Complexes of Functional Phosphines. Part 11.* β -Ketophosphine Complexes of Nickel, Palladium, and Platinum. Crystal Structures of *trans*-[NiX₂(HL)₂] [X = Cl or I, HL = Ph₂PCH₂C(O)Ph][†]

Pierre Braunstein, Dominique Matt, and Dominique Nobel Laboratoire de Chimie de Coordination, Associé au C.N.R.S. (U.A. 416), Université Louis Pasteur, 4 rue Blaise Pascal, F-67070 Strasbourg Cédex, France Fadila Balegroune, Salah-Eddine Bouaoud, and Daniel Grandjean Laboratoire de Cristallochimie, Associé au C.N.R.S. (U.A. 254), Université de Rennes I, Avenue du Général Leclerc, F-35042 Rennes Cédex, France Jean Fischer Laboratoire de Cristallochimie et de Chimie Structurale, Associé au C.N.R.S. (U.A. 424), Université Louis Pasteur, 4 rue Blaise Pascal, F-67070 Strasbourg Cédex, France

The synthesis and spectroscopic properties (1H and 31P n.m.r., i.r.) of complexes containing the β -ketophosphine Ph,PCH,C(O)Ph (HL) are described. In [NiX,(HL),] [X = Cl (1), Br, or \overline{I} (3)], $[PdCl_{J}(HL)_{J}]$ (4), $[PtCl_{J}(HL)_{J}]$ (5), and $[{PdCl(\mu-Cl)(HL)}_{J}]$ (6), HL behaves as a *P*-bonded monodentate ligand whereas in the cationic complexes $[Pd(HL)_2][BF_4]_2$, and $[{Pd(\mu-Cl)}_2]$ $(HL)_{2}$ [CF₃SO₃]₂ it acts as a P,O chelate. The crystal structures of (1) and (3) have been determined using single-crystal X-ray diffraction methods. Compound (1) crystallises in space group $P2_1/n$, with a = 10.079(3), b = 11.510(3), c = 15.411(3) Å, $\beta = 93.42(2)^\circ$, and Z = 2. Compound (3) crystallises in space group $P2_1/c$, with a = 9.283(1), b = 10.261(1), c = 19.318(1)Å, $\beta = 96.20(1)^\circ$, and Z = 2. The structures have been refined to R 0.050 (R' 0.060) for (1) and to R 0.032 (R' 0.041) for (3). The geometries of these complexes are essentially identical although the v(CO) frequencies of these complexes are significantly different [1 662 cm⁻¹ for (1) and 1 620 cm^{-1} for (3); the nickel atom occupies a centre of symmetry and has thus a square-planar environment. Although the ketone group is bent towards the nickel atom, no significant Ni-O bonding interaction occurs, as deduced from the Ni-O distances [3.230(4) Å in (1) and 3.231(1) Å in (3)]. In refluxing toluene (1), (4), or (5) lead to the phosphine-phosphinite complexes cis- $[MCl_{2}{Ph_{2}PCHC(Ph)OPPh_{2}}]$ (M = Ni, Pd, or Pt). Treatment of (1), (4), or (5) with base gives the enolato-complexes cis-[M{Ph₂PCHC(\vec{O})Ph₂] (M = Ni, Pd, or Pt). Reaction of (**6**) with NaH affords the binuclear complex [{Pd(μ -Cl)[Ph,PCHC(\dot{O})Ph]},]. The latter reacts with PPh, to give cis-[PdCl{Ph,PCHC(0)Ph}(PPh,)], and with Ph,PCH,CH,PPh,-TIPF, to give [Pd{Ph,PCHC(0)-Ph}(Ph_PCH_2CH_2PPh_2)]PF_6. The P-O coupling products $[NiCl_2\{[Ph_2PCHC(Ph)O]_2PR\}]$ (R = Cl or Ph) are obtained by reaction of the complex [Ni{Ph2PCHC(0)Ph}2] with PCl3 and PPhCl2 respectively, and shown to have a five-co-ordinate structure. The square-planar P,P,P complex [NiCl{[Ph2PCHC(Ph)O]2PPh}]PF₆ results from reaction of [NiCl2{[Ph2PCHC(Ph)O]2PPh}] with TIPF.

We report here some complexes containing the β -ketophosphine Ph₂PCH₂C(O)Ph (HL) or the corresponding phosphineenolate Ph₂PCHC(O)Ph⁻ (L⁻). Our interest for such phosphines lies (*i*) in their ability to form unsymmetrical *P*,*O* chelates, a class of ligands which were shown to be of catalytic relevance, leading in particular to very selective reactions;¹ and (*ii*) in the possibility of preparing dinuclear complexes containing the P-C bridging unit and corresponding to the C-bound enolate form.² We recently published evidence of the intrinsic reactivity of the chelating L⁻ ligand, illustrating its ambidentate behaviour.^{3,4} Thus, when co-ordinated to palladium, L⁻ reacts smoothly with organic isocyanates to form phosphine-amides *via* a C-C coupling reaction involving the carbon atom in the x-position to the phosphorus atom, whereas with PPh₂Cl the phosphine-phosphinite ligand Ph₂PCHC(Ph)OPPh₂ is formed, resulting from a P-O coupling reaction with the enolate oxygen. We describe now some new aspects of the reactivity of nickel, palladium, and platinum complexes containing HL or L⁻. We also report a comparative X-ray study of *trans*-[NiCl₂(HL)₂] and *trans*-[NiI₂(HL)₂], undertaken in order to elucidate the reasons for their different i.r. spectroscopic properties.

Results and Discussion

Complexes with Monodentate HL.—Addition of $Ph_2PCH_2C(O)Ph(HL)$ to a solution of $NiCl_2 \cdot 6H_2O$ in ethanol resulted in the precipitation of the red-violet complex trans-[NiCl_2(HL)_2] (1). In its i.r. (KBr) spectrum, the v(C=O) stretching frequency appears at 1 662 cm⁻¹ indicating an uncoordinated ketone group (Table 1). Complex (1) is practically insoluble in methanol or ethanol. Dissolution in CD_2Cl_2 leads to decomposition of the complex (formation of a green precipi-

^{*} Part 10 is ref. 4.

t trans-Dichloro- and di-iodo-bis(diphenylphosphinomethyl phenyl ketone-*P*)nickel(11).

Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1988, Issue 1, pp. xvii—xx.

Table 1. Comparison of selected i.r.^{*a*} (cm⁻¹) and n.m.r. [δ /p.p.m., J/Hz] data

	$ \begin{array}{c} I.r. \\ v(C=O) \text{ or} \\ v(C \cdots C) + v(C \cdots O) \end{array} $	¹ H N.m.r. ^b				
Compound		$PCH_2 PCH ^2 J(PH)$		² <i>J</i> (PH)	³¹ P N.m.r. ^c	
HL Ph ₂ PCH ₂ C(O)Ph (1) [NiCl ₂ (HL) ₂] (2) [NiBr ₂ (HL) ₂] (3) [NiI ₂ (HL) ₂]	1 670 1 662 1 612 1 620	3.80		0.0	- 17.1	
(4) $[PdCl_2(HL)_2]$ cis trans	}1 677, 1 671⁴	4.42 4.37		11.2 $^{2+4}J7.9$	22.6 13.4	
(5) $[PtCl_2(HL)_2]$ (6) $[{PdCl(\mu-Cl)(HL)}_2]$	1 670 1 674	4.36 4.36		10.9 11.8	4.3 [<i>J</i> (PtP) 3 794] 24.9	
(7) $[NiCl_{2}{Ph_{2}PCHC(Ph)OPPh_{2}}]$	1 602		5.72	2.5	2.0, 126.6 [J(PP) 106]	
(8) $[PdCl_2{Ph_2PCHC(Ph)OPPh_2}]$	1 600		5.97	2.0, 6.0	4.2, 129.5 [J(PP) 6]	
(9) $[PtCl_{2}{Ph_{2}PCHC(Ph)OPh_{2}}]$	1 598		6.02	2.6, 3.7 [³ J(PtH) 66] -14.5 [<i>J</i> (PtP) 3 386], 99.8 [<i>J</i> (PtP) 4 040, <i>J</i> (PP) 24]	
(10) $[Pd{Ph_2PCH_2C(O)Ph}_2][BF_4]_2$ (11) $[{Pd(\mu-Cl)[Ph_2PCH_2C(O)Ph]}_2]$ -	1 558	5.10		12.5	46.2	
$[CF_3SO_3]_2$	1 545	5.13		12.7	45.1	
(12) $[N_{i}^{\dagger} \{Ph_{2}PCHC(O)Ph\}_{2}]$	1 515		4.55	0.0	28.2	
(13) $[Pd{Ph_2PCHC(O)Ph}_2]$	1 513		4.75	2.1	37.7	
(14) $[Pt{Ph_2PCHC(O)Ph}_2]$	1 517		4.82	5.2 [³ J(PtH) 28.7]	12.9 [J(PtP) 3 520]	
(15) $[{Pd(\mu-Cl)[Ph_2PCHC(O)Ph]}_2]$	1 514		4.42	5.3	41.3	
(17) $[PdCl{Ph_2PCHC(O)Ph}(PPh_3)]$	1 512		4.45	2.4, 5.7	28.8, 45.7 [<i>J</i> (PP) 8]	
(18) $[Pd{Ph_2PCHC(O)Ph}(Ph_2PCH_2-CH_2PPh_2)]PF_6$	1 511	2.56, 2.82	4.84	²⁺⁴ J(PH) 4.8	38.1, 53.7, 56.1 [J(PP) 362, 14, 28]	
(19) $[NiCl_2{[Ph_2PCHC(Ph)O]_2PCl}]$	1 597		6.01	^{4}J 3.0, ^{2+4}J 6.0	-3.7, 83.9 [J(PP) 132]	
(20) $[NiCl_2{[Ph_2PCHC(Ph)O]_2PPh}]$	1 600		5.86	⁴ J 2.5, ²⁺⁴ J 5.0	2.2, 117.0 [J(PP) 87]	
(21) $[NiCl{[Ph_2PCHC(Ph)O]_2PPh}]PF_6$	1 594		6.02	⁴ J 1.6, ^{2 + 4} J 6.6	1.6, 163.3 [J(PP) 96]	

^a Recorded as KBr disc. ^b Spectra recorded in CDCl₃, except those of (9), (10), (11), and (12) in CD₂Cl₂, of (13) in C₆D₆, and of (19) in $[^{2}H_{8}]$ toluene. ^c Spectra recorded in CDCl₃, except those of (9), (12), and (13) in CH₂Cl₂-C₆D₆, of (10) in CH₂Cl₂-CD₂Cl₂, of (11) and (19) in CH₂Cl₂- $[^{2}H_{8}]$ toluene, and of (15) in thf-C₆D₆. ^d Observed v(CO) in mixtures of *cis*- and *trans*-(4).

Figure 1. Perspective drawing of $[NiCl_2{Ph_2PCH_2C(O)Ph_2}]$ (1)

tate) and the ¹H and ³¹P n.m.r. spectra of the solution only showed the presence of free (HL) and broad peaks. This strongly suggests the existence, in solution, of an equilibrium between a square-planar [NiCl₂(HL)₂] form and a tetrahedral (paramagnetic) one, the latter dissociating easily into unstable

Figure 2. Perspective drawing of $[NiI_2{Ph_2PCH_2C(O)Ph}_2]$ (3)

NiCl₂(HL) and free phosphine.⁵ Interestingly, in the i.r. (Nujol mull) spectra of the bromo (2) and iodo (3) analogues, we observed lower v(C=O) stretching frequencies than in complex (1) [1 612 cm⁻¹ for (2) and 1 620 cm⁻¹ for (3)]. A priori one would consider this to be related to a direct nickel-oxygen inter-

action rather than to a halogen-induced through-bond perturbation of the monodentate ligand. Indeed, in the related complex [NiBr₂{Ph₂PCH₂C(O)OEt}₂] no abnormal lowering of the v(CO) frequency is observed when comparing its value (1 706 cm⁻¹) with that of the free phosphine ester Ph₂PCH₂C(O)OEt (1 720 cm⁻¹).⁶

This largely motivated a comparative X-ray diffraction study of (1) and (3). It was found that, in both complexes, the nickel atom occupies the centre of symmetry of the molecule and has thus a square-planar environment with the two phosphorus atoms occupying trans positions (Figures 1 and 2). Although the oxygen atoms of (1) and (3) are bent towards the nickel atom, a nickel-oxygen bonding interaction seems unlikely in view of the long Ni-O distances [3.230(4) Å in (1) and 3.231(1) Å in (3)]. This pseudo-octahedral geometry probably minimises the repulsion forces within the molecule and optimizes the packing in the crystal lattice. As the C(2)-O(1) distances are very similar in (1) and (3), a tentative explanation for the ca. 50 cm^{-1} difference between the corresponding v(CO) frequencies was sought in the differences in the O(1)-C(2)-C(3)-C(4)torsion angles. Although their values are significantly different, 14.1(1) and $8.9(1)^{\circ}$ for (1) and (3) respectively, the smaller angle being associated with a better electron delocalization between the carbonyl function and the phenyl ring and therefore with a lower v(CO) frequency, this may however not be sufficient to account for the large i.r. shift observed. The bond lengths in both structures are unexceptional and some selected values are given in Table 2.

