Attempted Synthesis of Osmium(VI) and Iridium(VI) Thiofluorides; the Preparation of $OsF_5 \cdot SF_4$ and $IrF_5 \cdot SF_4$

John H. Holloway* and John Rook

Department of Chemistry, The University, Leicester LE1 7RH

The interaction of OsF₆ or IrF₆ with ZnS or B₂S₃ at elevated temperature yields the adducts OsF₅·SF₄ and IrF₅·SF₄ rather than the transition-metal thiofluorides. Infrared and X-ray powder diffraction studies indicate that the adducts have contributions to the bonding from the ionic formulations [SF₃]⁺[OsF₆]⁻ and [SF₃]⁺[IrF₆]⁻ and there is also ¹⁹F n.m.r. evidence for the latter in solution in anhydrous HF.

Whereas oxofluorides of the transition metals, which span Groups 3A-8, have been well understood for many years¹ successful preparation, isolation, and characterisation of thioand seleno-fluorides has taken place only recently.²⁻¹⁷ So far, known species occur only in Groups 3A, 6A, and 7A. In the present study attempts to obtain osmium and iridium thiofluorides by methods similar to those used for tungsten, molybdenum, and rhenium species have resulted in the preparation of the previously identified and isostructural adducts $OsF_5 \cdot SF_4$.¹⁸ and $IrF_5 \cdot SF_4$.^{18,19} These have been fully characterized and have contributions to their bonding from the ionic forms $[SF_3]^+$ [OsF_6]⁻ and $[SF_3]^+$ [IrF_6]⁻.

Results and Discussion

Attempts to prepare the compounds MF_4S (M = Os or Ir) by the direct reaction of the appropriate hexafluoride with ZnS or B_2S_3 at elevated temperature resulted in the formation of the adducts MF_{s} - SF_4 (M = Os or Ir), sulphur fluorides, the metal (Os or Ir), and, in the experiments where B_2S_3 was used, BF_3 (see Table 1). The main solid products of the reactions were characterized as $[SF_3]^+[OsF_6]^-$ and $[SF_3]^+[IrF_6]^-$ by comparing their i.r. spectra (Table 2) with those of the solid products of the reactions of the appropriate hexafluorides with SF₄, which are known to produce these adducts, and X-ray powder diffraction patterns (Table 3) with data published earlier.¹⁸ It seems likely that substantial interaction between the ions occurs through fluorine bridging as in the case of $[SeF_3]^+$ - $[Nb_2F_{11}]^{-20}$

These same compounds also appear to exist in solution as ionic species since a broad singlet characteristic of the $[SF_3]^+$ ion is observed in the ¹⁹F n.m.r. spectrum of solutions of the iridium adduct in anhydrous HF (Table 4).

Efforts to prepare the osmium and iridium thiofluorides by the reactions of the appropriate hexafluorides with Sb_2S_3 in anhydrous hydrogen fluoride at room temperature gave only lower oxidation-state fluorides, SbF_3 and unreacted Sb_2S_3 (see Table 5).

Table 1. Thermal reactions

Reactions	Temp./°C	Duration/h	Products		
			Volatiles ^a	Solids*	
$IrF_6 + ZnS$	300	7-11	SF4, SF6, S2F10	IrF₅•SF₄, Ir	
$Os\tilde{F}_{6} + ZnS$	300	7–11	SF_4 , SF_6 , S_2F_{10}	OsF ₅ -SF ₄ , Os	
$3 \operatorname{Ir} \check{F}_{6} + B_{2}S_{3}$	210	4-6	SF ₄ , SF ₆ , S ₂ F ₁₀ , BF ₃	IrF5•SF4, Ir	
$3 \operatorname{OsF}_6 + \operatorname{B}_2 \operatorname{S}_3$	210	4-6	SF ₄ , SF ₆ , S ₂ F ₁₀ , BF ₃	OsF ₅ -SF ₄ , Os	

