Mono- and Bi -nuclear Gold(I) and Gold(iII) Complexes with $\mathrm{S}_{\mathbf{2}} \mathrm{C}-\mathrm{PR}_{3}$ Ligands. X-Ray Crystal Structures of $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{~S}_{2} \mathbf{C}-\mathrm{PEt}_{3}\right)\right]$ and $\left[\mathrm{Au}_{2}\left(\mu-\mathrm{S}_{2} \mathbf{C}-\mathrm{PEt}_{3}\right)\right.$ $\left.\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{6}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}{ }^{*}$

Rafael Usón, Antonio Laguna, Mariano Laguna, and Maria Luz Castilla
Departamento de Química Inorgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-Consejo Superior de Investigaciones Científicas, 50009 Zaragoza, Spain
Peter G. Jones and Christa Fittschen
Institut für Anorganische Chemie der Universität, Tammannstrasse 4, 3400 Göttingen, Federal Republic of Germany

Abstract

Phosphonium dithiocarboxylates $\mathrm{S}_{2} \mathrm{C}-\mathrm{PR}_{3}$ displace the neutral ligand in [$\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ (tht)] (tht = tetrahydrothiophene) to give monomeric $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{~S}_{2} \mathrm{C}-\mathrm{PR}_{3}\right)\right]$, where the neutral ligand is monodentate. Binuclear singly- or doubly-bridged gold(I) derivatives can be obtained by the reaction ($2: 1$) between suitable gold(1) precursors and $\mathrm{S}_{2} \mathrm{C}-\mathrm{PR}_{3}$. Binuclear bridged gold (III) complexes $\left[\mathrm{Au}_{2}\left(\mu-\mathrm{S}_{2} \mathrm{C}-\mathrm{PR}_{3}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{6}\right]$ have been prepared by reaction of $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{~S}_{2} \mathrm{C}-\mathrm{PR}_{3}\right)\right]$ with $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{OEt}_{2}\right)\right]$. The structures of $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{~S}_{2} \mathrm{C}-\mathrm{PEt}_{3}\right)\right]$ and $\left[\mathrm{Au}_{2}\left(\mu-\mathrm{S}_{2} \mathrm{C}-\mathrm{PEt}_{3}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{6}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ have been established by X-ray crystallography.

We have studied ${ }^{1,2}$ some aspects of the chemistry of the versatile ligands $\mathrm{S}_{2} \mathrm{C}-\mathrm{PR}_{3}$; however, their role in gold chemistry has not yet been investigated. In the present paper, we describe the synthesis of gold derivatives $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{~S}_{2} \mathrm{C}-\mathrm{PR}_{3}\right)\right]$ containing the unidentate σ-S-bonded ligand. Their reactions with gold(I) or gold(III) compounds lead to binuclear complexes where the $\mathrm{S}_{2} \mathrm{C}-\mathrm{PR}_{3}$ ligand uses both S atoms to bridge the metal centres, a situation that has its only precedent in the complex cation $\left[\mathrm{Ag}_{2}\left(\mu-\mathrm{S}_{2} \mathrm{C}-\mathrm{PEt}_{3}\right)_{2}\left(\mathrm{~S}_{2} \mathrm{C}-\mathrm{PEt}_{3}\right)_{2}\right]^{2+} .{ }^{3}$ Both types of co-ordination have been unambiguously established by single-crystal X-ray diffraction studies of $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{~S}_{2} \mathrm{C}-\mathrm{PEt}_{3}\right)\right]$ and $\left[\mathrm{Au}_{2}\left(\mu-\mathrm{S}_{2} \mathrm{C}-\mathrm{PEt}_{3}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{6}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Results and Discussion

(a) Complexes containing Unidentate $\mathrm{S}_{2} \mathrm{C}-\mathrm{PR}_{3} .-$ Reactions of various gold(I) or gold(III) precursors containing a weakly co-ordinating ligand $\left\{v i z .\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(\mathrm{tht})\right],\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}-\right.\right.$ $\left.\mathrm{Cl}\left(\mathrm{OEt}_{2}\right)\right],\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left(\mathrm{OClO}_{3}\right)\left(\mathrm{PPh}_{3}\right)\right],\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right.$ (tht) $)$, or $[\mathrm{AuCl}(\mathrm{tht})]$ (tht = tetrahydrothiophene) $\}$ with the stoicheiometric amount of $\mathrm{S}_{2} \mathrm{C}-\mathrm{PR}_{3}\left[\mathrm{R}_{3}=\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}, \mathrm{Et}_{3}, \mathrm{Bu}_{3}, \mathrm{PhMe}_{2}\right.$, or PhEt_{2}] lead to the expected substitution products only with $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(\right.$ tht $\left.)\right]$ [equation (1)]; intractable oils [with the
$\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(\mathrm{tht})\right]+\mathrm{S}_{2} \mathrm{C}-\mathrm{PR}_{3} \longrightarrow$

$$
\begin{equation*}
\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{~S}_{2} \mathrm{C}-\mathrm{PR}_{3}\right)\right]+\mathrm{tht} \tag{1}
\end{equation*}
$$

$\mathrm{R}_{3}=\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}(\mathbf{1}), \mathrm{Et}_{3}$ (2), Bu_{3} (3), PhMe_{2} (4), PhEt_{2} (5)
other gold(III) derivatives] or mixtures of products [with gold $(\mathrm{I})]$ are obtained in the other cases.

The reactions are run at $-20^{\circ} \mathrm{C}$ and in the presence of CS_{2} to prevent dissociation of the ligand, since the free phosphine would give $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{PR}_{3}\right)\right]$. However, the pink complexes

[^0]isolated, (1)-(5) (Table 1), are stable in solution and in the solid state at room temperature. They behave as non-electrolytes in acetone solution and are monomeric (isopiestic method) in dichloromethane solution. Their i.r. spectra show two strong bands in the $800 \mathrm{~cm}^{-1}$ region (810 s and $790 \mathrm{~s} \mathrm{br} \mathrm{cm}{ }^{-1}$), a pattern which is characteristic for some square-planar complexes of the type $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \mathrm{~L}\right](\mathrm{L}=$ unidentate ligand $){ }^{4}$
The ${ }^{1} \mathrm{H}$ n.m.r. spectra confirm the purity of the compounds [and, incidentally, that complex (1) contains $0.5 \mathrm{OEt}_{2}$ of crystallization]. The ${ }^{19} \mathrm{~F}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum of complex (2) shows the presence of two types of $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups (2:1 ratio) (see Experimental section), compatible with a square-planar structure and unidentate $\mathrm{S}_{2} \mathrm{C}-\mathrm{PEt}_{3}$; other five-co-ordinate structures cannot be ruled out from the n.m.r. data alone. The structure of complex (2) has thus been established by X-ray diffraction studies. Suitable crystals were obtained by slow diffusion of n -hexane into a concentrated dichloromethane solution of (2).

