\text {b }}$	12 704(19)	$2681(21)$	4 536(11)
$\mathrm{O}(20)$	8 062(38)	$7839(34)$	$3822(20)$	$\mathrm{Cl}(2)^{\text {b }}$	$11067(25)$	488(20)	$3583(15)$
$\mathrm{C}_{\text {cp }}(21)^{a}$	3 523(47)	$5995(47)$	3 362(22)				

${ }^{a}$ Atom of a rigid group; remaining atoms of group have identical standard deviations. ${ }^{b}$ Solvent molecule.
$1600-1700$ p.p.m. correspond to platinum atoms in the more asymmetric part of these molecules, while those resonances in the range ca. $\delta 1000-1100$ p.p.m. correspond to platinum atoms each ligated by two $\mu_{3}-\mathrm{C}$ groups. As mentioned earlier, on heating, the asymmetric isomers convert to the symmetric species $\quad\left[\mathrm{Ni}_{2} \mathrm{Pt}_{2} \mathrm{~W}_{4}\left(\mu_{3}-\mathrm{CR}\right)_{4}(\mathrm{CO})_{8}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4}\right] \quad\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4}-\right.$ $\mathrm{Me}-4$ or Ph$)$, and the platinum environments become equivalent giving rise to one ${ }^{195} \mathrm{Pt}$ n.m.r. resonance.

The relative rates of these conversions are such that longer reflux times are needed when $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ (8a) compared with $\mathrm{R}=\mathrm{Ph}$ (9a). Similarly, for the $\mathrm{Pt}_{4} \mathrm{~W}_{4}$ compound (7a, $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$) thermal isomerisation to the symmetric compound ($7 \mathbf{b}$) requires the longest reflux time of all (ca. 8 h). Such observations, along with the fact that the symmetric isomer (9 b) $(\mathrm{R}=\mathrm{Ph})$ is formed in substantial amounts in the initial reaction of (1c) with [$\left.\mathrm{Ni}(\operatorname{cod})_{2}\right]$, may indicate that steric factors play an important part in determining the observed isomer ratios. The kinetic products (7a), (8a), and (9a) predominate in these reactions, with the ease of isomerisation to the thermodynamic products ($\mathbf{7 b}$), ($8 \mathbf{b}$), and ($\mathbf{9 b}$) facilitated when nickel is present in the metallacycle or when $\mathrm{R}=\mathrm{Ph}$ is the substituent compared with $R=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$.

The results described herein report for the first time the synthesis and characterisation of a new type of metallacyclic ring cluster compound incorporating eight metal atoms. It is to be hoped that such compounds may show interesting reactivity features. Studies are also in progress to extend the syntheses of such compounds to afford examples containing molybdenum in conjunction with tungsten, platinum, or nickel, and to afford compounds with a variety of substituent groups. It is envisaged that such 'fine tuning' of substituent group and metal centre may afford clusters with unique reactivities.

Experimental

The techniques employed and the instrumentation used have been described previously. ${ }^{1}$ Light petroleum refers to that fraction of b.p. $40-60^{\circ} \mathrm{C}$. The complexes (1c), (1d), (2a), ${ }^{2}(6 a),{ }^{1}$ $\left[\mathrm{Pt}(\operatorname{cod})_{2}\right]$, and $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{3}\right]^{10}$ were prepared as described earlier. The compound $\left[\mathrm{Ni}(\operatorname{cod})_{2}\right]$ used was a commercial sample (Strem Chemicals Inc.). Analytical and other data for the complexes are given in Table 1.

