Manganese(I) Complexes with (Tricyclohexylphosphonio)dithiocarboxylate as Chelate and Unidentate Ligand. X-Ray Crystal Structure of fac-[Mn(CO)₃{S₂CP(C₆H₁₁)₃}₂]ClO₄·H₂O[†]

Daniel Miguel and Victor Riera* Departamento de Quimica Inorganica, Universidad de Oviedo, 33071 Oviedo, Spain Jesus A. Miguel Departamento de Quimica Inorganica, Universidad de Valladolid, 47005 Valladolid, Spain Claudette Bois, Michèle Philoche-Levisalles, and Yves Jeannin Laboratoire de Chimie des Métaux de Transition, UA-CNRS 419, Université Pierre et Marie Curie, 75252 Paris Cedex 05, France

 $[Mn(CO)_{5}Br] reacts with S_{2}CP(C_{6}H_{11})_{3} (C_{6}H_{11} = cyclohexyl) in refluxing CS_{2} to give fac-[Mn(CO)_{3}{S_{2}CP(C_{6}H_{11})_{3}}Br] (1) which can be also obtained by refluxing cis-[Mn(CO)_{4}{P(C_{6}H_{11})_{3}}Br] in CS_{2}. Halide abstraction from (1) with AgClO_{4}, and subsequent treatment with neutral ligands L affords fac-[Mn(CO)_{3}L{S_{2}CP(C_{6}H_{11})_{3}}]ClO_{4} with L = CO, P(OMe)_{3}, P(C_{6}H_{11})_{3}, S_{2}CP(C_{6}H_{11})_{3}. In the case of L = S_{2}CP(C_{6}H_{11})_{3} an X-ray structure determination shows that the resulting compound fac-[Mn(CO)_{3}{S_{2}CP(C_{6}H_{11})_{3}}_{2}]ClO_{4} contains one S_{2}CP(C_{6}H_{11})_{3} acting as a chelate (SS') ligand and another acting in a unidentate <math>\sigma$ -(S) fashion. Compounds [Mn(CO)_{5}{S_{2}CP(C_{6}H_{11})_{3}}]ClO_{4} and fac-[Mn(CO)_{3}(L-L){S_{2}CP(C_{6}H_{11})_{3}}]ClO_{4} (L-L = Ph_{2}PCH_{2}PPh_{2} or 2,2'-bipyridyl) containing unidentate S_{2}CP(C_{6}H_{11})_{3} ligands can be obtained by displacement of OClO_{3}^{-} from perchlorate complexes.

Many transition metal complexes containing carbon disulphide adducts of tertiary phosphines S_2CPR_3 as ligand have been reported in recent years.¹⁻⁸ The synthetic routes for the preparation of these complexes can be classified into two main types depending on the properties of both the phosphines and the precursors involved. Since trialkylphosphines give stable S_2CPR_3 compounds, the usual procedures to form (trialkylphosphonio)dithiocarboxylate complexes are reactions of suitable substrates with the previously formed S_2CPR_3 adduct⁴ or the insertion of CS_2 into a metal-trialkylphosphine bond.² On the contrary, triarylphosphines do not form stable adducts with CS_2 and, in these cases, nucleophilic attack of the triarylphosphine on the carbon atom of a previously co-ordinated CS_2 group has been suggested for the formation of complexes like $[Ir(CO)(PPh_3)_2(S_2CPPh_3)]BPh_4$.¹

In the case of manganese complexes, the reaction of [Mn- $(CO)_2(\eta^5-C_5H_5)(thf)$] (thf = tetrahydrofuran) with S_2CPEt_3 has been reported to give [Mn(CO)₂($\eta^5-C_5H_5$)(S_2CPEt_3)],⁴ this being the only manganese compound with a S_2CPR_3 ligand described to date. On the other hand, a number of manganese and rhenium complexes with anionic bidentate PS- and SS-donor ligands (L-L) have been recently prepared ^{9,10} and one hydrometallation reaction of CS₂ with [M(CO)₃H(L-L)] [M = Mn or Re; L-L = 1,2-bis(diphenylphosphino)ethane (dppe) or bis(diphenylphosphino)methane (dppm)] giving [M(CO)₃{Ph₂P(CH₂)_nP(CHS₂)Ph₂-PSS'}] (n = 1 or 2)¹¹ has been reported.

Here we report the use of the adduct of tricyclohexylphosphine and carbon disulphide, $S_2CP(C_6H_{11})_3$, in the preparation of octahedral manganese complexes containing the tricyclohexylphosphoniodithiocarboxylate ligand in chelate (SS') and unidentate σ -(S) fashion.

Results and Discussion

Reaction of $[Mn(CO)_5Br]$ with $S_2CP(C_6H_{11})_3$ in refluxing CS_2 [reaction (i), Scheme] for 4 h produces a deep blue precipitate of fac- $[Mn(CO)_3\{S_2CP(C_6H_{11})_3\}Br]$ (1) in 80% yield. This product is moderately soluble in CH_2Cl_2 , insoluble in Et_2O and hydrocarbons, and can be obtained as a deep blue air-stable crystalline solid by slow evaporation of a CH_2Cl_2 solution. Compound (1) is indefinitely stable in solution under an N_2 atmosphere, but it decomposes slowly on contact with air giving a small amount of fac- $[Mn(CO)_3{P(C_6H_{11})_3}{S_2CP(C_6H_{11})_3}]$ -Br.

