# A Reversible Metal Framework Rearrangement in High-nuclearity Osmium– Platinum Cluster Compounds. X-Ray Crystal Structures of $[Os_6Pt(CO)_{17}(\mu_3 - NCMe)(C_8H_{12})]$ , $[Os_6Pt(CO)_{17}(\mu_4 - NCMe)(C_8H_{12})](C_8H_{12} = Cyclo-octa-1,5-diene)$ , and $[Os_6(CO)_{19}(\mu_3 - NCMe)]$ :† Compounds with Novel Metal–Acetonitrile Bonding Modes

## **Christiane Couture and David H. Farrar\***

Lash Miller Chemical Laboratories, 80 St. George Street, University of Toronto, Toronto, Canada M5S 1A1

The reaction of  $[Os_6(CO)_{17}(NCMe)]$  with  $[Pt(C_8H_{12})_2](C_8H_{12} = cyclo-octa-1,5-diene)$  results in the formation of  $[Os_6Pt(CO)_{17}(\mu_3-NCMe)(C_8H_{12})]$  (1). The geometry of (1) may be derived from that of  $[Os_6(CO)_{18}]$  by breaking one Os-Os edge and adding a terminal  $Pt(C_8H_{12})$  fragment to one of the Os atoms constituting the central tetrahedron. Upon standing in  $CH_2Cl_2$ , cluster (1) isomerizes to a different geometry,  $[Os_6Pt(CO)_{17}(\mu_4-NCMe)(C_8H_{12})]$  (2). The isomerization process is first order with  $\Delta H^{t} = 28.7$  kcal mol<sup>-1</sup> and  $\Delta S^{t} = 13$  cal K<sup>-1</sup> mol<sup>-1</sup>. The structure of isomer (2) may be derived from its precursor (1) by breaking one more Os-Os edge and by moving the  $Pt(C_8H_{12})$  unit into a bridging position. Substitution of the  $C_8H_{12}$  ligand in (1) or (2) by 1,2-bis(diphenyl-phosphino)ethane or  $P(OMe)_3$  results in clusters having a metallic framework analogous to (1). The extrusion of the Pt moiety results from reaction of CO with either isomer giving a product characterized as  $[Os_6(CO)_{19}(\mu_2-NCMe)]$  (3).

We have recently reported <sup>1</sup> that the activated complexes  $[Os_6-(CO)_{18-n}(NCMe)_n]$  (n = 1 or 2) react with  $[Pt(C_8H_{12})_2]$   $(C_8-H_{12} = cyclo-octa-1,5-diene)$  to give a mixture of compounds from which the mixed-metal clusters  $[Os_6Pt_2(CO)_{17}(C_8H_{12})_2]$  and  $[Os_6Pt_2(CO)_{16}(C_8H_{12})_2]$  can be isolated. X-Ray crystallographic studies showed that upon addition of the  $Pt(C_8H_{12})$  fragments the bicapped tetrahedral geometry of the parent cluster  $[Os_6(CO)_{18}]^2$  had rearranged to different metallic cores. The cluster  $[Os_6Pt_2(CO)_{17}(C_8H_{12})_2]$  has the six Os atoms rearranged in an octahedral geometry with two opposed faces Pt-capped, while  $[Os_6Pt_2(CO)_{16}(C_8H_{12})_2]$  has two edge-fused Os tetrahedra, one of which is Pt-bicapped. These two metallic frameworks were found reversibly to interconvert upon reaction with CO.

We now present the molecular structures of the heterometallic cluster  $[Os_6Pt(CO)_{17}(\mu_3-NCMe)(C_8H_{12})]$  (1) and its isomeric form  $[Os_6Pt(CO)_{17}(\mu_4-NCMe)(C_8H_{12})]$  (2). Isomer (1) was isolated from the reaction of  $[Os_6(CO)_{17}(NCMe)]$  with  $[Pt-(C_8H_{12})_2]$  where the acetonitrile ligand was not displaced by the incoming  $Pt(C_8H_{12})$  fragment. Upon standing in solution (1) isomerizes to a different metallic framework (2). The metallic framework rearrangement can be reversed by substitution of the  $C_8H_{12}$  ligand in the Pt moiety with phosphorus-donor ligands. Both isomeric forms react with CO, eliminating the Pt fragment, and yielding the homometallic cluster  $[Os_6(CO)_{19}(\mu_3-NCMe)]$  (3).

### **Results and Discussion**

The green complex  $[Os_6Pt(CO)_{17}(\mu_3-NCMe)(C_8H_{12})]$  (1) was isolated in 20% yield from the reaction of  $[Os_6(CO)_{17}-(NCMe)]$  with  $[Pt(C_8H_{12})_2]$  after separation of the reaction mixture by thin-layer chromatography (t.l.c.). The reactions are summarized in the Scheme and i.r. data are presented in Table 1. Dark green crystals of (1) suitable for X-ray analysis were obtained by recrystallization from  $CH_2Cl_2$ -cyclohexane at 0 °C.

The molecular structure of (1) is shown in Figure 1 and selected intramolecular distances and angles are listed in Table 2. The structure may be derived from that of  $[Os_6(CO)_{18}]^2$  by breaking one Os–Os edge [Os(2)–Os(5)], adding a terminal

Table 1. Infrared carbonyl stretching bands (cm<sup>-1</sup>)

| Complex                                          | $v(CO)(CH_2Cl_2)$                                                               |
|--------------------------------------------------|---------------------------------------------------------------------------------|
| (1) $[Os_6Pt(CO)_{17}(\mu_3-NCMe)(C_8H_{12})]$   | 2 089m, 2 061s,<br>2 036m, 2 020s,<br>2 000m (sh), 1 984w<br>(sh),<br>1 957w    |
| (1a) $[Os_6Pt(CO)_{17}(\mu_3-NCMe){P(OMe)_3}_2]$ | 2 086m, 2 057s,<br>2 030m, 2 015s,<br>2 000m (sh), 1 993w,<br>1 980w            |
| (1b) $[Os_6Pt(CO)_{17}(\mu_3-NCMe)(dppe)]$       | 2 084m, 2 055s,<br>2 032m (sh), 2 013s,<br>1 992w, 1 977w,<br>1 950w            |
| (2) $[Os_6Pt(CO)_{17}(\mu_4-NCMe)(C_8H_{12})]$   | 2 090m, 2 063vs,<br>2 051s, 2 019s (sh),<br>1 980w, 1 954w                      |
| (3) $[Os_6(CO)_{19}(\mu_3-NCMe)]$                | 2 128w, 2 092m,<br>2 068s, 2 051m,<br>2 029s, 2 014w (sh),<br>1 989w, 1 954w br |

<sup>†</sup> μ<sub>3</sub>-[Acetonitrile-*C*(Pt<sup>1</sup>)*N*(Os<sup>2,7</sup>)]-2,2,2,3,3,3,4,4,5,5,5,6,6,6,7,7-heptadecacarbonyl-1-(η<sup>4</sup>-cyclo-octa-1,5-diene)-*cyclo*-platinumhexaosmium(*Pt-Os*)(11 *Os-Os*), μ<sub>4</sub>-[acetonitrile-*C*(Pt<sup>1</sup>,Os<sup>2</sup>)*N*(Os<sup>2,3,7</sup>)]-2,2,2,3,3,3,4,4,5,5,5,6,6,6,7,7-heptadecacarbonyl-1-(η<sup>4</sup>-cyclo-octa-1,5diene)-*cyclo*-platinumhexaosmium(2 *Pt-Os*)(10 *Os-Os*), and μ<sub>3</sub>-[acetonitrile-*C*(Os<sup>1</sup>)*N*(Os<sup>2,3</sup>)]-1,1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6-nonadecacarbonyl-*cyclo*-hexaosmium(9 *Os-Os*) respectively.

Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1987, Issue 1, pp. xvii—xx. Non-S.I. unit employed: cal = 4.184 J.

Pt(C<sub>8</sub>H<sub>12</sub>) fragment to Os(2), and inserting a triply bridging acetonitrile ligand thus linking Os(2), Os(5), and Pt. There are 17 carbonyl ligands; Os(2) possesses two and each of the remaining Os atoms have three terminal carbonyl ligands. The mean Os–C and C–O distances are 1.86(2) and 1.17(3) Å, respectively, and the average Os–C–O angle is 174(3)° (the range of Os–C–O angles spans 3.5\sigma). These values are typical



Scheme. Summary of reactions; all were performed in CH<sub>2</sub>Cl<sub>2</sub>

for linear carbonyls. The Os–Os distances vary from 2.728(1) to 2.890(1) Å and the Os(2)–Pt separation is 2.783(1) Å. The geometry about the Pt atom is close to square planar. Typical Os–Pt distances observed in previous structures <sup>1</sup> are 2.6—2.8 Å for interactions in the plane defined by the metal and the C<sub>8</sub>H<sub>12</sub> ligand and 2.9—3.0 Å for the out-of-plane interaction. The out-of-plane distances tend to be longer as the higher energy Pt  $6p_z$  atomic orbital is used in this interaction.