Syntheses of the Complexes $\left[\mathrm{M}_{2} \mathrm{Pt}_{2} \mathrm{~W}_{4}(\mu-\mathrm{CR})\left(\mu_{3}-\mathrm{CR}\right)_{3}\right.$ -$\left.(\mu-\mathrm{CO})(\mathrm{CO})_{7}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4}\right]\left(\mathrm{M}=\mathrm{Pt}, \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4 ; \mathrm{M}=\mathrm{Ni}\right.$,

Table 10. Atomic positional parameters (fractional co-ordinates ($\times 10^{4}$) with estimated standard deviations in parentheses for (9 b)

Atom	x	y	z	Atom	x	y	z
Pt	-421(1)	$3103(1)$	$1589(1)$	C(10)	-2714(21)	$3731(14)$	$2137(14)$
Ni	-1518(2)	3 239(1)	$2767(2)$	$\mathrm{O}(10)$	-3 065(16)	4 128(10)	2 400(11)
W(1)	-2 507(1)	$3005(1)$	$1547(1)$	C(2)	591(19)	2 586(16)	793(14)
W(2)	-1320(1)	3 318(1)	4 131(1)	O(2)	256(15)	2 084(9)	613(10)
C(11)	-1446(18)	$2539(12)$	2 108(12)	C(20)	-2 460(26)	2970 (15)	3615 (18)
C(12)	- $1284(20)$	$1926(10)$	$2317(14)$	O(20)	-3 388(15)	$2827(11)$	3 403(11)
C(13)	-966(22)	$1509(12)$	$1889(17)$	C(21)	-675(20)	3 768(13)	3 421(13)
C(14)	-1 061(23)	901(13)	2010 (21)	C(22)	-463(20)	4 424(11)	3 331(13)
C(15)	- 1 383(27)	677(14)	2 601(21)	C(23)	-1 279(21)	4841 (14)	3 308(12)
C(16)	-1 697(24)	$1097(15)$	3 059(22)	C(24)	-1 068(29)	5420 (15)	3 336(15)
C(17)	-1 628(22)	$1702(12)$	2930 (16)	C(25)	-71(25)	5 659(12)	3 361(16)
$\mathrm{C}_{\mathrm{cp}}(11){ }^{\text {* }}$	-4 238(19)	2 764(11)	$1702(11)$	C(26)	705(23)	5 260(13)	3 403(18)
$\mathrm{C}_{\mathrm{cp}}(12)$	-4177	2998	1021	C(27)	561(21)	4 663(12)	3 357(13)
$\mathrm{C}_{\mathrm{cp}}(13)$	-3586	2588	642	$\mathrm{C}_{\text {cp }}(21)^{*}$	-2004(18)	$4132(11)$	$4737(13)$
$\mathrm{C}_{\mathrm{cp}}(14)$	-3283	2101	1089	$\mathrm{C}_{\mathrm{cp}}(22)$	-929	4133	4929
$\mathrm{C}_{\mathrm{cp}}(15)$	-3686	2209	1743	C_{cp} (23)	-680	3578	5269
C(1)	-1 799(18)	3 547(13)	830(13)	C_{cp} (24)	-1601	3233	5286
O(1)	-1605(16)	3780 (10)	364(10)	C_{cp} (25)	-2420	3576	4957

