Chemistry of Polynuclear Metal Complexes with Bridging Carbene or Carbyne Ligands. Part 69. ${ }^{1}$ Reactions of $\left[\mathrm{MoW}\left(\equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{7}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ with But-2-yne; Crystal Structures of [MoW\{ $\left.\left.\mu-\mathrm{C}_{\mathbf{6}} \mathrm{C}_{4} \mathrm{Me}-4\right) \mathrm{C}(\mathrm{Me}) \mathrm{C}(\mathrm{Me})\right\}(\mathrm{CO})_{3}-$ $\left.\left(\eta-\mathrm{MeC}_{2} \mathrm{Me}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ and $\left[\mathrm{MoW}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}\left(=\mathrm{CH}_{2}\right) \mathrm{C}(\mathrm{H}) \mathrm{MeC}(\mathrm{O})\right\}(\mathrm{CO})_{6}-\right.$ $\left.\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right] \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}{ }^{*}$

Esther Delgado, M. Esther Garcia, John C. Jeffery, Paul Sherwood, and F. Gordon A. Stone Department of Inorganic Chemistry, The University, Bristol BS8 1 TS

Treatment of $\left[\mathrm{MoW}\left(\equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{7}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ with but-2-yne in refluxing thf (tetrahydrofuran) affords the compound [MoW $\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}(\mathrm{Me}) \mathrm{C}(\mathrm{Me})\right\}(\mathrm{CO})_{3}\left(\eta-\mathrm{MeC}_{2} \mathrm{Me}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$]. In contrast, at room temperature in thf these reagents yield the complex $\left[\mathrm{MoW}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-\right.\right.\right.$
4) $\left.\left.\mathrm{C}\left(=\mathrm{CH}_{2}\right) \mathrm{C}(\mathrm{H}) \mathrm{MeC}(\mathrm{O})\right\}(\mathrm{CO})_{6}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$. The structures of both products have been established by X-ray diffraction. That of $\left[\mathrm{MoW}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}(\mathrm{Me}) \mathrm{C}(\mathrm{Me})\right\}(\mathrm{CO})_{3}\left(\eta-\mathrm{MeC}_{2} \mathrm{Me}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ has a Mo-W bond [2.971 (2) \AA] spanned by the $\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}(\mathrm{Me}) \mathrm{C}(\mathrm{Me})$ group. The molybdenum atom carries a cyclopentadienyl and two carbonyl groups, while the tungsten atom is ligated by a carbonyl and two $\mathrm{MeC} \equiv \mathrm{CMe}$ groups. In the other dimetal compound the Mo-W bond [$3.131(1) \AA$] is bridged by a novel C_{4} fragment in such a manner that there is a

Abstract

$\mathrm{MoC}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}\left(=\mathrm{CH}_{2}\right) \mathrm{C}(\mathrm{H}) \mathrm{MeC}(\mathrm{O})$ ring system, the $\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}=\mathrm{CH}_{2}$ moiety of which is η^{3}-co-ordinated to the tungsten. The latter carries four essentially orthogonal carbonyl groups, and the molybdenum centre is ligated by two carbonyl groups and the $\mathrm{C}_{5} \mathrm{H}_{5}$ ring. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectra of the new compounds are reported and discussed, as are their possible modes of formation. Reaction between [$\mathrm{MoW}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}(\mathrm{Me}) \mathrm{C}(\mathrm{Me})\right\}(\mathrm{CO})_{3}\left(\eta-\mathrm{MeC}_{2} \mathrm{Me}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$] and PMe_{3} affords a simple substitution product containing a $\mathrm{W}\left(\mathrm{PMe}_{3}\right)\left(\eta-\mathrm{MeC}_{2} \mathrm{Me}\right)_{2}$ fragment.

The family of dimetal compounds $\quad \mathrm{MW}\left(\equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)$ $\left.(\mathrm{CO})_{4} \mathrm{~L}_{n}\right]\left[\mathrm{ML}_{n}=\operatorname{Re}(\mathrm{CO})_{5}(\mathbf{1 a}), \mathrm{Mo}(\mathrm{CO})_{3}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathbf{1 b})\right.$, or $\mathrm{Co}(\mathrm{CO})_{4}$ (1c)] are potentially useful reagents for further syntheses. Thus the $\mathrm{W} \equiv \mathrm{C}$ bonds present in these species combine with low-valent metal-ligand fragments to afford a variety of tri-, tetra-, or penta-nuclear metal compounds. ${ }^{2}$ Moreover, the alkylidyne-carbon centre in (1a) is attacked by the nucleophiles PMe_{3} or H^{-}to afford the dimetal ligandbridged compounds [$\mathrm{ReW}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\left(\mathrm{PMe}_{3}\right)\right\}(\mu-\mathrm{CO})$ $\left.(\mathrm{CO})_{8}\right]^{3}$ and $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{ReW}\left\{\mu-\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\right\}(\mathrm{CO})_{9}\right],{ }^{4}$ respectively. In view of these results we have investigated reactions of the compounds (1) with alkynes. From the nature of the products obtained from (1a) and PMe_{3} or H^{-}, it was anticipated that alkynes would attack at the alkylidyne-carbon centres to afford complexes containing a bridging C_{3} fragment. In practice (1a) was inert to $\mathrm{PhC} \equiv \mathrm{CPh}$ or $\mathrm{MeC} \equiv \mathrm{CMe}$ even at elevated temperatures. However, but-2-yne reacted readily with (1b) and (1c). The results obtained with the molybdenumtungsten compound (1b) are described in this paper. The products obtained from reactions between (1c) and alkynes proved to be of several different structural types, and these will be reported in a subsequent paper.

Results and Discussion

Compound (1b) reacts readily with but-2-yne in thf (tetrahydrofuran), but the nature of the product obtained
*2,2-Bis(η-but-2-yne)-1,1,2-tricarbonyl-1-(η-cyclopentadienyl)- μ -[1,2-dimethyl-3-p-tolylpropan-2-yl-1,3-diylidene- $\left.C^{1-3}(\mathbf{W}) C^{1,3}(\mathrm{Mo})\right]$ molybdenumtungsten ($M O-W$) and 1,1,2,2,2,2-hexacarbonyl-1(η-cyclopentadienyl)- μ-[2-methyl-3-methylene-1-oxo-4-p-tolylbutan-1-yl-4-ylidene- $\left.\mathrm{C}^{1,4}(\mathrm{Mo}) \mathrm{C}^{3,3 a, 4}(\mathrm{~W})\right]$ molybdenumtungsten ($M o-W$)dichloromethane ($2 / 1$) respectively.
Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1988, Issue 1, pp. xvii-xx.

depends critically on whether the process is carried out under reflux conditions or whether the reactants are stirred together at ambient temperature. When the two reagents are heated together the product is the yellow crystalline compound $\left[\mathrm{MoW}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}(\mathrm{Me}) \mathrm{C}(\mathrm{Me})\right\}(\mathrm{CO})_{3}\left(\eta-\mathrm{MeC}_{2} \mathrm{Me}\right)_{2}(\eta-\right.$ $\mathrm{C}_{5} \mathrm{H}_{5}$)] (2a), formed in ca. 70\% yield. If, however, (1b) in thf is treated with but-2-yne at room temperature, the product is the red crystalline compound $\left[\mathrm{MoW}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}\left(=\mathrm{CH}_{2}\right)\right.\right.$ $\left.\mathrm{C}(\mathrm{H}) \mathrm{MeC}(\mathrm{O})\}(\mathrm{CO})_{6}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ (3), also obtained in $c a .70 \%$ yield. Both (2a) and (3) are readily purified by column chromatography, the former on alumina and the latter on Florisil, and satisfactory microanalytical data were obtained.
The n.m.r. data (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$) for (2a) and (3) (Table 1) are in accord with the formulations of these species, but discussion of the spectra is deferred until the results of X-ray diffraction studies are described. The structure of (2a) is shown in Figure 1, and selected bond distances and angles are listed in Table 2. Data for (3) are given in Table 3, and the structure is shown in Figure 2.