The structure analysis (see Figure 1) confirms that the $\mathrm{S}_{2} \mathrm{C}$ -

Figure 1. The molecule of $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{~S}_{2} \mathrm{C}-\mathrm{PEt}_{3}\right)\right]$ (2) in the crystal, showing the atom numbering scheme. Radii arbitrary, H atoms excluded

Table 1. Analytical ${ }^{a}$ and physical data ${ }^{b}$

	Colour	Analysis (\%)			
Complex		C	H	$\Lambda_{M}{ }^{\text {c }}$	M.p. ${ }^{\circ} \mathrm{C}$
(1) $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left\{\mathrm{~S}_{2} \mathrm{C}-\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right] \cdot 0.5 \mathrm{OEt}_{2}$	Pink	$\begin{gathered} 42.9 \\ (42.8) \end{gathered}$	$\begin{gathered} 3.5 \\ (3.6) \end{gathered}$	0.1	206
(2) $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{~S}_{2} \mathrm{C}-\mathrm{PEt}_{3}\right)\right]$	Pink	$\begin{gathered} 33.65 \\ (33.75) \end{gathered}$	1.7	0.3	148
(3) $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{~S}_{2} \mathrm{C}-\mathrm{PBu}_{3}\right)\right]$	Pink	$\begin{array}{r} 38.15 \\ (37.7) \end{array}$	$\begin{array}{r} 2.75 \\ (2.75) \end{array}$	0.6	163
(4) $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{~S}_{2} \mathrm{C}-\mathrm{PPhMe}{ }_{2}\right)\right]$	Pink	$\begin{array}{r} 35.55 \\ (35.8) \end{array}$	$\begin{aligned} & 1.2 \\ & (1.25) \end{aligned}$	6.1	141
(5) $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{~S}_{2} \mathrm{C}-\mathrm{PPhEt}_{2}\right)\right]$	Pink	$\begin{gathered} 37.05 \\ (37.15) \end{gathered}$	$\begin{gathered} 1.6 \\ (1.5) \end{gathered}$	6.1	164
(6) $\left[\mathrm{Au}_{2}\left\{\mu-\mathrm{S}_{2} \mathrm{C}-\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right]$	Brown	$\begin{gathered} 34.8 \\ (34.35) \end{gathered}$	$\begin{gathered} 3.25 \\ (3.1) \end{gathered}$	0.5	149
(7) $\left[\mathrm{Au}_{2}\left(\mu-\mathrm{S}_{2} \mathrm{C}-\mathrm{PEt}_{3}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right]$	Red-brown	$\begin{gathered} 24.7 \\ (24.5) \end{gathered}$	$\begin{gathered} 1.65 \\ (1.65) \end{gathered}$	0.1	144
(8) $\left[\mathrm{Au}_{2}\left(\mu-\mathrm{S}_{2} \mathrm{C}-\mathrm{PBu}_{3}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right]$	Red-brown	$\begin{gathered} 29.8 \\ (29.4) \end{gathered}$	$\begin{gathered} 2.85 \\ (2.6) \end{gathered}$	1.4	130
(9) $\left[\mathrm{Au}_{2}\left(\mu-\mathrm{S}_{2} \mathrm{C}-\mathrm{PPhMe} \mathrm{P}_{2}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right]$	Brown	$\begin{array}{r} 26.75 \\ (26.5) \end{array}$	$\begin{gathered} 1.15 \\ (1.25) \end{gathered}$	2.8	154
(10) $\left[\mathrm{Au}_{2}\left(\mu-\mathrm{S}_{2} \mathrm{C}-\mathrm{PPhEt}_{2}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right]$	Brown	$\begin{array}{r} 28.45 \\ (28.2) \end{array}$	$\begin{gathered} 1.55 \\ (1.55) \end{gathered}$	4.3	163
(11) $\left[\mathrm{Au}_{2}\left(\mu-\mathrm{S}_{2} \mathrm{C}-\mathrm{PEt}_{3}\right) \mathrm{Cl}_{2}\right]$	Orange-red	$\begin{gathered} 12.7 \\ (12.5) \end{gathered}$	$\begin{gathered} 2.3 \\ (2.1) \end{gathered}$	5.3	109
(12) $\left[\mathrm{Au}_{2}\left(\mu-\mathrm{S}_{2} \mathrm{C}-\mathrm{PPhMe} 2\right) \mathrm{Cl}_{2}\right]$	Orange-red	$\begin{array}{r} 16.05 \\ (16.3) \end{array}$	$\begin{gathered} 1.65 \\ (1.6) \end{gathered}$	3.6	136
(13) $\left[\mathrm{Au}_{2}\left(\mu-\mathrm{S}_{2} \mathrm{C}-\mathrm{PEt}_{3}\right)_{2}\right]\left[\mathrm{ClO}_{4}\right]_{2}$	Green-brown	$\begin{gathered} 16.85 \\ (17.15) \end{gathered}$	$\begin{gathered} 2.8 \\ (3.1) \end{gathered}$	165.5	176
(14) $\left[\mathrm{Au}_{2}\left(\mu-\mathrm{S}_{2} \mathrm{C}-\mathrm{PBu}_{3}\right)_{2}\right]\left[\mathrm{ClO}_{4}\right]_{2}$	Violet	$\begin{gathered} 27.15 \\ (27.05) \end{gathered}$	$\begin{gathered} 4.75 \\ (4.6) \end{gathered}$	175.5	195
(15) $\left[\mathrm{Au}_{2}\left(\mu-\mathrm{S}_{2} \mathrm{C}-\mathrm{PPhMe}\right)_{2}\right]\left[\mathrm{ClO}_{4}\right]_{2}$	Red-brown	$\begin{gathered} 21.4 \\ (21.65) \end{gathered}$	$\begin{gathered} 2.15 \\ (2.25) \end{gathered}$	$161.2^{\text {d }}$	144
(16) $\left[\mathrm{Au}_{2}\left\{\mu-\mathrm{S}_{2} \mathrm{C}-\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{6}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$	Yellow	$\begin{gathered} 36.6 \\ (36.45) \end{gathered}$	$\begin{gathered} 2.2 \\ (2.45) \end{gathered}$	e	191
(17) $\left[\mathrm{Au}_{2}\left(\mu-\mathrm{S}_{2} \mathrm{C}-\mathrm{PEt}_{3}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{6}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$	Yellow	$\begin{gathered} 31.55 \\ (31.75) \end{gathered}$	$\begin{gathered} 1.0 \\ (1.1) \end{gathered}$	e	145
(18) $\left[\mathrm{Au}_{2}\left(\mu-\mathrm{S}_{2} \mathrm{C}-\mathrm{PBu}_{3}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{6}\right]$	Yellow	$\begin{gathered} 35.15 \\ (35.45) \end{gathered}$	$\begin{gathered} 1.6 \\ (1.8) \end{gathered}$	e	152
(19) $\left[\mathrm{Au}_{2}\left(\mu-\mathrm{S}_{2} \mathrm{C}-\mathrm{PPhMe} 2\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{6}\right]$	Yellow	$\begin{gathered} 33.55 \\ (33.40) \end{gathered}$	$\begin{gathered} 0.7 \\ (0.8) \end{gathered}$	e	155
(20) $\left[\mathrm{Au}_{2}\left(\mu-\mathrm{S}_{2} \mathrm{C}-\mathrm{PPhEt}_{2}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{6}\right]$	Yellow	$\begin{array}{r} 34.45 \\ (34.2) \end{array}$	$\begin{gathered} 0.9 \\ (1.1) \end{gathered}$	e	159