* Atom of a rigid group; remaining atoms of group have identical standard deviations.
$\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ or Ph$)$-(i) A cold (ca. $0^{\circ} \mathrm{C}$) solution of $\left[\mathrm{Pt}(\operatorname{cod})_{2}\right](0.04 \mathrm{~g}, 0.09 \mathrm{mmol})$, in ethylene-saturated thf (10 cm^{3}), was added to a cold ethylene-saturated solution of ($6 \mathbf{a}$) ($0.20 \mathrm{~g}, 0.09 \mathrm{mmol}$) in the same solvent $\left(15 \mathrm{~cm}^{3}\right)$. After stirring the mixture at room temperature under nitrogen for 2 h , solvent was removed in vacuo, and the residue dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (ca. $8 \mathrm{~cm}^{3}$) and chromatographed on an alumina column ($c a$. $15 \times 2.5 \mathrm{~cm}$). Elution with neat $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ afforded a black eluate. Removal of solvent in vacuo, and crystallisation of the residue from light petroleum gave black crystals of $\left[\mathrm{Pt}_{4} \mathrm{~W}_{4}-\right.$ $\left.\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{3}(\mu-\mathrm{CO})(\mathrm{CO})_{7}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4}\right]$ (7a) $(0.09 \mathrm{~g})$.
(ii) The compound $\left[\mathrm{Ni}(\mathrm{cod})_{2}\right](0.21 \mathrm{~g}, 0.80 \mathrm{mmol})$ was added to a solution of $(1 a)(0.20 \mathrm{~g}, 0.20 \mathrm{mmol})$ in thf $\left(10 \mathrm{~cm}^{3}\right)$, and the mixture stirred for 2 h under nitrogen. Solvent was removed in vacuo, the residue dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (ca. $5 \mathrm{~cm}^{3}$) and chromatographed on alumina. Removal of solvent in vacuo from the brown-black eluate, and crystallisation of the residue from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum (1:5) yielded black crystals of $\left[\mathrm{Ni}_{2} \mathrm{Pt}_{2} \mathrm{~W}_{4}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{3}(\mu-\mathrm{CO})(\mathrm{CO})_{7}-\right.$ $\left.\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4}\right](8 \mathrm{a})(0.19 \mathrm{~g})$.
(iii) Similarly, $\left[\mathrm{Ni}(\operatorname{cod})_{2}\right](0.14 \mathrm{~g}, 0.50 \mathrm{mmol})$ was added to (1c) $(0.20 \mathrm{~g}, 0.20 \mathrm{mmol})$, dissolved in thf $\left(20 \mathrm{~cm}^{3}\right)$, and the mixture stirred for 3 h . Removal of solvent in vacuo, dissolving the residue in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum ($c a .10 \mathrm{~cm}^{3}, 2: 1$) and column chromatography on alumina, eluting with the same solvent mixture, gave initially a green band followed by a black band. Removal of solvent in vacuo, and crystallisation of the separate fractions from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum (1:5) gave black crystals of $\left[\mathrm{Ni}_{2} \mathrm{Pt}_{2} \mathrm{~W}_{4}(\mu-\mathrm{CPh})\left(\mu_{3}-\mathrm{CPh}\right)_{3}(\mu-\mathrm{CO})(\mathrm{CO})_{7}-\right.$ $\left.\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4}\right]$ (9a) $(0.10 \mathrm{~g})$ from the second eluate, and greenblack crystals of $\left[\mathrm{Ni}_{2} \mathrm{Pt}_{2} \mathrm{~W}_{4}\left(\mu_{3}-\mathrm{CPh}\right)_{4}(\mathrm{CO})_{8}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4}\right]$ (9b) $(0.07 \mathrm{~g})$ from the first eluate.

Formation of the Complexes $\left[\mathrm{M}_{2} \mathrm{Pt}_{2} \mathrm{~W}_{4}\left(\mu_{3}-\mathrm{CR}\right)_{4}(\mathrm{CO})_{8}\right.$ -$\left.\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4}\right]\left(\mathrm{M}=\mathrm{Pt}, \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4 ; \mathrm{M}=\mathrm{Ni}, \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right.$ or Ph).-The symmetrical eight-membered-ring metallacycles may be obtained in essentially quantitative yield by refluxing the species (7a), (8a), or (9a) in thf. Thus (7a) ($0.20 \mathrm{~g}, 0.08 \mathrm{mmol}$) refluxed in thf $\left(10 \mathrm{~cm}^{3}\right)$ for $c a .8 \mathrm{~h}$ gave highly insoluble black crystals of $\left[\mathrm{Pt}_{4} \mathrm{~W}_{4}\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{4}(\mathrm{CO})_{8}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4}\right] \quad$ (7b) $(0.19 \mathrm{~g})$. Similarly, (8 aa) $(0.20 \mathrm{~g}, 0.09 \mathrm{mmol})$ after $c a .4 \mathrm{~h}$ reflux in thf ($30 \mathrm{~cm}^{3}$) gave black crystals of $\left[\mathrm{Ni}_{2} \mathrm{Pt}_{2} \mathrm{~W}_{4}\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-\right.\right.$
$\left.4)_{4}(\mathrm{CO})_{8}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4}\right](8 b)(0.18 \mathrm{~g})$, recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ light petroleum (1:5).