Table 1. Hydrogen-1 and carbon-13 n.m.r. data ${ }^{a}$ for the molybdenum-tungsten complexes
(2a)
${ }^{d} 1.64$ (s, $3 \mathrm{H}, \mathrm{Me}$), 2.31 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), 2.35 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), 2.63 (s, 3 H , $\mathrm{Me}), 2.68(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 2.90(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 3.11(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 5.05(\mathrm{~s}$, $\left.5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 6.53,7.04\left[(\mathrm{AB})_{2}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}, J(\mathrm{AB}) 8\right]$
$(2 b)^{e}$
${ }^{\delta} 1.27$ [d, $\left.9 \mathrm{H}, \mathrm{MeP}, J(\mathrm{PH}) 8\right], 1.46(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 2.10(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me})$, 2.35 (s, $3 \mathrm{H}, \mathrm{Me}$), 2.38 (s, $3 \mathrm{H}, \mathrm{Me}$), 2.68 (s, $3 \mathrm{H}, \mathrm{Me}$), 2.99 (s, 3 H , Me), $3.04(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 4.92\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 6.71,6.98\left[(\mathrm{AB})_{2}, 4 \mathrm{H}\right.$, $\left.\mathrm{C}_{6} \mathrm{H}_{4}, J(\mathrm{AB}) 8\right]$
(3)

$$
\begin{aligned}
& \left.{ }^{d} 1.03 \text { [d, } 3 \mathrm{H}, \mathrm{C}(\mathrm{H}) \mathrm{Me}, J(\mathrm{HH}) 7\right], 2.33(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-4), 2.85(\mathrm{~s}, 1 \mathrm{H} \text {, } \\
& \left.\mathrm{CH}_{2}\right), 3.70\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 4.38[\mathrm{q}, 1 \mathrm{H}, \mathrm{C}(H) \mathrm{Me}, J(\mathrm{HH}), 7], 4.99 \\
& \left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 6.81 \text { [d of d, } 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}, J(\mathrm{HH}) 8,2 \text {], } 6.97 \text { [d of d, } \\
& \left.\left.1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}, J(\mathrm{HH}) 8,2\right], 7.19 \text { [d of d, } 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}, J(\mathrm{HH}) 8,2\right] \text {, } \\
& 7.74 \text { [d of d, } 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}, J(\mathrm{HH}) 8,2 \text {] } \\
& \text { (6) }{ }^{9} 0.93[\mathrm{~d}, 3 \mathrm{H}, \mathrm{C}(\mathrm{H}) M e, J(\mathrm{HH}) 7], 1.38\left[\mathrm{t} \text { of } \mathrm{t}, 12 \mathrm{H}, M e \mathrm{CH}_{2} \mathrm{~N}\right. \text {, } \\
& J(\mathrm{HH}) 7, J(\mathrm{NH}) 2], 2.18(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-4), 2.85[\mathrm{q}, 1 \mathrm{H}, \mathrm{C}(H) \mathrm{Me} \text {, } \\
& J(\mathrm{HH}) 7], 3.48\left[\mathrm{q}, 8 \mathrm{H}, \mathrm{MeCH}_{2} \mathrm{~N}, J(\mathrm{HH}) 7\right], 3.80(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CMe}) \text {, } \\
& 4.71\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 6.87,7.38\left[(\mathrm{AB})_{2}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}, J(\mathrm{AB}) 8\right]
\end{aligned}
$$

${ }^{13} \mathrm{C}(\delta){ }^{c}$
${ }^{d} 246.7,241.9$ (MoCO), 217.9 (WCO), 173.5 ($C \mathrm{Me}$), 162.8 ($C \mathrm{Me}$), 154.3 ($C \mathrm{Me}$), 152.7 ($C \mathrm{Me}$), 148.7 [$\left.\mathrm{C}^{1}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right], 145.7$ ($\mu-C \mathrm{Me}$), 133.0, 128.4, $128.0\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 100.0,99.8\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right.$ and μ $C \mathrm{Me})$, $90.6\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 26.9(\mathrm{Me}), 21.1(\mathrm{Me}-4), 17.2,16.7,15.4,15.1$, 11.9 (Me)
250.4, 245.6 (MoCO), 190.3 (CMe), 186.3 [d, $C \mathrm{Me}, J(\mathrm{PC}) 9]$, 161.1 [d, $C \mathrm{Me}, J(\mathrm{PC}) 21], 157.0$ [d, $C \mathrm{Me}, J(\mathrm{PC}) 25], 148.1$ $\left[\mathrm{C}^{1}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right], 145.2(\mu-C \mathrm{Me}), 133.0,130.5,127.9\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 106.2$ [d, $\left.\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4, J(\mathrm{PC}) 6\right], 101.6(\mu-\mathrm{CMe}), 91.4\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 27.7(\mathrm{Me})$, 20.9 (Me-4), 18.3 [d, MeP, $J(\mathrm{PC}) 24], 16.8,16.5,16.1,15.7,10.1$ (Me)
259.8 (C=O), 226.7, 224.2 (MoCO), 209.3, 205.7, 201.6, 201.2 (WCO), $191.7\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right), 152.5\left[\mathrm{C}^{1}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right], 137.8,129.2$, $127.9\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 119.5\left(\mathrm{C}=\mathrm{CH}_{2}\right), 92.9\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 70.4[\mathrm{C}(\mathrm{H}) \mathrm{Me}], 48.8$ $\left(\mathrm{CH}_{2}\right), 21.2(\mathrm{Me}-4), 11.6(\mathrm{Me})$
${ }^{s} 251.3$ ($\left.\mathrm{C}=\mathrm{O}\right)^{*}, 247.3,247.2(\mathrm{MoCO})^{*}$, ca. 209 (WCO)*, 196.0 ($\mu-$ $\left.C \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right), 146.2$ [$\left.\mathrm{C}^{1}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right], 130.2,128.3,125.2\left(\mathrm{C}_{6} \mathrm{H}_{4}, \mu-\right.$ $\left.C \mathrm{Me}^{*}\right), 92.3\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 64.7[\mathrm{C}(\mathrm{H}) \mathrm{Me}], 53.0\left(\mathrm{NCH}_{2} \mathrm{Me}\right), 21.1(\mathrm{Me}-$ 4), 20.7, $18.4(\mathrm{Me}), 7.7\left(\mathrm{NCH}_{2} \mathrm{Me}\right)$
${ }^{a}$ Chemical shifts (δ) in p.p.m., coupling constants in Hz . Measurements at ambient temperatures unless otherwise stated. ${ }^{b} \mathrm{Measured}^{2}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$, unless otherwise stated. ${ }^{c}$ Hydrogen-1 decoupled, chemical shifts are positive to high frequency of SiMe_{4}. Measurements in $\mathrm{CD}_{2} \mathrm{Cl}_{2}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ unless otherwise stated. ${ }^{d}$ Measured at $-50{ }^{\circ} \mathrm{C}$. ${ }^{e}$ Phosphorus-31, $\delta-22.5$ p.p.m. [$J(W P) 132 \mathrm{~Hz}$], to high frequency of $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ (external). ${ }^{f}$ In $\mathrm{CDCl}{ }_{3}$. ${ }^{g}$ In $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$, signals marked with an asterisk are partially obscured by solvent or $\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ peaks and assignments are tentative.

In (2a) a Mo-W bond [2.971(2) \AA] is transversely spanned by a $\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}(\mathrm{Me}) \mathrm{C}(\mathrm{Me})$ fragment. The molybdenum atom carries the $\eta-\mathrm{C}_{5} \mathrm{H}_{5}$ ring and two terminally bonded CO groups. The tungsten atom is co-ordinated by one carbonyl group and two but-2-yne molecules. Features of the structure of (2a) have been observed previously in other complexes. Thus the μ $\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}(\mathrm{Me}) \mathrm{C}(\mathrm{Me})$ fragment occurs in the compounds $\left[\mathrm{MW}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}(\mathrm{Me}) \mathrm{C}(\mathrm{Me})\right\}(\mathrm{CO})_{2} \mathrm{~L}_{n}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ $\left[\mathrm{ML}_{n}=\mathrm{Fe}(\mathrm{CO})_{3}(4 \mathrm{a}), \mathrm{Co}\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)(4 \mathrm{~b})\right.$, or $\mathrm{Rh}\left(\eta^{5}-\mathrm{C}_{9} \mathrm{H}_{7}\right)$