${ }^{a}$ Calculated values are given in parentheses. ${ }^{b}$ The molecular weights in CHCl_{3} solution (calc.) are: (1): $1122(1091)$; (2): 897(892); (3): 943(976); the other compounds are not soluble enough or decompose in CHCl_{3}. ${ }^{\mathrm{c}} \mathrm{In} \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$; in acetone, 5×10^{-4} molar solutions. ${ }^{d}$ In nitromethane, 5×10^{-4} molar solution. ${ }^{e}$ Decomposes in acetone or nitromethane (see text).
PEt_{3} ligand is monodentate; the $\mathrm{Au} \cdots \mathrm{S}(2)$ distance is $3.52 \AA$. The $\mathrm{S}(1)-\mathrm{C}(19)-\mathrm{S}(2)$ angle is $c a .4^{\circ}$ wider than in the free ligand; ${ }^{5}$ this is a general feature of such complexes ${ }^{1,2}$ and may reflect some steric repulsion between the non-bonded sulphur atom and the metal. The $\mathrm{C}-\mathrm{S}$ bond lengths are also consistent with monodentate co-ordination, with $\mathrm{C}(19)-\mathrm{S}(1) 1.690(4)$ and $\mathrm{C}(19)-\mathrm{S}(2) 1.630(4) \AA$. The $\mathrm{Au}-\mathrm{S}(1)-\mathrm{C}(19)$ angle of $104.4(2)^{\circ}$ suggests $s p^{3}$ hybridization at $S(1)$.
The co-ordination geometry at gold is square planar as expected, the largest deviation from the best plane of five atoms being $0.028 \AA$ for Au . The dihedral angle between the coordination plane and the plane containing $S(1), S(2), C(19)$, and P is 67.2°. The $\mathrm{Au}-\mathrm{C}(7)$ bond length of $2.037(3) \AA($ trans to S$)$ is significantly shorter than $\mathrm{Au}-\mathrm{C}(1)$ and $\mathrm{Au}-\mathrm{C}(13)$ [2.067(4), 2.076 (4) $\AA]$, indicating that the sulphur atom exercises a smaller trans influence than $\mathrm{C}_{6} \mathrm{~F}_{5}$ itself.
(b) Complexes containing Bridging $\mathrm{S}_{2} \mathrm{C}-\mathrm{PR}_{3} .-$ Neutral or cationic binuclear gold(I) complexes can readily be obtained by
reactions [equations (2)-(4)] of suitable gold(I) precursors with the ligands in 2:1 ratio.
$2\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\right.$ tht $\left.)\right]+\mathrm{S}_{2} \mathrm{C}-\mathrm{PR}_{3} \longrightarrow$

$$
\begin{equation*}
\left[\left(\mathrm{F}_{5} \mathrm{C}_{6}\right) \mathrm{Au}\left(\mu-\mathrm{S}_{2} \mathrm{C}-\mathrm{PR}_{3}\right) \mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right]+2 \mathrm{tht} \tag{2}
\end{equation*}
$$

$\mathrm{R}_{3}=\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}(\mathbf{6}), \mathrm{Et}_{3}(\mathbf{7}), \mathrm{Bu}_{3}(\mathbf{8}), \mathrm{PhMe}_{2}(9), \mathrm{PhEt}_{2}(\mathbf{1 0})$
$2[\mathrm{AuCl}($ tht $)]+\mathrm{S}_{2} \mathrm{C}-\mathrm{PR}_{3} \longrightarrow$
$\left[\mathrm{ClAu}\left(\mu-\mathrm{S}_{2} \mathrm{C}-\mathrm{PR}_{3}\right) \mathrm{AuCl}\right]+2$ tht
$\mathrm{R}_{3}=\mathrm{Et}_{3}$ (11), PhMe_{2} (12)
$2\left[\mathrm{Au}(\mathrm{tht})_{2}\right] \mathrm{ClO}_{4}+2 \mathrm{~S}_{2} \mathrm{C}-\mathrm{PR}_{3} \longrightarrow$

$$
\begin{equation*}
\left[\mathrm{Au}_{2}\left(\mu-\mathrm{S}_{2} \mathrm{C}-\mathrm{PR}_{3}\right)_{2}\right]\left[\mathrm{ClO}_{4}\right]_{2}+4 \text { tht } \tag{4}
\end{equation*}
$$

$\mathrm{R}_{3}=\mathrm{Et}_{3}(13), \mathrm{Bu}_{3}(14), \mathrm{PhMe}_{2}$ (15).
Complexes (6)-(15) are deeply coloured, air- and moisturestable solids. They are slightly soluble or insoluble in dichloromethane, chloroform, and acetone and insoluble in diethyl ether and n-hexane.

Complexes (6)-(10) are non-conducting in acetone solution; their lack of solubility precludes the determination of their molecular weights. Their i.r. spectra show only one band at $800-790 \mathrm{~cm}^{-1}$, in agreement with the proposed structures. ${ }^{6}$ Only complex (7) is soluble enough to give a ${ }^{19} \mathrm{~F}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum, which shows five signals since the hindered rotation of the $\mathrm{C}_{6} \mathrm{~F}_{5}$ rings makes the five fluorine atoms inequivalent. ${ }^{7}$

The chloro derivatives show one i.r. band at $339 \mathrm{~m}[(11)]$ or $337 \mathrm{~m} \mathrm{~cm}{ }^{-1}[(12)]$ assignable to $v(\mathrm{Au}-\mathrm{Cl}),{ }^{6,8}$ along with absorptions at $1070 \mathrm{~s}[(11)]$ and $1068 \mathrm{~s} \mathrm{~cm}^{-1}[(12)]$ due to $v(\mathrm{C}-\mathrm{S})_{\text {asym }}{ }^{9,10}$ which cannot be assigned in other complexes containing $\mathrm{C}_{6} \mathrm{~F}_{5}$ because of overlap with absorptions from the $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups. Acetone solutions of (11) and (12) are nonconducting; lack of solubility again precludes molecular weight determinations.

Complexes (13)-(15) show i.r. bands at 1100 s , br and 620s cm^{-1} due to ${ }^{11}$ the anion $\mathrm{ClO}_{4}{ }^{-}$; their acetone solutions show conductivities within the expected range for $2: 1$ electrolytes. ${ }^{12}$ The broad band at $1100 \mathrm{~cm}^{-1}$ from $\mathrm{ClO}_{4}{ }^{-}$masks the $v(\mathrm{C}-\mathrm{S})_{\text {asym }}$ absorptions. Since the only ligand present is $\mathrm{S}_{2} \mathrm{C}-\mathrm{PR}_{3}$, a double bridge must link the two gold(I) centres; short gold-gold contacts cannot be ruled out, but we have so far been unable to obtain crystals suitable for X-ray analysis.

The $2: 1$ reaction between $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(\right.$ tht $\left.)\right]$ and $\mathrm{S}_{2} \mathrm{C}-\mathrm{PR}_{3}$ leads to the mononuclear derivatives (1)-(5) described above, with one mol equivalent of the gold(III) starting material remaining unreacted despite the fact that the second S atom of the bidentate ligand is still free. Apparently, $\mathrm{S}_{2} \mathrm{C}-\mathrm{PR}_{3}$ is not a strong enough ligand readily to displace the relatively weak tht ligand in gold(III) complexes (see above).
Tetrahydrothiophene can be more easily displaced from gold(I) complexes; thus $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{tht})\right]$ or $\left[\mathrm{Au}(\mathrm{tht})_{2}\right] \mathrm{ClO}_{4}$ react with $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{~S}_{2} \mathrm{C}-\mathrm{PEt}_{3}\right)\right]$ affording complexes (7) or (13) respectively, the gold(III) centre being displaced from the original complex (2) [equations (5) and (6)].

$$
\begin{gather*}
{\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{~S}_{2} \mathrm{C}-\mathrm{PEt}_{3}\right)\right]+2\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{tht})\right] \longrightarrow} \\
{\left[\left(\mathrm{F}_{5} \mathrm{C}_{6}\right) \mathrm{Au}\left(\mu-\mathrm{S}_{2} \mathrm{C}-\mathrm{PEt}_{3}\right){\left.\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right]+}_{\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(\mathrm{tht})\right]+\text { tht }}\right.} \\
2\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{~S}_{2} \mathrm{C}-\mathrm{PEt}_{3}\right)\right]+2\left[\mathrm{Au}(\mathrm{tht})_{2}\right] \mathrm{ClO}_{4} \longrightarrow \tag{5}\\
{\left[\mathrm{Au}_{2}\left(\mu-\mathrm{S}_{2} \mathrm{C}-\mathrm{PEt}_{3}\right)_{2}\right]\left[\mathrm{ClO}_{4}\right]_{2}+} \\
2\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(\mathrm{tht})\right]+2 \text { tht }
\end{gather*}
$$