The compound $\left[\mathrm{Ni}_{2} \mathrm{Pt}_{2} \mathrm{~W}_{4}\left(\mu_{3}-\mathrm{CPh}\right)_{4}(\mathrm{CO})_{8}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4}\right]$ (9b) $(0.18 \mathrm{~g})$ was obtained from (9 a) $(0.20 \mathrm{~g}, 0.10 \mathrm{mmol})$ after a 2 h reflux in thf $\left(10 \mathrm{~cm}^{3}\right)$. The former was also isolated after chromatography, eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, removing solvent in vacuo, and crystallising the residue from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum (1:5).

Preparation of the Complex $\left[\mathrm{NiPt}_{3} \mathrm{~W}_{4}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\right.$ -$\left.\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{3}(\mu-\mathrm{CO})(\mathrm{CO})_{7}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4}\right]$.-The compound [$\mathrm{Ni}(\operatorname{cod})_{2}$] $(0.10 \mathrm{~g}, 0.36 \mathrm{mmol})$ was added to a thf $\left(15 \mathrm{~cm}^{3}\right)$ solution of (6 a) $(0.10 \mathrm{~g}, 0.05 \mathrm{mmol})$, and the mixture stirred (3 h) at room temperature under nitrogen. Solvent was removed in vacuo, and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(c a .10 \mathrm{~cm}^{3}\right)$ and chromatographed on alumina. Elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ removed a black-grey band. Removal of solvent in vacuo, and recrystallisation of the residue from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum (1:4) gave black crystals of $\left[\mathrm{NiPt}_{3} \mathrm{~W}_{4}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{3}-\right.$ $\left.(\mu-\mathrm{CO})(\mathrm{CO})_{7}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4}\right](10)(0.05 \mathrm{~g})$.

Crystal Structure Determinations.-The crystal and other experimental data for the compounds (7a), (8a), and (9b) are summarised in Table 7. All data were corrected for Lorentz, polarisation, and X-ray absorption effects. The asymmetric units of (7a) and (8a) each contained a molecule of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The structures were solved by Patterson and Fourier methods by which all the non-hydrogen atoms were located. In (7a) and (8a) the metal atoms and the chlorine atoms of the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ molecules were refined anisotropically, as were the oxygen atoms in (7a), all other non-hydrogen atoms being refined isotropically. In (9b) the $\mathrm{C}_{5} \mathrm{H}_{5}$ carbon atoms were refined isotropically, all other non-hydrogen atoms being refined with anisotropic thermal parameters. The $\mathrm{C}_{5} \mathrm{H}_{5}$ and aromatic rings in (7a) and (8a) were treated as rigid groups, the aromatic and methyl hydrogen atoms being included in calculated positions $\left[\mathrm{C}-\mathrm{H} 0.96 \AA, U_{\text {iso }} .(\mathrm{H}) c a .1 .2 \times U_{\text {iso }}\right.$. $($ parent carbon) $]$. In (9 b), the $\mathrm{C}_{5} \mathrm{H}_{5}$ ring was treated as a rigid group and the phenyl group hydrogen atoms were incorporated using the riding model. The structure of (8a) is disordered at the nickel and platinum sites such that 60% of these sites are occupied as shown in Figure 2, with the nickel and platinum sites interchanged (40%) in the remaining molecule. Common atomic positional and displace-
ment parameters were successfully refined for the metal sites, each of fixed, total unit occupancy. However, the high proportion of weak data for (8a), consequent upon the solid-state disorder, did not support a fully anisotropic model in the refinement. The deficiencies in the data are reflected in the high R value and residual electron density near the disordered metal atom sites, but these do not suggest any gross misinterpretations.