The C<sub>8</sub>H<sub>12</sub> ligand is not symmetrically bound to the Pt atom, the Pt–C(olefinic) bond lengths vary from 2.20(2) to 2.43(3) Å, and the largest separations [Pt–C(5) and Pt–C(6)] are *trans* to the Pt–C(acetonitrile) bond. The bond parameters of the C<sub>8</sub>H<sub>12</sub> ligand fall within the ranges previously observed in Pt(C<sub>8</sub>H<sub>12</sub>) fragments.<sup>1,3</sup> The acetonitrile ligand symmetrically bridges the Os(2)–Os(5) edge through the N atom [Os(2)–N 2.06(2), Os(5)–N 2.11(2) Å] and this results in elongation of the edge Os(2)–Os(5) to 3.350(1) Å. The distance between the unsaturated carbon, C(9), of the MeCN group and the Pt atom is 2.01(3) Å, which is typical for a Pt–C  $\sigma$  bond.<sup>3</sup> The C(9) and N atoms can be considered as  $sp^2$  hybridized with a C=N bond [C–N 1.22(3) Å and N–C(9)–C(10) 124(4)°].

To our knowledge this is the first example of a triply bridging acetonitrile ligand in a metallic complex. A similar linkage is observed in the homometallic cluster  $[Os_6(CO)_{18}(CNC_6H_4-Me-p)_2]^4$  in which one of the isocyanide groups triply bridges three different metallic centres and acts as a four-electron donor ligand.

Upon standing in  $CH_2Cl_2$  for several days, the green complex (1) converts to a brown compound (2). Complex (2) also is observed in the reaction of  $[Os_6(CO)_{12}(NCMe)]$  with  $[Pt(C_8-$ 

Table 2. Selected internuclear distances (Å) and angles (°) for  $[Os_6Pt(CO)_{17}(\mu_3-NCMe)(C_8H_{12})]$  (1)\*

| Os(2)–Os(1)                          | 2.728(1)  | Os(3)-Os(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.804(1)               | C(33)–Os(3)                                     | 1.88(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Os(6)–Os(4)                                                          | 2.774(1)       |
|--------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------|
| Os(4)-Os(1)                          | 2.829(1)  | Os(6)-Os(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.806(1)               | C(41) - Os(4)                                   | 1.88(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C(42) - Os(4)                                                        | 1.87(2)        |
| C(11)-Os(1)                          | 1.84(3)   | C(12) - Os(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.86(2)                | C(43) - Os(4)                                   | 1.88(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Os(6) - Os(5)                                                        | 2.890(1)       |
| C(13) - Os(1)                        | 1.85(2)   | Os(3) - Os(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.828(1)               | C(51) - Os(5)                                   | 1.87(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C(52) - Os(5)                                                        | 1.85(2)        |
| Os(6) - Os(2)                        | 2.815(1)  | Pt-Os(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.783(1)               | C(53)–Os(5)                                     | 1.88(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N-Os(5)                                                              | 2.11(2)        |
| C(21) - Os(2)                        | 1.87(2)   | C(22) - Os(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.84(2)                | C(61)–Os(6)                                     | 1.88(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $C(62) - O_{S}(6)$                                                   | 1.85(2)        |
| N-Os(2)                              | 2.06(2)   | Os(4) - Os(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.853(1)               | C(63)-Os(6)                                     | 1.88(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C(9)-Pt                                                              | 2.01(3)        |
| $O_{s}(5) - O_{s}(3)$                | 2.856(1)  | $O_{s}(6) - O_{s}(3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.802(1)               | C(1)-Pt                                         | 2.20(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C(2)-Pt                                                              | 222(3)         |
| C(31) - Os(3)                        | 1.88(3)   | C(32) - Os(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.83(2)                | C(5)-Pt                                         | 2.43(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C(6)-Pt                                                              | 2.38(2)        |
|                                      |           | -()(-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (-)                    | C(9)–N                                          | 1.22(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                      |                |
| C(9)-Pt-Os(2)                        | 69 4(7)   | C(1)-Pt-Os(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 156 9(7)               | Or(6)_Or(3)_Or(4                                | 61.4(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C(7) $C(6)$ Pt                                                       | 08(2)          |
| C(1) - Pt - C(0)                     | 09.4(7)   | C(1) = T t = Os(2)<br>C(2) = Pt = Os(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 150.9(7)<br>160 $4(7)$ | C(33) - C(3) - C(3)                             | 01.4(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C(7) = C(0) = 11<br>$C(22) = O_{2}(2) = C(21)$                       | 90(2)<br>00(1) |
| C(2) - Pt - C(0)                     | 08(1)     | C(2) = T t = C(0)(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 35(1)                  | $O_{c}(3) - O_{s}(3) - O_{c}(4)$                | ) <b>5</b> 0 1(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C(32) = Os(3) = C(31)                                                | 99(1)          |
| C(2) = T = C(3)<br>C(5) = Pt = Os(2) | 111 6(7)  | C(2) - Pt - C(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 168 7(9)               | $O_{S}(5) = O_{S}(4) = O_{S}(1)$                | 59.1(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $O_{\rm c}(5) - O_{\rm c}(4) - O_{\rm c}(1)$                         | 60 1(1)        |
| C(5) = Pt = C(1)                     | 84(1)     | C(5) = Pt = C(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 78(1)                  | C(43) = Os(4) = C(4)                            | 0 95(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C(42) - Os(4) - Os(1)                                                | 02(1)          |
| C(6) = Pt = Os(2)                    | 103 4(6)  | C(6) - Pt - C(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 161 7(9)               | $O_{(4)} - O_{(4)} - O_{(4)}$                   | 53(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(42) = Os(4) = C(41)<br>C(43) = Os(4) = C(42)                       | 92(1)<br>91(1) |
| C(6) - Pt - C(1)                     | 82 3(8)   | C(6) - Pt - C(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 93(1)                  | C(53) - Os(5) - C(51)                           | 91(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(52) - C(51)                                                        | 91(1)<br>94(1) |
| C(6) = Pt = C(5)                     | 29 5(9)   | $O_{1}(3) - O_{2}(1) - O_{2}(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 73(1)                  | $N_{-}O_{5}(5)_{-}O_{5}(3)$                     | 84 Q(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $C(52) = O_{3}(5) - C(51)$                                           | 02(1)          |
| $O_{s}(4) = O_{s}(1) = O_{s}(2)$     | 1110(1)   | $O_{s}(4) - O_{s}(1) - O_{s}(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3) 609(1)              | $\Omega_{1}(2) = \Omega_{2}(6) = \Omega_{2}(1)$ | 581(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $N_{-}O_{s}(5)_{-}O_{s}(6)$                                          | 82 5(4)        |
| $O_{s}(4) = O_{s}(1) = O_{s}(2)$     | 611(1)    | $O_{S}(4) = O_{S}(1) = O_{S}(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5) 59.9(1)             | $O_{S}(2) = O_{S}(0) = O_{S}(1)$                | 60.5(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\Omega_{s}(3) = \Omega_{s}(6) = \Omega_{s}(1)$                      | 60.0(1)        |
| $O_{s}(6) - O_{s}(1) - O_{s}(4)$     | 590(1)    | C(12) - C(1) - C(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 92(1)                  | $O_{s}(4) - O_{s}(6) - O_{s}(2)$                | 1100(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $O_{s}(4) - O_{s}(6) - O_{s}(1)$                                     | 60.0(1)        |
| C(13) = Os(1) = C(11)                | 92(1)     | $C(12) = O_3(1) = C(12)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2) 91(1)               | $O_{S}(5) = O_{S}(6) = O_{S}(1)$                | 1149(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $O_{s}(4) - O_{s}(6) - O_{s}(3)$                                     | 61 5(1)        |
| $O_{s(1)} - O_{s(2)} - Pt$           | 1534(1)   | $O_{s}(3) - O_{s}(2) - Pt$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 142.2(1)               | $O_{3}(5) = O_{3}(6) = O_{3}(7)$                | 60.2(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $O_{3}(4) = O_{3}(0) = O_{3}(3)$<br>$O_{3}(5) = O_{3}(6) = O_{3}(2)$ | 71 9(1)        |
| $O_{S}(1) = O_{S}(2) = O_{S}(1)$     | 60.6(1)   | $O_{S}(6) - O_{S}(2) - Pt$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1361(1)                | $C(62) = O_{3}(6) = C(61)$                      | 91(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $O_{S}(5) - O_{S}(6) - O_{S}(4)$                                     | 108 2(1)       |
| $O_{s}(6) - O_{s}(2) - O_{s}(1)$     | 60.8(1)   | $O_{S}(6) - O_{S}(2) - O_{S}(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3) 595(1)              | $C(63) = O_{5}(6) = C(63)$                      | (1) $(1)$ $(2)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ $(3)$ | C(63) - Os(6) - C(61)                                                | 96(1)          |
| C(22) = Os(2) = C(21)                | 106(1)    | N = Os(2) = Pt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 65 4(5)                | $O_{S}(5) - N - O_{S}(2)$                       | 106.8(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C(9) - N - Os(2)                                                     | 115(2)         |
| $N_{-}O_{s}(2)_{-}O_{s}(1)$          | 140 9(5)  | N = Os(2) = Os(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 86 6(6)                | C(9) = N = Os(5)                                | 138(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N = C(9) = Pt                                                        | 110(2)         |
| N - Os(2) - Os(6)                    | 85 2(5)   | $O_{2} O_{3} O_{3$ | 1) $57.9(1)$           | C(10) - C(9) - Pt                               | 126(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C(10)-C(9)-N                                                         | 124(4)         |
| $O_{s}(4) = O_{s}(3) = O_{s}(1)$     | 60.0(1)   | $O_{S}(4) - O_{S}(3) - O_{S}(3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2) 107.4(1)            | C(2)-C(1)-Pt                                    | 74(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(8) - C(1) - Pt                                                     | 111(2)         |
| $O_{s}(5) - O_{s}(3) - O_{s}(1)$     | 116.1(1)  | $O_{S}(5) - O_{S}(3) - O_{S}(3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 72.2(1)                | C(8)-C(1)-C(2)                                  | 124(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C(1)-C(2)-Pt                                                         | 71(2)          |
| $O_{s(5)} - O_{s(3)} - O_{s(4)}$     | 107.0(1)  | $O_{s}(6) - O_{s}(3) - O_{s}(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1) 60.1(1)             | C(3)-C(2)-Pt                                    | 110(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C(4)-C(5)-Pt                                                         | 106(2)         |
| Os(6) - Os(3) - Os(2)                | ) 60.0(1) | Os(6)-Os(3)-Os(4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4) 58.8(1)             | C(6)-C(5)-Pt                                    | 73(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(5)-C(6)-Pt                                                         | 78(2)          |
|                                      |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                      |                |