Figure 1. The molecular structure of $\left[\mathrm{MoW}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}(\mathrm{Me})\right.\right.$ -$\left.\mathrm{C}(\mathrm{Me})\}(\mathrm{CO})_{3}\left(\eta-\mathrm{MeC}_{2} \mathrm{Me}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ (2a), showing the crystallographic numbering scheme
(4c) $]^{5}$ and $\left[\mathrm{FeW}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}(\mathrm{Me}) \mathrm{C}(\mathrm{Me})\right\}(\mathrm{CO})_{5}(\eta-\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right](5) .{ }^{6}$ In (2a) the $\mathrm{C}(1)-\mathrm{C}(3)[1.44(1) \AA]$ and $\mathrm{C}(3)-\mathrm{C}(4)$ $[1.40(1) \AA]$ distances are very similar to those found for corresponding distances in (4a) $[1.440(8)$ and $1.435(8) \AA$, respectively]. ${ }^{5}$

The ligating carbon atoms of the two but-2-yne molecules in (2a) are $2.09 \AA$ (mean) from the tungsten. This value may be compared with the tungsten to alkyne-carbon atom distances in

Table 2. Selected internuclear distances (\AA) and angles $\left({ }^{\circ}\right)$ for $\left[\mathrm{MoW}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}(\mathrm{Me}) \mathrm{C}(\mathrm{Me})\right\}(\mathrm{CO})_{3}\left(\eta-\mathrm{MeC}_{2} \mathrm{Me}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ (2a) with estimated standard deviations in parentheses

Mo-W	2.971(2)	W-C(1)	2.211 (8)	W-C(3)	$2.478(8)$	W-C(4)	2.214(8)
W-C(7)	2.071(7)	W-C(8)	$2.103(7)$	W-C(11)	2.090(8)	W-C(12)	$2.077(8)$
W-C(16)	2.029(8)	$\mathrm{Mo}-\mathrm{C}(1)$	2.243(8)	Mo...C(3)	2.64	$\mathrm{Mo}-\mathrm{C}(4)$	$2.236(8)$
Mo-C(14)	1.976(9)	$\mathrm{Mo}-\mathrm{C}(15)$	1.990(9)	$\mathrm{C}(1)-\mathrm{C}(3)$	1.44(1)	$\mathrm{C}(1)-\mathrm{C}(21)$	1.49 (1)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.51(1)	$\mathrm{C}(3)-\mathrm{C}(4)$	1.40(1)	$\mathrm{C}(4)-\mathrm{C}(5)$	1.52(1)	$\mathrm{C}(6)-\mathrm{C}(7)$	1.51(1)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.29(1)	$\mathrm{C}(8)-\mathrm{C}(9)$	1.50(1)	$\mathrm{C}(10)-\mathrm{C}(11)$	1.50 (1)	$\mathrm{C}(11)-\mathrm{C}(12)$	1.29(1)
$\mathrm{C}(12)-\mathrm{C}(13)$	1.50(1)	$\mathrm{C}(14)-\mathrm{O}(14)$	1.17(1)	$\mathrm{C}(15)-\mathrm{O}(15)$	1.13(1)	$\mathrm{C}(16)-\mathrm{O}(16)$	1.13(1)
$\mathrm{C}(1)-\mathrm{W}-\mathrm{C}(3)$	35.1(3)	$\mathrm{C}(1)-\mathrm{W}-\mathrm{C}(4)$	60.9(3)	$\mathrm{C}(3)-\mathrm{W}-\mathrm{C}(4)$	34.1(3)	Mo-W-C(7)	139.5(2)
$\mathrm{Mo}-\mathrm{W}-\mathrm{C}(8)$	149.7(2)	C (7)-W-C(8)	36.0(3)	Mo-W-C(11)	101.6(2)	$\mathrm{C}(7)-\mathrm{W}-\mathrm{C}(11)$	91.7(3)
$\mathrm{C}(8)-\mathrm{W}-\mathrm{C}(11)$	108.1(3)	Mo-W-C(12)	107.5(2)	$\mathrm{C}(7)-\mathrm{W}-\mathrm{C}(12)$	105.6(3)	$\mathrm{C}(8)-\mathrm{W}-\mathrm{C}(12)$	100.0(3)
C(11)-W-C(12)	36.0(3)	Mo-W-C(16)	98.1(2)	$\mathrm{C}(7)-\mathrm{W}-\mathrm{C}(16)$	110.7(3)	$\mathrm{C}(8)-\mathrm{W}-\mathrm{C}(16)$	74.6(3)
$\mathrm{C}(11)-\mathrm{W}-\mathrm{C}(16)$	115.0(3)	$\mathrm{C}(12)-\mathrm{W}-\mathrm{C}(16)$	79.1(3)	$\mathrm{C}(1)-\mathrm{Mo}-\mathrm{C}(4)$	60.1(3)	W-Mo-C(14)	$77.5(3)$
W-Mo-C(15)	80.4(3)	$\mathrm{C}(14)-\mathrm{Mo}-\mathrm{C}(15)$	79.6(4)	W-C(1)-Mo	83.7(3)	$\mathrm{W}-\mathrm{C}(1)-\mathrm{C}(21)$	126.6(5)
$\mathrm{Mo}-\mathrm{C}(1)-\mathrm{C}(21)$	133.3(5)	$\mathrm{C}(3)-\mathrm{C}(1)-\mathrm{C}(21)$	125.4(7)	W-C(3)-C(2)	138.8(6)	$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	128.8(8)
$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	104.3(6)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	126.9(8)	W-C(4)-Mo	83.8(3)	W-C(4)-C(5)	133.7(6)
Mo-C(4)-C(5)	127.0(6)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	124.1(7)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	144.1(8)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	143.2(7)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	141.5(8)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	142.0(9)	$\mathrm{Mo}-\mathrm{C}(14)-\mathrm{O}(14)$	173.1(8)	Mo-C(15)-O(15)	175.4(8)
$\mathrm{W}-\mathrm{C}(16)-\mathrm{O}(16)$	177.0(8)						

Figure 2. The molecular structure of $\left[\mathrm{MoW}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}(=\right.\right.$ $\left.\left.\left.\mathrm{CH}_{2}\right) \mathrm{C}(\mathrm{H}) \mathrm{MeC}(\mathrm{O})\right\}(\mathrm{CO})_{6}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right] \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2} \quad$ (3), showing the crystallographic numbering scheme
$\left[\mathrm{W}_{2}(\mu-\mathrm{CO})_{2}(\mathrm{CO})\left(\eta-\mathrm{PhC}_{2} \mathrm{Ph}\right)\left\{\eta-\mathrm{C}_{5} \mathrm{Ph}_{4}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\right\}(\eta-\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](\text { mean } 2.14 \AA)^{7}$ and in $\left[\mathrm{PtW}\left\{\mu-\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\right\}(\mu-\right.$ $\left.\mathrm{CO})\left(\mathrm{PMe}_{3}\right)_{2}\left(\eta-\mathrm{MeC}_{2} \mathrm{Me}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]\left[\mathrm{BF}_{4}\right]$ (mean $2.033 \AA$). ${ }^{8}$ The Mo-W distance [2.971(2) \AA] in (2a) is similar to that found in $\left[\mathrm{MoW}_{2}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{2}(\mu-\mathrm{CO})_{2}(\mathrm{CO})_{4}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$ $[2.938(1) \AA]^{9}$ and would appear to correspond to that of a single bond. In contrast, in the unsaturated dimetal complex $\left[\mathrm{MoW}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{3}\left(\eta^{5}-\mathrm{C}_{9} \mathrm{H}_{7}\right)\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{Me}_{2}\right)\right]$ the Mo-W separation [2.657(2) \AA] is appreciably shorter. ${ }^{10}$

In compound (3) (Figure 2) it is immediately apparent that the Mo-W bond [3.131(1) \AA] is spanned by five carbon atoms, four of which form a five-membered ring with the molybdenum atom, while the $\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}=\mathrm{CH}_{2}$ moiety is η^{3}-co-ordinated to the tungsten. The organic fragment $\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}(=$ $\left.\mathrm{CH}_{2}\right) \mathrm{CHMeC}(\mathrm{O})$ is derived from the p-tolylmethylidyne

(4a) $\mathrm{Fe}(\mathrm{CO})_{3}$
(4b) $\mathrm{Co}\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)$
(4 c) $\mathrm{Rh}\left(\eta^{5}-\mathrm{C}_{9} \mathrm{H}_{7}\right)$

(5)
group in the precursor (1b), a molecule of but-2-yne which has undergone rearrangement, and a molecule of carbon monoxide. In addition to being ligated by the $\mathrm{C}=\mathrm{CH}_{2}$ group [$\mathrm{W}-\mathrm{C}(2)$ 2.466(7), W-C(3) 2.320(6) \AA], the tungsten centre also carries four essentially orthogonally disposed carbonyl groups. The molybdenum atom is bonded by two carbonyl groups and the cyclopentadienyl group.