The i.r. spectrum of (1) in CH_2Cl_2 consists of three strong bands at 2 024s, 1 939s, and 1 917s cm⁻¹ in the v(CO) region (Table 1), a typical pattern for a *fac*-tricarbonyl arrangement. The ³¹P-{¹H} n.m.r. spectrum of (1) displays a sharp singlet at δ 20.1 p.p.m. Alternatively compound (1) can also be obtained in 79% yield by refluxing *cis*-[Mn(CO)₄{P(C₆H₁₁)₃}Br] in CS₂ for 7 h [reaction (*ii*), Scheme].

Although the intimate mechanisms of these reactions have not been studied, reaction (*i*) appears to be a simple substitution of two CO groups for the previously formed $S_2CP(C_6H_{11})_3$ ligand, while reaction (*ii*) is a formal insertion of CS₂ into a phosphine-metal bond with a simultaneous loss of CO. Since no evidence has been found in these or other reactions for the formation of a CS₂ complex, the other possible pathway for the reaction (attack on the carbon of a co-ordinated CS₂ molecule) would be unlikely in these manganese compounds.

The reaction [(*iii*), Scheme] of (1) with AgClO₄ in CH₂Cl₂ for 2 h produces a purple solution. Its i.r. spectrum (CH₂Cl₂) shows v(CO) bands at 2 030s, 1 950s, and 1 935s cm⁻¹ suggesting the formation of the perchlorato complex *fac*-[Mn(CO)₃(OClO₃){S₂CP(C₆H₁₁)₃]. Unfortunately several attempts to isolate such species as a solid gave mixtures of decomposition products. However the purple solution thus obtained can be immediately used to prepare cationic complexes by displacement of the weakly co-ordinated perchlorate ion by CO [(2)], P(OMe)₃ [(3a)], P(C₆H₁₁)₃ [(3b)], or S₂CP(C₆H₁₁)₃ [(4)]. Orange-red *cis*-[Mn(CO)₄-{S₂CP(C₆H₁₁)₃}]ClO₄ (2) is obtained in 81% yield by bubbling

[†] *fac*-Tricarbonyl[(tricyclohexylphosphonio)dithiocarboxylate-S]-[(tricyclohexylphosphonio)dithiocarboxylate-SS']manganese(1) perchlorate-hydrate (1/1).

Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1987, Issue 1, pp. xvii-xx.

Scheme. Reactions were in CH₂Cl₂ solution at room temperature unless otherwise stated. (*i*) CS₂, S₂CP(C₆H₁₁)₃, reflux, 4 h; (*ii*) CS₂, reflux, 7 h; (*iii*) AgClO₄, 2 h; (*iv*) CO, 3 h; (*v*) L, 45 min; (*vi*) S₂CP(C₆H₁₁)₃, 1 h; (*vii*) AgClO₄, 2 h; then L, 3.5 h; (*viii*) AgClO₄, S₂CP(C₆H₁₁)₃, 30 min; (*ix*) CHCl₃, reflux, 2.5 h; (x) S₂CP(C₆H₁₁)₃, 4 h for (**6a**) and 1 h for (**6b**)

CO through a mixture of (1) and AgClO₄ in CH₂Cl₂ [reaction (*iv*), Scheme]. The i.r. spectrum of (2) in CH₂Cl₂ solution displays three bands in the v(CO) region (2 104m, 2 027vs, 1 988s cm⁻¹) in a pattern consistent with a *cis*-tetracarbonyl disposition, and the analytical data (Table 1) are in good agreement with the proposed formulation. The ³¹P-{¹H} n.m.r. spectrum of (2) in CDCl₃ shows a sharp singlet at δ 36.1 p.p.m. downfield 16 p.p.m. from the signal of compound (1). The strong deshielding of phosphorus is consistent with the decrease of electronic density around the metal when changing a bromide for a CO ligand.

Cationic fac-tricarbonyl complexes of formula fac- $[Mn(CO)_3-L{S_2CP(C_6H_{11})_3}]ClO_4[L = P(OMe)_3, (3a); L = P(C_6H_{11})_3, (3b)]$ are produced by treating the purple solution of fac-

[Mn(CO)₃(OClO₃){S₂CP(C₆H₁₁)₃}] with the appropriate Pdonor ligand [reaction (v), Scheme]. After evaporation of solvent *in vacuo*, addition of diethyl ether gives yellow-orange (**3a**) in 85% yield, or dark purple (**3b**) in 82% yield as air-stable crystalline solids. Alternatively compound (**3b**) can also be prepared by treating *cis*-[Mn(CO)₄(OClO₃){P(C₆H₁₁)₃}] with S₂CP(C₆H₁₁)₃ in CH₂Cl₂ solution [reaction (*vii*), Scheme], by displacement of perchlorate with simultaneous loss of CO.

