Mixed-metal Phosphinito Complexes of Platinum(\parallel) and Palladium(\parallel) with Lanthanide and Actinide Elements. The Single-crystal X-Ray Structure of $[UO_2(OH_2){(OPPh_2)_2}Pd(S_2CNEt_2)}_2]^{\dagger}$

Paul M. Veitch and James R. Allan*

Department of Applied Chemical Sciences, Napier College, Edinburgh EH10 5DT Alexander J. Blake and Martin Schröder * Department of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ

The synthesis of the phosphinito-bridged heteronuclear complexes $[M'\{(OPPh_2)_2M(S_2CNR_2)\}_n]$ $(M' = Ce^{11}, Eu^{111}, Sm^{111}, or Nd^{111}, n = 3; M' = Th^{1V}, n = 4)$ and $[UO_2(OH_2)\{(OPPh_2)_2M(S_2CNR_2)\}_2]$ by reaction of $[M(S_2CNR_2)\{(Ph_2PO)_2H\}]$ $(M = Pd or Pt, R = Et or Pr^1)$ with lanthanide and actinide salts is described. $[UO_2(OH_2)\{(OPPh_2)_2Pd(S_2CNEt_2)\}_2]$ crystallises in the monoclinic space group C2/c with a = 26.285(8), b = 13.870(8), c = 21.068(6) Å, $\beta = 90.042(8)^\circ$, and Z = 4. The single-crystal X-ray structure of the complex shows a distorted pentagonal bipyramidal uranium(v1) ion lying on a crystallographic two-fold axis with the oxo ligands of the *trans*-UO₂ moiety, U=O = 1.774(7) Å, occupying apical sites. The structure confirms co-ordination of two $[(OPPh_2)_2Pd(S_2CNEt_2)]^-$ moieties around U^{v1}. The four phosphinito ligands bridge U^{v1} and the two Pd¹¹ centres with U-O = 2.289(7) and 2.342(6) Å and Pd-P = 2.2642(24) and 2.2455(23) Å. An aqua ligand, U-O = 2.526(8) Å, completes the co-ordination sphere around the uranyl centre. The Pd¹¹ centres are essentially planar, each being bound to two phosphinito and one bidentate dithiocarbamate ligand, Pd-S = 2.386(3) and 2.373(3) Å.

It is now well established that reaction of the hydrogen-bonded chelates $[M(S_2CNR_2)]{(Ph_2PO)_2H}](M = Ni, Pd, or Pt; R =$ Et or Prⁱ) with various transition-metal and main-group metal acetylacetonates gives good yields of heterometallic complexes of general type $[M'{(OPPh_2)_2M(S_2CNR_2)}_n]$ $(M' = VO^{IV}, Co^{II}, Cu^{II}, or Ni^{II}, n = 2; M' = Mn^{III}, n = 3)$.^{1.2} The structures of these compounds have been assigned by spectral, magnetic, and analytical data^{1.2} and in the cases of $[Co{(OPPh_2)_2Pt(S_2 CNEt_2$ and $[Co\{(OPPh_2)_2Pd(S_2CNEt_2)\}_2]$ by singlecrystal X-ray structural determinations.^{2,3} For many of these complexes the exact conditions of preparation and choice of solvent were critical. Thus the preparation of $[Pd{(OPPh_2)_2}$ - $Ni(S_2CNR_2)_2$ or $[Pt\{(OPPh_2)_2Ni(S_2CNR_2)\}_2]$ could be achieved by the reaction of $[Ni(S_2CNR_2)(OPPh_2)_2]$ with $[Pd(acac)_2]$ or $[Pt(acac)_2]$ (acac = acetylacetonate) in high boiling solvents such as m-xylene. The use of substituted phosphinito ligands R₂PO⁻ and R₂PS⁻ as bridging functions in polymetallic systems has been reported by several groups.4-8

We report herein a continuation of these studies and describe the reactions of $[M(S_2CNR_2)\{(Ph_2PO)_2H\}]$ (M = Pd or Pt, R = Et or Prⁱ) with lanthanide and actinide salts in *m*-xylene or toluene to afford the mixed-metal complexes $[M'\{(OPPh_2)_2-M(S_2CNR_2)\}_n]$ (M' = Ce^{III}, Eu^{III}, Sm^{III}, or Nd^{III}, n = 3; M' = Th^{IV}, n = 4) and $[UO_2(OH_2)\{(OPPh_2)_2M(S_2CNR_2)\}_2]$. The single-crystal X-ray structure of $[UO_2(OH_2)\{(OPPh_2)_2Pd-(S_2CNE_2)\}_2]$ is described.

Non-S.I. unit employed: B.M. = 0.927×10^{-23} A m².