The spectroscopic data for (2a) and (3) are in accord with the structures found in the solid state by X-ray diffraction. The i.r. spectrum of (2a) shows three terminal CO bands at 2045,1946, and $1869 \mathrm{~cm}^{-1}$, while that of (3) has five such bands at 2051 , $1994,1968,1956$, and $1944 \mathrm{~cm}^{-1}$. In addition, in the spectrum of (3) there is a band at $1651 \mathrm{~cm}^{-1}$ attributable to the acyl group $\mathrm{C}(6) \mathrm{O}(6)$ (Figure 2).

Examination of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectra of (2a) at

Table 3. Selected internuclear distances (\AA) and angles $\left({ }^{\circ}\right)$ for $\left[\mathrm{MoW}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}\left(=\mathrm{CH}_{2}\right) \mathrm{C}(\mathrm{H}) \mathrm{MeC}(\mathrm{O})\right\}(\mathrm{CO})_{6}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right] \cdot 0.5 \mathrm{CH} \mathrm{H}_{2} \mathrm{Cl} 2(3)$ with estimated standard deviations in parentheses

Mo-W	3.131(1)	W-C(1)	2.290(6)	W-C(2)	2.466(7)	W-C(3)	2.320(6)
W . . . C(4)	3.28	W-C(9)	2.019(7)	W-C(10)	2.002(7)	W-C(11)	2.071(7)
W-C(12)	$1.972(7)$	Mo-C(1)	2.167(6)	Mo... C(4)	3.24	$\mathrm{Mo}-\mathrm{C}(6)$	2.264(6)
$\mathrm{Mo}-\mathrm{C}(7)$	2.020(7)	$\mathrm{Mo}-\mathrm{C}(8)$	2.041(7)	$\mathrm{C}(1)-\mathrm{C}(3)$	1.461(9)	$\mathrm{C}(1)-\mathrm{C}(21)$	1.493(9)
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.377(9)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.508(9)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.538(10)$	$\mathrm{C}(4)-\mathrm{C}(6)$	1.561(9)
$\mathrm{C}(6)-\mathrm{O}(6)$	1.200(8)	$\mathrm{C}(7)-\mathrm{O}(7)$	$1.150(8)$	$\mathrm{C}(8)-\mathrm{O}(8)$	1.121(9)	$\mathrm{C}(9)-\mathrm{O}(9)$	1.133(9)
$\mathrm{C}(10)-\mathrm{O}(10)$	1.137(8)	$\mathrm{C}(11)-\mathrm{O}(11)$	1.120(9)	$\mathrm{C}(12)-\mathrm{O}(12)$	$1.157(9)$	(9)	1.133(9)
$\mathrm{C}(1)-\mathrm{W}-\mathrm{C}(2)$	61.8(2)	$\mathrm{C}(1)-\mathrm{W}-\mathrm{C}(3)$	36.9(2)	$\mathrm{C}(2)-\mathrm{W}-\mathrm{C}(3)$	33.3(2)	Mo-W-C(9)	102.6(2)
Mo-W-C(10)	89.4(2)	C(9)-W-C(10)	85.1(3)	Mo-W-C(11)	87.7(2)	$\mathrm{C}(9)-\mathrm{W}-\mathrm{C}(11)$	165.0(3)
$\mathrm{C}(10)-\mathrm{W}-\mathrm{C}(11)$	84.1(3)	Mo-W-C(12)	174.5(2)	$\mathrm{C}(9)-\mathrm{W}-\mathrm{C}(12)$	82.1(3)	$\mathrm{C}(10)-\mathrm{W}-\mathrm{C}(12)$	93.8(3)
$\mathrm{C}(11)-\mathrm{W}-\mathrm{C}(12)$	88.3(3)	W-Mo-C(6)	74.6(2)	$\mathrm{C}(1)-\mathrm{Mo}-\mathrm{C}(6)$	76.7(2)	W-Mo-C(7)	72.0(2)
$\mathrm{C}(6)-\mathrm{Mo}-\mathrm{C}(7)$	144.9(3)	W-Mo-C(8)	80.0(2)	$\mathrm{C}(6)-\mathrm{Mo}-\mathrm{C}(8)$	78.6(3)	$\mathrm{C}(7)-\mathrm{Mo}-\mathrm{C}(8)$	85.2(3)
W-C(1)-Mo	89.2(2)	W-C(1)-C(3)	72.6(3)	Mo-C(1)-C(3)	115.6(4)	W-C(1)-C(21)	126.0(4)
Mo-C(1)-C(21)	123.1(4)	$\mathrm{C}(3)-\mathrm{C}(1)-\mathrm{C}(21)$	116.9(5)	W-C(2)-C(3)	67.5(4)	W-C(3)-C(1)	70.4(3)
W-C(3)-C(2)	79.2(4)	$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	119.1(6)	W-C(3)-C(4)	116.4(4)	$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	116.5(5)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$124.2(6)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	118.2(6)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(6)$	107.0(5)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(6)$	113.4(6)
Mo-C(6)-C(4)	114.5(4)	$\mathrm{Mo}-\mathrm{C}(6)-\mathrm{O}(6)$	124.4(5)	$\mathrm{C}(4)-\mathrm{C}(6)-\mathrm{O}(6)$	121.0(6)	$\mathrm{Mo}-\mathrm{C}(7)-\mathrm{O}(7)$	172.6(6)
$\mathrm{Mo}-\mathrm{C}(8)-\mathrm{O}(8)$	176.4(6)	W-C(9)-O(9)	172.0(6)	$\mathrm{W}-\mathrm{C}(10)-\mathrm{O}(10)$	179.6(6)	$\mathrm{W}-\mathrm{C}(11)-\mathrm{O}(11)$	172.1(6)
W-C(12)-O(12)	176.9(7)						

room temperature revealed the existence of dynamic behaviour, but limiting spectra were obtained at $-50^{\circ} \mathrm{C}$ (Table 1). The ${ }^{1} \mathrm{H}$ spectrum showed the expected seven Me group resonances. The ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ spectrum was more informative with resonances at δ 246.7 and 241.9 p.p.m. due to the CO ligands attached to the molybdenum, and a peak at 217.9 p.p.m. for the tungsten coordinated carbonyl group. There are seven Me group signals as expected, but of more interest are the resonances due to the metal-ligating carbon atoms of the $\mu-\mathrm{C}_{3}$ and $\eta-\mathrm{MeC} C_{2} \mathrm{Me}$ fragments. The signals at $\delta 99.8$ and 100.0 p.p.m. may be attributed to the $\mu-C\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}(\mathrm{Me}) \mathrm{CMe}$ nuclei, although a specific assignment is not possible, while that at $\delta 145.7$ p.p.m. is due to the $\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}(\mathrm{Me}) \mathrm{C}(\mathrm{Me})$ nucleus. These assignments are based on the signals observed earlier for this group in the ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectra of the compounds (4) and (5). ${ }^{5,6}$ The peaks in the spectrum of (2a) at $\delta 152.7,154.3,162.8$, and 173.5 p.p.m. must be due to the ligating carbon atoms of the two $\eta-\mathrm{MeC}_{2} \mathrm{Me}$ groups. Moreover, the chemical shifts are relatively deshielded and lie in the range expected for alkyne ligands functioning formally as three-electron donors to a metal centre. ${ }^{11}$ If the but-2-yne molecules in (2a) each donate three electrons to the tungsten atom the latter attains an eighteen electron filled shell configuration.