The reaction of two mol equiv. of HL with [PdCl₂(PhCN)₂] or [PdCl₂(SEt₂)₂] in solvents such as chloroform, dichloromethane, or tetrahydrofuran (thf) afforded mixtures of cis- and trans-[PdCl₂(HL)₂] (4). As described in a previous paper,⁴ attempts to separate these isomers were unsuccessful because of rapid equilibrium resulting in a ca. 1:1 ratio (from ¹H n.m.r. integration). This contrasts with the situation observed with the ligand Ph₂PCH₂C(O)OEt, for which the complex trans- $[PdCl_2{Ph_2PCH_2C(O)OEt}_2]$ could be isolated pure.⁶ The PCH₂ protons of the *cis* isomer are characterised by the presence of a doublet at $\delta 4.42$ p.p.m. [²J(PH) = 11.2 Hz] in the ¹H n.m.r. spectrum, whereas in the *trans* isomer they appear as a virtual triplet typical for trans-RCH₂P-Pd-PCH₂R arrangements. Only one isomer, cis-[PtCl₂(HL)₂] (5), was obtained by reacting two mol equiv. of HL with [PtCl₂(PhCN)₂]. A strong v(CO) absorption band appears at 1 670 cm⁻¹ in its i.r. (KBr) spectrum, in keeping with an unco-ordinated ketone group. The presence of a doublet with Pt satellites in the ¹H n.m.r. spectrum at δ 4.36 p.p.m. [³J(PtH) = 21 Hz] for the PCH₂ protons indicates a cis configuration of the ligands.

When $[PdCl_2(PhCN)_2]$ was treated with only one mol equiv. of HL, the brick-red dimer $[{PdCl(\mu-Cl)[Ph_2PCH_2C(O)Ph]}_2]$ (6) was formed quantitatively. Characterising analytical, i.r. and n.m.r. data are given in the Experimental section and in Table 1. Addition of PPh₃ to (6) afforded a mixture of cis- and trans-[PdCl₂(HL)₂] (4) and trans-[PdCl₂(PPh₃)₂], as shown by ¹H and ³¹P-{¹H} n.m.r. spectroscopy. No complex of formula [PdCl₂(HL)(PPh₃)] could be isolated, in agreement with studies of Nelson and co-workers⁷ who showed that only $[PdCl_2(PR_3)_2]$ and $[PdCl_2(PR'_3)_2]$ complexes are usually isolated from solutions containing mixed phosphine complexes of the type $[PdCl_2(PR_3)(PR'_3)]$. We recently found that upon refluxing for 4 h a toluene solution of (4), the phosphinephosphinite complex cis-[PdCl₂{Ph₂PCHC(Ph)OPPh₂}] (8) formed.⁴ The corresponding complexes ciswas $[\dot{M}Cl_2{Ph_2PCHC(Ph)OPPh_2}] [M = Ni (7) or Pt (9)] could$ be obtained similarly by heating a toluene suspension of $[NiCl_2(HL)_2]$ (4 h) or $[PtCl_2(HL)_2]$ (24 h), respectively [equation (1)]. Only in the case of Ni and Pd was the yield nearly quantitative, that of (9) being ca. 40%. Comparative spectroscopic and analytical data for (7)-(9) are given in Table

1. Note that the rather large value of the ${}^{2}J(PP)$ coupling constant (106 Hz) found for (7) is in agreement with values reported for other cis-[NiCl₂(P-P)] (P-P = bidentate diphosphine ligand) complexes.⁸ The first step in the reaction of equation (1) is likely to be the formation of CH₂C(O)Ph⁻ by thermal cleavage of the P-C bond. This base would then deprotonate the Ph₂PCH₂C(O)Ph ligand, yielding Ph₂PCH-C(O)Ph⁻ which could then couple with the previously generated PPh₂ fragment to give the co-ordinated phosphinephosphinite ligand, in a manner similar to that observed previously with PPh₂Cl.^{3a} Note that prolonged heating of free HL left this phosphine unmodified, suggesting that the P-C bond is activated by co-ordination of the ligand.

Complexes with chelating $Ph_2PCH_2C(O)Ph$ or $Ph_2PCHC(O)Ph^-$. The complexes $[PdCl_2(HL)_2]$ (4) and $[\{PdCl(\mu-Cl)(HL)\}_2]$ (6) were treated with silver salts to give the cationic complexes (10) and (11), respectively [equations (2) and (3)].

Both complexes show a doublet PCH_2 pattern in their ¹H n.m.r. spectra. This is in keeping with a *cis* structure for (10). The

Table 2. Selected interatomic distances (Å) and angles (°) for $[NiX_2(HL)_2] [X = Cl (1) \text{ or } I (3)]$

	(1)	(3)
Ni-P	2.245(1)	2.234(1)
Ni-O(1)	3.230(4)	3.231(1)
Ni-X	2.162(1)	2.510(1)
P-C(1)	1.828(4)	1.834(7)
C(1)-C(2)	1.537(6)	1.516(9)
C(2)-C(3)	1.481(5)	1.468(9)
C(2)-C(1)	1.205(4)	1.208(7)
P-C(9)	1.812(4)	1.382(7)
P-C (15)	1.816(3)	1.815(6)
X-Ni-P	87.43(3)	87.89(4)
P-C(1)-C(2)	111.7(2)	113.8(5)
C(1)-C(2)-O(1)	119.0(3)	121.3(7)
O(1)-C(2)-C(3)	121.5(3)	121.2(6)

v(C=O) values of 1 558 and 1 545 cm⁻¹ for (10) and (11) respectively unambiguously establish co-ordination of the ketone group to the palladium centre. We were unable to identify a product of formula $[PdCl{Ph_2PCH_2C(O)Ph}{(PPh_3)]^+}$ formed by reacting (11) with PPh₃. As shown by ³¹P-{¹H} n.m.r., this reaction led to a mixture of products.