In order to prepare gold(iII)-gold(III) binuclear complexes with bridging $\mathrm{S}_{2} \mathrm{C}-\mathrm{PR}_{3}$, gold(III) precursors containing a weaker ligand than tht are thus necessary. With gold(III), diethyl ether is a very weak ligand and therefore the $1: 1$ reaction of the mononuclear complexes (1)-(5) with $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{OEt}_{2}\right)\right]^{13}$ leads to the expected compounds [equation (7)].

$$
\begin{aligned}
& {\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{~S}_{2} \mathrm{C}-\mathrm{PR}_{3}\right)\right]+\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{OEt}_{2}\right)\right] \longrightarrow} \\
& {\left[\left(\mathrm{F}_{5} \mathrm{C}_{6}\right)_{3} \mathrm{Au}\left(\mu-\mathrm{S}_{2} \mathrm{C}-\mathrm{PR}_{3}\right) \mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]+\mathrm{OEt}_{2} \quad(7)} \\
& \mathrm{R}_{3}=\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}(\mathbf{1 6}), \mathrm{Et}_{3}(\mathbf{1 7}), \mathrm{Bu}_{3}(\mathbf{1 8}), \mathrm{PhMe}_{2}(\mathbf{1 9}), \mathrm{PhEt}_{2}(\mathbf{2 0})
\end{aligned}
$$

Complexes (16)-(20) are yellow solids, stable at room temperature. They decompose, however, in donor solvents such as acetone, nitromethane, and even diethyl ether.

From diethyl ether solutions of $\left[\left(\mathrm{F}_{5} \mathrm{C}_{6}\right)_{3} \mathrm{Au}\left(\mu-\mathrm{S}_{2} \mathrm{C}-\right.\right.$ $\left.\left.\mathrm{PEt}_{3}\right) \mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]$ we have isolated $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{~S}_{2} \mathrm{C}-\mathrm{PEt}_{3}\right)\right]$. This suggests that the decomposition reaction takes place according to equation (8).

$$
\begin{align*}
& {\left[\mathrm{Au}_{2}\left(\mu-\mathrm{S}_{2} \mathrm{C}-\mathrm{PR}_{3}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{6}\right]+\text { solvent } \longrightarrow} \\
& \quad\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{~S}_{2} \mathrm{C}-\mathrm{PR}_{3}\right)\right]+\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(\text { solvent })\right] \tag{8}
\end{align*}
$$

One single crystal of $\left[\mathrm{Au}_{2}\left(\mu-\mathrm{S}_{2} \mathrm{C}-\mathrm{PEt}_{3}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{6}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ suitable for X-ray diffraction studies was obtained by diffusion

Figure 2. The molecule of $\left[\mathrm{Au}_{2}\left(\mu-\mathrm{S}_{2} \mathrm{C}-\mathrm{PEt}_{3}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{6}\right]$ (17) in the crystal, showing the atom numbering scheme. Radii arbitrary, H atoms excluded
of n-hexane into a dichloromethane solution of (17). The crystal quality was poor because of the solvent of crystallization and its ready loss and the molecular dimensions are therefore of limited accuracy.

The bridging co-ordination of the $\mathrm{S}_{2} \mathrm{C}-\mathrm{PEt}_{3}$ ligand is confirmed by the X-ray structure determination (see Figure 2); this is the first case of a bridging $\mathrm{S}_{2} \mathrm{C}-\mathrm{PR}_{3}$ without ring closure. It is notable that the two $\mathrm{P}-\mathrm{C}-\mathrm{S}-\mathrm{Au}$ moieties differ appreciably: $\mathrm{Au}-\mathrm{S}, \mathrm{Au}-\mathrm{S}-\mathrm{C}$, and P-C-S are 2.409(8), 2.343(9) $\AA ; 118.7(11)$, $107.7(12)^{\circ}$; and $125.6(17), 111.2(18)^{\circ}$ respectively for $S(1)$ and $\mathrm{S}(2)$. It seems that there is little delocalization in the CS_{2} group, and that a suitable description of the hybridization is $s p^{3}$ for $S(1)$ and $s p^{2}$ for $S(2)$. This would imply retention of some double bond character for $\mathrm{C}(37)-\mathrm{S}(2)$, which cannot be confirmed because of the large e.s.d.s of the C-S bond lengths [C(37)-S(1) $1.666(32), \mathrm{C}(37)-\mathrm{S}(2) 1.660(30) \AA]$. It is probable that steric effects (ethyl- $\mathrm{C}_{6} \mathrm{~F}_{5}$ repulsions) are responsible for the widening of the $\mathrm{S}(1)-\mathrm{C}-\mathrm{P}$ angle to 126°, although such assertions are difficult to prove. The co-ordination planes are approximately perpendicular to the PCS_{2} plane [dihedral angles $95,72^{\circ}$ for $\mathrm{Au}(1)$ and $\mathrm{Au}(2)$ respectively]. Of the other complexes with bridging $\mathrm{S}_{2} \mathrm{C}-\mathrm{PR}_{3}$, the ring complex $\left[\mathrm{Ag}_{2}\left(\mu-\mathrm{S}_{2} \mathrm{C}-\mathrm{PEt}_{3}\right)_{2}\left(\mathrm{~S}_{2} \mathrm{C}-\right.\right.$ $\left.\left.\mathrm{PEt}_{3}\right)_{2}\right]\left[\mathrm{ClO}_{4}\right]_{2}{ }^{3}$ displays highly irregular geometry ($\mathrm{Ag}-\mathrm{S}$ $2.468-2.812 \AA$) and the chelated $c i s-\left[\operatorname{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\mathrm{~S}_{2} \mathrm{C}-\right.\right.$ $\left.\left.P\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right]^{1}$ involves a four-membered chelate ring, so no useful comparison is possible. It is clear that several more structures with bridging $\mathrm{S}_{2} \mathrm{C}-\mathrm{PR}_{3}$ will have to be determined to allow a detailed analysis of bonding and structural trends.

Experimental

The C, H, and N analyses were carried out with a Perkin-Elmer 240B microanalyzer. Infrared spectra ($4000-200 \mathrm{~cm}^{-1}$) were recorded on a Perkin-Elmer 599 spectrophotometer using Nujol mulls between polyethylene sheets, n.m.r. spectra on a Varian XL-200 spectrometer. Molecular weights were determined with a Knauer 11.00 vapour-pressure osmometer.
The complexes $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(\right.$ tht $\left.)\right]{ }^{4} \quad\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\right.$ tht $\left.)\right]$, ${ }^{14}$ $\left[\mathrm{Au}(\mathrm{tht})_{2}\right] \mathrm{ClO}_{4},{ }^{15}$ and $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{OEt}_{2}\right)\right]^{13}$ were prepared as described elsewhere.