The i.r. spectra of these compounds exhibit three absorption bands in the v(CO) region [(3a), 2 046s, 1 978s, 1 948s; (3b), 2 027s, 1 956s, 1 935s cm⁻¹] with the pattern expected for *fac* arrangements of three carbonyls. The ³¹P-{¹H} n.m.r. spectra of compounds (3a) and (3b) in CDCl₃ at room temperature consist of two signals (Table 1). The signal at high field is in both cases a

Table 1. Melting points, analytical, i.r. and ³¹P-{¹H} n.m.r. data

	Analysis ^a (%)				³¹ P-{ ¹ H} N.m.r. ^{<i>d</i>}	
Compound	c	н	M.p. ^ø (°C)	v(CO) ^c /cm ⁻¹	$S_2CP(C_6H_{11})_3$	Other
(1) $fac-[Mn(CO)_3 \{S_2 CP(C_6 H_{11})_3\}Br]$	45.65 (45.90)	6.00 (5.80)	164	2 024s, 1 939s, 1 917s	^e 20.1 (s)	
(2) $cis-[Mn(CO)_{4}{S_{2}CP(C_{6}H_{11})_{3}}]ClO_{4}$	44.05 (44.35)	5.45 (5.35)	154	2 104m, 2 027vs, 1 988s	36.1 (s)	
(3a) $fac-[Mn(CO)_{3}{P(OMe)_{3}}{S_{2}CP(C_{6}H_{11})_{3}}]-ClO_{4}$	42.05 (41.75)	5.90 (5.90)	160 ^ƒ	2 046s, 1 978s, 1 948s	$30.1 [d, {}^{4}J(P-P) = 13.7 Hz]$	161[br, Mn- P(OMe) ₃]
(3b) $fac-[Mn(CO)_3{P(C_6H_{11})_3}{S_2CP(C_6H_{11})_3}]-ClO_4 \cdot CH_2Cl_2$	51.25 (51.30)	7.25 (7.15)	188	2 027s, 1 956s, 1 935s	29.1 [d, ${}^{\bar{4}}J(P-P) =$ 8 Hz]	$66.2 [br, Mn - P(C_6H_{11})_3]$
(4) $fac-[Mn(CO)_3{S_2CP(C_6H_{11})_3}_2]ClO_4 H_2O$	50.35 (50.80)	7.25 (7.05)	182	2 027s, 1 945s	25.9 (s), 31.7 (s)	
(5) $[Mn(CO)_{5}{S_{2}CP(C_{6}H_{11})_{3}}]ClO_{4}$	44.05 (44.30)	5.15 (5.10)	134	2 139m, 2 056vs, 2 038 (sh)	41.7 (s)	
(6a) $fac-[Mn(CO)_3(dppm){S_2CP(C_6H_{11})_3}]ClO_4$	57.30 (57.65)	5.65 (5.65)	167	2 025s, 1 961s, 1 944s	$32.7 [t, {}^{4}J(P-P) = 3.7 Hz]$	16.3 [br, CH ₂ (PPh ₂) ₂]
(6b) $fac-[Mn(CO)_3(bipy){S_2CP(C_6H_{11})_3}]ClO_4^{a}$	51.25 (51.15)	5.55 (5.50)	166	2 032s, 1 942s br	31.8 (s)	

^a Calculated values given in parentheses. ^b With decomposition. ^c CH₂Cl₂ solution. ^d CDCl₃ solution unless otherwise stated; external 85% H₃PO₄ as reference; positive sign for δ denotes signals downfield from H₃PO₄. ^e CD₂Cl₂ solution. ^f Change of aspect in the solid can be observed at *ca.* 90 °C. ^e Analysis: N, 4.00 (3.75)%.

sharp doublet $[(3a), \delta 30.1 \text{ p.p.m.} {}^4J(P-P) = 13.7 \text{ Hz}; (3b), \delta 29.1 \text{ p.p.m.}, {}^4J(P-P) = 8.0 \text{ Hz}]$ assigned to the phosphorus atom of the S₂CP(C₆H₁₁)₃ ligand. The broad low-field signal $[(3a), \delta 161 \text{ p.p.m. for }Mn-P(OMe)_3; (3b), \delta 66.2 \text{ p.p.m. for }Mn-P(C_6H_{11})_3]$ is assigned to the phosphorus atom of ligand L directly bound to manganese. The broadening of these signals is attributable to the quadrupole moment of the manganese nucleus and precludes the observation of the expected doublet due to the small value of the coupling constants.

Under similar conditions to those above, purple fac-[Mn-(CO)₃{S₂CP(C₆H₁₁)₃}₂]ClO₄ (4) is obtained by treating fac-[Mn(CO)₃(OClO₃){S₂CP(C₆H₁₁)₃] with an equimolar amount of S₂CP(C₆H₁₁)₃ [reaction (vi), Scheme]. The i.r. spectrum (Table 1) of compound (4) reveals a fac-tricarbonyl unit and the ³¹P-{¹H} n.m.r. spectrum in CD₂Cl₂ shows two sharp peaks at δ 25.9 p.p.m. and δ 31.7 p.p.m., both assigned to the resonances of phosphorus atoms of two different S₂-CP(C₆H₁₁)₃ ligands. The long distance (six bonds) between the two phosphorus atoms precludes coupling between them thus explaining the signals appearing as two singlets. Chemical analyses are in good agreement with the proposed stoicheiometry and conductivity measurements support the formulation of (4) as a 1:1 electrolyte.

All these experimental data, together with the great tendency of Mn^{I} towards octahedral co-ordination, strongly suggest a structure for (4) with one $S_2CP(C_6H_{11})_3$ group acting as a (SS') chelating ligand and the other acting in a unidentate σ -(S) fashion. That structure has been confirmed by an X-ray structural determination carried out on a crystal of (4) (Figure). The bond lengths and angles are given in Table 2, final atomic co-ordinates are in Table 3. Calculations showed that (4) crystallized with one molecule of water, possibly taken from the solvent during the work-up. It was found that crystals can be obtained free of water under strict anhydrous conditions; then the ¹H n.m.r. spectrum and analysis (C, H) indicated the presence of one molecule of CH₂Cl₂.