Results and Discussion

Reaction of $Na_2[MCl_4]$ (M = Pd or Pt) with $Na[S_2CNR_2]$ $(R = Et \text{ or } Pr^i)$ gives the complexes $[M(S_2CNR_2)_2]$ which react with Ph₂PCl under aqueous conditions to afford the species $[M(S_2CNR_2){(Ph_2PO)_2H}]$. The single-crystal X-ray structure of [Pd(S₂CNMe₂){(Ph₂PO)₂H}] has been reported previously.⁹ Reaction of $[M(S_2CNR_2){(Ph_2PO)_2H}]$ with chloride, nitrate, or acetate salts of actinide or lanthanide elements in refluxing m-xylene-EtOH or toluene-EtOH gave good yields of heteronuclear complexes. These products were isolated by addition of a mixture of diethyl ether and light petroleum. They show little or no solubility in nonpolar solvents or in MeOH, EtOH, or acetone, but can be recrystallised from CHCl₃. Solubility of the products was enhanced by use of the isopropyl dithiocarbamates. The purity of the compounds was confirmed by ³¹P n.m.r. spectroscopy. Analytical data for the complexes are consistent with the formulation of the heteronuclear species $[M'{(OPPh_2)_2}]$ $M(S_2CNR_2)_n$ (M' = Ce^{III}, Eu^{III}, Sm^{III}, or Nd^{III}, n = 3; M' = Th^{IV}, n = 4) and $[UO_2(OH_2)\{(OPPh_2)_2M(S_2CNR_2)\}_2]$. The i.r. spectra of the complexes show absorption bands near 1 050 and 1 530 cm⁻¹ assigned to the phosphorus-oxygen, v(P-O), and imine, v(C=N), stretching vibrations. These results are indicative of bidentate $[S_2CNR_2]^-$ co-ordination.¹⁰ The magnetic moments of the lanthanide complexes are consistent with the above formulation.

To confirm the stereochemistry and connectivity of the products, single crystals of $[UO_2(OH_2)\{(OPPh_2)_2Pd-(S_2CNEt_2)\}_2]$, suitable for diffraction studies, were grown from CHCl₃. The single-crystal X-ray structure of $[UO_2(OH_2)-\{(OPPh_2)_2Pd(S_2CNEt_2)\}_2]$ is illustrated in the Figure together with the numbering scheme adopted. Each molecule lies on a crystallographic two-fold axis which passes through the U atom and the co-ordinated oxygen of the water molecule. The U^{VI} ion shows a distorted pentagonal-bipyramidal stereochemistry

[†] Aquabis[(N.N-diethyldithiocarbamato)bis(diphenylphosphinito-P)palladium(II)-O,O']dioxouranium(VI).

Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1987, Issue 1, pp. xvii—xx.

with the oxo ligands of the *trans*-UO₂ moiety, U=O = 1.774(7) Å, occupying apical sites. Four phosphinito oxygen donors, U=O = 2.289(7) and 2.342(6) Å, and an aqua ligand, U=O = 2.526(8) Å, complete the co-ordination sphere around the uranyl centre. The structure confirms co-ordination of two $[(OPPh_2)_2Pd(S_2CNEt_2)]^-$ moieties around U^{VI}. The Pd^{II} centres are essentially planar with Pd-S = 2.386(3) and 2.373(3) Å and Pd-P = 2.2642(24) and 2.2455(23) Å. Bond lengths, bond angles, and fractional co-ordinates are given in Tables 1—3.

For the complexes $[M'{(OPPh_2)_2M(S_2CNR_2)}_3]$ (M' = Ce^{III}, Eu^{III}, Sm^{III}, or Nd^{III}) octahedral geometry about M' is proposed with the six OPPh₂ ligands bridging M and M'. For $[Th{(OPPh_2)_2M(S_2CNR_2)}_4]$ eight-co-ordination around the Th^{IV} centre appears likely. Our results are in agreement with the results of Sperline and Roundhill⁴ who have previously reported the synthesis of the mixed-metal phosphinito com-

Figure. Structure of $[UO_2(OH_2){(OPPh_2)_2Pd(S_2CNEt_2)}_2]$ showing the numbering scheme