The chelating $Ph_2PCHC(O)Ph^-$ ligand can easily be generated from complexes (1)—(6). Thus, treatment of *trans*-[NiCl₂(HL)₂], *cis*- and *trans*-[PdCl₂(HL)₂], or *cis*-[PtCl₂(HL)₂] with base [NaOEt-EtOH for (1) and (5); NaHthf for (4)] afforded the *cis*-[M{Ph_2PCHC(O)Ph}_2] complexes (12)—(14) in high yield [equation (4)].

For each of these complexes, the *cis* configuration is inferred from the presence in the ¹H n.m.r. spectrum of a doublet [or a singlet in the case of (12)] for the PCH protons [with Pt satellites in the case of (14), ${}^{3}J(\text{PtH}) = 28.7$ Hz] and con-

firmed by the solid-state structure of (12), independently prepared by reacting the ylide Ph₃PCHC(O)Ph with $[Ni(cod)_2]$ (cod = cyclo-octa-1,5-diene) in the presence of AsPh₃.⁹ A cis structure was also observed in, e.g. the related $[Pd{Ph_2PCHC(O)CF_3}_2]$ complex ¹⁰ and this contrasts with the situation found for the $[\dot{M}{Bu'_2PCHC(O)Ph}_2]$ (M = Ni, Pd, or Pt) complexes which were shown to have a trans configuration (virtual triplet for the PCH protons)¹¹ owing to the steric bulk of the phosphorus substituents. Each of the complexes (12)—(14) showed a strong absorption band at *ca*. 1515 cm⁻¹, attributable to v(C····C) + v(C····C) (Table 1). Interestingly, complex (12) could also be obtained quantitatively by reacting [Ni(cod)₂] with two mol equiv. of HL [equation (5)]. This reaction probably occurs with protonation of the co-ordinated cod ligand, as in the reaction of equation (6), reported by Peuckert and Keim¹² in which the COOH proton of the phosphine acid Ph₂PCH₂C(O)OH is transferred onto cod, resulting in the formation of a nickel P,O chelate complex. Note that our attempts to prepare the related complex $[Ni{Ph_2PCHC(O)Ph}(C_8H_{13})]$ [equation (7)] by addition of one mol equiv. of HL to [Ni(cod)₂] only led to (12) in 50% yield with respect to nickel. Protonation of complex (12) in thf with dilute HCl instantaneously gave a red-violet solution from which crystals of (1) could be obtained. Upon standing, this solution decomposes with formation of a green insoluble precipitate.

Reacting *clean* NaH (two mol equiv.) with (6) afforded complex (15) in high yield [equation (8)]. Analytical and spectroscopic characterisation is given in the Experimental section and in Table 1. The chelating nature of the anionic ligand thus formed was shown by a strong-absorption band at

1 514 cm⁻¹ in the i.r. spectrum of (15). This complex also results from the reaction shown in equation (9) (¹H and ³¹P

n.m.r. evidence) where easy transfer of the $Ph_2PCHC(O)Ph^$ ligand from one metal to another occurs, a behaviour which appears to be a general feature. Thus, when complex (12) was treated with the cyclopalladated dimer [{Pd(μ -Cl)(mquin)}₂] (Hmquin = 8-methylquinoline), transmetallation of the threeelectron donor *P*,*O* ligand occurred yielding *quantitatively* complex (16) [equation (10)].

The expected bridge cleavage reaction occurred when (15) was treated with PPh₃, leading to complex (17) [equation (11)].

In the ¹H n.m.r. spectrum of (17) the PCH proton appears as a doublet of doublets owing to coupling to the two phosphorus atoms [J(PH) = 2.4 and 5.7 Hz]. The existence of a ²J(PP) coupling constant of 8 Hz is in agreement with phosphorus atoms occupying *cis* positions.

The cationic complex (18) was obtained by the reaction sequence shown in equation (12). The presence of a strong $v(C \oplus O) + v(C \oplus C)$ absorption band at 1 511 cm⁻¹ indicates that the *P*,*O* chelating ligand in (18) is maintained in this reaction. In the ¹H n.m.r. spectrum the PCH proton appears as a pseudo quintet (actually a doublet of virtual triplets) at δ 4.84 p.p.m. and the two non-equivalent P-CH₂ groups as two complex multiplets owing to spin-spin coupling between each of them with the phosphorus atoms and the adjacent CH₂ protons (A₂B₂MXY spin system). The ³¹P-{¹H} n.m.r. spectrum displays an ABM pattern with δ_A 38.1, δ_B 53.7, and δ_M 56.1 p.p.m. Only the signals due to the phosphorus atom *trans* to the oxygen atom could be attributed unambiguously on the basis of the observed ²J(PP) *cis* coupling constants [signal at 56.1 p.p.m., ²J(PP) = 14 and 28 Hz].

Previous reactivity studies on co-ordinated L^- have shown the nucleophilic character of the enolate oxygen towards the P-Cl bond of PPh₂Cl, leading to P-O coupling products.^{3a} The presence of two such enolate ligands in (12)—(14) led us to envisage the possibility of a double coupling reaction.^{3b} Thus, reaction of (12) with PCl₃ or PPhCl₂ led to the complexes (19) and (20) respectively [equation (13)].