Some structures of mononuclear complexes with chelate² and σ -unidentate^{4,12} S₂CPR₃ ligands have been reported, and also one structure in which S₂CPEt₃ adducts act as chelate and bridging ligands in a dinuclear silver complex;³ however, as far as we know, this is the first structure determination of a complex

Table 2. Intramolecular bond distances (Å) and angles (°)

Manganese co-ordin	nation		
Mn-C(3)	1.800(8)	Mn-S(1)	2.383(2)
Mn-C(4)	1.806(7)	Mn-S(2)	2.361(3)
Mn-C(5)	1.819(12)	Mn-S(3)	2.349(2)
	,		
C(3)-Mn-C(4)	89.4(3)	C(4)-Mn-S(2)	89.5(4)
C(3) - Mn - C(5)	91.8(5)	C(4) - Mn - S(3)	176.7(4)
C(3)-Mn-S(1)	168.2(4)	C(5) - Mn - S(1)	99.9(3)
C(3) - Mn - S(2)	94.9(4)	C(5) - Mn - S(2)	173.3(3)
C(3)-Mn-S(3)	90.9(2)	C(5)-Mn-S(3)	91.9(2)
C(4) - Mn - C(5)	91.4(4)	S(1) - Mn - S(2)	73.37(9)
C(4) - Mn - S(1)	91.5(3)	S(1)-Mn-S(3)	87.53(6)
S(2)-Mn-S(3)	87.27(8)		
Carbonyl ligands			
C(3) $O(3)$	1 14(1)	$M_{\rm P} = C(3) \cdot O(3)$	176 7(6)
C(3)=O(3)	1.14(1) 1.13(1)	$M_{n-C(4)-O(4)}$	178.9(9)
C(5) = O(5)	1.13(1) 1.12(2)	Mn = C(5) = O(5)	174.8(5)
0(5)	1.12(2)	Min C(3) C(3)	174.0(5)
Phosphoniodithioc	arboxylates		
Ligand A		Ligand B	
P(1)-C(1)	1.815(9)	P(2)-C(2)	1.848(6)
P(1)-C(11)	1.829(6)	P(2) - C(41)	1.825(6)
P(1)-C(21)	1.833(11)	P(2) - C(51)	1.832(9)
P(1)-C(31)	1.822(6)	P(2)-C(61)	1.827(11)
S(1)-C(1)	1.660(10)	S(3)-C(2)	1.689(7)
S(2)-C(1)	1.673(7)	S(4)-C(2)	1.648(9)
S(1) = C(1) = S(2)	116.4(5)	S(3)-C(2)-S(4)	129 5(3)
S(1) - C(1) - B(1)	1219(4)	S(3) - C(2) - P(2)	114 3(5)
S(1) = C(1) = P(1)	121.5(4)	S(4)-C(2)-P(2)	1160(4)
C(1) - P(1) - C(11)	107.7(3)	C(2) - P(2) - C(41)	108.3(3)
C(1) - P(1) - C(21)	106.0(4)	C(2) - P(2) - C(51)	106.9(3)
C(1)-P(1)-C(31)	107.5(4)	C(2)-P(2)-C(61)	109.2(4)
C(1) - P(1) - C(21)	109.0(4)	C(41) - P(2) - C(51)	108.3(4)
C(1) - P(1) - C(31)	109.9(3)	C(41)-P(2)-C(61)	114.7(4)
C(21) - P(1) - C(31)	116.4(4)	C(51)-P(2)-C(61)	109.1(4)

Average C-C (cyclohexyl) distance1.51(2)Average C-C-C (cyclohexyl) angle110.9(8)