Table 1. Bond lengths (\AA) with estimated standard deviations in parentheses

Pd(1)-P(1) 2.264 2(24) S(2)-C(1) 1.688(Pd(1)-P(2) 2.245 5(23) C(1)-N(1) 1.341(Pd(1)-S(1) 2.386(3) N(1)-C(11) 1.462(Pd(1)-S(2) 2.373(3) N(1)-C(21) 1.449(P(1)-C(111) 1.819(7) C(11)-C(12) 1.587(P(1)-C(121) 1.803(7) C(21)-C(22) 1.536($\begin{array}{l} U(1)-O(1U)\\ U(1)-O(1H)\\ U(1)-O(1)\\ U(1)-O(2)\\ Pd(1)-P(1)\\ Pd(1)-P(2)\\ Pd(1)-S(1)\\ Pd(1)-S(2)\\ P(1)-C(111)\\ P(1)-C(121)\\ P(1)-O(1)\\ \end{array}$	1.774(7) 2.526(8) 2.289(7) 2.342(6) 2.264 2(24) 2.245 5(23) 2.386(3) 2.373(3) 1.819(7) 1.803(7) 1.524(7)	O(2)-P(2) P(2)-C(211) P(2)-C(221) S(1)-C(1) S(2)-C(1) C(1)-N(1) N(1)-C(11) N(1)-C(21) C(11)-C(12) C(21)-C(22)	1.526(7) 1.810(6) 1.807(7) 1.727(10) 1.688(10) 1.341(13) 1.462(14) 1.449(16) 1.587(18) 1.536(24)
---	--	--	--	---

Table 2. Angles (°) with estimated standard deviations in parentheses

plexes $[UO_2{[OP(OMe)_2]_2PtCl(PEt_3)}_2]$ and $[Th{[OP-(OMe)_2]_2PtCl(PPh_3)}_4]$.

The ability of substituted phosphinito ligands R_2PO^- to bind to both soft and hard metal ions via P- and O-donors respectively has been demonstrated, and represents an important route to the synthesis of heteronuclear complexes.

Experimental

Microanalyses (C, H, or N) were carried out using a Carlo-Erba elemental analyzer and metal analyses using a Perkin-Elmer 373 atomic absorption spectrophotometer. Infrared spectra were recorded in the range 4 000—600 cm⁻¹ on a Perkin-Elmer 257 spectrometer using KBr discs, while electronic spectra were obtained in the solid state on a Beckmann Acta M(IV) spectrophotometer. Magnetic measurements were made on a Newport variable-temperature magnetic balance using Hg[Co-(SCN)₄] as calibrant. ¹H N.m.r. spectra were obtained on a Perkin-Elmer R-12 spectrometer and ³¹P n.m.r. spectra on a JEOL 60Q spectrometer. The light petroleum used was that fraction of b.p. 60–80 °C.

Structure Determination of $[UO_2(OH_2){(OPPh_2)_2Pd(S_2-CNEt_2)}_2]$.—Crystal data. $C_{58}H_{62}N_2O_7P_4Pd_2S_4U\cdot 2H_2O$, M = 1.638.1, monoclinic, space group C2/c, a = 26.285(8), b = 13.870(8), c = 21.068(6) Å, $\beta = 90.042(8)^\circ$, U = 7.681 Å³, T = 295 K, $D_c = 1.416$ g cm⁻³, Z = 4. Sample: pale yellow, columnar crystal, $1.4 \times 0.56 \times 0.56$ mm: F(000) = 3.232, $\mu(Mo-K_a) = 26.81$ cm⁻¹.

Data collection and processing. STADI-2 diffractometer, ω scans with scan width 2.0 + 0.8(sin μ /tan θ), graphite-monochromated Mo- K_{α} X-radiation ($\lambda = 0.71073$ Å); 6874 reflections measured ($2.5 \leq \theta \leq 25^{\circ}, \pm h, +k, +l$), 6666 unique, giving 5002 with $F \ge 6\sigma(F)$, no significant crystal decay or movement. Crystals could not be cut satisfactorily, and it was therefore necessary to use a long specimen and irradiate a constant volume.

Structure solution and refinement. Patterson synthesis (U) and iterative combination of least-squares cycles and difference Fourier syntheses located all the non-hydrogen atoms. At isotropic convergence, an empirical absorption correction¹¹ was applied (max. and min. corrections 1.327 and 0.764 respectively). Full-matrix least squares (F) with non-water H atoms in calculated positions¹² converged satisfactorily to give final R, R' = 0.0610, 0.0862 respectively. The weighting scheme $w^{-1} = \sigma^2(F_o) + 0.0105F_o^2$ gave good agreement analysis; $(\Delta/\sigma)_{max.}$ in final cycle 0.01, maximum and minimum residues in the ultimate ΔF synthesis were 2.65 and -3.36 e Å⁻³