The i.r. (KBr) spectra of (19) and (20) are each characterised by two strong absorption bands at ca. 1 600 and 1 570 cm⁻¹ due

Figure 3. U.v.-visible spectra of 1.05×10^{-4} mol dm⁻³ [NiCl₂{[Ph₂PCHC(Ph)O]₂PPh}] (20) (----) and 1.10×10^{-4} mol dm⁻³ [NiCl₂{[Ph₂PCHC(Ph)O]₂PPh}]PF₆ (21) (---)

to the P-O-C=C-P linkages. The trans arrangement of the Ph₂PCH groups in (19) and (20) was deduced from the presence in their ¹H n.m.r. spectrum of a pseudo quadruplet (actually a doublet of virtual triplets) at δ 6.01 and 5.86 p.p.m. respectively, for the PCH protons. In the ${}^{31}P{-}{{}^{1}H}$ n.m.r. spectrum of (19), the two types of phosphorus atoms appear respectively as a doublet at δ -3.7 p.p.m. for the *trans* P atoms and as a triplet at δ 83.9 p.p.m. for the chlorophosphite P; the J(PP) coupling constant of 132 Hz unambiguously establishes the coordination of all three phosphorus atoms $\lceil cf \rangle$ the value of 106 Hz for (7)]. The ${}^{31}P-{}^{1}H$ n.m.r. spectrum of (20) displays a similar pattern (see Table 1). Treatment of (19) with NH_4PF_6 in CH_2Cl_2 left the complex unchanged, thus confirming its neutral nature. As could be seen on molecular models, an ideal trigonalbipyramidal structure for (19) and (20) implies a strain of the chelating moieties of the P, P, P ligand because of the C=C(Ph) double bonds. It is noteworthy that the visible spectra of (19) and (20) in CH₂Cl₂, both showing two ligand-field bands [at 385 (ϵ 1 516) and 308 (sh) nm for (19) and at 403 (ϵ 3 882 dm³ $mol^{-1} cm^{-1}$) and 310 (sh) nm for (20)] are in agreement with the general pattern observed for the spectra of diamagnetic five-coordinated complexes of Ni^{II} with trigonal-bipyramidal structures.¹³

Abstraction of a chloride ligand from (20) yielded the diamagnetic complex (21) [equation (14)]. As found for (20), the ¹H and ³¹P-{¹H} n.m.r. data for (21) also indicate co-ordination of all three P atoms (see Table 1) and the observation of a single absorption band at 405 nm (Figure 3) is in agreement with the expected C_{2v} local symmetry about the Ni centre.

In conclusion, we would like to emphasize (i) that a range of transition-metal complexes with a co-ordinated β -phosphinoketonate are directly accessible in high yield from the corresponding neutral functional phosphine and (ii) that new polydentate phosphorus ligands may easily be obtained from such complexes. Multihalide substitution reactions of halogenophosphines by transition-metal co-ordinated nucleophilic ligands have been only little exploited to date,¹⁴ and such template condensation reactions are expected to find more synthetic applications in the future.

Experimental

All reactions were performed in Schlenk-type flasks under argon. All solvents were purified and dried by conventional methods and stored under argon. The ligand $Ph_2PCH_2C(O)Ph$ and the complexes $[PdCl_2(HL)_2]$ (4), $[PdCl_2\{Ph_2PCHC(Ph)OPPh_2\}]$ (8), and $[Pd\{Ph_2PCHC(O)Ph\}(mquin)]$ (16) were prepared according to procedures reported previously.⁴ The complexes $[PdCl_2(PhCN)_2]$ and $[PtCl_2(PhCN)_2]$ were prepared according to literature methods.¹⁵ The ¹H and ³¹P-{¹H} n.m.r. spectra were recorded at 200 and 81 MHz, respectively, on a FT Bruker WP-200 SY instrument. The u.v. spectra were recorded on a Shimadzu UV260 spectrophotometer, the molar absorption coefficient being given in dm³ mol⁻¹ cm⁻¹.

Preparations.—trans-[NiCl₂{Ph₂PCH₂C(O)Ph}₂] (1). A mixture of NiCl₂·6H₂O (0.399 g, 1.68 mmol) and Ph₂PCH₂C(O)Ph (1.02 g, 3.36 mmol) was stirred in EtOH (20 cm³). A red precipitate was formed rapidly. After stirring for 1 h, the suspension was filtered. The precipitate was washed with cold EtOH ($3 \times 10 \text{ cm}^3$) and dried *in vacuo* (yield 0.960 g, 77%), m.p. 164 °C [Found: C, 64.90; H, 4.65. Calc. for C₄₀H₃₄Cl₂NiO₂P₂ (M = 738.28): C, 65.10; H, 4.65%]; i.r. (KBr): 1 662s cm⁻¹ [v(C=O)]. Complex (1) is sparingly soluble in all common solvents. Crystals of (1), suitable for X-ray

analysis, were obtained from a toluene-pentane solution of complex (12) in the presence of HCl.

trans-[NiBr₂{Ph₂PCH₂C(O) 'i}₂] (2). To a stirred suspension of NiBr₂·3H₂O (0.272 g, 1.0C 'mol) in EtOH (10 cm³) was added a solution of Ph₂PCH₂C(C)Ph (0.604 g, 2.0 mmol) in EtOH (10 cm³). After vigorously stirring for 1 h, the suspension was filtered. The collected brown product was washed with EtOH and recrystallised from CH₂Cl₂-pentane affording yellow-brown needles of (2) (yield 0.490 g, 90%), m.p. 193 °C [Found: C, 55.75; H, 4.15. Calc. for C₄₀H₃₄Br₂NiO₂P₂· 0.5CH₂Cl₂ (M = 869.65): C, 55.95; H, 4.05%]; i.r. (KBr): 1 612s [v(C=O)], 1 593s, 1 572s cm⁻¹. All ¹H n.m.r. signals were broad (see Results and Discussion section).

trans-[NiI₂{Ph₂PCH₂C(O)Ph₂] (3). Complex (2) (0.200 g, 0.24 mmol) and NaI (0.300 g, 2.00 mmol) were reacted in acetone (20 cm³). Instantaneously the solution turned red. After stirring for 0.25 h, the solvent was removed *in vacuo*. The red residue was dissolved in CH₂Cl₂ and the solution was filtered. Addition of pentane afforded red crystals of (3) (yield 0.197 g, 94%), m.p. 208 °C [Found: C, 45.60; H, 3.30. Calc. for C₄₀H₃₄I₂NiO₂P₂ (M = 921.18): C, 52.15; H, 3.70%]; i.r. (KBr or Nujol): 1 620s [v(C=O)], 1 590s, 1 571s cm⁻¹. ¹H N.m.r. signals were broad (see Results and Discussion section).