Table 3. Final atomic co-ordinates

Atom	X/a	Y/b	Z/c	Atom	X/a	Y/b	Z/c
Mn	0.717 54(9)	0.128 13(8)	0.100 64(6)	C(46)	1.339 1(8)	0.549 1(6)	-0.2000(5)
S(1)	0.873 9(2)	0.288 0(1)	0.130 9(1)	C(51)	1.046 4(7)	0.323 1(5)	-0.2903(4)
S(2)	0.815 0(2)	0.078 3(1)	0.163 0(1)	C(52)	0.929 3(9)	0.1997(7)	-0.262.2(6)
S(3)	0.912 3(2)	0.184 8(1)	-0.0432(1)	C(53)	0.861(1)	0.173 3(8)	-0.3218(8)
S(4)	0.965 1(2)	0.405 0(2)	-0.069 6(1)	C(54)	0.804 3(9)	0.237 6(9)	-0.3159(7)
P(1)	1.020 5(2)	0.258 7(1)	0.215 3(1)	C(55)	0.918(1)	0.358 8(8)	-0.3451(6)
P(2)	1.133 2(2)	0.356 8(1)	-0.2216(1)	C(56)	0.993 2(9)	0.389 7(8)	-0.2901(6)
C(1)	0.904 3(6)	0.208 8(5)	0.167 3(4)	C(61)	1.201 9(7)	0.277 6(6)	-0.2323(4)
C(2)	0.996 4(6)	0.315 0(5)	-0.1015(4)	C(62)	1.275 3(8)	0.296 3(7)	-0.1770(6)
C(11)	0.914 6(7)	0.234 1(5)	0.337 7(4)	C(63)	1.303 1(9)	0.2110(7)	-0.1782(6)
C(12)	0.795(1)	0.112 5(7)	0.387 7(5)	C(64)	1.392 0(9)	0.217 0(8)	-0.2730(6)
C(13)	0.716(1)	0.098 9(9)	0.488 3(6)	C(65)	1.324(1)	0.202 9(9)	-0.3296(7)
C(14)	0.661 1(9)	0.165 8(9)	0.507 4(6)	C(66)	1.295(1)	0.286 8(8)	-0.3312(5)
C(15)	0.777(1)	0.283 2(9)	0.458 2(6)	C(3)	0.613 3(8)	-0.004 7(7)	0.084 9(5)
C(16)	0.858 4(9)	0.302 3(8)	0.355 9(5)	C(4)	0.571 9(8)	0.082 4(6)	0.214 1(5)
C(21)	1.082 6(7)	0.173 5(6)	0.198 9(4)	C(5)	0.656 5(7)	0.182 8(6)	0.052 8(5)
C(22)	1.169 4(9)	0.193 9(8)	0.243 7(7)	O(3)	0.542 4(6)	-0.0904(5)	0.079 2(5)
C(23)	1.189(1)	0.103 9(8)	0.241 0(7)	O(4)	0.479 2(6)	0.052 9(5)	0.284 8(4)
C(24)	1.257(1)	0.098 2(8)	0.145 2(7)	O(5)	0.609 7(6)	0.208 9(6)	0.025 5(5)
C(25)	1.176(1)	0.085 2(8)	0.099 1(7)	Cl	0.258 0(2)	0.4227(2)	0.421 1(1)
C(26)	1.157 2(9)	0.175 0(7)	0.099 5(5)	O(11)	0.128(1)	0.338(1)	0.431 4(6)
C(31)	1.155 7(6)	0.406 1(5)	0.160 4(4)	O(12)	0.288(1)	0.404(1)	0.483 3(8)
C(32)	1.234 8(8)	0.463 1(6)	0.211 3(5)	O(13)	0.268(2)	0.512(1)	0.455(1)
C(33)	1.333 5(8)	0.586 2(6)	0.169 3(5)	O(14)	0.372 9(9)	0.462(1)	0.331 3(6)
C(34)	1.433 3(8)	0.617 1(7)	0.068 7(6)	O(15)	0.224(2)	0.500(2)	0.419(1)
C(35)	1.356 5(9)	0.558 4(7)	0.018 8(6)	O(16)	0.290(3)	0.473(3)	0.481(2)
C(36)	1.256 5(8)	0.434 8(6)	0.059 7(5)	O(17)	0.136(3)	0.402(3)	0.426(2)
C(41)	1.265 8(7)	0.506 0(5)	-0.256 6(4)	O(18)	0.259(2)	0.346(2)	0.484(1)
C(42)	1.373 3(8)	0.552 2(7)	-0.3586(5)	O(19)	0.342(3)	0.410(3)	0.330(2)
C(43)	1.464 2(9)	0.678 3(7)	-0.383 6(6)	O(20)	0.384(4)	0.505(4)	0.338(2)
C(44)	1.533 4(8)	0.724 6(7)	-0.326 4(5)	O(21)	0.156(3)	0.307(2)	0.421(2)
C(45)	1.427 2(8)	0.672 9(6)	-0.224 8(6)	W	0.113(1)	0.050 2(9)	0.516 9(6)

Figure. Structure of the cation $[Mn(CO)_3\{S_2CP(C_6H_{11})_3\}_2]^+$ with the atom labelling scheme; atoms are depicted as 30% probability ellipsoids

containing both chelate and σ -unidentate S₂CPR₃ ligands bound to the same central atom.

The structure consists of a mononuclear cation, $[Mn(CO)_3 \{S_2CP(C_6H_{11})_3\}_2]^+$, the co-ordination around manganese being distorted octahedral with the three carbonyls in a facial arrangement. One of the $S_2CP(C_6H_{11})_3$ groups acts as a bidentate chelate ligand, while the other is bound by only one sulphur atom [S(3)], the distance from manganese to the nonbonded S(4) atom being 3.74 Å. The three Mn–C distances are equivalent within experimental error. The Mn–S distances are in the range 2.349–2.383 Å, comparable to those found in the manganese dithiocarbamate complex $[Mn(CO)_3(PPh_3)(S_2-CNMe_2)] (2.37–2.38 Å).^{13}$

The most important distortion from C_{3v} symmetry is related to the angle S(1)–Mn–S(2) [73.37(9)°]. Of interest is the small value of S(1)–C(1)–S(2) [116.4(5)°] compared with the S–C–S angles in other S₂CPR₃ chelating ligands: 126.5(4)° in [Ag₂-(S₂CPEt₃)₄][ClO₄]₂,³ 123.5(5)° in [Cu(PPh₃)₂(S₂CPEt₃)]-BPh₄,² and 119.0(3)° in *cis*-[Pd(C₆F₅)₂{S₂CP(C₆H₁₁)₃].¹⁴ The angle S(3)–C(2)–S(4) [129.5(3)°] in the unidentate S₂CP(C₆-H₁₁)₃ ligand is close to those measured in [Cr(CO)₅(S₂CPEt₃)] [130.8(7)°],⁴ [Pd(C₆F₅)(PEt₃)₂(S₂CPEt₃)]ClO₄ [129.4(9)°],¹² and [Pt(C₆F₅)₂(CO){S₂CP(C₆H₁₁)₃}] [128.8(4)°].¹⁴