\* Estimated standard deviations in the least significant figure(s) are given in parentheses in this and all subsequent tables.



Figure 1. The molecular structure of  $[Os_6Pt(CO)_{17}(\mu_3-NCMe)(C_8H_{12})]$  (1)



Figure 2. The molecular structure of  $[Os_6Pt(CO)_{17}(\mu_4-NCMe)-(C_8H_{12})]$  (2)

 $H_{12}_{2}$  but in very low yield. In order to establish the molecular structure of compound (2) a single-crystal X-ray analysis was undertaken and this revealed that (2) is a geometric isomer of cluster (1). Figure 2 shows the molecular structure of isomer (2) and Table 3 contains selected internuclear distances and angles.

The metal core geometry of (2) can be derived from that of its precursor (1) by breaking one Os-Os edge, Os(2)-Os(6), and

bringing the Pt( $C_8H_{12}$ ) unit into a bridging position between Os(1) and Os(2). The MeCN ligand triply bridges Os(1), Os(2), and Os(5) through the N atom and doubly bridges Os(2) and Pt through the C atom. The  $C_8H_{12}$  ligand is now symmetrically bound to the Pt atom, and the mean Pt–C distance is 2.27(2) Å. There are no significant differences in the bond parameters of the  $C_8H_{12}$  groups in the two isomers (1) and (2).

All of the carbonyl ligands are linear and terminal with the exception of C(12)–O(12), Os(1)–C(12)–O(12) 161(4)°, which semi-bridges the Os(1)–Os(4) edge. The Os(1)–C(12) and Os(4)–C(12) distances are 1.92(4) and 2.57(6) Å respectively. The mean Os–C and C–O distances are 1.85(5) and 1.18(6) Å, respectively, and the Os–C–O angles vary from 161(4) to 179(4)°. The Os–Os distances vary from 2.617(3) to 3.175(2) Å, the shortest separation is the edge bridged by the Pt(C<sub>8</sub>H<sub>12</sub>) fragment and the longest is between Os(2) and Os(3). The Os(1)–Pt and Os(2)–Pt internuclear distances are 2.696(2) and 2.903(2) Å respectively, Os(1) being closer to the plane defined by the metal and the C<sub>8</sub>H<sub>12</sub> olefinic groups. The values also are comparable to the Pt–Os separations reported for the 'butterfly' complex  $[Os_3Pt(\mu-H)_2(CO)_{11}{P(cyclo-C_6H_{11})_3}]^5$  in which the Pt atom is positioned at one of the 'wing tips'.

The co-ordination about the Pt atom in isomer (2) defines a distorted trigonal-bipyramidal geometry. A variation in the geometry also is evident about the MeCN ligand which changes from planar in cluster (1) to tetrahedral environments at the C and N atoms in complex (2). The C-N bond distance in isomer (2) is still typical of a C=N bond and is not statistically longer  $(1.4\sigma)$  than in (1) [C(9)-N 1.30(5) in (2) and 1.22(3) Å in (1)].

The question of the number of electrons that the acetonitrile ligand contributes to the metallic framework in each isomer arises naturally from electron counting. Isomer (2) has a more open skeleton than its parent cluster (1) and thus more electrons are required from the MeCN ligand. In (2) there is a total of five metal-acetonitrile interactions as opposed to three found in compound (1). The Pt atom in (1) can be considered as a 16electron square-planar centre while an 18-electron trigonalbipyramidal Pt centre is more consistent with the geometry of