^a Identified by their i.r. spectra in comparison with those in R. E. Dodd, L. A. Woodward, and H. L. Roberts, *Trans. Faraday Soc.*, 1952, **52**, 1052 and K. O. Christe, W. Sawodny, and P. Pulay, *J. Mol. Struct.*, 1974, **21**, 158, for SF₄; J. Gaunt, *Trans. Faraday Soc.*, 1953, **49**, 1122, for SF₆; D. Eclelsen, *J. Am. Chem. Soc.*, 1952, **74**, 262 and J. K. Wilmhurst and H. J. Bernstein, *Can. J. Chem.*, 1957, **35**, 191, for S₂F₁₀. ^b Characterised by i.r. spectra and X-ray powder diffraction patterns.

Table 2. Comparison of i.r. spectra of solid products of reactions of $MF_6(M = Os \text{ or } Ir)$ and ZnS or B_2S_3 with those of MF_5 -SF₄ resulting from reactions of MF_6 with SF_4 (frequencies are in cm⁻¹)^{*a*}

From		From		Assignments
$OsF_6 + ZnS \text{ or } B_2S_3$	OsF ₅ .SF ₄	$IrF_6 + ZnS \text{ or } B_2S_3$	IrF₅•SF₄	[SF ₃] ⁺ *[MF ₆] ⁻
922ms	925s,br 705w,m	920s,br	920s,br	v ₁ , v ₃
640s 590w(sh)	~ 620vs,br	635ms,br	633s,br	\v_3
525ms	528s 400s	522s 400m	522s 400ms	V ₂ V4

^a w = Weak, m = medium, s = strong, v = very, br = broad. ^b Assigned by comparison with spectra published for SF_4 - BF_3 and SF_4 - MF_5 (M = P, As, or Sb) in M. Azeem, M. Brownstein, and R. J. Gillespie, Can. J. Chem., 1969, 47, 4159.

This work			Ref. 18		
OsF₅•SF₄	IrF5.SF4	Relative intensity *	OsF₅•SF₄	IrF ₅ •SF ₄	Relative
5.584	5.582	6	5.564	5.581	8 -
3.932	3.930	10	3.934	3.934	10
3.211	3.209	3	3.204	3.202	6
2.786	2.786	3	2.781	2.776	5
2.484	2.482	4	2.486	2.482	6
2.273	2.271	6	2.273	2.267	7
1.974	1.972	3	1.970	1.966	5
1.849	1.850	4	1.856	1.855	7
1.758	1.759	4	1.763	1.758	5
1.682	1.680	1	1.679	1.678	4

Table 3. Comparison of d spacings for OsF₅·SF₄ and IrF₅·SF₄

* Visual estimations.

Table 4. Fluorine-19 chemical shifts (p.p.m. from CFCl₃)^a

		Chemical shift	
Solute	$T/^{\circ}C$	[SF ₃]+	HF
BF₃·SF₄	- 50 ^b	26.7	-194.2 ^b
2AsF ₅ ·SF ₄	-60 ^b	26.8	-198 ^b
SbF ₅ •SF ₄	-60 ^b	27.1	-178.3 ^b
IrF ₅ ·SF ₄	-29°	31.0°	-196°

^a A positive chemical shift denotes a positive frequency, and vice versa, with respect to the designated reference substance. ^b See reference cited in footnote b of Table 2. ^c This work.

Table 5. Reactions in anhydrous HF at room temperature

Reactants	Products
$3 \operatorname{IrF}_{6} + \operatorname{Sb}_{2}\operatorname{S}_{3}$	SbF_{3} , ^a involatile brown powder which contains
$3 \operatorname{OsF}_6 + \operatorname{Sb}_2 \operatorname{S}_3$	SbF_3 , OsF_5 , and unreacted Sb_2S_3 ^{<i>a</i>}
9 Determined by	Know newdor whotography b Determined by Know

^a Determined by X-ray powder photography. ^b Determined by X-ray fluorescence spectroscopy.