The four C-S distances are not very different, including that between C(2) and non-bonded S(4), and fall in the range 1.648(9)—1.689(7) Å, very close to the similar distances in other chelate or unidentate S_2CPR_3 complexes mentioned above. The small differences between the two C-S bond lengths is a consequence of electron delocalization within the S_2C moiety.¹²

Other cationic complexes containing $S_2CP(C_6H_{11})_3$ acting as a unidentate ligand can be prepared by displacement of weakly co-ordinated perchlorate under mild conditions. Thus treatment of $[Mn(CO)_5(OClO_3)]$ with $S_2CP(C_6H_{11})_3$ in CH_2Cl_2 solution affords yellow-orange $[Mn(CO)_5\{S_2CP-(C_6H_{11})_3\}]ClO_4$ (5) in 60% yield (analytical data in Table 1). The i.r. spectrum $[v(CO) \text{ at } 2 \text{ 139m}, 2 \text{ 056vs}, 2 \text{ 038} (\text{sh}) \text{ cm}^{-1}, \text{ in } CH_2Cl_2]$ and ${}^{31}P{}^{1}H{}$ n.m.r. spectrum $[\delta \text{ 41.7 p.p.m. (s)}]$ confirm the structure shown in the Scheme. Additional support comes from the fact that heating (5) in CHCl_3 for 2.5 h [reaction (*ix*), Scheme] produces the tetracarbonyl (2) in 73% yield *via* an intramolecular CO displacement.

Tricarbonyl compounds $fac-[Mn(CO)_3(L-L){S_2CP(C_6-H_{11})_3}]ClO_4 [L-L = bis(diphenylphosphino)methane(dppm),$ (**6a**); L-L = 2,2'-bipyridyl (bipy), (**6b**)] are produced byreaction of the appropriate perchlorato complex fac-[Mn- $(CO)_3(L-L)(OClO_3)] with one equivalent of S_2CP(C_6H_{11})_3 in$ $CH_2Cl_2. The air-stable crystalline solids show i.r. spectra in the$ $v(CO) region [CH_2Cl_2 solution; ($ **6a**), 2 025s, 1 961s, 1 944s;(**6b**), 2 032s, 1 942s br cm⁻¹] which are typical for fac $tricarbonyl complexes. The ³¹P-{¹H} n.m.r. spectrum of ($ **6a**) inCDCl₃ shows two signals as expected for one AX₂ pattern. The $broad high-field signal at <math>\delta$ 16.3 p.p.m. can be assigned to the two equivalent phosphorus atoms of the dppm ligand directly bound to manganese. The downfield signal appears at δ 32.7 p.p.m. as a sharp triplet [⁴J(P-P) = 3.7 Hz]. The ³¹P-{¹H} n.m.r. spectrum of compound (**6b**) consists of only one sharp singlet at δ 31.8 p.p.m.

Experimental

All reactions were carried out in dry solvents under a nitrogen atmosphere. Literature procedures for the preparation of starting materials are quoted in each case. Ligands and other reagents were purchased and used without purification unless otherwise stated. Reactions involving silver(1) salts or 2,2'bipyridyl compounds were performed in darkness. Infrared spectra were recorded on a Perkin-Elmer 298 spectrophotometer, ³¹P-{¹H} n.m.r. spectra (CDCl₃ or CD₂Cl₂ solutions, external 85% H₃PO₄ as reference) were recorded at room temperature on a Varian FT 80 A instrument. Elemental analyses were carried out on a Perkin-Elmer 240 B analyzer.

fac-[Mn(CO)₃{S₂CP(C₆H₁₁)₃}Br] (1).—Method (a). [Mn-(CO)₅Br]¹⁵ (0.55 g, 2 mmol) and S₂CP(C₆H₁₁)₃ (0.713 g, 2 mmol) were stirred in CS₂ (30 cm³) at reflux temperature for 4 h. The deep blue precipitate of (1) was collected on a frit and washed with diethyl ether (2 × 30 cm³) and recrystallized from CH₂Cl₂. Yield: 0.92 g, 80%.

Method (b). cis- $[Mn(CO)_4{P(C_6H_{11})_3}Br]^{16}$ (0.2 g, 0.38 mmol) was stirred in CS₂ for 7 h. The deep blue precipitate of (1) was worked-up as in the preceding reaction. Yield: 0.173 g, 79%.

cis-[Mn(CO)₄{S₂CP(C₆H₁₁)₃]ClO₄ (2).—Method (a). A slow stream of CO (ca. 1 bubble per second) was passed through a stirred mixture of (1) (0.2 g, 0.35 mmol) and AgClO₄ (0.108 g, 0.52 mmol) in CH₂Cl₂ (40 cm³) for 3 h in darkness. The AgBr precipitate was then filtered off and the clear orange-red solution was concentrated *in vacuo*. Addition of diethyl ether gave orange-red crystals of (2) (0.175 g, 81%).

Method (b). A solution of (5) (0.2 g, 0.31 mmol) in CHCl₃ (20 cm³) was heated under reflux for 2.5 h. After filtering the reaction mixture and after evaporating the solvent *in vacuo*, addition of diethyl ether gave (2) as an orange-red crystalline solid. Yield: 0.14 g, 73%.