cis-[PtCl₂{Ph₂PCH₂C(O)Ph}₂] (5). [PtCl₂(PhCN)₂] (0.944 g, 2.00 mmol) and Ph₂PCH₂C(O)Ph (1.216 g, 4.00 mmol) were reacted in toluene (15 cm³). After stirring for 4 h, the solution was filtered and the white precipitate was washed with pentane. The product was recrystallised from CH₂Cl₂-pentane (yield 1.70 g, 98%), m.p. 239 °C [Found: C, 54.90; H, 3.80. Calc. for C₄₀H₃₄Cl₂O₂P₂Pt (M = 874.66): C, 54.95; H, 3.90%]; i.r. (KBr): v(C=O) 1 670s cm⁻¹; ¹H n.m.r. (CDCl₃): δ 4.36 [d with Pt satellites, 4 H, PCH₂, ²J(PH) 10.9, ³J(PtH) 21 Hz], 7.10— 7.86 (30 H, aromatic H); ³¹P-{¹H} n.m.r. (CDCl₃): δ 4.3 [s with Pt satellites, J(PtP) 3 794 Hz].

[{PdCl(μ -Cl)[Ph₂PCH₂C(O)Ph]}₂] (6). [PdCl₂(PhCN)₂] (0.390 g, 1.00 mmol) and Ph₂PCH₂C(O)Ph (0.304 g, 1.0 mmol) were reacted in a mixture of toluene (15 cm³) and CH₂Cl₂ (15 cm³). After stirring for 1 h, the solution was filtered. Concentration of the filtrate and addition of pentane afforded orange crystals of (6) (yield 0.425 g, 81%), m.p. 232–240 °C (decomp.) [Found: C, 46.95; H, 3.20. Calc. for C₄₀H₃₄Cl₄O₂P₂Pd₂· CH₂Cl₂ (M = 1 048.21): C, 47.00; H, 3.45%]; i.r. (KBr): v(C=O) 1 674s cm⁻¹; ¹H n.m.r. (CDCl₃): δ 4.36 [d, 2 H, CH₂, ²J(PH) 11.8 Hz], 7.31–7.87 (15 H, aromatic H); ³¹P-{¹H} n.m.r. (CDCl₃): δ 24.9.

cis-[MCl₂{Ph₂PCHC(Ph)OPPh₂}] [M = Ni (7), Pd (8), or Pt (9)]. These complexes were prepared by refluxing for 4 h a toluene solution containing the corresponding [MCl₂(HL)₂] complex, as detailed for M = Pd.⁴ Complexes (7) and (9) were identified by comparison with authentic samples prepared by a different method.¹⁶

cis-[Pd{Ph₂PCH₂C(\dot{O})Ph}₂][BF₄]₂ (10). Complex (4) (0.200 g, 0.25 mmol) and AgBF₄ (0.100 g, 0.51 mmol) were reacted in CH₂Cl₂ (10 cm³). After stirring for 2 h, the solution was filtered through Celite. Addition of pentane afforded yellow crystals of (10) (yield 0.190 g, 86%), m.p. 170–185 °C (decomp.) [Found: C, 54.20; H, 3.80. Calc. for C₄₀H₃₄B₂F₈O₂P₂Pd (M =888.7): C, 54.05; H, 3.85%]; i.r. (CH₂Cl₂): v(C=O) 1 558s cm⁻¹; ¹H n.m.r. (CD₂Cl₂): δ 5.10 [d, 4 H, PCH₂, ²J(PH) 12.5 Hz], 7.26–8.20 (30 H, aromatic H); ³¹P-{¹H} n.m.r. (CH₂Cl₂– CD₂Cl₂): δ 46.2.

 $[{Pd(\mu-Cl)[Ph_2PCH_2C(\dot{O})Ph]}_2][CF_3SO_3]_2$ (11). Complex (6) (0.200 g, 0.19 mmol) and AgCF_3SO_3 (0.107 g, 0.40 mmol) were reacted in CH_2Cl₂ (15 cm³). After stirring for 1 h, the solution was filtered through Celite. Addition of a toluene (10%)—pentane mixture afforded mustard yellow crystals of (11) (yield 0.193 g, 85%), m.p. 170–200 °C (decomp.) [Found: C, 46.10; H, 3.30. Calc. for $C_{42}H_{34}Cl_2F_6O_8P_2Pd_2S_2\cdot C_6H_5$ Me (M = 1 282.6): C, 45.90; H, 3.30%]; i.r. (Nujol): v(C=O) 1 545s cm⁻¹; ¹H n.m.r. (CD₂Cl₂): δ 5.13 [d, 2 H, PCH₂, ²J(PH) 12.7 Hz], 7.30–8.17 (15 H, aromatic H); ³¹P-{¹H} n.m.r. (CH₂Cl₂-[²H₈]toluene): δ 45.1.

cis-[Ni{Ph₂PCHC(\dot{O})Ph}₂] (12). A solution of NaOEt in EtOH (prepared from 0.2 g Na and 15 cm³ EtOH) was slowly added to a stirred suspension of [NiCl₂{Ph₂PCH₂C(O)Ph}₂] (1.90 g, 2.57 mmol) in EtOH (15 cm³). An orange powder precipitated immediately. After stirring for 1 h, the mixture was concentrated and filtered. The precipitate was first washed with cold EtOH and then recrystallised from toluene-CH₂Cl₂pentane (yield 1.627 g, 95%), m.p. 239 °C [Found: C, 72.25; H, 4.95. Calc. for C₄₀H₃₂NiO₂P₂ (M = 665.36): C, 72.20; H, 4.85%]; i.r. (KBr): v(C····O) + v(C····C) 1 515s cm⁻¹; ¹H n.m.r. (CD₂Cl₂): δ 4.55 (s, 2 H, PCH), 7.04—7.85 (30 H, aromatic H); ³¹P-{¹H} n.m.r. (C₆D₆-CH₂Cl₂): δ 28.2.

cis-[Pd{Ph₂PCHC(\dot{O})Ph}₂] (13). Complex (4) (0.393 g, 0.50 mmol) was reacted with NaH (two-fold excess) in thf (40 cm³). After stirring overnight, the mixture was filtered and the solvent removed *in vacuo*. Recrystallisation from CH₂Cl₂-pentane afforded yellow crystals of (13) (yield 0.328 g, 92%), m.p. 215 °C (decomp.) [Found: C, 66.15; H, 4.55. Calc. for C₄₀H₃₂O₂P₂Pd (M = 713.05): C, 67.40; H, 4.50%]; i.r. (KBr): 1 513s, 1 484s cm⁻¹; ¹H n.m.r. (C₆D₆): δ 4.75 [d, 2 H, PCH, ²J(PH) 2.1 Hz], 6.74—8.39 (30 H, aromatic H); ³¹P-{¹H} n.m.r. (CH₂Cl₂-C₆D₆): δ 37.7.