| Os(1)–Pt         | 2.696(2)   | Os(2)–Pt             | 2.903(2)   | N-Os(2)           | 2.31(3)     | Os(4) - Os(3)         | 2.876(3) |
|------------------|------------|----------------------|------------|-------------------|-------------|-----------------------|----------|
| C(9)-Pt          | 2.10(3)    | C(1)-Pt              | 2.24(6)    | Os(5) - Os(3)     | 2.870(2)    | Os(6) - Os(3)         | 2.821(3) |
| C(2)-Pt          | 2.26(4)    | C(5)-Pt              | 2.27(4)    | C(31) - Os(3)     | 1.87(5)     | C(32) - Os(3)         | 1.88(5)  |
| C(6)-Pt          | 2.30(4)    | Os(2)-Os(1)          | 2.617(3)   | C(33) - Os(3)     | 1.87(4)     | Os(6)-Os(4)           | 2.754(2) |
| Os(3)-Os(1)      | 2.881(2)   | Os(4) - Os(1)        | 2.777(2)   | C(41) - Os(4)     | 1.87(6)     | C(42) - Os(4)         | 1.85(5)  |
| Os(6)-Os(1)      | 2.760(2)   | C(11) - Os(1)        | 1.85(4)    | C(43) - Os(4)     | 1.91(6)     | Os(6)–Os(5)           | 2.842(3) |
| C(12)-Os(1)      | 1.92(4)    | N-Os(1)              | 2.11(3)    | C(51) - Os(5)     | 1.87(5)     | C(52) - Os(5)         | 1.92(4)  |
| Pt-Os(2)         | 2.903(2)   | Os(3) - Os(2)        | 3.175(2)   | C(53) - Os(5)     | 1.88(5)     | N-Os(5)               | 2.10(3)  |
| C(21)-Os(2)      | 1.78(6)    | C(22)-Os(2)          | 1.83(5)    | C(61)-Os(6)       | 1.84(4)     | C(62)-Os(6)           | 1.84(4)  |
| C(23)-Os(2)      | 1.70(5)    | C(9)-Os(2)           | 2.39(4)    | C(63)-Os(6)       | 1.81(5)     |                       | ( )      |
|                  |            |                      |            | N-C(9)            | 1.30(5)     |                       |          |
| Os(2)-Pt-Os(1)   | 55.6(1)    | C(9)-Pt-Os(1)        | 72(1)      | Os(4)-Os(3)-Os(   | 2) 100.3(1) | Os(5) - Os(3) - Os(1) | 74.3(1)  |
| C(9)-Pt-Os(2)    | 54(1)      | C(1)-Pt-Os(1)        | 141(2)     | Os(5)-Os(3)-Os(   | 2) 75.9(1)  | Os(5)-Os(3)-Os(4)     | 114.7(1) |
| C(1)-Pt-Os(2)    | 146(2)     | C(1)-Pt-C(9)         | 97(2)      | Os(6)-Os(3)-Os(3) | 1) 57.9(1)  | Os(6) - Os(3) - Os(2) | 103.0(1) |
| C(2)-Pt-Os(1)    | 173.0(9)   | C(2)– $Pt$ – $Os(2)$ | 120.1(9)   | Os(6)-Os(3)-Os(4) | 4) 57.8(1)  | Os(6) - Os(3) - Os(5) | 59.9(1)  |
| C(2)-Pt- $C(9)$  | 100.5(1)   | C(2)-Pt-C(1)         | 39(2)      | C(32)-Os(3)-C(3   | 1) 88(2)    | C(33)-Os(3)-C(31)     | 97(2)    |
| C(5)-Pt-Os(1)    | 107(1)     | C(5)-Pt-Os(2)        | 106(1)     | C(33)-Os(3)-C(3)  | 2) 90(2)    | Os(3)-Os(4)-Os(1)     | 61.3(1)  |
| C(5)-Pt-C(9)     | 158(2)     | C(5)-Pt- $C(1)$      | 96(2)      | Os(6)Os(4)Os(     | 1) 59.9(1)  | Os(6)-Os(4)-Os(3)     | 60.1(1)  |
| C(5)-Pt- $C(2)$  | 79(2)      | C(6)-Pt-Os(1)        | 100(1)     | C(42)-Os(4)-C(4   | 1) 101(2)   | C(43)-Os(4)-C(41)     | 90(2)    |
| C(6)-Pt-Os(2)    | 130(1)     | C(6)-Pt-C(9)         | 167(2)     | C(43)-Os(4)-C(4)  | 2) 91(2)    | Os(6) - Os(5) - Os(3) | 59.2(1)  |
| C(6) - Pt - C(1) | 82(2)      | C(6)-Pt- $C(2)$      | 87(1)      | C(52)-Os(5)-C(5   | 1) 91(2)    | C(53)-Os(5)-C(51)     | 93(2)    |
| C(6) - Pt - C(5) | 34(2)      | Os(2)-Os(1)-Pt       | 66.2(1)    | C(53)-Os(5)-C(5   | 1) 93(2)    | N-Os(5)-Os(3)         | 78.8(8)  |
| Os(3)-Os(1)-Pt   | 134.9(1)   | Os(3)-Os(1)-Os(2)    | ) 70.3(1)  | N-Os(5)-Os(6)     | 81.7(9)     | Os(3) - Os(6) - Os(1) | 62.2(1)  |
| Os(4)-Os(1)-Pt   | 156.5(1)   | Os(4)-Os(1)-Os(2     | ) 119.1(1) | Os(4)-Os(6)-Os(   | 1) 60.5(1)  | Os(4)-Os(6)-Os(3)     | 62.1(1)  |
| Os(4)-Os(1)-Os(3 | ) 61.1(1)  | Os(6)-Os(1)-Pt       | 139.9(1)   | Os(5)-Os(6)-Os(   | 1) 76.6(1)  | Os(5)-Os(6)-Os(3)     | 60.9(1)  |
| Os(6)-Os(1)-Os(2 | ) 121.7(1) | Os(6)-Os(1)-Os(3)    | ) 60.0(1)  | Os(5)-Os(6)-Os(6) | 4) 119.6(1) | C(63)-Os(6)-C(61)     | 90(2)    |
| Os(6)-Os(1)-Os(4 | ) 59.6(1)  | C(12)-Os(1)-C(11     | ) 93(2)    | C(62)-Os(6)-C(6   | 1) 95(2)    | C(63)-Os(6)-C(62)     | 92(2)    |
| N-Os(1)-Pt       | 68.5(8)    | N-Os(1)-Os(2)        | 57.3(9)    | Os(2)C(9)Pt       | 80(1)       |                       |          |
| N-Os(1)-Os(3)    | 78.4(8)    | N-Os(1)-Os(4)        | 134.7(8)   | N-C(9)-Pt         | 105(2)      | N-C(9)-Os(2)          | 71(2)    |
| N-Os(1)-Os(6)    | 83.6(8)    | Os(1)-Os(2)-Pt       | 58.2(1)    | C(10)-C(9)-Pt     | 123(2)      | C(10)-C(9)-Os(2)      | 130(3)   |
| Os(3)-Os(2)-Pt   | 115.8(1)   | Os(3)-Os(2)-Os(1)    | ) 58.7(1)  | C(10)C(9)N        | 128(3)      | Os(2)-N-Os(1)         | 72.5(9)  |
| C(22)-Os(2)-C(21 | ) 84(2)    | C(23)-Os(2)-C(21     | ) 93(2)    | Os(5)-N-Os(1)     | 111(2)      | Os(5)-N-Os(2)         | 115(1)   |
| C(23)-Os(2)-C(22 | .) 89(2)   | C(9)-Os(2)-Pt        | 45.6(8)    | C(9)-N-Os(1)      | 113(2)      | C(9)-N-Os(2)          | 77(2)    |
| C(9)-Os(2)-Os(1) | 70.0(9)    | C(9)-Os(2)-Os(3)     | 101.6(9)   | C(9)-N-Os(5)      | 136(2)      | C(2)-C(1)-Pt          | 71(3)    |
| N-Os(2)-Pt       | 62.4(7)    | N-Os(2)-Os(1)        | 50.2(8)    | C(8)-C(1)-Pt      | 108(4)      | C(1)C(2)Pt            | 70(3)    |
| N-Os(2)-Os(3)    | 69.6(8)    | N-Os(2)-C(9)         | 32(1)      | C(3)-C(2)-Pt      | 112(3)      | C(4)-C(5)-Pt          | 108(3)   |
| Os(2)-Os(3)-Os(1 | ) 50.9(1)  | Os(4)-Os(3)-Os(1)    | ) 57.7(1)  | C(6)-C(5)-Pt      | 74(3)       | C(5)-C(6)-Pt          | 72(3)    |
|                  |            |                      |            | C(7)-C(6)-Pt      | 110(3)      |                       |          |

Table 3. Selected internuclear distances (Å) and angles (°) for  $[Os_6Pt(CO)_{17}(\mu_4-NCMe)(C_8H_{12})]$  (2)

isomer (2). This ability of platinum to act as a 16-electron or 18electron system was previously observed in the mixed-metal clusters  $[Os_3Pt(\mu-H)_2(CO)_{11}{P(cyclo-C_6H_{11})_3}]$  and  $[Os_3Pt (\mu-H)_4(CO)_{10}$  {P(cyclo-C<sub>6</sub>H<sub>11</sub>)<sub>3</sub>}].<sup>5</sup> The effective atomic number (e.a.n.) rule for each Os atom is obeyed if the acetonitrile ligand provides four electrons to the metal centres in compound (1) and six electrons in isomer (2). This effort to resolve the electron-counting problem in both isomers shows the relevance of molecular orbital studies since the clusters do not possess regular polyhedral frameworks and thus electron-counting procedures such as Wade's rules,<sup>6</sup> the condensed polyhedra approach of Mingos,<sup>7</sup> and the topological electron-counting rules of Teo<sup>8</sup> are not as useful in rationalizing the metallic cores. An alternative way of considering these mixed-metal clusters is to break the structures into  $Os_6(CO)_{17}$  and  $Pt(C_8H_{12})(MeCN)$  fragments. In cluster (1) the  $Pt(C_8H_{12})$ -(MeCN) fragment must provide four electrons to the  $Os_{6}$ - $(CO)_{17}$  unit and in isomer (2) the former fragment must provide a total of six electrons. This is in agreement with the suggestion that the addition of a pair of electrons to an Os cluster is concomitant with the breaking of a metal-metal bond.9

In both (1) and (2) a network of incipient bridging carbonyl ligands is observed between metal atoms with different formal electron counts.

A kinetic study of the isomerization of isomer (1) to isomer (2) was undertaken and this has shown that the process obeys a first-order rate law. From the linear dependence of  $\ln k/T$  on



Figure 3. Transformation from cluster  $[Os_6Pt(CO)_{17}(\mu_3-NCMe)(C_8H_{12})]$  (1) to isomeric form  $[Os_6Pt(CO)_{17}(\mu_4-NCMe)(C_8H_{12})]$  (2): ( $\bullet$ ) Pt atoms, ( $\bigcirc$ ) Os atoms; L = dppe, S = CH<sub>2</sub>Cl<sub>2</sub>

1/T the enthalpy and the entropy of activation,  $\Delta H^{\ddagger} = 28.7 \pm 0.1$  kcal mol<sup>-1</sup> and  $\Delta S^{\ddagger} = 13 \pm 4$  cal K<sup>-1</sup> mol<sup>-1</sup>, were determined in 1,2-dichloroethane. These values are typical of a slow process involving a substantial reorganization in the transition state.