Conclusions

The transition-metal hexafluorides increase in oxidant strength with increasing atomic number across any period of the Periodic Table.²¹ The trend for the third-row transition series is: $WF_6 < ReF_6 < OsF_6 < IrF_6 < PtF_6$.

The greater electron affinity of PtF₆ compared with that of WF₆ correlates with the greater charge on the platinum and with the poor shielding of this charge from the ligands by the formally non-bonded t_{2g} electrons. Since the non-bonding t_{2g} valence-electron configurations are: WF₆ = 0, ReF₆ = 1, OsF₆ = 2, IrF₆ = 3, PtF₆ = 4, a regular increase in oxidizing power may be anticipated. Thus, while WF₆ and ReF₆ can substitute sulphur to give WF₄S and ReF₄S respectively it is not surprising that OsF₆ readily oxidatively fluorinates B₂S₃ or ZnS to give SF₄ and that the reduced osmium species, OsF₅, then combines with this to give OsF₅·SF₄ and that the analogous IrF₅·SF₄ adduct is formed even more readily.

Experimental

Reagents.—The hexafluorides of osmium and iridium were prepared by direct high-pressure fluorination of the respective hydrogenated metal (Johnson Matthey, Spec. Pure grade) at ca. 300 °C. The resulting hexafluorides were purified by trap-totrap distillation and final purities monitored by gas-phase i.r. spectroscopy and mass spectrometry. The reagents ZnS (Johnson Matthey, Puratronic), Sb_2S_3 (B.D.H., Technical Grade), and B_2S_3 (Ventron GmbH), were degassed prior to use. Anhydrous HF (B.D.H., 99.8%) was used directly from the cylinder.

Reactions of MF_6 (M = Os or Ir) with ZnS or B_2S_3 .— Thermal reactions were carried out using between 0.8 and 3.0 mmol of the hexafluoride (5% excess) in pre-fluorinated stainless-steel reactors fitted with stainless-steel valves (Autoclave Engineers, 30VM Series). Appropriate amounts of ZnS or B_2S_3 were loaded into the reactors in a nitrogen-filled dry-box (Vacuum Atmospheres, Dri Lab.) and, after evacuation, the hexafluoride was introduced at liquid-nitrogen temperature via a vacuum manifold. Reactions involving anhydrous HF were carried out in pre-fluorinated FEP-Teflon (tetrafluoroethyleneperfluoropropylene co-polymer) reactors fitted with Teflon valves (Chemcon type, Production Techniques Ltd.), the reactants and anhydrous HF solvent being introduced as outlined above.

Reactions of MF_6 (M = Os or Ir) with SF_4 .—Reactions were carried out in FEP-Teflon tubes fitted with Teflon needle valves. An approximately four-fold excess of SF_4 was distilled onto the appropriate hexafluoride (1—3 mmol) at liquid-nitrogen temperature and the mixture was warmed to $-78 \,^{\circ}C$ (solid CO₂ acetone bath). In the IrF₆ case reaction was immediate and vigorous. The reaction involving OsF₆ did not take place until further warming to $-30 \,^{\circ}C$ (ice-salt bath) had occurred and the reaction was complete only after 48 h. However, reaction was immediate at room temperature. In both the reactions of OsF₆ and IrF₆ fine crystalline products (Os, lilac; Ir, pale yellow) were obtained after removal of excess of SF₄.

Monitoring of the reactions by mass balance showed that 1 mol of hexafluoride reacts with 1 mol of SF_4 in each case. This result was confirmed by elemental analysis [Found: F, 42.1; Os, 47.9; S, 7.7. Calc. for OsF_5 - SF_4 : F, 43.5; Os, 48.4; S, 8.1% Found: F, 43.6; Ir, 47.9; S, 7.6. Calc. for IrF_5 - SF_4 : F, 43.3; Ir, 48.6; S, 8.1%].