O(1U) - U(1) - O(1)	88.8(3)	S(1)-Pd(1)-S(2)	73.96(9)	O(2)-P(2)-C(221)	106.3(3)
O(1U) - U(1) - O(2)	90.8(3)	Pd(1)-P(1)-C(111)	109.18(24)	C(211)-P(2)-C(221)	108.0(3)
O(1U) - U(1) - O(1U')	178.9(3)	Pd(1)-P(1)-C(121)	112.2(3)	P(2)-C(211)-C(212)	115.0(4)
O(1U)-U(1)-O(1')	92.0(3)	Pd(1)-P(1)-O(1)	119.2(3)	P(2)-C(211)-C(216)	125.0(5)
O(1U) - U(1) - O(2')	88.9(3)	C(111)-P(1)-C(121)	103.7(3)	P(2)-C(221)-C(222)	122.0(5)
O(1H)-U(1)-O(1U)	89.5(3)	C(111) - P(1) - O(1)	106.4(4)	P(2)-C(221)-C(226)	117.7(5)
O(1H)-U(1)-O(1)	142.16(24)	C(121)-P(1)-O(1)	105.1(4)	Pd(1)-S(1)-C(1)	85.3(3)
O(1H)-U(1)-O(2)	68.82(24)	P(1)-C(111)-C(112)	120.1(5)	Pd(1)-S(2)-C(1)	86.6(3)
O(1)-U(1)-O(2)	73.41(23)	P(1)-C(111)-C(116)	120.0(5)	S(1)-C(1)-S(2)	113.9(5)
O(1)-U(1)-O(1')	75.68(24)	P(1)-C(121)-C(122)	122.3(5)	S(1)-C(1)-N(1)	122.6(7)
O(1)-U(1)-O(2')	148.89(23)	P(1)-C(121)-C(126)	117.7(5)	S(2)-C(1)-N(1)	123.4(7)
O(2)-U(1)-O(2')	137.63(22)	U(1)-O(1)-P(1)	143.8(4)	C(1)-N(1)-C(11)	122.9(9)
P(1)-Pd(1)-P(2)	89.90(8)	U(1)-O(2)-P(2)	139.9(4)	C(1)-N(1)-C(21)	121.1(9)
P(1)-Pd(1)-S(1)	101.47(9)	Pd(1)-P(2)-O(2)	120.7(3)	C(11)-N(1)-C(21)	115.9(9)
P(1)-Pd(1)-S(2)	172.51(9)	Pd(1)-P(2)-C(211)	107.73(21)	N(1)-C(11)-C(12)	108.8(9)
P(2)-Pd(1)-S(1)	168.60(9)	Pd(1)-P(2)-C(221)	107.94(22)	N(1)-C(21)-C(22)	112.3(12)
P(2)-Pd(1)-S(2)	94.82(9)	O(2)-P(2)-C(211)	105.7(3)		

Table 3. Fractional atomic co-ordinates with estimated standard deviations in parentheses

Atom	X	y	2
U(1)	0.5	0.308 27(3)	0.25
O(1U)	0.478 3(3)	0.309 5(5)	0.329 7(3)
O(1H)	0.5	0.490 4(10)	0.25
Pd(1)	0.334 87(2)	0.234 51(5)	0.284 34(3)
P(1)	0.394 94(9)	0.138 82(15)	0.240 07(12)
C(111)	0.373 53(24)	0.100 6(6)	0.161 9(3)
C(112)	0.408 60(24)	0.088 8(6)	0.112 8(3)
C(113)	0.392 22(24)	0.058 9(6)	0.053 1(3)
C(114)	0.340 72(24)	0.040 8(6)	0.042 2(3)
C(115)	0.305 62(24)	0.052 6(6)	0.091 3(3)
C(116)	0.322 01(24)	0.082 5(6)	0.151 1(3)
C(121)	0.402 8(3)	0.027 2(4)	0.282 8(4)
C(122)	0.365 7(3)	-0.044 8(4)	0.282 6(4)
C(123)	0.373 4(3)	-0.129 3(4)	0.317 3(4)
C(124)	0.418 0(3)	-0.141 7(4)	0.352 1(4)
C(125)	0.455 1(3)	-0.069 7(4)	0.352 3(4)
C(126)	0.447 4(3)	0.014 7(4)	0.317 7(4)
O(1)	0.448 69(24)	0.178 0(4)	0.231 4(4)
O(2)	0.421 84(23)	0.369 3(5)	0.214 8(3)
P(2)	0.365 15(8)	0.360 92(16)	0.229 53(11)
C(211)	0.348 9(3)	0.469 2(4)	0.272 9(3)
C(212)	0.370 7(3)	0.476 5(4)	0.333 1(3)
C(213)	0.360 3(3)	0.556 3(4)	0.371 2(3)
C(214)	0.328 1(3)	0.629 0(4)	0.349 1(3)
C(215)	0.306 3(3)	0.621 7(4)	0.288 9(3)
C(216)	0.316 7(3)	0.541 9(4)	0.250 8(3)
C(221)	0.332 63(23)	0.364 7(5)	0.153 96(25)
C(222)	0.279 68(23)	0.367 7(5)	0.149 64(25)
C(223)	0.256 01(23)	0.359 7(5)	0.090 63(25)
C(224)	0.285 25(23)	0.348 7(5)	0.035 86(25)
C(225)	0.338 19(23)	0.345 6(5)	0.040 18(25)
C(226)	0.361 89(23)	0.353 6(5)	0.099 21(25)
S(1)	0.291 63(10)	0.123 27(17)	0.351 75(13)
S(2)	0.264 13(10)	0.319 27(17)	0.326 54(13)
C(1)	0.248 0(3)	0.214 9(7)	0.362 5(4)
N(1)	0.205 7(3)	0.204 1(6)	0.397 4(4)
C(11)	0.193 6(4)	0.114 8(9)	0.431 1(5)
C(12)	0.213 2(6)	0.123 5(11)	0.502 1(6)
C(21)	0.170 0(5)	0.282 7(9)	0.405 5(7)
C(22)	0.125 6(6)	0.277 5(14)	0.358 2(10)
O(1W)	0.436 0(4)	0.374 6(8)	0.490 2(5)
O(2W)	0.097 7(6)	0.709 9(12)	0.065 4(7)