Preparations.- $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{~S}_{2} \mathrm{C}-\mathrm{PR}_{3}\right)\right] \quad\left[\mathrm{R}_{3}=\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right.$ (1), Et_{3} (2), Bu_{3} (3), PhMe_{2} (4), or PhEt_{2} (5)]. To a

Table 2. Atomic co-ordinates ($\times 10^{4}$) for complex (2)

Atom	x	y	z	Atom	x	y	z
Au	$1022.6(1)$	4088.4 (1)	$2170.4(1)$	$\mathrm{C}(19)$	-1316(4)	$5903(4)$	$2772(4)$
S(1)	-543(1)	5 675(1)	$1537(1)$	C(20)	-2 676(5)	7 908(4)	$1038(4)$
S(2)	-1143(2)	5 216(1)	4 130(1)	C(21)	-3537(5)	9 096(5)	807(5)
P	-2 484(1)	7 214(1)	2 543(1)	C(22)	-1993(5)	8 260(5)	3 059(5)
C(1)	-217(3)	2834 (3)	2993(1)	C(23)	-789(6)	8710 (6)	$2394(6)$
C(2)	-317(4)	$2187(4)$	4 164(3)	C(24)	-3916(5)	$6747(6)$	3 402(5)
C(3)	-1115(4)	$1331(4)$	4 702(4)	C(25)	-4 357(7)	5 743(7)	3136 (7)
C(4)	-1858(4)	$1086(4)$	4 063(4)	F(1)	396(3)	2386 (3)	4 830(2)
C(5)	-1781(4)	$1708(4)$	$2899(4)$	F(2)	-1177(3)	710(3)	5850 (2)
C(6)	-972(4)	2 562(4)	$2388(3)$	F(3)	-2603(3)	218(3)	4 571(3)
C(7)	2 422(3)	2 752(3)	2 629(3)	F(4)	-2 486(3)	$1452(3)$	2 266(3)
C(8)	3 264(4)	$2814(4)$	$3285(3)$	F(5)	-909(3)	$3113(3)$	$1226(2)$
C(9)	4 233(4)	$1930(4)$	3 594(4)	F(6)	$3174(2)$	3 785(2)	3 636(2)
C(10)	$4354(4)$	930(4)	3273 (4)	F(7)	$5030(3)$	$2055(3)$	4 208(3)
C(11)	3 528(4)	815(4)	$2651(4)$	F(8)	5 272(3)	39(3)	3 584(3)
C(12)	2 591(4)	$1725(4)$	2329 (3)	F(9)	$3653(3)$	-186(2)	2338 (3)
C(13)	2 293(4)	$5315(3)$	1309 (3)	$\mathrm{F}(10)$	$1822(2)$	$1576(2)$	$1681(2)$
C(14)	3000 (4)	5 306(4)	268(3)	F(11)	2 929(3)	4 447(3)	-180(2)
C(15)	3 796(4)	6 147(4)	-355(4)	$\mathrm{F}(12)$	4 452(3)	$6108(3)$	-1 373(3)
C(16)	3 915(5)	7030 (4)	74(4)	F(13)	4 689(3)	$7859(3)$	-513(3)
C(17)	3 228(5)	7066 (4)	1116 (5)	F(14)	3 358(4)	7 919(3)	1541 (3)
C(18)	2 430(4)	$6217(4)$	$1706(4)$	F(15)	$1777(3)$	6 286(3)	$2728(3)$

Table 3. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for complex (2)
dichloromethane solution ($30 \mathrm{~cm}^{3}$) containing 0.2 mmol of $\mathrm{S}_{2} \mathrm{C}-\mathrm{PR}_{3}\left[\mathrm{R}_{3}=\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}, 0.0712 \mathrm{~g} ; \mathrm{Et}_{3}, 0.0388 \mathrm{~g} ; \mathrm{Bu}_{3}, 0.0556\right.$ $\mathrm{g} ; \mathrm{PhMe}_{2}, 0.0428 \mathrm{~g}$; or $\left.\mathrm{PhEt}_{2}, 0.0485 \mathrm{~g}\right]$ and $\mathrm{CS}_{2}\left(1 \mathrm{~cm}^{3}\right)$ at $-20^{\circ} \mathrm{C}$ was added $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(\mathrm{tht})\right](0.1573 \mathrm{~g}, 0.2 \mathrm{mmol})$. The solutions turned pink immediately and after stirring for 5 \min at $-20^{\circ} \mathrm{C}$ and 15 min at room temperature, the solvent was partially evaporated ($5 \mathrm{~cm}^{3}$) under vacuum. Hexane ($30 \mathrm{~cm}^{3}$) was added to precipitate pink solids, which were recrystallized by adding n -hexane to diethyl ether solutions.
$\mathrm{R}_{3}=\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}(\mathbf{1}), 98 \%$; ${ }^{1} \mathrm{H}$ n.m.r. (in $\left.\mathrm{CDCl}_{3}\right), \delta 3.45(\mathrm{q}, 2 \mathrm{H}$, CH_{2} of $\mathrm{Et}_{2} \mathrm{O}$ crystallization), $2.73\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of $\mathrm{Et}_{2} \mathrm{O}$), ca. 2 (m, $33 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{11}$). $\mathrm{R}_{3}=\mathrm{Et}_{3}$ (2), $79 \% ;{ }^{19} \mathrm{~F}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. (in CDCl_{3}, reference CFCl_{3}), $\delta-121.09$ (m, $4 \mathrm{~F}, \mathrm{~F}_{\text {ortho }}$ of two equivalent $\mathrm{C}_{6} \mathrm{~F}_{5}$), $-123.03\left(\mathrm{~m}, 2 \mathrm{~F}, \mathrm{~F}_{\text {ortho }}\right),-159.02(\mathrm{t}, J 20 \mathrm{~Hz}$, $\left.1 \mathrm{~F}, \mathrm{~F}_{\text {para }}\right),-159.33\left(\mathrm{t}, J 20 \mathrm{~Hz}, 2 \mathrm{~F}, \mathrm{~F}_{\text {para }}\right.$ of two equivalent $\left.\mathrm{C}_{6} \mathrm{~F}_{5}\right),-163.3\left(\mathrm{~m}, 6 \mathrm{~F}, \mathrm{~F}_{\text {meta }}\right)$.
$\mathrm{R}_{3}=\mathrm{Bu}_{3}$ (3), 67 ; PPhMe 2 (4), 75 ; or PPhEt_{2} (5) 56%.
$\left[\mathrm{Au}_{2}\left(\mu-\mathrm{S}_{2} \mathrm{C}-\mathrm{PR}_{3}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right]\left[\mathrm{R}_{3}=\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right.$ (6), Et_{3} (7), Bu_{3} (8), PhMe_{2} (9) or PhEt_{2} (10)]. To a cool $\left(-20^{\circ} \mathrm{C}\right)$ dichloromethane solution $\left(20 \mathrm{~cm}^{3}\right)$ containing [$\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)($ tht $\left.)\right]$ ($2 \mathrm{mmol}, 0.0904 \mathrm{~g}$) and $\mathrm{CS}_{2}\left(1 \mathrm{~cm}^{3}\right)$ was added $\mathrm{S}_{2} \mathrm{C}-\mathrm{PR}_{3}$ (1 mmol). The solutions turned red-brown and after stirring for 10 min at $-20^{\circ} \mathrm{C}$ and 20 min at room temperature, hexane ($30 \mathrm{~cm}^{3}$) was added to precipitate brown or red-brown solids. Yields: $\mathrm{R}_{3}=\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}(6), 60 ; \mathrm{Et}_{3}$ (7), 61; $\mathrm{Bu}_{3}(8)$, 76; PhMe_{2} (9), 70; or PhEt_{2} (10), $54 \% \cdot{ }^{19} \mathrm{~F}-\left\{{ }^{1} \mathrm{H}\right\}$ N.m.r. of (7) shows complex signals at $-121.0,-123.0,-163.1$, and -163.8 p.p.m. and a triplet at -159.4 p.p.m. $(J 19.8 \mathrm{~Hz})$.
$\left[\mathrm{Au}_{2}\left(\mu-\mathrm{S}_{2} \mathrm{C}-\mathrm{PR}_{3}\right) \mathrm{Cl}_{2}\right] \quad\left[\mathrm{R}_{3}=\mathrm{Et}_{3}\right.$ (11) or PhMe_{2} (12)]. To a cool $\left(-20^{\circ} \mathrm{C}\right)$ dichloromethane solution ($15 \mathrm{~cm}^{3}$) of [$\mathrm{AuCl}($ tht $)](2 \mathrm{mmol}, 0.0641 \mathrm{~g})$ containing $\mathrm{CS}_{2}\left(1 \mathrm{~cm}^{3}\right)$ was added $\mathrm{S}_{2} \mathrm{C}-\mathrm{PR}_{3}(0.1 \mathrm{mmol})$ and the mixture stirred for 10 min at $-20^{\circ} \mathrm{C}$ and 20 min at room temperature. The resulting orangered precipitate was filtered off and washed with hexane (3×5 cm^{3}). Yields: $\mathrm{R}_{3}=\mathrm{Et}_{3}$ (11), 63; or PhMe_{2} (12), 86%. The complexes with $\mathrm{R}_{3}=\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}, \mathrm{Bu}_{3}$, or PhEt_{2} could not be isolated because addition of hexane to the dichloromethane solutions gave non-crystallizable oils.
$\left[\mathrm{Au}_{2}\left(\mu-\mathrm{S}_{2} \mathrm{C}-\mathrm{PR}_{3}\right)_{2}\right]\left[\mathrm{ClO}_{4}\right]_{2}\left[\mathrm{R}_{3}=\mathrm{Et}_{3}\right.$ (13), Bu_{3} (14), or $\left.\mathrm{PhMe}_{2}(15)\right]$. To a cool $\left(-20^{\circ} \mathrm{C}\right)$ dichloromethane solution