We have examined the reactivity of both isomeric forms with ligands such as dppe ( $Ph_2PCH_2CH_2PPh_2$ ), P(OMe)<sub>3</sub>, and CO. Upon the exchange of the  $C_8H_{12}$  ligand of the Pt fragment in isomer (1) for dppe or P(OMe)<sub>3</sub>, the metallic framework is retained (based on spectroscopic data, see Table 1 for details) and no longer isomerizes to the geometry of (2). Substitution of

| Table 4. Intermetallic distances ( | (Å) and angles | (°) for [Os <sub>6</sub> (CO)] | $_{19}(\mu_3-NCMe)]$ (3) |
|------------------------------------|----------------|--------------------------------|--------------------------|
|------------------------------------|----------------|--------------------------------|--------------------------|

| Os(2)-Os(1)<br>Os(4)-Os(1)<br>Os(6)-Os(1) | 2.845(5)<br>2.848(5)<br>2.838(5) | Os(3)–Os(1)<br>Os(5)–Os(1)<br>Os(4)–Os(3) | 2.842(5)<br>3.458(5)<br>2.745(5) | Os(5)–Os(3)<br>Os(6)–Os(4) | 2.837(5)<br>2.783(5) | Os(6)–Os(3)<br>Os(6)–Os(5) | 2.742(5)<br>2.909(6) |
|-------------------------------------------|----------------------------------|-------------------------------------------|----------------------------------|----------------------------|----------------------|----------------------------|----------------------|
| Os(3)-Os(1)-Os(2)                         | 2) 144.0(2)                      | Os(4) - Os(1) - Os(1)                     | (2) 156.7(2)                     | Os(6) - Os(3) - Os(4)      | ·) 60.9(1)           | Os(6) - Os(3) - Os(5)      | 62.8(1)              |
| Os(4)-Os(1)-Os(3)                         | 57.7(1)                          | Os(5)-Os(1)-Os                            | (2) 102.8(2)                     | Os(3) - Os(4) - Os(1)      | ) 61.0(1)            | Os(6) - Os(4) - Os(1)      | 60.5(1)              |
| Os(5)-Os(1)-Os(3)                         | 52.4(1)                          | Os(5)-Os(1)-Os                            | (4) 99.7(1)                      | Os(6)-Os(4)-Os(3           | 59.5(1)              | Os(3) - Os(5) - Os(1)      | 52.5(1)              |
| Os(6) - Os(1) - Os(2)                     | 2) 133.6(2)                      | Os(6) - Os(1) - Os                        | (3) 57.7(1)                      | Os(6)-Os(5)-Os(1           | 52.1(1)              | Os(6)-Os(5)-Os(3)          | 57.0(1)              |
| Os(6) - Os(1) - Os(4)                     | 4) 58.6(1)                       | Os(6)-Os(1)-Os                            | (5) 54.0(1)                      | Os(3) - Os(6) - Os(1)      | 61.2(1)              | Os(4) - Os(6) - Os(1)      | 60.9(1)              |
| Os(4) - Os(3) - Os(1)                     | ú 63.1(1)                        | Os(5) - Os(3) - Os                        | (1) 75.0(1)                      | Os(4)-Os(6)-Os(3           | 59.6(1)              | Os(5) - Os(6) - Os(1)      | 74.1(1)              |
| Os(5)-Os(3)-Os(4                          | i) 120.1(2)                      | Os(6)-Os(3)-Os                            | (1) 61.0(1)                      | Os(5)-Os(6)-Os(3           | 60.2(1)              | Os(5)-Os(6)-Os(4)          | 116.4(2)             |
|                                           |                                  |                                           |                                  |                            |                      |                            |                      |



Figure 4. The molecular structure of  $[Os_6(CO)_{19}(\mu_3-NCMe)]$  (3)

the  $C_8H_{12}$  group for dppe in isomer (2) produces the same product and thus reversion to the geometry of (1) has occurred. The transformation from cluster geometry (1) to (2) is depicted in Figure 3. Elongation of bond  $\alpha$ , Os(2)–Os(6), with movement of the Pt atom into a bridging position, Os(1)–Os(2), brings the N atom into interaction with a third metallic centre, Os(1), and the unsaturated C atom to a second metallic centre, Os(2). A carbonyl ligand must migrate [probably from Os(1) to Os(2)] in order to maintain the correct co-ordination number for Os(1) and Os(2) in complex (2).

An orange-red product, characterized as  $[Os_6(CO)_{19}(\mu_3-NCMe)]$  (3) (m/e = 1.741) is isolated from the reaction of CO with solutions of isomers (1) or (2) but in differing yields and product distributions. With isomer (1), the reaction affords nearly 100% of (3), while isomer (2) gave a mixture of products from which compound (3) was isolated in 30% yield. The dppe derivative (1b) also was treated with CO, however only a trace amount of cluster (3) was observed after 48 h. Crystals of (3) were grown from a CH<sub>2</sub>Cl<sub>2</sub>-cyclohexane solution at 0 °C. Despite crystal twinning, an X-ray analysis was undertaken, and the molecular structure of compound (3) is illustrated in Figure 4. The poor quality of the data precludes a detailed discussion of the bond parameters although selected values are

given in Table 4. The X-ray analysis shows that the  $Pt(C_8H_{12})$  fragment has been eliminated and the acetonitrile ligand has remained co-ordinated to the Os core. The overall metal core geometry of (3) closely resembles the related *p*-tolyl isocyanide-osmium derivative  $[Os_6(CO)_{18}(CNC_6H_4Me-p)_2]$ .<sup>4</sup> The structure of (3) can be best derived from isomeric form (2) resulting from removal of the  $Pt(C_8H_{12})$  fragment and movement of Os(2) into the plane defined by Os(1), Os(4), and Os(5).

These results suggest that the electronic unsaturation of the 16-electron square-planar Pt in (1) is responsible for the isomerization process, and if the electron deficiency is partially relieved by a better  $\sigma$ -donor ligand the metallic framework of cluster (1) is stable. Formation and stabilization of an isomeric form has been observed in the cluster  $[Fe_4(A)(CO)_{13}]^{-,10}$  where A is a Lewis-acid ligand. It was shown that  $[Fe_4(A)(CO)_{13}]^{-}$  exhibits two isomeric forms in solution (Fe<sub>4</sub> butterfly and Fe<sub>4</sub> tetrahedron) and that the butterfly cluster is favoured when A is a strong acceptor.

#### Experimental

All reactions were performed under nitrogen using dry, freshly distilled solvents. Product separation was carried out in air, using t.l.c. (plates 0.25 mm thick, Merck Kieselgel 60);  $R_f$  values are not quoted as all the plates were continuously eluted until acceptable separation was achieved. Infrared spectra were recorded on a Nicolet 5DXFTIR spectrophotometer. Kinetic studies were performed using a Varian 2300 spectrophotometer. Microanalysis was performed by Alfred Bernhart Mikroanalytisches Laboratorium, West Germany. The fast-atom bombardment mass spectrum of (3) was recorded on a VG 70S-250 spectrometer.

The reaction of  $[Os_6(CO)_{17}(NCMe)]$  with  $[Pt(C_8H_{12})_2]$ and the product separation have been previously described.<sup>1</sup> On the t.l.c. plate the isomer (2) is the brown band that tails the mauve compound  $[Os_6Pt_2(CO)_{17}(C_8H_{12})_2]^1$  (sixth band from the top) and the green compound  $[Os_6Pt(CO)_{17}(\mu_3-NCMe)(C_8H_{12})]$  (1), obtained in 20% yield, is the major band of lowest  $R_f$  value. X-Ray quality crystals of the two isomers were obtained by recrystallization from  $CH_2Cl_2$ -cyclohexane at 0 °C for (1) and from thf at 0 °C for (2) [Found for (2): C, 16.7; H, 0.8; N, 0.6; O, 13.7. Calc. for  $C_{27}H_{15}NO_{17}Os_6Pt$ : C, 16.5; H, 0.8; N, 0.7; O, 13.9%].