respectively, S = 0.810. Molecular geometry calculations were performed using CALC.¹³ The Figure was produced from ORTEPII.¹⁴ Atomic scattering factors were inlaid (SHELX 76¹²) or taken from ref. 15.

Tris[(N,N-diethyldithiocarbamato)bis(diphenylphosphinito-P)palladium(II)-O,O']cerium(III).—[Pd(S₂CNEt₂){(Ph₂PO)₂H}] (1.0 g, 1.52 mmol) was refluxed in toluene (30 cm³) for 10 min and CeCl₃-7H₂O (0.18 g, 0.48 mmol) dissolved in EtOH (20 cm³) was added. The reaction mixture was refluxed for 8 h under N₂ and the solution reduced in volume before adding diethyl ether-light petroleum (50 cm³, 50:50). The orange precipitate was filtered off, washed with diethyl ether, recrystallised from CHCl₃ and dried *in vacuo* (yield = 0.58 g, 50%) (Found: C, 47.9; H, 4.4; Ce, 6.4; N, 2.0; Pd, 14.9. Calc. for C₈₇H₉₀CeN₃O₆P₆Pd₃S₆: C, 49.5; H, 4.3; Ce, 6.6; N, 2.3; Pd, 15.1%); $\mu_{eff.} = 2.45$ B.M. at 292 K. Electronic spectrum: 35 710 cm⁻¹. ¹H N.m.r.: δ , 6.8—7.8 (Ph), 3.5—3.9 (CH₂), 1.0—1.5 p.p.m. (CH₃); ³¹P n.m.r.: δ , 112.6 p.p.m.

Tris[(N,N-diethyldithiocarbamato)bis(diphenylphosphinito-P) $palladium(II)-O,O']neodymium(III).—[Pd(S₂CNEt₂){(Ph₂P O)₂H}] (0.8 g, 1.2 mmol) was refluxed in$ *m*-xylene (30 cm³) for 30 min and NdCl₃·6H₂O (0.17 g, 0.47 mmol) dissolved in EtOH (10 cm³) was added. The reaction mixture was refluxed for 24 h under N₂ and the solution reduced in volume before adding diethyl ether-light petroleum (50 cm³, 70:30). The pale green precipitate was filtered off, washed with diethyl ether, and dried *in vacuo* (yield = 0.76 g, 77%) (Found: C, 49.0; H, 4.3; N, 1.9; Nd, 6.7; Pd, 14.8. Calc. for C₈₇H₉₀N₃NdO₆P₆Pd₃S₆: C, 49.4; H, 4.3; N, 2.0; Nd, 6.8; Pd, 15.1%); $\mu_{eff.}$ = 2.81 B.M. at 292 K. Electronic spectrum: 33 333, 18 870, 17 758, 11 500 cm⁻¹. ¹H N.m.r.: δ , 6.2–7.9 (Ph), 4.1–4.7 (CH₂), 1.0–1.9 p.p.m. (CH₃); ³¹P n.m.r.: δ , 138.7 p.p.m.