$\mathrm{Au}-\mathrm{S}(1)$	$2.366(1)$	$\mathrm{Au}-\mathrm{C}(1)$	$2.067(4)$
$\mathrm{Au}-\mathrm{C}(7)$	$2.037(3)$	$\mathrm{Au}(13)$	$2.076(4)$
$\mathrm{S}(1)-\mathrm{C}(19)$	$1.690(4)$	$\mathrm{S}(2)-\mathrm{C}(19)$	$1.630(4)$
$\mathrm{P}-\mathrm{C}(19)$	$1.829(4)$	$\mathrm{P}-\mathrm{C}(20)$	$1.797(5)$
$\mathrm{P}-\mathrm{C}(22)$	$1.785(7)$	$\mathrm{P}-\mathrm{C}(24)$	$1.796(5)$
$\mathrm{S}(1)-\mathrm{Au}-\mathrm{C}(1)$	$93.0(1)$	$\mathrm{S}(1)-\mathrm{Au}-\mathrm{C}(7)$	$176.9(1)$
$\mathrm{C}(1)-\mathrm{Au}-\mathrm{C}(7)$	$89.2(1)$	$\mathrm{S}(1)-\mathrm{Au}-\mathrm{C}(13)$	$87.9(1)$
$\mathrm{C}(1)-\mathrm{Au}-\mathrm{C}(13)$	$178.1(2)$	$\mathrm{C}(7)-\mathrm{Au}-\mathrm{C}(13)$	$89.9(1)$
$\mathrm{Au}-\mathrm{S}(1)-\mathrm{C}(19)$	$104.4(2)$	$\mathrm{C}(19)-\mathrm{P}-\mathrm{C}(20)$	$112.3(2)$
$\mathrm{C}(19)-\mathrm{P}-\mathrm{C}(22)$	$106.8(2)$	$\mathrm{C}(20)-\mathrm{P}-\mathrm{C}(22)$	$110.2(2)$
$\mathrm{C}(19)-\mathrm{P}-\mathrm{C}(24)$	$108.8(2)$	$\mathrm{C}(20)-\mathrm{P}-\mathrm{C}(24)$	$109.9(3)$
$\mathrm{C}(22)-\mathrm{P}-\mathrm{C}(24)$	$108.7(3)$	$\mathrm{S}(1)-\mathrm{C}(19)-\mathrm{S}(2)$	$131.4(3)$
$\mathrm{S}(1)-\mathrm{C}(19)-\mathrm{P}$	$114.5(2)$	$\mathrm{S}(2)-\mathrm{C}(19)-\mathrm{P}$	$114.0(3)$
$\mathrm{P}-\mathrm{C}(20)-\mathrm{C}(21)$	$113.0(4)$	$\mathrm{P}-\mathrm{C}(22)-\mathrm{C}(23)$	$113.1(5)$
$\mathrm{P}-\mathrm{C}(24)-\mathrm{C}(25)$	$113.6(4)$		

$\left(20 \mathrm{~cm}^{3}\right)$ of $\left[\mathrm{Au}(\mathrm{tht})_{2}\right]\left[\mathrm{ClO}_{4}\right]_{2}(0.0945 \mathrm{~g}, 0.165 \mathrm{mmol})$ containing $\mathrm{CS}_{2}\left(0.1 \mathrm{~cm}^{3}\right)$ was added $\mathrm{S}_{2} \mathrm{C}-\mathrm{PR}_{3}(0.2 \mathrm{mmol})$ and the mixture stirred for 10 min at $-20^{\circ} \mathrm{C}$ and 10 min at room temperature. The resulting precipitate (see Colour in Table 1) was filtered off and washed with hexane. Yields: $\mathrm{R}_{3}=\mathrm{Et}_{3}$ (13), 54; Bu_{3} (14), 71 ; or PhMe_{2} (15), 88%.
$\left[\mathrm{Au}_{2}\left(\mu-\mathrm{S}_{2} \mathrm{C}-\mathrm{PR}_{3}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{6}\right]\left[\mathrm{R}_{3}=\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}(16), \mathrm{Et}_{3}\right.$ (17), Bu_{3} (18), PhMe_{2} (19), or PhEt_{2} (20)]. To a suspension of 0.1 mmol of $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{~S}_{2} \mathrm{C}-\mathrm{PR}_{3}\right)\right]$ (1)-(5) [0.1091, (1); 0.0892 , (2); $0.0976,(3) ; 0.0912$, (4); or 0.0942 g of (5)] in hexane ($30 \mathrm{~cm}^{3}$) containing $\mathrm{CS}_{2}\left(0.1 \mathrm{~cm}^{3}\right)$ was added $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{OEt}_{2}\right)\right]$ (1 $\mathrm{mmol}, 0.0772 \mathrm{~g}$) and the mixture stirred for 3.5 h at room temperature to give a yellow solid of (18), (19), or (20). For $\mathrm{R}_{3}=\mathrm{Et}_{3}(17) 7 \mathrm{~h}$ at room temperature were necessary and for $\mathrm{R}_{3}=\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}(16) 1 \mathrm{~h}$ in refluxing hexane. The yellow precipitates were filtered off and washed with hexane $\left(2 \times 5 \mathrm{~cm}^{3}\right)$. Recrystallization was from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane. Yields: $\mathrm{R}_{3}=$ $\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}(\mathbf{1 6}), 84 ; \mathrm{Et}_{3}(17), 77 ; \mathrm{Bu}_{3}$ (18), $90 ; \mathrm{PhMe}_{2}(19), 82$; or PhEt_{2} (20), 85%.