Reactions of  $[Os_6Pt(CO)_{17}(\mu_3-NCMe)(C_8H_{12})]$  (1) with  $P(OMe)_3$  and 1,2-Bis(diphenylphosphino)ethane.—Addition of a  $CH_2Cl_2$  solution containing two equivalents of  $P(OMe)_3$  to  $[Os_6Pt(CO)_{17}(\mu_3-NCMe)(C_8H_{12})]$  (1) (5 mg) in  $CH_2Cl_2$  (10 cm<sup>3</sup>) at room temperature immediately gave two green compounds which were separated by t.l.c. using hexane- $CH_2Cl_2$  (3:1) as eluant. The first green band, obtained in 20% yield, was not fully characterized but its i.r. spectrum suggests

| Atom  | x          | у         | z         | Atom  | x         | у         | Z         |
|-------|------------|-----------|-----------|-------|-----------|-----------|-----------|
| Pt    | 3 593(1)   | 3 305(1)  | 1 180(1)  | O(42) | -2016(14) | 525(8)    | -390(12)  |
| Os(1) | 1 143(1)   | 1 282(1)  | 1 102(1)  | C(43) | -2128(18) | 1 819(11) | 1 063(15) |
| Os(2) | 2 036(1)   | 2 465(1)  | 1 243(1)  | O(43) | -2874(15) | 2 063(9)  | 1 077(13) |
| Os(3) | 644(1)     | 2 199(1)  | 2 217(1)  | C(51) | 633(19)   | 4 080(11) | 2 408(16) |
| Os(4) | -905(1)    | 1 378(1)  | 1 135(1)  | O(51) | 827(15)   | 4 464(9)  | 2 973(14) |
| Os(5) | 225(1)     | 3 465(1)  | 1 496(1)  | C(52) | -223(19)  | 4 072(12) | 601(17)   |
| Os(6) | -70(1)     | 2 346(1)  | 353(1)    | O(52) | - 566(16) | 4 409(10) | -14(14)   |
| C(11) | 1 374(20)  | 1 029(12) | 54(18)    | C(53) | -1078(19) | 3 412(10) | 1 657(16) |
| O(11) | 1 562(13)  | 838(8)    | -598(12)  | O(53) | -1860(14) | 3 388(7)  | 1 801(11) |
| C(12) | 607(17)    | 485(10)   | 1 263(15) | C(61) | -1359(18) | 2 745(10) | 4(15)     |
| O(12) | 440(15)    | - 59(9)   | 1 372(12) | O(61) | -2162(15) | 2 983(8)  | -251(12)  |
| C(13) | 2 441(21)  | 1 032(12) | 1 782(18) | C(62) | -448(18)  | 1 814(11) | -642(16)  |
| O(13) | 3 239(16)  | 818(9)    | 2 226(13) | O(62) | 676(13)   | 1 492(7)  | -1287(11) |
| C(21) | 3 181(19)  | 2 315(11) | 2 234(17) | C(63) | 544(17)   | 2 906(10) | -282(15)  |
| O(21) | 3 812(13)  | 2 159(7)  | 2 868(11) | O(63) | 773(13)   | 3 277(8)  | -761(12)  |
| C(22) | 2 469(15)  | 2 333(9)  | 253(13)   | N     | 1 715(14) | 3 423(8)  | 1 371(11) |
| O(22) | 2 701(16)  | 2 160(9)  | -374(14)  | C(9)  | 2 405(19) | 3 791(11) | 1 360(16) |
| C(31) | -449(20)   | 2 265(11) | 2 709(17) | C(10) | 2 334(20) | 4 513(12) | 1 428(17) |
| O(31) | -1056(17)  | 2 303(10) | 3 104(14) | C(1)  | 4 773(19) | 4 046(11) | 1 669(17) |
| C(32) | 1 524(16)  | 2 764(10) | 2 955(14) | C(2)  | 4 392(23) | 4 133(14) | 784(20)   |
| O(32) | 2 100(13)  | 3 114(8)  | 3 559(12) | C(3)  | 4 806(23) | 3 939(13) | 41(20)    |
| C(33) | 1 134(20)  | 1 477(11) | 2 940(17) | C(4)  | 5 364(22) | 3 290(13) | 222(19)   |
| O(33) | 1 516(14)  | 1 059(9)  | 3 456(13) | C(5)  | 4 885(23) | 2 772(14) | 652(20)   |
| C(41) | -1025(19)  | 789(11)   | 2 008(17) | C(6)  | 5 047(18) | 2 625(11) | 1 440(16) |
| O(41) | -1032(16)  | 428(9)    | 2 558(13) | C(7)  | 5 772(23) | 3 002(14) | 2 231(20) |
| C(42) | -1 586(19) | 827(11)   | 201(17)   | C(8)  | 5 857(21) | 3 727(12) | 2 145(18) |

| Table 5. Positi | onal parameters | $(\times 10^4)$ | ) for the non-H | atoms of [Os | 6Pt(CO)17 | $(\mu_3 - NCMe)$ | )(C <sub>8</sub> H <sub>1</sub> | <sub>2</sub> )] (1) |
|-----------------|-----------------|-----------------|-----------------|--------------|-----------|------------------|---------------------------------|---------------------|
|-----------------|-----------------|-----------------|-----------------|--------------|-----------|------------------|---------------------------------|---------------------|

Table 6. Positional parameters ( $\times 10^4$ ) for the non-H atoms of  $[Os_6Pt(CO)_{17}(\mu_4-NCMe)(C_8H_{12})]$  (2)

| Atom  | x         | У         | Ζ         | Atom  | x         | У         | Z         |
|-------|-----------|-----------|-----------|-------|-----------|-----------|-----------|
| Pt    | 6 402(2)  | 1 251(1)  | 3 470(1)  | O(42) | 5 914(31) | 4 680(17) | 4 583(17) |
| Os(1) | 4 770(2)  | 2 387(1)  | 3 508(1)  | C(43) | 3 594(52) | 3 314(31) | 5 000(31) |
| Os(2) | 6 323(2)  | 2 588(1)  | 2 617(1)  | O(43) | 3 678(39) | 3 177(23) | 5 580(24) |
| Os(3) | 3 920(2)  | 3 628(1)  | 2 598(1)  | C(51) | 1 556(49) | 2 895(28) | 1 373(27) |
| Os(4) | 3 747(2)  | 3 622(1)  | 4 071(1)  | O(51) | 708(35)   | 3 231(21) | 1 074(20) |
| Os(5) | 2 914(2)  | 2 324(1)  | 1 837(1)  | C(52) | 2 046(41) | 1 416(25) | 1 534(22) |
| Os(6) | 2 213(2)  | 2 696(1)  | 3 151(1)  | O(52) | 1 467(37) | 888(23)   | 1 352(21) |
| C(11) | 4 136(38) | 1 629(23) | 3 995(22) | C(53) | 3 719(41) | 2 314(27) | 1 048(24) |
| O(11) | 3 701(37) | 1 176(23) | 4 347(21) | O(53) | 4 199(31) | 2 296(20) | 584(18)   |
| C(12) | 5 754(41) | 2 799(24) | 4 350(24) | C(61) | 1 697(36) | 1 738(23) | 2 925(20) |
| O(12) | 6 511(28) | 2 882(16) | 4 799(15) | O(61) | 1 376(30) | 1 114(19) | 2 886(17) |
| C(21) | 6 450(51) | 3 062(30) | 1 820(30) | C(62) | 696(42)   | 3 127(24) | 2 760(24) |
| O(21) | 6 660(36) | 3 321(21) | 1 206(20) | O(62) | -280(36)  | 3 397(21) | 2 486(19) |
| C(22) | 7 738(49) | 2 088(29) | 2 463(27) | C(63) | 1 716(44) | 2 603(27) | 3 997(25) |
| O(22) | 8 619(33) | 1 740(19) | 2 414(17) | O(63) | 1 255(40) | 2 550(24) | 4 511(22) |
| C(23) | 7 289(52) | 3 209(30) | 3 123(29) | C(9)  | 5 361(33) | 1 387(20) | 2 445(18) |
| O(23) | 7 880(36) | 3 746(22) | 3 525(20) | N     | 4 500(29) | 1 880(18) | 2 506(16) |
| C(31) | 2 498(45) | 4 255(27) | 2 463(24) | C(10) | 5 369(35) | 846(21)   | 1 883(20) |
| O(31) | 1 682(39) | 4 720(23) | 2 415(21) | C(1)  | 6 457(54) | 4(32)     | 3 472(29) |
| C(32) | 4 055(44) | 3 805(26) | 1 654(26) | C(2)  | 7 679(33) | 295(19)   | 3 293(18) |
| O(32) | 4 040(28) | 4 004(17) | 1 071(16) | C(3)  | 8 891(39) | 337(22)   | 3 759(21) |
| C(33) | 5 131(40) | 4 365(24) | 2 885(22) | C(4)  | 9 217(42) | 1 074(26) | 4 173(24) |
| O(33) | 5 840(29) | 4 863(18) | 3 027(15) | C(5)  | 8 020(45) | 1 403(28) | 4 390(25) |
| C(41) | 2 412(57) | 4 296(33) | 4 062(31) | C(6)  | 7 087(40) | 1 080(24) | 4 660(22) |
| O(41) | 1 599(43) | 4 737(24) | 4 089(22) | C(7)  | 7 057(49) | 201(28)   | 4 854(26) |
| C(42) | 5 118(46) | 4 217(28) | 4 428(26) | C(8)  | 6 313(43) | -270(25)  | 4 205(24) |

another isomeric structure (see Table 1) and the second green band, obtained in 80% yield, is the P(OMe)<sub>3</sub> derivative of isomer (1) as suggested by its i.r. spectrum and is formulated as  $[Os_6Pt(CO)_{17}(\mu_3-NCMe){P(OMe)_3}_2]$  (1a). The same procedure applies for the reaction with 1,2-bis(diphenylphosphino)ethane (dppe) except that an excess (20 equivalents) of dppe was added and the reaction mixture was stirred for 24 h. Only one product was obtained which is the dppe derivative of cluster (1),  $[Os_6Pt(CO)_{17}(\mu_3-NCMe)(dppe)]$  (1b), as identified by its i.r. spectrum. Reaction of  $[Os_6Pt(CO)_{17}(\mu_4-NCMe)(C_8H_{12})]$  (2) with 1,2-Bis(diphenylphosphino)ethane.—The procedure was similar to that above. T.I.c. of the solution using hexane– $CH_2Cl_2$  (3:1) as eluant gave three bands. The first (brown) band was unreacted compound (2), below it was an uncharacterized green band (yield 20%), and the third (green) band was identified as  $[Os_6Pt(CO)_{17}(\mu_3-NCMe)(dppe)]$  (1b) (yield 60%) according to its i.r. spectrum.