The ${ }^{1} \mathrm{H}$ n.m.r. spectrum of (3) shows all the expected resonances (Table 1) and calls for no comment. The ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum, measured at ambient temperature, revealed six CO resonances indicating the absence of any site-exchange of carbonyl groups. A peak at $\delta 259.8$ p.p.m. is assigned to the molybdenum-bound acyl carbonyl group. Measurement of a fully-coupled ${ }^{13} \mathrm{C}$ spectrum $\left(-50{ }^{\circ} \mathrm{C}\right)$ confirmed the assignments (Table 1) for the carbon nuclei of the $\mathrm{C}=\mathrm{CH}_{2}$ and $\mathrm{C}(\mathrm{H}) \mathrm{Me}$ groups. Thus the signal at $\delta 119.5$ p.p.m. $\left(\mu-\mathrm{C}=\mathrm{CH}_{2}\right)$ remained a singlet while those at $\delta 70.4[C(\mathrm{H}) \mathrm{Me}, J(\mathrm{HC}) 122$ $\mathrm{Hz}], 48.8\left[\mathrm{C}=\mathrm{CH}_{2}, J(\mathrm{HC}) 162 \mathrm{~Hz}\right.$], and 11.6 p.p.m. [C(H)Me, $J(\mathrm{HC}) 122 \mathrm{~Hz}$] became a doublet, a triplet, and a quartet, respectively.

The pathways leading to compounds (2a) and (3) are obscure on present evidence, but possible routes are shown in the Scheme. As mentioned in the Introduction, nucleophilic attack by PMe_{3} or H^{-}on (1a) occurs at the alkylidyne-carbon atom to produce bridging ligands $\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\left(\mathrm{PMe}_{3}\right)$ and $\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{4}-\right.$ $\mathrm{Me}-4)$, respectively. A similar process involving (1b) and $\mathrm{MeC} \equiv \mathrm{CMe}$ could give initially intermediate (A) followed by (B).

The tungstacyclobutadiene ring in the former is of the type invoked in alkyne metathesis ${ }^{12,13}$ and has been structurally identified in the compounds $\left[W\left\{\mathrm{C}\left(\mathrm{Bu}^{t}\right) \mathrm{C}(\mathrm{Me}) \mathrm{C}(\mathrm{Me})\right\} \mathrm{Cl}_{3}\right]$, $\left[\mathrm{W}\{\mathrm{C}(\mathrm{Et}) \mathrm{C}(\mathrm{Et}) \mathrm{C}(\mathrm{Et})\}\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Pr}^{\mathrm{i}}{ }_{2}-2,3\right)_{3}\right],[\mathrm{W}\{\mathrm{C}(\mathrm{Et}) \mathrm{C}(\mathrm{Et}) \mathrm{C}-$
 $\left.\left.\left(\mathrm{CF}_{3}\right)_{2}\right\}_{3}\right] .{ }^{14}$

Intermediate (B) in the presence of excess but-2-yne in refluxing thf could afford compound (2a) via (C). Under these conditions (2a) is the only product. A possible route to (3) is via the common intermediate (B), leading through (D), (E), and (F) to the product. It seems likely that the rearrangement of the $\mathrm{MeC}_{2} \mathrm{Me}$ fragment to $\mathrm{C}\left(=\mathrm{CH}_{2}\right) \mathrm{C}(\mathrm{H}) \mathrm{Me}$ is metal assisted $[(\mathbf{D}) \longrightarrow(\mathbf{E})]$. We have recently described similar hydrogen migrations in reactions of the compounds $\left[\mathrm{FeMo}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4}-\right.\right.$ $\left.\mathrm{Me}-4)(\mathrm{CO})_{5} \mathrm{~L}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]\left(\mathrm{L}=\mathrm{CO}\right.$ or $\left.\mathrm{PMe}_{3}\right)$ with but-2-yne. ${ }^{15}$ Carbon monoxide insertion in the final step $[(F) \longrightarrow(3)]$ has precedent in the reversible reaction of $\left[\mathrm{FeMo}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\right.\right.$ $\left.\mathrm{C}(\mathrm{Et}) \mathrm{C}(\mathrm{Et})\}(\mathrm{CO})_{5}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ with CO leading to formation of a $\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}(\mathrm{Et}) \mathrm{C}(\mathrm{Et}) \mathrm{C}(\mathrm{O})$ ligand at the iron-molybdenum centre. ${ }^{16}$

During the course of our work the important observation was made that when compound (3) was heated with but-2-yne in thf, complex (2a) was produced in essentially quantitative yield. This result supports the idea of common intermediates in the formation of these complexes, and demonstrates that the hydrogen migration process leading to (3) is readily reversed. Moreover, the transformation of (3) into (2a) might imply that species like (E) or (F) convert directly to (2a) in the presence of excess but-2-yne. It is evident that whatever pathways are involved in the formation of (2a) and (3), the dimetal systems typified by (1b) have considerable potential for the activation of alkynes.

As part of the studies reported herein, the reaction between (2a) and PMe_{3} was investigated. It was hoped that this reaction would promote a combination of a terminally bound η $\mathrm{MeC}_{2} \mathrm{Me}$ group in (2a) with the $\mu-\mathrm{C}_{3}$ fragment to afford an $\eta-\mathrm{C}_{5} \mathrm{Me}_{4}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)$ ligand at the tungsten centre. This expectation was based on earlier work ${ }^{7}$ in which it was shown that alkyl- or aryl-substituted cyclopentadienyl groups are formed in reactions between the mononuclear tungsten compounds $\left[\mathrm{W}(\mathrm{CO})\left(\mathrm{R}^{1} \mathrm{C}_{2} \mathrm{R}^{2}\right)_{3}\right]\left(\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Ph}\right.$ or $\mathrm{Et} ; \mathrm{R}^{1}=\mathrm{Me}$, $\left.\mathbf{R}^{2}=\mathrm{Ph}\right) \quad$ and $\quad\left[\mathrm{W}\left(\equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$. Thus

(1b)

(B)

(D)

(E)

(F)

(C)

(2a)

(3)

Scheme. $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4:(\mathrm{i})+\mathrm{MeC} \equiv \mathrm{CMe}$, (ii) -CO , (iii) +CO
treatment of the latter with $\left[\mathrm{W}(\mathrm{CO})\left(\eta-\mathrm{EtC}_{2} \mathrm{Et}\right)_{3}\right]$ affords the complex $\left[\mathrm{W}_{2}\left(\mu-\mathrm{EtC}_{2} \mathrm{Et}\right)(\mathrm{CO})_{4}\left\{\eta-\mathrm{C}_{5} \mathrm{Et}_{4}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\right\}(\eta-\right.$ $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)$]. ${ }^{7}$

The reaction between (2a) and PMe_{3} in refluxing toluene afforded the compound $\left[\mathrm{MoW}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}(\mathrm{Me}) \mathrm{C}(\mathrm{Me})\right\}\right.$ -$\left.(\mathrm{CO})_{2}\left(\mathrm{PMe}_{3}\right)\left(\eta-\mathrm{MeC}_{2} \mathrm{Me}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ (2b) in ca. 85% yield. The n.m.r. data (Table 1) and i.r. spectrum in the carbonyl stretching region [$v_{\text {max. }}(\mathrm{CO})$ at 1932 and $1845 \mathrm{~cm}^{-1}$] were in accord with the formulation of (2b) as a simple derivative of (2a) in which a carbonyl group ligating the tungsten in the latter
species had been substituted by PMe_{3}. The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum of (2b) showed a characteristic resonance for a $\mathrm{W}\left(\mathrm{PMe}_{3}\right)$ group at $\delta-22.5$ p.p.m. with ${ }^{183} \mathrm{~W}_{-}{ }^{31} \mathrm{P}$ satellite peaks $[J(W P) 132 \mathrm{~Hz}$]. Thus unfortunately the reaction between (2a) and PMe_{3} did not promote the desired formation of a $\mathrm{W}\left\{\eta-\mathrm{C}_{5} \mathrm{Me}_{4}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\right\}$ group.
It was thought that the vinylidene group present in (3) might be susceptible to attack by hydride anion. Treatment of (3) with $\mathrm{K}\left[\mathrm{BH}(\mathrm{CHMeEt})_{3}\right]$ in thf at $c a .-60^{\circ} \mathrm{C}$ followed by addition of $\mathrm{NEt}_{4} \mathrm{Cl}$ afforded a yellow salt $\left[\mathrm{NEt}_{4}\right]\left[\mathrm{MoW}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right.\right.\right.$ -

(6)
4) $\mathrm{C}(\mathrm{Me}) \mathrm{C}(\mathrm{H}) \mathrm{MeC}(\mathrm{O})\}(\mathrm{CO})_{6}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$] (6). However, the instability of this species prevented satisfactory microanalysis, and the formulation rests on the n.m.r. data (Table 1). Attempts to obtain a neutral complex from (6) by protonation led only to decomposition.