cis-[Pt{Ph₂PCHC(\dot{O})Ph}₂] (14). A solution of NaOEt in EtOH (prepared from 0.2 g Na and 15 cm³ EtOH) was slowly added to a stirred suspension of [PtCl₂{Ph₂PCH₂C(O)Ph}₂] (0.865 g, 0.99 mmol) in EtOH (20 cm³). After stirring for 1 h, the reaction mixture was concentrated and filtered. The white precipitate was washed with EtOH and then recrystallised from CH₂Cl₂-pentane (yield 0.750 g, 94%), m.p. > 260 °C [Found: C, 58.30; H, 3.90. Calc. for C₄₀H₃₂O₂P₂Pt (M = 801.74): C, 59.95; H, 4.00%]; i.r. (KBr): v(C····O) + v(C····C) 1 517s cm⁻¹; ¹H n.m.r. (CDCl₃): δ 4.82 [d with Pt satellites, PCH, 2 H, ²J(PH) 5.2, ³J(PtH) 28.7 Hz], 6.95—8.03 (30 H, aromatic H); ³¹P-{¹H} n.m.r. (CDCl₃): δ 12.9 [s with Pt satellites, J(PtP) 3 520 Hz].

[{Pd(μ -Cl)[Ph₂PCHC(\dot{O})Ph]}₂] (15). Complex (6) (0.500 g, 0.51 mmol) and NaH (0.025 g, 1.04 mmol) were reacted in thf (100 cm³). After stirring overnight, the solution was filtered and the solvent removed *in vacuo*. The residue was then dissolved in CH₂Cl₂ (200 cm³) and the solution was filtered. Addition of pentane to the filtrate afforded (15) as an orange powder (yield 0.395 g, 87%), m.p. 207–220 °C (decomp.) [Found: C, 52.40; H, 3.45. Calc. for C₄₀H₃₂Cl₂O₂P₂Pd₂ (M = 890.4): C, 53.95; H, 3.60%]; i.r. (KBr): v(C····O) + v(C····C) 1 514s cm⁻¹; ¹H n.m.r. (CDCl₃): δ 4.42 [d, 1 H, PCH, ²J(PH) 5.3 Hz], 7.13–7.89 (15 H, aromatic H); ³¹P-{¹H} n.m.r. (thf-C₆D₆): δ 41.3.

cis-[PdCl{Ph₂PCHC(\dot{O})Ph}(PPh₃)] (17). To a stirred suspension of complex (15) (0.075 g, 0.08 mmol) in thf (10 cm³) was dropwise added a solution of PPh₃ (0.044 g, 0.17 mmol) in thf (10 cm³). After stirring for 15 min, pentane was added, affording yellow crystals of (17) which were recrystallised from CH₂Cl₂-pentane (yield 0.107 g, 90%), m.p. 207 °C [Found: C, 59.40; H, 4.20. Calc. for C₃₈H₃₁ClOP₂Pd·CH₂Cl₂ (M = 792.4): C, 59.10; H, 4.20%]; i.r. (KBr): v(C····O) + v(C····C) 1 512s cm⁻¹; ¹H n.m.r. (CDCl₃): 4.45 [dd, 1 H, PCH, J(PH) 2.4 and 5.7 Hz], 7.12-7.92 (30 H, aromatic H); ³¹P-{¹H} n.m.r. (CDCl₃): δ 28.8 (d, 1 P, not assigned, ²J(PP) 8], 45.7 [d, 1 P, ²J(PP) 8 Hz].

 $[Pd{Ph_2PCHC(O)Ph}(Ph_2PCH_2CH_2PPh_2)]PF_6$ (18). A suspension of complex (15) (0.160 g, 0.18 mmol) was reacted with Ph_2PCH_2CH_2PPh_2 (0.143 g, 0.36 mmol) in CH_2Cl₂ (15

Atom	x	у	Z	Atom	х	У	Z
Ni	0.000	0.000	0.000	C(9)	-0.2825(5)	-0.0440(5)	0.119 1(3)
Cl	0.136 8(1)	0.125 9(1)	0.058 87(8)	C(10)	-0.2989(5)	-0.1634(5)	0.122 1(4)
Р	-0.1154(1)	0.0141(1)	0.119 74(8)	C(11)	-0.4260(6)	-0.2116(6)	0.1161(4)
O(1)	-0.2060(4)	0.213 1(3)	0.014 9(2)	C(12)	-0.5354(6)	-0.1424(7)	0.108 1(4)
C(1)	-0.1282(5)	0.163 7(4)	0.158 3(3)	C(13)	-0.5218(6)	-0.0256(7)	0.1064(4)
C(2)	-0.1558(5)	0.249 0(4)	0.082 6(3)	C(14)	-0.3949(6)	0.027 2(6)	0.1121(4)
C(3)	-0.1209(5)	0.373 2(4)	0.094 6(3)	C(15)	-0.0299(5)	-0.0593(4)	0.2111(3)
C(4)	-0.1750(6)	0.451 0(5)	0.032 4(4)	C(16)	0.087 8(5)	-0.1177(5)	0.199 5(4)
C(5)	-0.1410(6)	0.568 7(5)	0.038 7(4)	C(17)	0.150 2(6)	-0.1769(6)	0.269 8(5)
C(6)	-0.0525(7)	0.605 4(5)	0.105 4(5)	C(18)	0.094 8(6)	-0.1784(6)	0.348 9(4)
C(7)	-0.0017(7)	0.528 7(5)	0.166 0(4)	C(19)	-0.0200(7)	-0.1201(6)	0.361 1(4)
C(8)	-0.037 3(6)	0.413 6(4)	0.161 9(3)	C(20)	-0.0824(5)	-0.0618(5)	0.291 9(4)

Table 3. Positional parameters and their estimated standard deviations for $trans-[NiCl_2{Ph_2PCH_2C(O)Ph_2}]$ (1)