Tris[(N,N-diethyldithiocarbamato)bis(diphenylphosphinito-P)palladium(II)-O,O']europium(III).—[Pd(S₂CNEt₂){(Ph₂P-O)₂H}] (0.9 g, 1.37 mmol) was refluxed in *m*-xylene (30 cm³) for 15 min and EuCl₃ (0.13 g, 0.5 mmol) dissolved in EtOH (10 cm³) was added. The reaction mixture was refluxed for 24 h under N₂ and the solution reduced in volume before adding diethyl ether (50 cm³). The solution was left to stand for 24 h and the pale yellow precipitate filtered off, washed with diethyl ether, and dried *in vacuo* (yield 0.7 g, 69%) (Found: C, 49.8; H, 4.3; Eu, 6.7; N, 1.8; Pd, 14.5. Calc. for C_{8.7}H_{9.0}EuN₃O₆P₆Pd₃S₆: C, 49.2; H, 4.3; Eu, 7.1; N, 2.0; Pd, 15.1%); $\mu_{eff.} = 3.91$ B.M. at 296 K. Electronic spectrum: 29 850 cm⁻¹. ¹H N.m.r.: δ , 7.1—9.0 (Ph), 2.8—3.4 (CH₂), 1.0—4.0 p.p.m. (CH₃); ³¹P n.m.r.: δ , -0.8 p.p.m.

Tris[(N,N'-diethyldithiocarbamato)bis(diphenylphosphinito-P)palladium(II)-O,O']samarium(III).—[Pd(S_2CNEt_2){Ph₂PO)₂-H}] (0.9 g, 1.37 mmol) was refluxed in *m*-xylene (30 cm³) for 30 min and SmCl₃•6H₂O (0.18 g, 0.46 mmol) dissolved in EtOH (15 cm³) was added. The reaction mixture was refluxed for 24 h under N₂ and the solution reduced in volume before adding diethyl ether (50 cm³). The white precipitate was filtered off, washed with diethyl ether, and dried *in vacuo* (yield = 0.65 g, 60%) (Found: C, 48.9; H, 4.3; N, 1.9; Pd, 15.2; Sm, 6.8. Calc. for C₈₇H₉₀N₃O₆P₆Pd₃S₆Sm: C, 49.3; H, 4.3; N, 2.0; Pd, 15.1; Sm, 7.1%); $\mu_{eff.} = 2.20$ B.M. at 296 K. Electronic spectrum: 28 100 cm⁻¹. ¹H N.m.r.: δ , 6.6—7.6 (Ph), 3.6—4.1 (CH₂), 1.1—1.5 p.p.m. (CH₃); ³¹P n.m.r.: δ , 79.3 p.p.m.

Tetrakis[(N,N-diethyldithiocarbamato)bis(diphenylphosphinito-P)palladium(II)-O,O']thorium(IV).—[Pd(S₂CNEt₂){Ph₂-PO)₂H}] (1.0 g, 1.52 mmol) was refluxed in *m*-xylene (30 cm³) for 30 min and Th(NO₃)₄ (0.25 g, 0.52 mmol) dissolved in EtOH (15 cm³) was added. The reaction mixture was refluxed for 24 h under N₂ and the solution reduced in volume before adding diethyl ether (50 cm³). The yellow precipitate was filtered off, washed with diethyl ether, and dried *in vacuo* (yield = 0.78 g, 62%) (Found: C, 48.5; H, 4.3; N, 2.0; Pd, 15.1; Th, 7.9. Calc. for C₁₁₆H₁₂₀N₄O₈P₈Pd₄S₈Th: C, 48.7; H, 4.2; N, 2.0; Pd, 14.9; Th, 8.1%); $\mu_{eff.} = 3.91$ B.M. at 292 K. Electronic spectrum: 29 412 cm⁻¹. ¹H N.m.r.: δ , 6.7—8.0 (Ph), 3.4—3.9 (CH₂), 1.0—1.4 p.p.m. (CH₃); ³¹P n.m.r.: δ , 92.3 p.p.m.

Aquabis[(N,N-diethyldithiocarbamato)bis(diphenyl-

phosphinito-P)palladium(II)-O,O']dioxouranium(VI).—[Pd(S₂-CNEt₂){Ph₂PO)₂H}] (1.0 g, 1.52 mmol) was refluxed in toluene (30 cm³) for 15 min and [UO₂(CH₃COO)₂] (0.31 g, 0.73 mmol) dissolved in EtOH (20 cm³) was added. The reaction mixture was refluxed for 3 h under N₂ and the solution reduced in volume before adding diethyl ether (50 cm³). The yellow precipitate was filtered off, washed with diethyl ether, recrystallised from CHCl₃, and dried *in vacuo* (yield = 1.2 g, 90%) (Found: C, 42.5; H, 3.6; N, 1.6; Pd, 12.9; U, 14.9. Calc. for C₅₈H₆₂N₂O₇P₄Pd₂S₄U: C, 43.5; H, 3.7; N, 1.8; Pd, 13.5, U, 14.9%). Electronic spectrum: 38 800 cm⁻¹. ¹H N.m.r.: δ , 7.0—8.1 (Ph), 3.45—4.0 (CH₂), 1.0—1.4 p.p.m. (CH₃); ³¹P n.m.r.: δ , 99.6 p.p.m.