Reactions of (1), (2), and (1b) with CO.—The same procedure

**Table 7.** Positional parameters ( $\times 10^4$ ) for the non-H atoms of  $[Os_6(CO)_{19}(\mu_3-NCMe)]$  (3)

| Atom  | x            | У           | Ζ          | Atom  | x         | у          | Z          |
|-------|--------------|-------------|------------|-------|-----------|------------|------------|
| Os(1) | 3 041(2)     | -379(3)     | 8 202(2)   | C(33) | 1 545(49) | 2 675(78)  | 6 529(47)  |
| Os(2) | 4 045(2)     | -2613(3)    | 8 532(2)   | O(33) | 1 000(41) | 3 417(64)  | 6 157(39)  |
| Os(3) | 2 398(2)     | 1 628(3)    | 7 081(2)   | C(41) | 3 078(1)  | 2 753(1)   | 9 180(1)   |
| Os(4) | 2 277(2)     | 1 801(4)    | 8 564(2)   | O(41) | 3 612(30) | 3 602(47)  | 9 532(29)  |
| Os(5) | 1 889(2)     | -615(4)     | 6 153(2)   | C(42) | 1 482(49) | 3 079(74)  | 8 241(45)  |
| Os(6) | 1 299(2)     | 77(4)       | 7 422(2)   | O(42) | 1 011(49) | 3 866(79)  | 8 093(45)  |
| C(11) | 3 883(52)    | 597(82)     | 7 921(49)  | C(43) | 2 140(63) | 1 325(98)  | 9 509(62)  |
| O(11) | 4 452(35)    | 1 028(56)   | 7 802(34)  | O(43) | 2 020(52) | 1 089(85)  | 10 063(52) |
| C(12) | 3 486(50)    | 92(74)      | 9 300(47)  | C(51) | 925(65)   | 367(98)    | 5 413(62)  |
| O(12) | 3 942(45)    | 338(65)     | 9 926(41)  | O(51) | 550(46)   | 1 060(73)  | 4 926(45)  |
| C(13) | 2 582(87)    | -1 307(142) | 8 595(82)  | C(52) | 1 309(67) | -2219(107) | 5 769(63)  |
| O(13) | 2 004(41)    | -1 868(62)  | 8 991(38)  | O(52) | 947(45)   | -3 059(69) | 5 526(43)  |
| C(21) | 4 390(53)    | -2 458(82)  | 9 498(51)  | C(53) | 2 456(67) | -698(101)  | 5 494(63)  |
| O(21) | 4 622(35)    | -2 364(53)  | 10 372(33) | O(53) | 2 862(41) | -817(64)   | 5 108(39)  |
| C(22) | 5 018(57)    | -1 576(87)  | 8 356(52)  | C(61) | 347(48)   | 811(72)    | 6 700(46)  |
| O(22) | 5 493(51)    | -1 133(80)  | 8 330(45)  | O(61) | -271(37)  | 1 241(56)  | 6 233(35)  |
| C(23) | 4 634(63)    | -4 152(98)  | 8 565(59)  | C(62) | 807(50)   | 48(78)     | 8 235(48)  |
| O(23) | 5 1 5 4 (43) | -4 933(66)  | 8 587(39)  | O(62) | 449(41)   | 42(61)     | 8 653(39)  |
| C(24) | 3 014(1)     | -3669(1)    | 8 444(1)   | C(63) | 785(50)   | -1 533(81) | 7 137(48)  |
| O(24) | 2 483(35)    | -4 276(54)  | 8 287(33)  | O(63) | 568(33)   | -2543(52)  | 6 992(32)  |
| C(31) | 2 847(69)    | 1 498(106)  | 6 249(67)  | Ν     | 2 850(41) | -1 435(62) | 7 132(38)  |
| O(31) | 3 247(37)    | 1 692(56)   | 5 855(35)  | C(1)  | 3 274(50) | -2364(80)  | 7 243(48)  |
| C(32) | 3 088(51)    | 3 012(80)   | 7 519(49)  | C(2)  | 3 453(74) | -3249(113) | 6 646(71)  |
| O(32) | 3 529(45)    | 3 903(71)   | 7 735(40)  |       | . ,       | . ,        |            |

was used for the three starting materials; a typical reaction was as follows. The cluster (2 mg) was dissolved in CH<sub>2</sub>Cl<sub>2</sub> (2 cm<sup>3</sup>) and the solution was then frozen. Carbon monoxide  $(50 \text{ cm}^3)$ was admitted into the evacuated reaction flask. The solid reaction mixture was allowed to warm up to ambient temperature and stirred for 30 min for (1) and (2), and for 48 h for (1b). For (1), t.l.c. of the solution using hexane- $CH_2Cl_2$  (3:1) as eluant only showed the presence of the orange-red product  $[Os_6(CO)_{19}(\mu_3-NCMe)]$  (3) (m/e = 1 741). For (2), t.l.c. showed six bands. The third band was identified as  $[Os_6(CO)_{19}(\mu_3 -$ NCMe)] (3) (yield 30%) and the fifth band was unreacted (2) (20%); the other bands are yet to be identified. For (1b), t.l.c. of the reaction mixture showed a trace amount of [Os<sub>6</sub>(CO)<sub>19</sub>- $(\mu_3$ -NCMe)] (3) and above this band a minute amount of  $[Os_6(CO)_{18}]$  was isolated, while the lowest green band was unreacted (1b).

Kinetic Study.—Solutions for kinetic study were prepared by dissolution of complex (1) in argon-purged, unpurified 1,2dichloroethane. The visible spectra showed absorptions at 378 ( $\epsilon = 19\ 800$ ) for isomer (1) and at 640 ( $\epsilon = 3\ 880$ ) and 545 nm ( $\epsilon = 6\ 200\ dm^3\ mol^{-1}\ cm^{-1}$ ) for isomer (2). The cuvettes were immersed in a thermostatted water-bath for kinetic runs. Temperatures were measured with an iron–constant thermocouple and maintained constant to within  $\pm 0.1\ ^{\circ}$ C. The isomerization process was studied at three temperatures by measuring the increasing absorbance at  $\lambda = 540\ nm$ , one run for each temperature. The rate constants were calculated using the program KORE,<sup>11</sup> and the activation parameters were estimated by a least-squares fitting.

Crystal Data for (1)-2CH<sub>2</sub>Cl<sub>2</sub>.  $-C_{29}H_{19}Cl_4N_4O_{17}Os_6Pt$ , M = 2131.57, monoclinic, a = 13.701(2), b = 20.808(2), c = 15.640(2) Å,  $\beta = 107.37(1)^{\circ}$ , U = 4255.7 Å<sup>3</sup> (by least-squares refinement on diffractometer angles for 25 automatically centred reflections,  $\lambda = 0.710$  69 Å), space group  $P2_1/n$ , Z = 4,  $D_e = 3.33$  g cm<sup>-3</sup>, F(000) = 3752; dark green long bricks, crystal dimensions  $0.067 \times 0.117 \times 0.292$  mm; crystal faces  $\{-010\}, \{011\}; \mu(Mo-K_{\pi}) = 215.0$  cm<sup>-1</sup>. Crystal Data for (2).— $C_{27}H_{15}NO_{17}Os_6Pt$ , M = 1.961.71, monoclinic, a = 10.709(3), b = 17.959(6), c = 19.266(6) Å,  $\beta = 100.14(2)^\circ$ , U = 3.647.3 Å<sup>3</sup> (by least-squares refinement on diffractometer angles for 24 automatically centred reflections,  $\lambda = 0.710.69$  Å), space group  $P2_1/n$ , Z = 4,  $D_c = 3.57$  g cm<sup>-3</sup>, F(000) = 3.416; dark brown blocks, crystal dimensions  $0.054 \times 0.075 \times 0.100$  mm; crystal faces {001}, {010}, {100}, {011}, {110};  $\mu$ (Mo- $K_{\alpha}$ ) = 247.8 cm<sup>-1</sup>.