X-Ray Structure Determination of $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{~S}_{2} \mathrm{C}-\mathrm{PEt}_{3}\right)\right]$ (2).-Crystal data. $\mathrm{C}_{25} \mathrm{H}_{15} \mathrm{AuF}_{15} \mathrm{PS}_{2}, M=892.44$, triclinic, $a=11.165(3), b=11.893(4), c=12.405(4) \AA, \alpha=69.54(3)$, $\beta=78.64(3), \gamma=80.06(3)^{\circ}, U=1503.2 \AA^{3}$ (by refinement of

Table 4. Atomic co-ordinates ($\times 10^{4}$) for complex (17)

Atom	x	y	z	Atom	x	y	z
$\mathrm{Au}(1)$	$6725(1)$	7795.6 (5)	6012.9 (4)	$\mathrm{C}(22)$	7 628(12)	9 786(7)	$7110(4)$
$\mathrm{Au}(2)$	7 203(1)	6 250.1(5)	7 728.9(4)	C(23)	8 534(12)	9 198(7)	$7088(4)$
S(1)	6 665(8)	7041 (3)	6682(3)	C(24)	8 247(12)	8 650(7)	$6761(4)$
S(2)	4 985(9)	6 449(4)	$7362(3)$	C(19)	7 055(12)	8 690(7)	$6455(4)$
P	3 427(9)	$7067(4)$	6 553(3)	F(20)	5 036(14)	$9350(8)$	6 203(5)
C(2)	$6998(21)$	$7828(6)$	8005 (4)	F(21)	5 556(19)	10377 (7)	6820 (7)
C(3)	6 904(21)	8 416(6)	$8304(4)$	F(22)	7890 (21)	$10313(8)$	$7418(6)$
C(4)	6 684(21)	8 285(6)	$8757(4)$	F(23)	9 684(18)	9 198(10)	7 356(6)
C(5)	6 559(21)	7 567(6)	8912(4)	F(24)	9 170(17)	8 147(7)	$6747(6)$
C(6)	$6654(21)$	$6979(6)$	8613(4)	C(26)	8 285(13)	8 596(8)	$5362(5)$
C(1)	$6873(21)$	$7110(6)$	8 159(4)	C(27)	8 512(13)	9 049(8)	4 996(5)
F(2)	7 296(20)	7 958(7)	7 589(6)	C(28)	7 398(13)	9 364(8)	4729 (5)
F(3)	7 150(24)	9091 (8)	8 177(8)	C(29)	$6058(13)$	9 226(8)	4830 (5)
F(4)	6 567(26)	8 849(9)	$9029(8)$	C(30)	$5831(13)$	8 773(8)	5 196(5)
F(5)	$6144(24)$	$7486(10)$	$9313(6)$	C(25)	$6945(13)$	8 458(8)	5 463(5)
F(6)	6380 (21)	$6323(7)$	8760 (7)	F(26)	$9341(17)$	8 268(8)	5 580(5)
C(8)	9 044(21)	5423 (8)	8 426(7)	F(27)	$9782(18)$	9 165(9)	4 888(7)
C(9)	10 197(21)	5 298(8)	$8738(7)$	F(28)	7 627(22)	9810 (8)	4 402(6)
C(10)	11 302(21)	5 787(8)	8767 (7)	F(29)	4 992(18)	9 536(9)	4 604(6)
C(11)	11 254(21)	$6401(8)$	8 482(7)	F(30)	4 587(18)	8 655(8)	5 298(7)
C(12)	10 100(21)	$6526(8)$	8 170(7)	C(37)	$5147(31)$	$6856(12)$	6 866(10)
C (7)	$8996(21)$	$6037(8)$	8 142(7)	C(39)	2 187(49)	8 104(19)	6 056(15)
F(8)	8 065(20)	4 940(8)	$8382(7)$	C(40)	2 725(97)	6319 (40)	6 162(30)
F(9)	$10236(28)$	4 703(11)	$8985(8)$	C(41)	3 458(68)	5 654(30)	6 216(22)
F(10)	12 281(30)	5 602(18)	9080 (10)	C(42)	2 025(45)	7 182(17)	$6917(14)$
F(11)	12 236(32)	$6863(15)$	$8482(12)$	C(43)	2 246(67)	7845 (25)	7 164(21)
F(12)	10 038(28)	7 118(10)	7910 (8)	C(38)	$3315(50)$	7 799(20)	$6092(16)$
C(14)	8770 (19)	5500 (8)	7007 (7)	C(32)	5 607(13)	6 708(7)	5 259(5)
C(15)	8 979(19)	4964 (8)	6 683(7)	C(33)	5 668(13)	6079(7)	4 991(5)
C(16)	$8114(19)$	4 353(8)	6633(7)	C(34)	6800 (13)	5 610(7)	$5061(5)$
C(17)	7041 (19)	4 279(8)	6 907(7)	C(35)	$7872(13)$	5 770(7)	5 399(5)
C(18)	6 832(19)	4816 (8)	7 231(7)	C(36)	$7811(13)$	6 398(7)	5 666(5)
C(13)	7 697(19)	$5426(8)$	7 281(7)	C(31)	6 679(13)	$6867(7)$	5 596(5)
F(14)	9 549(18)	$6088(7)$	7 079(6)	F(32)	4 544(18)	7 131(9)	5 173(7)
F(15)	10 074(23)	$5089(10)$	6 456(8)	F(33)	4716 (20)	5 911(13)	4 666(7)
F(16)	8 545(29)	3 879(10)	6 334(8)	F(34)	6 996(29)	$5031(9)$	4800 (8)
F(17)	6 286(27)	3 690(11)	$6824(10)$	F(35)	8 994(21)	5 372(11)	$5450(9)$
F(18)	5 753(21)	4 683(10)	7440 (8)	$F(36)$	8 864(18)	6 572(9)	5 966(6)
C(20)	6 150(12)	9 278(7)	$6477(4)$	C(44)	- 1541 (70)	2 286(28)	460(22)
C(21)	$6436(12)$	$9827(7)$	$6805(4)$	$\mathrm{Cl}(1)$	157(31)	2 528(14)	670(10)
				$\mathrm{Cl}(2)$	-891(30)	$1557(12)$	62(9)

2θ values of 44 reflections in the range $20-23^{\circ}$), space group $P \mathrm{I}, Z=2, D_{\mathrm{c}}=1.97 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=852$, deep pink prism, $0.5 \times 0.3 \times 0.2 \mathrm{~mm}, \mu\left(\mathrm{Mo}-K_{q}\right)=5.2 \mathrm{~mm}^{-1}$.

Data collection and processing. Stoe-Siemens four-circle diffractomer, monochromated Mo- K_{α} radiation ($\lambda=0.71069$ \AA). 6317 Profile-fitted ${ }^{16}$ intensities ($2 \theta_{\text {max. }} 50^{\circ},+h \pm k \pm l$ and some $-h$ equivalents), 5283 unique ($R_{\text {int }} 0.020$), 4859 with $F>4 \sigma(F)$ used for all calculations (SHELXTL ${ }^{17}$). Absorption correction by ψ-scans, transmission factors 0.63 0.92 . Three check reflections, no decay.

Structure analysis and refinement. Heavy-atom method. Refinement on F to $R 0.025, R^{\prime} 0.025$. All non-H atoms anisotropic, H atoms included using a riding model [C-H $0.96 \AA$, $\left.\mathrm{H}-\mathrm{C}-\mathrm{H} 109.5^{\circ}, U(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})\right]$, weighting scheme $w^{-1}=$ $\sigma^{2}(F)+0.00025 F^{2}, 406$ parameters. Final atomic coordinates and derived dimensions are given in Tables 2 and 3.