Characterisation.—I.r. spectra were recorded on a Perkin-Elmer 580 spectrophotometer. Solid samples were analysed as finely ground powders between KBr discs. Volatile samples were examined in a 10-cm path-length copper gas cell fitted with AgCl windows. Mass spectra were recorded on a V.G. Micromass 16B instrument, the samples being introduced directly into the ionization chamber. N.m.r. spectra were run in 5-mm outside diameter Kel-F (chlorotrifluoroethylene) tubes on a JEOL JNM-PS-100 instrument operating at 94.08 MHz. X-Ray powder patterns were recorded photographically on a Philips camera (diameter 11.46 cm) using $\text{Cu-}K_{\alpha}$ filtered radiation. Elemental analysis was performed by a commercial analyst.

Acknowledgements

We thank the S.E.R.C. for a studentship (to J. R.), Jane Spencer for assistance with the SF_4 reactions, and Johnson-Matthey for the loan of platinum metals.

References

- 1 J. H. Holloway and D. Laycock, Adv. Inorg. Chem. Radiochem., 1984, 28, 73.
- 2 D. L. Hildenbrand, J. Chem. Phys., 1975, 62, 3074.
- 3 Y. A. Buslaev, Y. V. Kokunov, and Y. D. Chubar, *Dokl. Akad. Nauk* SSSR, 1973, 213, 912.
- 4 Y. V. Kokunov, Y. D. Chubar, V. A. Bochkareva, and Y. A. Buslaev, Koord. Khim., 1975, 1, 1100.
- 5 M. J. Atherton and J. H. Holloway, J. Chem. Soc., Chem. Commun., 1977, 424.
- 6 V. D. Butskii and V. S. Pervov, Russ. J. Inorg. Chem., 1977, 22, 6.
- 7 V. S. Pervov, V. D. Butskii, and V. M. Novotortsev, Fifth General Symposium on Inorganic Fluorine Chemistry, Dnepropetrovsk, 27– 30th June, 1978; *Chem. Abstr.*, 1978, **89**, 208231 W.

- 8 V. S. Pervov, V. D. Butskii, and L. G. Podzolko, Russ. J. Inorg. Chem., 1978, 23, 819.
- 9 M. J. Atherton and J. H. Holloway, *Inorg. Nucl. Chem. Lett.*, 1978, 14, 121.
- 10 Y. V. Kokunov, Y. D. Chubar, and Y. A. Buslaev, Dokl. Akad. Nauk SSSR, 1978, 239, 1361.
- 11 J. H. Holloway and D. C. Puddick, Inorg. Nucl. Chem. Lett., 1979, 15, 85.
- 12 I. P. Malkerova, A. S. Alikhanyan, V. S. Pervov, V. D. Butskii, and V. I. Gorgoraki, Russ. J. Inorg. Chem., 1980, 25, 1145.
- 13 I. P. Malkherova, A. S. Alikhanyan, and V. I. Gorgoraki, Russ. J. Inorg. Chem., 1980, 25, 1742.
- 14 I. P. Malkherova, A. S. Alikhanyan, V. D. Butskii, V. S. Pervov, and V. I. Gorgoraki, Russ. J. Inorg. Chem., 1981, 26, 1055.
- 15 J. H. Holloway, V. Kaučič, and D. R. Russell, J. Chem. Soc., Chem. Commun., 1983, 1079.
- 16 P. J. Jones, W. Levason, J. S. Ogden, J. W. Turff, E. M. Page, and D. A. Rice, J. Chem. Soc., Dalton Trans., 1983, 2625.
- 17 D. A. Rice, K. Hagen, L. Hedberg, K. Hedberg, G. M. Staunton, and J. H. Holloway, *Inorg. Chem.*, 1984, 23, 1826.
- 18 N. K. Jha, Ph.D. Thesis, University of British Columbia, 1965.
- 19 P. L. Robinson and G. J. Westland, J. Chem. Soc., 1956, 4481.
- 20 A. J. Edwards and G. R. Jones, J. Chem. Soc. A, 1970, 1491.
- 21 N. Bartlett, S. P. Beaton, and N. K. Jha, Chem. Commun., 1966, 168.

Received 13th November 1986; Paper 6/2188