 $fac-[Mn(CO)_{3}{P(OMe)_{3}}{S_{2}CP(C_{6}H_{11})_{3}}ClO_{4}$ (3a).— Silver(1) perchlorate (0.09 g, 0.43 mmol) and (1) (0.2 g, 0.35 mmol) in CH₂Cl₂ (35 cm³) were stirred in darkness for 2 h. The AgBr precipitate was filtered off and the purple solution was collected in a flask containing $P(OMe)_3$ (0.04 cm³, 0.35 mmol) and stirred for 45 min. The colour of the solution changed from purple to orange-red. Evaporation of solvent *in vacuo* gave an oil which was stirred with diethyl ether (30 cm³) affording (3a) as an orange-yellow microcrystalline solid. Yield: 0.214 g, 85%.

fac-[Mn(CO)₃{P(C₆H₁₁)₃}{S₂CP(C₆H₁₁)₃}ClO₄ (3b).— Method (a). The first step of the reaction was as described for (3a) using AgClO₄ (0.09 g, 0.43 mmol) and (1) (0.2 g, 0.35 mmol) in CH₂Cl₂ (35 cm³). After filtering off the AgBr precipitate, the resulting solution was stirred with P(C₆H₁₁)₃ (0.097 g, 0.35 mmol) for 30 min. Evaporation of solvent *in vacuo* and treatment of the resulting oil with diethyl ether (30 cm³) affords compound (3b) as a dark purple solid. Yield: 0.25 g, 82%. It was recrystallized by slow addition of diethyl ether to a concentrated CH₂Cl₂ solution giving dark purple crystals.

Method (b). cis- $[Mn(CO)_4 \{P(C_6H_{11})_3\}Br]^{16}$ (0.2 g, 0.38 mmol) and AgClO₄ (0.098 g, 0.47 mmol) were stirred in darkness for 2 h. After filtering off AgBr, S₂CP(C₆H₁₁)₃ (0.135 g, 0.38 mmol) was added to the resulting solution and the mixture was stirred for 3.5 h. The colour changed from yellow to deep purple. Evaporation of CH₂Cl₂ in vacuo followed by addition of diethyl ether gave (**3b**) as a dark purple solid. Yield: 0.25 g, 75%.

 $fac-[Mn(CO)_3 \{S_2CP(C_6H_{11})_3\}_2]ClO_4$ (4).—The first step of the reaction was as described for (3a) using AgClO₄ (0.09 g, 0.43 mmol) and (1) (0.3 g, 0.35 mmol) in CH₂Cl₂ (35 cm³). After removing the AgBr precipitate by filtration, S₂CP(C₆H₁₁)₃ (0.136 g, 0.35 mmol) was added to the solution and the mixture was stirred for 1 h. Evaporation of solvent *in vacuo* and addition of diethyl ether gave (4) as a purple microcrystalline solid. Yield: 0.29 g, 88%.

 $[Mn(CO)_{5}\{S_{2}CP(C_{6}H_{11})_{3}\}]ClO_{4} (5).$ —The compound S_{2} -CP($C_{6}H_{11}$)_{3} (0.26 g, 0.76 mmol) was added to a filtered [Mn(CO)_{5}(OClO_{3})]^{17} solution in CH₂Cl₂ prepared from [Mn(CO)_{5}Br] (0.2 g, 0.73 mmol) and AgClO_{4} (0.226 g, 1.1 mmol). The mixture was stirred in darkness for 30 min. Evaporating the solvent *in vacuo* and stirring the resulting oil with diethyl ether (25 cm³) gave (5) as a yellow-orange solid. Yield: 0.29 g, 60%. Recrystallization was from CH₂Cl₂-Et₂O as described for (3a).

fac-[Mn(CO)₃(dppm){S₂CP(C₆H₁₁)₃}ClO₄ (**6a**).—The complex fac-[Mn(CO)₃(dppm)(OClO₃)]¹⁸ (0.2 g, 0.32 mmol) and S₂CP(C₆H₁₁)₃ (0.114 g, 0.32 mmol) were stirred in CH₂Cl₂ (30 cm³) for 4 h, in darkness. The solvent was evaporated *in vacuo* and the residue stirred with diethyl ether giving (**6a**) as a microcrystalline orange solid. Yield: 0.22 g, 71%.

fac-[Mn(CO)₃(bipy){S₂CP(C₆H₁₁)₃]ClO₄ (**6b**).—The reaction was performed under similar conditions as for (**6a**) using *fac*-[Mn(CO)₃(bipy)(OClO₃)]¹⁹ (0.2 g, 0.51 mmol) in CH₂Cl₂ (30 cm³); the mixture was stirred for 1 h. The work-up was as described for (**6a**), affording (**6b**) as orange-red crystals. Yield: 0.29 g, 77%.

Crystal Structure Determination of fac- $[Mn(CO)_3{S_2CP-(C_6H_{11})_3}_2]ClO_4 \cdot H_2O$ (4).—Crystals were grown by slow diffusion of Et₂O into a concentrated CH₂Cl₂ solution of (4). A dark purple prism (0.35 × 0.30 × 0.30 mm) was mounted in a sealed capillary tube.