Tris[(N,N-diethyldithiocarbamato)bis(diphenylphosphinito-P)platinum(II)-O,O']cerium(III).—[Pt(S₂CNEt₂){(Ph₂PO)₂-H}] (1.0 g, 1.29 mmol) was refluxed in toluene (30 cm³) for 15 min and CeCl₃·7H₂O (0.16 g, 0.43 mmol) dissolved in EtOH (20 cm³) was added. The reaction mixture was refluxed for 24 h under N₂ and the solution reduced in volume before adding diethyl ether (50 cm³). The orange precipitate was filtered off, washed with diethyl ether, and dried *in vacuo* (yield = 0.78 g, 68%) (Found: C, 42.5; H, 3.7; Ce, 6.7; N, 1.6; Pt, 25.3. Calc. for C₈₇H₉₀CeN₃O₆P₆Pt₃S₆: C, 43.9; H, 3.8; Ce, 5.9; N, 1.8; Pt, 24.6%); $\mu_{eff.} = 2.12$ B.M. at 292 K. Electronic spectrum: 34 480 cm⁻¹. ¹H N.m.r.: δ , 6.8—8.0 (Ph), 3.3—3.9 (CH₂), 1.0—1.5 p.p.m. (CH₃); ³¹P n.m.r.: δ , 83.1 p.p.m.

Tris[(N,N-di-isopropyldithiocarbamato)bis(diphenylphos-

phinito-P)platinum(II)-O,O']samarium(III).—[Pt(S₂CNPrⁱ₂)-{(Ph₂PO)₂H}] (0.78 g, 1.0 mmol) was refluxed in *m*-xylene (30 cm³) for 30 min and SmCl₃·6H₂O (0.12 g, 0.33 mmol) dissolved in EtOH (15 cm³) was added. The reaction mixture was refluxed for 24 h under N₂ and the solution reduced in volume before adding diethyl ether–light petroleum (50 cm³, 50:50). The cream precipitate was filtered off, washed with EtOH, and dried *in vacuo* (yield = 0.71 g, 74%) (Found: C, 45.6; H, 4.2; N, 1.7; Pt, 23.4; Sm, 5.9. Calc. for C₉₃H₁₀₂N₃O₆P₆Pt₃S₆Sm: C, 45.1; H, 4.1; N, 1.7; Pt, 23.7; Sm, 6.1%); $\mu_{eff.} = 2.18$ B.M. at 296 K. Electronic spectrum: 31 250 cm⁻¹. ¹H N.m.r.: δ , 6.7—8.1 (Ph), 1.3—1.8 p.p.m. (CH₃); ³¹P n.m.r.: δ , 55.5 p.p.m.

Tris[(N,N-di-isopropyldithiocarbamato)bis(diphenylphosphinito-P)platinum(II)-O,O']europium(III).—[Pt(S₂CNPr¹₂)-{(Ph₂PO)₂H}] (1.0 g, 1.29 mmol) was refluxed in *m*-xylene (30 cm³) for 15 min and EuCl₃·6H₂O (0.14 g, 0.54 mmol) dissolved in EtOH (15 cm³) was added. The reaction mixture was refluxed for 24 h under N₂ and the solution reduced in volume before adding diethyl ether–light petroleum (50 cm³, 70:30). The creamy precipitate was filtered off, washed with diethyl ether, and dried *in vacuo* (yield = 0.93 g, 86%) (Found: C, 45.3; H, 4.3; Eu, 5.9; N, 1.6; Pt, 23.4. Calc. for C₉₃H₁₀₂EuN₃O₆P₆Pt₃S₆: C, 45.1; H, 4.1, Eu, 6.1; N, 1.7; Pt, 23.7%); $\mu_{eff.} = 3.72$ B.M. at 296 K. Electronic spectrum: 31 446 cm⁻¹. ¹H N.m.r.: δ , 7.1—9.1 (Ph), 1.0—1.2 p.p.m. (CH₃); ³¹P n.m.r.: δ , -8.65 p.p.m.