Experimental

Experiments were carried out using Schlenk-tube techniques, under a dry oxygen-free nitrogen atmosphere. Light petroleum refers to that fraction of b.p. $40-60^{\circ} \mathrm{C}$. Brockman activity II alumina was used for chromatography. The compound $\left[\mathrm{MoW}\left(\equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{7}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ was prepared by treating $\left[\mathrm{W}\left(\equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{Br}(\mathrm{CO})_{4}\right]$ with $\mathrm{K}\left[\mathrm{Mo}(\mathrm{CO})_{3}(\eta-\right.$ $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)$] using the method reported previously for the synthesis of its phenylmethylidyne analogue. ${ }^{17}$

Reactions between $\left[\mathrm{MoW}\left(\equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{7}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ and But-2-yne.-(i) A Schlenk tube, to which a condenser was attached, was charged with compound (1b) $(0.19 \mathrm{~g}, 0.30 \mathrm{mmol})$, thf ($30 \mathrm{~cm}^{3}$) as solvent, and excess of but-2-yne (12 mmol). With the condenser maintained at $c a .-20^{\circ} \mathrm{C}$, the contents of the Schlenk tube were refluxed for 24 h , the function of the condenser being to return the but-2-yne to the reaction vessel. Solvent was removed in vacuo, and the residue dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum ($10 \mathrm{~cm}^{3}, 1: 1$) and chromatographed on alumina ($2 \times 30 \mathrm{~cm}$ column). Elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum ($1: 4$) removed initially a trace of $\left[\mathrm{Mo}\left(\equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}\right.\right.$ -$\left.4)(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ (identified by i.r.), followed by a yellow eluate. Removal of solvent in vacuo from the latter afforded yellow microcrystals of $\left[\mathrm{MoW}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}(\mathrm{Me}) \mathrm{C}(\mathrm{Me})\right\}\right.$ -$\left.(\mathrm{CO})_{3}\left(\eta-\mathrm{MeC}_{2} \mathrm{Me}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ (2a) $(0.15 \mathrm{~g}, 70 \%)$ (Found: $\mathrm{C}, 48.3 ; \mathrm{H}, 4.6 . \mathrm{C}_{28} \mathrm{H}_{30} \mathrm{MoO}_{3} \mathrm{~W}$ requires $\mathrm{C}, 48.4 ; \mathrm{H}, 4.4 \%$); $v_{\text {max. }}(\mathrm{CO})$ at $2045 \mathrm{~s}, 1946 \mathrm{vs}$, and $1869 \mathrm{~s} \mathrm{~cm}^{-1}$ (light petroleum).
(ii) A thf ($20 \mathrm{~cm}^{3}$) solution of ($\mathbf{1 b}$) $(0.20 \mathrm{~g}, 0.30 \mathrm{mmol})$ was treated with a large excess of but-2-yne (ca. $1 \mathrm{~cm}^{3}$) and the mixture stirred at room temperature for 7 h . Solvent was removed in vacuo, and the residue dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum ($10 \mathrm{~cm}^{3}, 1: 1$) and chromatographed on Florisil ($2 \times 30 \mathrm{~cm}$ column). Elution with $\mathrm{Et}_{2} \mathrm{O}$-light petroleum (1:2) removed traces of $\left[\mathrm{Mo}\left(\equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ and (2a), both identified by i.r. Elution of the column with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave a red eluate. Removal of solvent in vacuo from the latter, and crystallisation of the residue from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}(1: 10)$ gave red crystals of $\left[\mathrm{MoW}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}\left(=\mathrm{CH}_{2}\right) \mathrm{C}(\mathrm{H})-\right.\right.$ $\left.\mathrm{MeC}(\mathrm{O})\}(\mathrm{CO})_{6}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](3)(0.15 \mathrm{~g}, 70 \%)$ (Found: C, $41.3 ; \mathrm{H}$, 3.1. $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{MoO}_{7} \mathrm{~W}$ requires $\mathrm{C}, 41.3 ; \mathrm{H}, 2.6 \%$); $v_{\text {max. }}(\mathrm{CO})$ at $2051 \mathrm{vs}, 1994 \mathrm{~m}, 1968 \mathrm{~s}, 1956 \mathrm{~m}, 1944 \mathrm{~m}$, and $1651 \mathrm{w} \mathrm{cm}^{-1}$ (light petroleum).

Reaction of $\left[\mathrm{MoW}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}(\mathrm{Me}) \mathrm{C}(\mathrm{Me})\right\}(\mathrm{CO})_{3}(\eta-\right.$ $\left.\left.\mathrm{MeC}_{2} \mathrm{Me}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ with PMe_{3}.-A mixture of $(2 \mathrm{a})(0.14 \mathrm{~g}$, $0.20 \mathrm{mmol})$ and $\mathrm{PMe}_{3}\left(1 \mathrm{~cm}^{3}, 10 \mathrm{mmol}\right)$ in toluene ($30 \mathrm{~cm}^{3}$) was refluxed (24 h) in a Schlenk tube to the top of which was fitted a condenser cooled to $-20^{\circ} \mathrm{C}$. Solvent was removed in vacuo, and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum (10 $\mathrm{cm}^{3}, 2: 3$) and chromatographed at $-20^{\circ} \mathrm{C}$ on alumina (2×15
cm column). Elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ light petroleum (1:4) gave a trace of (2a) followed by a yellow eluate. Removal of solvent in vacuo from the latter afforded yellow microcrystals of $\left[\mathrm{MoW}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}(\mathrm{Me}) \mathrm{C}(\mathrm{Me})\right\}(\mathrm{CO})_{2}\left(\mathrm{PMe}_{3}\right)\left(\eta-\mathrm{MeC}_{2}{ }^{-}\right.\right.$ $\left.\mathrm{Me})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ (2b) $(0.13 \mathrm{~g}, 85 \%$) (Found: C, $48.5 ; \mathrm{H}, 5.6$. $\mathrm{C}_{30} \mathrm{H}_{39} \mathrm{MoO}_{2} \mathrm{PW}$ requires $\mathrm{C}, 48.5 ; \mathrm{H}, 5.3 \%$); $v_{\text {max. }}(\mathrm{CO})$ at 1932 vs and $1845 \mathrm{~s} \mathrm{~cm}^{-1}$ (light petroleum).

Reaction of $\left[\mathrm{MoW}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}\left(=\mathrm{CH}_{2}\right) \mathrm{C}(\mathrm{H}) \mathrm{MeC}(\mathrm{O})\right\}-\right.$ $\left.(\mathrm{CO})_{6}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ with $\mathrm{K}\left[\mathrm{BH}(\mathrm{CHMeEt})_{3}\right]$. - A thf $\left(15 \mathrm{~cm}^{3}\right)$ solution of (3) $(0.14 \mathrm{~g}, 0.22 \mathrm{mmol})$ at $-60^{\circ} \mathrm{C}$ was treated with $\mathrm{K}\left[\mathrm{BH}(\mathrm{CHMeEt})_{3}\right]\left(0.22 \mathrm{~cm}^{3}, 0.22 \mathrm{mmol}\right)$ in the same solvent. An immediate colour change from red to yellow occurred. The mixture was treated with $\mathrm{NEt}_{4} \mathrm{Cl}(0.04 \mathrm{~g}, 0.22 \mathrm{mmol})$ and allowed to warm to room temperature with stirring (1 h). After filtration through a Celite pad ($c a .5 \mathrm{~cm}$), solvent was removed in vacuo and the residue crystallised from thf- $\mathrm{Et}_{2} \mathrm{O}\left(12 \mathrm{~cm}^{3}\right.$, 1:5) at $-78{ }^{\circ} \mathrm{C}$ to give yellow microcrystals of $\left[\mathrm{NEt}_{4}\right][\mathrm{MoW}\{\mu-$ $\left.\left.\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}(\mathrm{Me}) \mathrm{C}(\mathrm{H}) \mathrm{MeC}(\mathrm{O})\right\}(\mathrm{CO})_{6}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ (6) (0.16 g, 90%).