At convergence the electron-density difference maps showed maxima near the metal atoms of 2 [for (7a)], 4 [for (8a)], and 2 e \AA^{-3} [for (9b)]. All computations were carried out using an 'Eclipse' (Data General) computer with the SHELXTL system of programs. ${ }^{11}$ Scattering factors and corrections for anomalous dispersion were taken from ref. 12. Atomic coordinates for (7a), (8a), and (9b) are listed in Tables 8-10.

Acknowledgements

We thank the S.E.R.C. for a research studentship (to C. M. N.) and the U.S. Air Force Office of Scientific Research for support (Grant 86-0125). We also thank Dr. R. J. Goodfellow for help in interpretation of ${ }^{195} \mathrm{Pt}$ - $\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectra.

2 G. P. Elliott, J. A. K. Howard, T. Mise, I. Moore, C. M. Nunn, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1986, 2091.

3 R. Hoffmann, Angew. Chem., Int. Ed. Engl., 1982, 21, 711.
4 F. G. A. Stone, Angew. Chem., Int. Ed. Engl., 1984, 23, 89.
5 T. V. Ashworth, J. A. K. Howard, and F. G. A. Stone, J. Chem. Soc., Chem. Commun., 1979, 43; J. Chem. Soc., Dalton Trans., 1980, 1609.
6 G. P. Elliott, J. A. K. Howard, C. M. Nunn, and F. G. A. Stone, J. Chem. Soc., Chem. Commun., 1986, 431; G. P. Elliott, J. A. K. Howard, T. Mise, C. M. Nunn, and F. G. A. Stone, Angew. Chem., Int. Ed. Engl., 1986, 25, 190.
7 J. A. Abad, L. W. Bateman, J. C. Jeffery, K. A. Mead, H. Razay, F. G. A. Stone, and P. Woodward, J. Chem. Soc., Dalton Trans., 1983, 2075; G. A. Carriedo, J. C. Jeffery, and F. G. A. Stone, ibid., 1984, 1597; E. Delgado, A. T. Emo, J. C. Jeffery, N. D. Simmons, and F. G. A. Stone, ibid., 1985, 1323.

8 M. J. Chetcuti, K. Marsden, I. Moore, F. G. A. Stone, and P. Woodward, J. Chem. Soc., Dalton Trans., 1982, 1749.
9 R. J. Goodfellow and A. L. Davis, unpublished work.
10 J. L. Spencer, Inorg. Synth., 1979, 19, 213.
11 G. M. Sheldrick, SHELXTL programs for use with the Nicolet X-ray system, University of Cambridge, 1976; updated, Göttingen, 1982.
12 'International Tables for X-Ray Crystallography,' Kynoch Press, Birmingham, 1974, vol. 4.

References

1 Part 62, S. J. Davies, G. P. Elliott, J. A. K. Howard, C. M. Nunn, and F. G. A. Stone, preceding paper.

[^0]: * 2,3- μ-Carbonyl-2,4,4,6,6,8,8-heptacarbonyl-2,4,6,8-tetrakis(η-cyclopentadienyl) $-1,2-\mu$-(p-tolylmethylidyne)-3,4,5;5,6,7;1,7,8-tris ($\mu_{3}-p$-tolyl-methylidyne)-cyclo-1,3,5,7-tetraplatinum-2,4,6,8-tetratungsten(8 Pt - W) -dichloromethane (1/1) and -3,7-dinickel-1,5-diplatinum-2,4,6,8-tetratungsten(4 Ni-W)(4 Pt-W)-dichloromethane (1/1), and 2,2,4,4,6, 6,8,8-octacarbonyl-2,4,6,8-tetrakis(η-cyclopentadienyl)-1,2,3;-3,4,5;5,6,7;1,7,8-tetra(μ_{3}-phenylmethylidyne)-cyclo-1,5-dinickel-3,7-diplatinum- $2,4,6,8$-tetratungsten $(4 \mathrm{Ni}-W)\left(4 P_{t}-W\right)$, respectively.

[^1]: Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1987, Issue 1, pp. xvii-xx.
 Non-S.I. unit employed: atm $=101325$ Pa.