Crystal Data for (3).— $C_{21}H_3NO_{19}Os_6$ ,  $M = 1\,714.2$ , monoclinic, a = 17.25(1), b = 10.57(2), c = 17.887(4) Å,  $\beta = 112.11(3)^{\circ}$ ,  $U = 3\,019.8$  Å<sup>3</sup> (by least-squares refinement on diffractometer angles for 25 automatically centred reflections,  $\lambda = 0.710\,69$  Å), space group  $P2_1/c$ , Z = 4,  $D_c = 3.73$  g cm<sup>-3</sup>,  $F(000) = 2\,976$ ; red blocks, crystal dimensions  $0.153 \times 0.109 \times 0.091$  mm; crystal faces {001}, {100}, {11-1};  $\mu$ (Mo- $K_{\pi}$ ) = 252.7 cm<sup>-1</sup>.

Data Collection and Processing.<sup>12</sup>—Enraf-Nonius CAD4 diffractometer,  $\theta/2\theta$  mode with scan width 0.75 + 0.35 tan $\theta$ , scan speed 1.0—11.0 ° min<sup>-1</sup>; graphite-monochromated Mo- $K_{\alpha}$  radiation. For (1), 5 119 unique reflections measured ( $2 \le 2\theta \le 45^\circ$ ; +h, +k,  $\pm l$ ). Gaussian absorption correction with a grid of  $10 \times 6 \times 10$  (transmission coefficients from 0.102 to 0.266), giving 3 680 with  $I > 3\sigma$  (I). Crystal decay, ca. 1.8%, corrected during processing. For (2), 4 135 unique reflections measured  $(2 \le 2\theta \le 45^\circ; +h, +k, \pm l)$ , azimuthal scan data for 4 reflections were used in the empirical absorption correction (max., min. correction factors 0.999, 0.669), giving 2 397 with  $I > 3\sigma(I)$ . No decay observed. For (3), 2 896 unique reflections measured  $(2 \le 2\theta \le 42^\circ; +h, +k, \pm l)$ . Gaussian absorption correction with a grid of  $12 \times 8 \times 6$  (transmission coefficients from 0.170 to 0.251), giving 1 908 with  $I > 3\sigma(I)$ . Crystal decay, ca. 0.7%, not corrected during processing. The three data sets were corrected for Lorentz and polarization factors.

Structure Analysis and Refinement.—Structures were solved by automatic direct methods using SHELX,<sup>13</sup> followed by difference-Fourier syntheses. Structure (1) was first refined by blocked-cascade least-squares methods with Os and Pt atoms assigned anisotropic thermal parameters and the C, O, and N atoms individual isotropic thermal parameters. The structure solution then revealed the existence of two independent solvated CH<sub>2</sub>Cl<sub>2</sub> molecules one of which was disordered and shown to occupy two sites. A statistical distribution between the two sites of the disordered CH<sub>2</sub>Cl<sub>2</sub> molecule was considered, the occupancy factors were then correlated and refined satisfactorily by least-squares procedures to final values of 0.45 and 0.55. Consequently, the Cl atoms of both solvated CH<sub>2</sub>Cl<sub>2</sub> molecules were refined for two cycles with anisotropic thermal parameters, then all of their parameters were fixed to allow convergence of the structure solution. Some of the H atoms were located in a difference-Fourier synthesis and they were included in subsequent calculations while the rest of the H atoms were calculated with idealized positional co-ordinates (either  $sp^2$  or  $sp^3$  geometry and C-H bond distance of 0.95 Å); all of the H atoms were not refined. The refinement converged at R = $\Sigma(|F_0| - |F_c|)/\Sigma|F_0| = 0.039$  and  $R' = [\Sigma w(|F_0| - |F_c|)^2/\Sigma wF_0^2]^{\frac{1}{2}}$ = 0.042, the fixed weighting  $w = [\sigma^2(F) + p(F^2)]^{-1}$ , where p = 0.003 (3 680 observations and 245 variables). In the final cycle no shift exceeded 0.035 of its standard deviation. A total difference-Fourier synthesis calculated from the final structure factors contained no features of chemical significance with the highest peak, of electron density 1.1 e Å<sup>-3</sup>, at fractional co-ordinates (0.111, 0.310, -0.095), associated with O(63).

Structure (2) was refined by blocked-cascade least-squares methods with Os and Pt atoms assigned anisotropic thermal parameters and the C, O, and N atoms individual isotropic thermal parameters. Hydrogen atoms were not located. The refinement converged at R = 0.054 and R' = 0.052 with weighting  $w = [\sigma^2(F) + p(F^2)]^{-1}$ , where p = 0.001 (2 397 observations and 245 variables). In the final cycle no shift exceeded 0.003 of its standard deviation. A total difference-Fourier synthesis calculated from the final structure factors contained no features of chemical significance with the highest peak, of electron density 2.5 e Å<sup>-3</sup>, at fractional co-ordinates (0.737, 0.125, 0.381), associated with Pt.

We were unable to refine structure (3) to convergence. The anisotropic thermal parameters  $U_{11}$  of the six Os atoms collapsed when refined. This is consistent with the crystal twinning along the *a* axis. After fixing  $U_{11}$  of the Os atoms to sensible values (0.01 Å<sup>2</sup>), the non-H atoms were located in a difference-Fourier synthesis; however, the atoms of the cyano group of MeCN required their individual isotropic thermal parameters to be fixed to ideal values. Two C atoms, C(24) and C(41), were located but not refined. The least-squares calculations were stopped after the residuals reached the following values: R = 0.099 and R' = 0.101 with p = 0.01 (1908 observations and 196 variables).

Complex neutral-atom scattering factors  $^{14}$  were employed in all structure solutions and refinements. All computations were performed on a Gould S.E.L. computer at the University of Toronto. The molecular plots were drawn using the program ORTEP.<sup>15</sup> Final positional parameters for the non-H atoms for complexes (1), (2), and (3) are given in Table 5, 6, and 7.

# Acknowledgements

We thank the Natural Sciences and Engineering Research Council of Canada for operating grants, major equipment grants, and for a scholarship (to C. C.). We also thank Professor A. J. Poë and Ms. N. Brodie for their assistance with the kinetic experiment.

#### References

- 1 C. Couture and D. H. Farrar, J. Chem. Soc., Dalton Trans., 1986, 1395.
- 2 R. Mason, K. M. Thomas, and D. M. P. Mingos, J. Am. Chem. Soc., 1973, 95, 3802.
- M. Green, J. A. K. Howard, A. Laguna, L. E. Smart, J. L. Spencer, and F. G. A. Stone, *J. Chem. Soc., Dalton Trans.*, 1977, 278; G. K. Barker, M. Green, J. A. K. Howard, J. L. Spencer, and F. G. A. Stone, *ibid.*, 1978, 1839; A. B. Goel, S. Goel, and D. Van Der Veer, *Inorg. Chim. Acta*, 1982, 65, L205; J. A. K. Howard, *Acta Crystallogr., Sect. B*, 1982, 38, 2896.
- 4 A. V. Rivera and B. M. Sheldrick, Acta Crystallogr., Sect. B, 1978, 34, 1985.
- 5 L. J. Farrugia, M. Green, D. R. Hankey, M. Murray, A. G. Orpen, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1985, 177.
- 6 K. Wade, Chem. Commun., 1971, 792.
- 7 D. M. P. Mingos, Acc. Chem. Res., 1984, 17, 311.
- 8 B. K. Teo, Inorg. Chem., 1984, 24, 1251.
- 9 D. H. Farrar, B. F. G. Johnson, J. Lewis, P. R. Raithby, and M. J. Rosales, J. Chem. Soc., Dalton Trans., 1982, 2051.
- 10 C. P. Horwitz and D. F. Shriver, J. Am. Chem. Soc., 1985, 107, 8147.
- 11 C. G. Swain, M. S. Swain, and L. F. Berg, J. Chem. Inf. Comput. Sci., 1980, 20, 47.
- 12 SDP-Plus, 1981, B. A. Frenz and Associates Inc., College Station, Texas and Enraf-Nonius, Delft, Holland.
- 13 G. M. Sheldrick, SHELX 76, Crystal Structure Solving Package, University of Cambridge, 1976.
- 14 'International Tables for X-Ray Crystallography,' Kynoch Press, Birmingham, 1969, vol. 4.
- 15 C. K. Johnson, ORTEP, Report ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1965.

Received 29th September 1986; Paper 6/1929