Crystal Structure Determinations.-(a) $\left[\mathrm{MoW}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4}-\right.\right.\right.$ $\left.\mathrm{Me}-4) \mathrm{C}(\mathrm{Me}) \mathrm{C}(\mathrm{Me})\}(\mathrm{CO})_{3}\left(\eta-\mathrm{MeC}_{2} \mathrm{Me}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right] \quad$ (2a). Diffracted intensities were collected at 293 K from a crystal of dimensions ca. $0.45 \times 0.30 \times 0.22 \mathrm{~mm}$ on a Nicolet $P 3 m$ diffractometer. Of the 4504 unique data collected (Wyckoff ω scans, $2 \theta \leqslant 50^{\circ}$), $3503 \mathrm{had} I \geqslant 2.5 \sigma(I)$, and only these were used for structure solution and refinement. The data were corrected for Lorentz and polarisation effects and for X-ray absorption, the latter by an empirical method based on azimuthal scan data. ${ }^{18}$

Crystal data. $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{MoO}_{3} \mathrm{~W}, \mathrm{M}=694.3$, monoclinic, space group $P 2_{1} / n$ (non-standard setting of $P 2_{1} / c$, no. 14), $a=$ 8.952(4), $b=20.613(18), c=14.223(8) \AA, \beta=99.31(4)^{\circ}, U=$ $2590(3) \AA^{3}, Z=4, D_{\mathrm{c}}=1.78 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=1352$, Mo- K_{α} X-radiation (graphite monochromator), $\bar{\lambda}=0.71069 \AA$, $\mu\left(\right.$ Mo- $\left.K_{\alpha}\right)=50.3 \mathrm{~cm}^{-1}$.

The structure was solved by conventional heavy-atom methods and successive difference Fourier syntheses were used to locate all non-hydrogen atoms, which were refined with anisotropic thermal parameters. Hydrogen atoms were included at fixed positions ($\mathrm{C}-\mathrm{H} 0.96 \AA$) with a common refined isotropic thermal parameter for the methyl hydrogen atoms attached to $\mathrm{C}(2), \mathrm{C}(5), \mathrm{C}(6), \mathrm{C}(9), \mathrm{C}(10), \mathrm{C}(13)$, and $\mathrm{C}(27)$, and fixed isotropic thermal parameters (ca. $1.2 \times U_{\text {equiv }}$ of the parent carbon atom) for all remaining hydrogen atoms. Refinement by blocked-cascade least squares led to $R=0.040$ ($R^{\prime}=0.041$), with a weighting scheme of the form $w^{-1}=$ $\left[\sigma^{2}(F)+0.00085|F|^{2}\right]$ giving a satisfactory analysis of variance. The final electron density difference synthesis showed no peaks >1.60 or $<-1.17 \mathrm{e} \AA^{-3}$, the largest lying close to the metal atoms.
(b) $\left[\mathrm{MoW}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}\left(=\mathrm{CH}_{2}\right) \mathrm{C}(\mathrm{H}) \mathrm{MeC}(\mathrm{O})\right\}(\mathrm{CO})_{6}(\eta-\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)\right] \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}(3)$. Crystals grow as deep red blocks from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Diffracted intensities were collected as for (2a) from a crystal of dimensions ca. $0.25 \times 0.55 \times 0.30 \mathrm{~mm}$. Of the 4723 unique data collected ($\omega-2 \theta$ scans, $2 \theta \leqslant 50^{\circ}$), 4025 had $I \geqslant 2.0 \sigma(I)$ and only these were used in structure solution and refinement. The data were corrected for Lorentz and polarisation effects and for X-ray absorption, the latter by an empirical method. ${ }^{18}$

Crystal data. $\quad \mathrm{C}_{24} \mathrm{H}_{18} \mathrm{MoO}_{7} \mathrm{~W} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}, \quad M=740.7$ monoclinic, space group $P 2_{1} / n$ (non-standard setting of $P 2_{1} / c$. no. 14), $a=9.381(1), b=20.379(3), c=13.958(2) \AA, \beta=$ $91.28(1)^{\circ}, \quad U=2667.9(6) \AA^{3}, \quad Z=4, \quad D_{\mathrm{c}}=1.84 \mathrm{~g} \mathrm{~cm}^{-3}$, $F(000)=1420, \mu\left(\mathrm{Mo}-K_{a}\right)=50.0 \mathrm{~cm}^{-1}$.

The structure was solved as for ($2 \mathbf{a}$), difference Fourier synthesis being used to locate all non-hydrogen atoms (with the

Table 4. Atomic positional parameters (fractional co-ordinates $\times 10^{4}$) for compound (2a), with estimated standard deviations in parentheses

Atom	x	y	z
W	$576(1)$	$1791(1)$	$2711(1)$
Mo	$2002(1)$	$514(1)$	$3252(1)$
C(1)	$1194(8)$	$978(4)$	$1834(5)$
$\mathrm{C}(2)$	$-1539(11)$	$538(5)$	$1112(6)$
$\mathrm{C}(3)$	$-316(9)$	$766(4)$	$1897(6)$
$\mathrm{C}(4)$	$-416(9)$	$820(4)$	$2867(6)$
$\mathrm{C}(5)$	$-1747(10)$	$581(5)$	$3307(7)$
$\mathrm{C}(6)$	$-3101(9)$	$2142(6)$	$1881(7)$
$\mathrm{C}(7)$	$-1404(8)$	$2164(4)$	$1949(5)$
$\mathrm{C}(8)$	$-300(8)$	$2463(4)$	$1652(5)$
$\mathrm{C}(9)$	$59(11)$	$2986(5)$	$992(7)$
$\mathrm{C}(10)$	$-1134(11)$	$2060(5)$	$4676(7)$
$\mathrm{C}(11)$	$-16(9)$	$2099(4)$	$4002(5)$
$\mathrm{C}(12)$	$1168(9)$	$2414(4)$	$3859(6)$
$\mathrm{C}(13)$	$2236(11)$	$2938(5)$	$4279(7)$
$\mathrm{C}(14)$	$3748(10)$	$1112(4)$	$3476(6)$
$\mathrm{O}(14)$	$4847(7)$	$1420(4)$	$3674(5)$
$\mathrm{C}(15)$	$1810(9)$	$848(4)$	$4539(6)$
$\mathrm{O}(15)$	$1751(8)$	$1002(4)$	$5297(4)$
$\mathrm{C}(16)$	$2410(8)$	$2240(4)$	$2337(6)$
$\mathrm{O}(16)$	$3408(7)$	$2515(4)$	$2137(6)$
$\mathrm{C}(21)$	$1846(9)$	$1031(4)$	$941(6)$
$\mathrm{C}(22)$	$1009(10)$	$1306(4)$	$130(6)$
$\mathrm{C}(23)$	$1572(10)$	$1360(5)$	$-720(6)$
$\mathrm{C}(24)$	$2999(11)$	$1137(4)$	$-795(7)$
$\mathrm{C}(25)$	$3871(10)$	$881(5)$	$12(7)$
$\mathrm{C}(26)$	$3320(10)$	$833(4)$	$875(7)$
$\mathrm{C}(27)$	$3569(13)$	$1195(6)$	$-1748(8)$
$\mathrm{C}(31)$	$3583(13)$	$-332(5)$	$2971(9)$
$\mathrm{C}(32)$	$2242(15)$	$-429(5)$	$2322(9)$
$\mathrm{C}(33)$	$1068(14)$	$-544(5)$	$2830(8)$
$\mathrm{C}(34)$	$1655(15)$	$-536(5)$	$3808(8)$
$\mathrm{C}(35)$	$3209(13)$	$-414(5)$	$3893(9)$

exception of the solvent carbon atom), $\mathrm{H}(2 \mathrm{a}), \mathrm{H}(2 \mathrm{~b})$, and $\mathrm{H}(4)$. All non-hydrogen atoms were refined with anisotropic thermal parameters, atoms $\mathrm{H}(2 \mathrm{a}), \mathrm{H}(2 \mathrm{~b})$, and $\mathrm{H}(4)$ were refined with fixed isotropic thermal parameters (ca. $1.2 \times U_{\text {equiv }}$ of the parent carbon atoms). All remaining hydrogen atoms were included at calculated positions ($\mathrm{C}-\mathrm{H} 0.96 \AA$) with fixed isotropic thermal parameters ($c a .1 .2 \times U_{\text {equiv }}$ of the parent carbon atoms) for those attached to cyclopentadienyl and phenyl rings, and a common refined isotropic thermal parameter for all hydrogen atoms belonging to methyl groups. During the refinement it became apparent from the presence of large residual peaks in the electron-density difference synthesis [ca. $3.4 \mathrm{e} \AA^{-3}$, near the centre of inversion at fractional coordinates $\left.\left(\frac{1}{2}, 0, \frac{1}{2}\right)\right]$ that a poorly defined solvent of crystallisation was present. A ${ }^{1} \mathrm{H}$ n.m.r. spectrum of the remainder of the sample of crystals indicated the presence of between 0.5 and 1.0 molecule of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ per molecule of (3). The final stages of refinement included two chlorine atoms (with site occupancy factors of 0.5 and anisotropic thermal parameters), and this produced a significant improvement in the structure as measured by R indices, residual electron density, and the estimated standard deviations of the molecular parameters. The fact that a suitable position for the carbon atom could not be found, and the short $\mathrm{Cl}-\mathrm{Cl}$ separation ($c a .2 .3 \AA$) indicated severe disorder. The model corresponded to an average of one molecule of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ near each ($\frac{1}{2}, 0, \frac{1}{2}$) site. It is possible that more than one molecule could be accommodated at some, or all, of these sites, and an observed crystal decay ($c a .7 \%$ over the 80 h of data collection) may be due to partial loss of solvent during data collection.