Crystal data. $C_{41}H_{66}CIMnO_7P_2S_4$, M = 951.6, triclinic, a = 13.102(4), b = 15.180(4), c = 16.878(5) Å, $\alpha = 91.48(3)$, $\beta = 64.63(3)$, $\gamma = 123.58(3)^\circ$, U = 2.425(5) Å³ (by leastsquares refinement on setting angles of 25 automatically centred reflections), $\lambda = 0.710$ 69 Å, space group *P*I, Z = 2, $D_c = 1.30$ g cm⁻³.

Data collection and processing. CAD4 Enraf-Nonius diffractometer, $\omega/2\theta$ mode with ω -scan width of 1.3 + 0.35tan θ ; graphite-monochromated Mo- K_{α} radiation; 5 535 reflections measured at room temperature with 1.5 < θ < 25° (*hkl*, *hkl*, *hkl*, *hkl*); 4 193 reflections with $F > 3\sigma(F)$ used for computations; no absorption correction (small value of $\mu = 5.7$ cm⁻¹ and flat ψ scan); two standard reflections measured every 2 h.

Structure analysis and refinement. Direct methods with MULTAN;²⁰ full-matrix refinements in two blocks with SHELX.²¹ Hydrogen atoms were found on a difference-Fourier map and were refined with one overall thermal parmeter [4.9(3) Å²].

The perchlorate anion is not part of the co-ordination group; it presented an unsolved oxygen disorder problem. The difference map showed several diffuse peaks around the chlorine atoms. Four major peaks correspond to an approximate tetrahedral environment; however such a tetrahedron does not refine well and other peaks still appeared on a difference map. These lower peaks did not clearly show an alternative orientation for the tetrahedron. Occupation factors were then refined, arbitrarily, for 11 positions, all partially occupied by oxygen atoms, the sum of which converged to 4.2. Oxygen isotropic thermal parameters ranged from 3.8 to 7.5 Å², and Cl-O distances ranged from 1.33 to 1.60 Å. The Fourier map also revealed one additional peak near the inversion centre; this was refined as a water molecule. A refinement without this solvent molecule led to R = 0.082; when this water molecule was included, refinement converged to R = 0.057 and R' =0.049, with $w = 1/[\sigma^2(F) + 0.0005(F)]$ where σ was evaluated from counting statistics. In the final cycle no parameter change was higher than 0.03, shift/e.s.d.

Acknowledgements

We thank the Spanish Comisión Asesora de Investigación Científica y Técnica for financial support.

References

- 1 S. M. Boniface and G. R. Clark, J. Organomet. Chem., 1980, 188, 263.
- 2 C. Bianchini, C. Chilardi, A. Meli, and A. Orlandini, *Inorg. Chem.*, 1983, 22, 2188.
- 3 C. Bianchini, C. Ghilardi, A. Meli, A. Orlandini, and G. Scapacci, J. Chem. Soc., Dalton Trans., 1983, 1969.
- 4 C. Bianchini, C. Ghilardi, A. Meli, S. Midolini, and A. Orlandini, Organometallics, 1982, 1, 778.
- 5 T. R. Gaffney and J. A. Ibers, Inorg. Chem., 1982, 21, 2062.
- 6 P. W. Armit, W. J. Sime, T. A. Stephenson, and L. Scott, J. Organomet. Chem., 1978, 161, 391.
- 7 C. Bianchini, A. Meli, A. Orlandini, and L. Sacconi, J. Organomet. Chem., 1981, 218, 81.
- 8 C. Bianchini, P. Innocenti, A. Meli, A. Orlandini, and G. Scapacci, J. Organomet. Chem., 1982, 233, 233.
- 9 U. Kunze and T. Hättich, Chem. Ber., 1983, 116, 3071.
- 10 U. Kunze and A. Brons, J. Organomet. Chem., 1985, 292, 349.
- 11 F. W. Einstein, E. Enwall, N. Flitcroft, and J. M. Leach, J. Inorg. Nucl. Chem., 1972, 34, 885.
- 12 R. Usón, J. Fornies, R. Navarro, M. A. Usón, M. P. Garcia, and A. J. Welch, J. Chem. Soc., Dalton Trans., 1984, 345.
- 13 W. K. Dean and J. W. Moncrief, J. Coord. Chem., 1976, 6, 107.
- 14 R. Usón, J. Fornies, M. A. Usón, J. F. Yagüe, P. G. Jones, and K. M. Meyer-Bäse J. Chem. Soc., Dalton Trans., 1986, 947.
- 15 R. B. King, 'Organometallic Synthesis,' Academic Press, New York, 1965, vol. 1, p. 47.
- 16 F. A. Hartman, M. Kilner, and A. Wojcicki, Inorg. Chem., 1967, 6, 34.
- 17 R. Usón, V. Riera, J. Gimeno, M. Laguna, and M. P. Gamasa, J. Chem. Soc., Dalton Trans., 1979, 996.
- 18 G. Carriedo and V. Riera, J. Organomet. Chem., 1981, 205, 371.
- 19 R. Usón, V. Riera, J. Gimeno, and M. Laguna, *Transition Met. Chem.*, 1977, 2, 123.
- 20 P. Main, S. J. Fiske, S. E. Hill, L. Lessinger, P. Germain, J. P. Declercq, and M. M. Woolfson, MULTAN 80, automatic system of computer programs for crystal structure determination, Universities of York and Louvain (Belgium), 1980.
- 21 G. M. Sheldrick, SHELX 76, program for crystal structure determination, University of Cambridge, 1976.

Received 3rd November 1986; Paper 6/2127