X-Ray Structure Determination of $\left[\mathrm{Au}_{2}\left(\mu-\mathrm{S}_{2} \mathrm{C}-\mathrm{PEt}_{3}\right)\right.$ $\left.\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{6}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (17).-Crystal data. $\mathrm{C}_{43} \mathrm{H}_{15} \mathrm{Au}_{2} \mathrm{~F}_{30} \mathrm{PS}_{2}$. $\mathrm{CH}_{2} \mathrm{Cl}_{2}, M=1675.5$, monoclinic, $a=9.765(3), b=18.218(5)$, $c=29.429(12) \AA, \beta=96.09(5)^{\circ}, U=5206 \AA^{3}$ (by refinement of 2θ values of 32 reflections in the range $20-23^{\circ}$), space group $P 2_{1} / c, Z=4, D_{\mathrm{c}}=2.14 \mathrm{~g} \mathrm{~cm}^{-3}$, yellow plate, $0.35 \times 0.25 \times$ $0.08 \mathrm{~mm}, \mu\left(\mathrm{Mo}-K_{q}\right)=5.9 \mathrm{~mm}^{-1} F(000)=3096$.

Data collection and processing. As for complex (2) with the

Table 5. Selected bond lengths (\AA) and angles (${ }^{\circ}$) for complex (17)

$\mathrm{Au}(1)-\mathrm{S}(1)$	$2.409(8)$	$\mathrm{Au}(1)-\mathrm{C}(19)$	$2.090(13)$
$\mathrm{Au}(1)-\mathrm{C}(25)$	$2.048(16)$	$\mathrm{Au}(1)-\mathrm{C}(31)$	$2.086(15)$
$\mathrm{Au}(2)-\mathrm{S}(2)$	$2.343(9)$	$\mathrm{Au}(2)-\mathrm{C}(1)$	$2.062(14)$
$\mathrm{Au}(2)-\mathrm{C}(7)$	$2.058(20)$	$\mathrm{Au}(2)-\mathrm{C}(13)$	$2.088(19)$
$\mathrm{C}(37)-\mathrm{S}(1)$	$1.666(32)$	$\mathrm{C}(37)-\mathrm{S}(2)$	$1.660(30)$
$\mathrm{C}(37)-\mathrm{P}$	$1.869(30)$		
$\mathrm{S}(1)-\mathrm{Au}(1)-\mathrm{C}(19)$	$87.2(5)$	$\mathrm{S}(1)-\mathrm{Au}(1)-\mathrm{C}(25)$	$175.2(5)$
$\mathrm{C}(19)-\mathrm{Au}(1)-\mathrm{C}(25)$	$90.6(6)$	$\mathrm{S}(1)-\mathrm{Au}(1)-\mathrm{C}(31)$	$91.0(5)$
$\mathrm{C}(19)-\mathrm{Au}(1)-\mathrm{C}(31)$	$172.1(6)$	$\mathrm{C}(25)-\mathrm{Au}(1)-\mathrm{C}(31)$	$90.6(7)$
$\mathrm{S}(2)-\mathrm{Au}(2)-\mathrm{C}(1)$	$88.2(7)$	$\mathrm{S}(2)-\mathrm{Au}(2)-\mathrm{C}(7)$	$170.8(7)$
$\mathrm{C}(1)-\mathrm{Au}(2)-\mathrm{C}(7)$	$87.7(8)$	$\mathrm{S}(2)-\mathrm{Au}(2)-\mathrm{C}(13)$	$94.9(6)$
$\mathrm{C}(1)-\mathrm{Au}(2)-\mathrm{C}(13)$	$174.9(8)$	$\mathrm{C}(7)-\mathrm{Au}(2)-\mathrm{C}(13)$	$89.9(8)$
$\mathrm{Au}(1)-\mathrm{S}(1)-\mathrm{C}(37)$	$118.7(11)$	$\mathrm{Au}(2)-\mathrm{S}(2)-\mathrm{C}(37)$	$107.7(12)$
$\mathrm{S}(1)-\mathrm{C}(37)-\mathrm{S}(2)$	$123.2(18)$	$\mathrm{S}(1)-\mathrm{C}(37)-\mathrm{P}$	$125.6(17)$
$\mathrm{S}(2)-\mathrm{C}(37)-\mathrm{P}$	$111.2(18)$		

following differences: 5296 unique reflections, 3142 with $F>$ $4 \sigma(F)$, transmission factors $0.45-0.81$.

Structure analysis and refinement. Heavy-atom method. Refinement on F to $R 0.077, R^{\prime} 0.072$. Au, S and P anisotropic, H atoms not included. The poor crystal quality, associated with ready loss of solvent of crystallization, resulted in a somewhat
unsatisfactory refinement; the $\mathrm{C}_{6} \mathrm{~F}_{5}$ and $\mathrm{C}_{2} \mathrm{H}_{5}$ groups showed high thermal motion and the solvent was poorly resolved. Aromatic rings were refined as rigid hexagons with C-C $1.395 \AA$. Weighting scheme $w^{-1}=\sigma^{2}(F)+0.0006 F^{2} ; 279$ parameters. Final atomic co-ordinates and derived dimensions are given in Tables 4 and 5.

References

1 R. Usón, J. Forniés, R. Navarro, M. A. Usón, M. P. García, and A. J. Welch, J. Chem. Soc., Dalton Trans., 1984, 345.
2 R. Usón, J. Forniés, M. A. Usón, J. F. Yagüe, P. G. Jones, and K. Meyer-Bäse, J. Chem. Soc., Dalton Trans., 1986, 947 and refs. therein. 3 C. Bianchini, C. A. Ghilardi, A. Meli, A. Orlandini, and G. Scapacci, J. Chem. Soc., Dalton Trans., 1983, 1969.

4 R. Usón, A. Laguna, M. Laguna, E. Fernández, P. G. Jones, and G. M. Sheldrick, J. Chem. Soc., Dalton Trans., 1982, 1971.

5 T. N. Margulis and D. H. Templeton, J. Am. Chem. Soc., 1961, 83, 995.
6 R. Usón, A. Laguna, J. García, and M. Laguna, Inorg. Chim. Acta, 1979, 37, 201.

7 R. Usón, A. Laguna, M. Laguna, B. R. Manzano, P. G. Jones, and G. M. Sheldrick, J. Chem. Soc., Dalton Trans., 1985, 2417.
8 R. Usón, A. Laguna, and J. Vicente, Rev. Acad. Cienc. Exactas, FisQuim. Nat. Zaragoza, 1976, 31, 211.
9 K. A. Jensen and P. H. Nielsen, Acta Chem. Scand., 1963, 17, 547.
10 I. Butler and J. Svedman, Spectrochim. Acta, Part A, 1979, 35, 425.
11 B. J. Hathaway and A. E. Underhill, J. Chem. Soc., 1961, 3091.
12 W. J. Geary, Coord. Chem. Rev., 1971, 7, 81.
13 R. Usón, A. Laguna, M. Laguna, A Rojo, and M. N. Fraile, J. Ôrganomet. Chem., 1986, 315, 269.
14 R. Usón, A. Laguna, and J. Vicente, J. Organomet. Chem., 1977, 131, 471.
15 R. Usón, A. Laguna, M. Laguna, B. R. Manzano, P. G. Jones, and G. M. Sheldrick, J. Chem. Soc., Dalton Trans., 1984, 839.

16 W. Clegg, Acta Crystallogr., Sect. A, 1981, 37, 22.
17 G. M. Sheldrick, SHELXTL program system, University of Göttingen, 1983.

Received 20th November 1986; Paper 6/2240

[^0]: * Tris(pentafluorophenyl)(triethylphosphoniodithioformate- S)gold(iiI) and $\quad \mu$-(triethylphosphoniodithioformate- S, S^{\prime})-bis[tris(pentafluoro-phenyl)gold(III)]-dichloromethane (1/1) respectively.
 Supplementary data available: further details of the crystal-structure determinations have been deposited with Fachinformationszentrum Energie Physik Mathematik, D-7514 Eggenstein-Leopoldshafen 2, West Germany. They may be obtained on request, quoting the reference number CSD 52275 and a full literature citation.