Table 5. Atomic positional parameters (fractional co-ordinates $\times 10^{4}$) for compound (3), with estimated standard deviations in parentheses

Atom	x	y	z
W	2 127(1)	2 154(1)	899(1)
Mo	$5006(1)$	1 604(1)	141(1)
C(1)	3 605(7)	2 388(3)	-340(4)
C(2)	$1047(7)$	2 560(4)	-616(5)
C(3)	2 237(7)	2 181(3)	-760(4)
C(4)	2 215(7)	$1526(3)$	- $1264(5)$
C(5)	761(8)	1 204(4)	- $1482(6)$
C(6)	3 275(7)	1069 (3)	-703(4)
$\mathrm{O}(6)$	$3197(5)$	483(2)	-775(4)
C(7)	$5445(7)$	$2139(3)$	1330 (5)
O(7)	5841 (5)	2417 (3)	2 002(4)
C(8)	4 487(7)	875(4)	$1073(5)$
$\mathrm{O}(8)$	4 261(7)	457(3)	$1569(4)$
C(9)	$2654(7)$	$3077(4)$	$1296(5)$
$\mathrm{O}(9)$	$2872(7)$	3 579(3)	1 617(4)
C(10)	$2743(7)$	$1907(4)$	2 233(5)
$\mathrm{O}(10)$	$3099(6)$	$1764(3)$	2 988(4)
C(11)	$1344(7)$	1 205(4)	838(5)
$\mathrm{O}(11)$	882(6)	701(3)	912(4)
C(12)	219(7)	2 447(4)	$1284(5)$
$\mathrm{O}(12)$	-879(5)	2 647(3)	$1507(4)$
C(21)	4 129(6)	3 053(3)	-610(4)
C(22)	3 737(7)	3 304(3)	$-1500(5)$
C(23)	4 314(8)	3 891(4)	-1840(5)
C(24)	5 285(8)	4 250(4)	-1 298(5)
C(25)	5 648(8)	4006 (4)	-416(5)
C(26)	5 105(7)	3 422(3)	-67(5)
C(27)	$5925(11)$	4 887(4)	-1661(8)
C(31)	7 142(7)	2 025(4)	-373(6)
C(32)	7406 (7)	$1435(4)$	136(6)
C(33)	$6784(7)$	900(4)	-391(5)
C(34)	$6147(8)$	$1178(4)$	- $1216(5)$
C(35)	$6348(7)$	$1872(4)$	- $1203(5)$
$\mathrm{Cl}(1)$	$3888(13)$	626(7)	6 448(7)
$\mathrm{Cl}(2)$	4 314(20)	-403(10)	$5918(19)$

Refinement by blocked-cascade least squares led to $R 0.033$ ($R^{\prime} 0.035$) and a weighting scheme of the form $w^{-1}=\left[\sigma^{2}(F)+\right.$ $\left.0.0005|F|^{2}\right]$ gave a satisfactory analysis of variance. The final electron-density difference synthesis showed no peaks >1.36 or $<-0.63 \mathrm{e} \AA^{-3}$, the largest lying close to the disordered solvent molecule. All calculations were performed on a Data General 'Eclipse' computer with the SHELXTL system of programs. ${ }^{18}$ Scattering factors with corrections for anomalous dispersion were taken from reference 19. The atom co-ordinates for (2a) and (3) are given in Tables 4 and 5, respectively.

Acknowledgements

We thank the S.E.R.C. for support and the award of a research studentship (to P. S.).

References

1 Part 68, F-E. Baumann, J. A. K. Howard, O. Johnson, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1987, 2917.
2 J. C. Jeffery, D. B. Lewis, G. E. Lewis, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1985, 2001; J. C. Jeffery, D. B. Lewis, G. E. Lewis, M. J. Parrott, and F. G. A. Stone, ibid., 1986, 1717; D. G. Evans, J. A. K. Howard, J. C. Jeffery, D. B. Lewis, G. E. Lewis, M. J. GrosseOphoff, M. J. Parrott, and F. G. A. Stone, ibid., p. 1723; J. A. Abad, E. Delgado, M. E. Garcia, M. J. Grosse-Ophoff, I. J. Hart, J. C. Jeffery, M. S. Simmons, and F. G. A. Stone, ibid., 1987, 41.

3 W. Uedelhoven, D. Neugebauer, and F. R. Kreissl, J. Organomet. Chem., 1981, 217, 183; F. R. Kreissl, P. Friedrich, T. L. Lindner, and G. Huttner, Angew. Chem., Int. Ed. Engl., 1977, 16, 314.

4 J. C. Jeffery, A. G. Orpen, F. G. A. Stone, and M. J. Went, J. Chem. Soc., Dalton Trans., 1986, 173.
5 J. C. Jeffery, K. A. Mead, H. Razay, F. G. A. Stone, M. J. Went, and P. Woodward, J. Chem. Soc., Dalton Trans., 1984, 1383; M. Green, J. A. K. Howard, S. J. Porter, F. G. A. Stone, and D. C. Tyler, ibid., p. 2553.

6 J. Hein, J. C. Jeffery, P. Sherwood, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1987, 2211.
7 G. A. Carriedo, J. A. K. Howard, D. B. Lewis, G. E. Lewis, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1985, 905.

8 J. C. Jeffery, I. Moore, H. Razay, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1984, 1581.
9 G. A. Carriedo, J. A. K. Howard, K. Marsden, F. G. A. Stone, and P. Woodward, J. Chem. Soc., Dalton Trans., 1984, 1589.
10 M. Green, J. A. K. Howard, A. P. James, A. N. de M. Jelfs, C. M. Nunn, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1987, 81.
11 J. L. Templeton and B. C. Ward, J. Am. Chem. Soc., 1980, 102, 1532, 3288.

12 R. H. Grubbs, in 'Comprehensive Organometallic Chemistry,' eds. G. Wilkinson, F. G. A. Stone, and E. W. Abel, Pergamon Press, Oxford, 1982, vol. 8, p. 548.
13 J. H. Wengrovious, J. Sancho, and R. R. Schrock, J. Am. Chem. Soc.,

1981, 103, 3922; R. R. Schrock, M. L. Listermann, and L. G. Sturgeoff, ibid., 1982, 104, 4291.
14 S. F. Pedersen, R. R. Schrock, M. R. Churchill, and H. J. Wasserman, J. Am. Chem. Soc., 1982, 104, 6808; M. R. Churchill, J. W. Ziller, J. H. Freudenberger, and R. R. Schrock, Organometallics, 1984, 3, 1554; J. H. Freudenberger, R. R. Schrock, M. R. Churchill, A. L. Rheingold, and J. W. Ziller, ibid., p. 1563; M. R. Churchill and J. W. Ziller, J. Organomet. Chem., 1985, 286, 27.
15 P. G. Byrne, M. E. Garcia, J. C. Jeffery, P. Sherwood, and F. G. A. Stone, J. Chem. Soc., Chem. Commun., 1987, 53.
16 M. E. Garcia, J. C. Jeffery, P. Sherwood, and F. G. A. Stone, unpublished work.
17 E. O. Fischer, T. L. Lindner, F. R. Kreissl, and P. Braunstein, Chem. Ber., 1977, 110, 3139.
18 G. M. Sheldrick, SHELXTL, programs for use with the Nicolet X-ray system, University of Cambridge, 1976; updated University of Göttingen, 1981.
19 'International Tables for X-Ray Crystallography,' Kynoch Press, Birmingham, 1974, vol. 4.