Tetrakis[(N,N-di-isopropyldithiocarbamato)bis(diphenylphosphinito-P)platinum(II)-O,O']thorium(IV).—[Pt($S_2CNPr^i_2$)-{(Ph₂PO)₂H}] (0.78 g, 1.00 mmol) was refluxed in *m*-xylene (30 cm³) for 30 min and Th(NO₃)₄ (0.14 g, 0.29 mmol) dissolved in EtOH (15 cm³) was added. The reaction mixture was refluxed for 24 h under N₂. The precipitate was filtered off, washed with

diethyl ether, and dried *in vacuo* (yield = 0.45 g, 41%) (Found: C, 44.2; H, 3.9; N, 1.7; Pt, 24.1; Th, 6.9. Calc. for

 $C_{124}H_{136}N_4O_8P_8Pt_4S_8Th: C, 44.8; H, 4.1; N, 1.7; Pt, 23.4; Th, 7.0%). Electronic spectrum: 34 482 cm^{-1}. <math display="inline">^1H$ N.m.r.: $\delta, 6.7$ —8.2 (Ph), 1.1—1.7 p.p.m. (CH₃); ^{31}P n.m.r.: $\delta, 65$ p.p.m.

Aquabis[(N,N-diethyldithiocarbamato)bis(diphenylphosphinito-P)platinum(II)-O,O']dioxouranium(VI).—[Pt(S₂CNEt₂)-{(Ph₂PO)₂H}] (1.0 g, 1.29 mmol) was refluxed in toluene (30 cm³) for 15 min and [UO₂(CH₃COO)₂]-2H₂O (0.28 g, 0.66 mmol) dissolved in EtOH (20 cm³) was added. The reaction mixture was refluxed for 24 h under N₂ and the solution reduced in volume. The bright yellow precipitate was filtered off, washed with diethyl ether, recrystallised from CHCl₃, and dried *in vacuo* (yield = 1.1 g, 86%) (Found: C, 40.1; H, 3.4; N, 1.6; Pt, 22.3; U, 14.0. Calc. for C₅₈H₆₂N₂O₇P₄Pt₂-S₄U: C, 39.1; H, 3.7; N, 1.6; Pt, 21.9; U, 13.4%). Electronic spectrum: 32 260 cm⁻¹. ¹H N.m.r.: δ , 7.0—8.0 (Ph), 3.2—3.7 (CH₂), 1.0—1.3 p.p.m. (CH₃); ³¹P n.m.r.: δ , 74.4 p.p.m.

Acknowledgements

We thank the S.E.R.C. for support, and Johnson Matthey for generous loans of platinum metals.

References

- 1 J. R. Allan, G. H. W. Milburn, T. A. Stephenson, and P. M. Veitch, J. Chem. Res., 1983, (S) 218, (M) 2009.
- 2 J. R. Allan, G. H. W. Milburn, L. Sawyer, V. K. Shah, T. A. Stephenson, and P. M. Veitch, Acta Crystallogr., Sect. C, 1985, 41, 58; R. E. Marsh, *ibid.*, p. 1383.
- 3 J. R. Allan, J. Halfpenny, G. H. W. Milburn, T. A. Stephenson, and P. M. Veitch, J. Chem. Res., 1986, (S) 270, (M) 2606.
- 4 R. P. Sperline and D. M. Roundhill, Inorg. Chem., 1977, 16, 2612.
- 5 D. M. Anderson, E. A. V. Ebsworth, T. A. Stephenson, and M. D. Walkinshaw, J. Chem. Soc., Dalton Trans., 1982, 2343.
- 6 J. D. Fotheringham and T. A. Stephenson, J. Organomet. Chem., 1985, 284, C12.
- 7 W. Kläui, K. Schmidt, A. Bockmann, D. J. Brauer, J. Wilke, H. Lucken, and U. Elsenhans, *Inorg. Chem.*, 1986, **25**, 4125.
- 8 W. Kläui, A. Müller, W. Eberspach, R. Boese, and I. Goldberg, J. Am. Chem. Soc., 1987, 109, 164.
- 9 M. C. Cornock, R. O. Gould, C. L. Jones, and T. A. Stephenson, J. Chem. Soc., Dalton Trans., 1977, 1307.
- 10 D. F. Steele and T. A. Stephenson, J. Chem. Soc., Dalton Trans., 1973, 2124.
- 11 N. Walker and D. Stuart, Acta Crystallogr., Sect. A, 1983, 39, 159.
- 12 G. M. Sheldrick, SHELX 76, University of Cambridge, 1976.
- 13 R. O. Gould and P. Taylor, CALC, University of Edinburgh, 1985.
- 14 P. D. Mallinson and K. W. Muir, J. Appl. Crystallogr., 1985, 18, 51.
- 15 D. T. Cromer and J. L. Mann, Acta Crystallogr., Sect. A, 1968, 24, 321.

Received 24th February 1987; Paper 7/355