Table 4. Positional parameters and their estimated standard deviations for trans- $[NiI_2{Ph_2PCH_2C(O)Ph_2}]$ (3)

Atom	х	У	Ζ	Atom	x	у	Z
Ni	0.000	0.000	0.000	C(9)	0.141 1(6)	-0.217 6(6)	0.132 5(3)
I	0.189 07(4)	0.099 15(6)	-0.06733(2)	C(10)	0.159 6(7)	-0.1940(7)	0.2041(3)
Р	0.179 7(2)	-0.0934(2)	0.068 84(8)	C(11)	0.130 7(8)	-0.2904(8)	0.250 3(4)
O(1)	0.132 8(5)	-0.2681(5)	-0.0538(3)	C(12)	0.086 9(8)	-0.4129(8)	0.226 8(5)
C(1)	0.320 0(6)	-0.1753(7)	0.024 8(3)	C(13)	$0.068\ 2(7)$	-0.4364(7)	0.1574(4)
C(2)	0.260 4(7)	-0.2664(7)	-0.0331(3)	C(14)	0.092 4(7)	-0.3403(7)	0.1101(4)
C(3)	0.363 4(6)	-0.3526(6)	-0.0632(3)	C(15)	0.280 5(6)	0.027 9(6)	0.1227(3)
C(4)	0.309 1(8)	-0.4499(8)	-0.109 5(4)	C(16)	0.204 2(8)	0.1317(7)	0.147 5(4)
C(5)	0.398 4(9)	-0.5338(8)	-0.1391(4)	C(17)	0.275(1)	0.2220(7)	0.191 5(4)
C(6)	0.547 0(8)	-0.5221(8)	-0.1239(4)	C(18)	0.421 1(9)	0.212 4(8)	0.209 6(4)
C(7)	0.604 1(7)	-0.429 6(7)	-0.0778(4)	C(19)	0.497 3(8)	0.114 8(8)	0.185 8(4)
C(8)	0.513 6(7)	-0.346 1(7)	-0.0474(3)	C(20)	0.428 6(7)	0.018 5(8)	0.141 9(4)

cm³). After 5 min, TIPF₆ (0.140 g, 0.40 mmol) was added and the mixture was stirred for 1 h. The solution was filtered through Celite and pentane was added, affording yellow crystals of (18) (yield 0.325 g, 95%), m.p. 218 °C [Found: C, 57.90; H, 4.30. Calc. for C₄₆H₄₀F₆OP₄Pd (M = 953.12): C, 57.95; H, 4.25%]; i.r. (KBr): v(C····O) + v(C····C) 1 511s cm⁻¹; ¹H n.m.r. (CDCl₃): δ 2.56 (d of complex m, PCH₂), 2.82 (d of complex m, PCH₂), 4.84 [d of virtual t, 1 H, PCH, ²⁺⁴J(PH) 4.8, ⁴J(P_{trans-0}H) 4.8 Hz], 7.16—7.96 (35 H, aromatic H); ³¹P-{¹H} n.m.r. (CDCl₃): ABM spin system (where M is the P atom *trans* with respect to the O atom) with δ_A 38.1, δ_B 53.7, δ_M 56.1 [²J(P_AP_B) 362, ²J(P_AP_M) 14, ²J(P_BP_M) 28 Hz, signals A and B not assigned].

[NiCl₂{[Ph₂PCHC(Ph)O]₂PCl}] (19). A solution of PCl₃ (0.055 g, 0.40 mmol) in toluene (5 cm³) was dropwise added to a solution of complex (12) (0.230 g, 0.35 mmol) in toluene (25 cm³). After stirring for a few minutes, a green precipitate appeared. The suspension was further stirred for 2 h. The solvent was removed *in vacuo* and the green residue was dissolved in a CH₂Cl₂-toluene mixture, affording an orange solution. Addition of pentane and cooling at -15 °C gave orange crystals of (19) (yield 0.265 g, 85%), m.p. > 230 °C (Found: C, 63.25; H, 4.50. Calc. for C₄₀H₃₂Cl₃NiO₂P₃·C₆H₅-Me (M = 894.83): C, 63.10; H, 4.50%]; i.r. (KBr): 1 597s, 1 567s cm⁻¹; ¹H n.m.r. ([²H₈]toluene): δ 6.01 [d of virtual t, 2 H, PCH, J(P_{C1}H) 3.0, ²⁺⁴J 6.0 Hz], 7.20–8.31 (30 H, aromatic H); ³¹P-{¹H} n.m.r. (CH₂Cl₂-[²H₈]toluene): δ – 3.7 [d, 2 P, PPh₂, J(PP) 132], 83.9 [t, 1 P, PCl, J(PP) 132 Hz]; u.v. (CH₂Cl₂): 385 (ϵ 1 516), 308 (sh), 270 (sh), 258 (29 552), 219 (35 552) nm.

trans-[NiCl₂{[Ph₂PCHC(Ph)O]₂PPh}] (20). A solution of PPhCl₂ (0.180 g, 1.15 mmol) in CH₂Cl₂ (10 cm³) was added to a stirred solution of complex (12) (0.730 g, 1.10 mmol). After stirring for 0.25 h, the solution was concentrated. Addition of pentane afforded green crystals of (20) (yield 0.768 g, 83%),

m.p. >260 °C [Found: C, 65.45; H, 4.30. Calc. for $C_{46}H_{37}Cl_2NiO_2P_3$ (M = 844.35): C, 65.45; H, 4.40%]; i.r. (KBr): 1 600s, 1 571s cm⁻¹; ¹H n.m.r. (CDCl₃): δ 5.86 [d of virtual t, 2 H, PCH, ²⁺⁴J(PH) 5, ⁴J(PH) 2.5 Hz], 6.65—8.07 (35 H, aromatic H); ³¹P-{¹H} n.m.r. (CDCl₃): δ 2.2 [d, 2 P, PCH, J(PP) 87 Hz], 117.0 [t, 1 P, PO, J(PP) 87 Hz]; u.v. (CH₂Cl₂): 403 (ϵ 3 882), 310 (sh), 263 (28 623), 235 (sh), 216 (55 098) nm.

[NiCl{[Ph₂PCHC(Ph)O]₂PPh}]PF₆ (21). TlPF₆ (0.50 g, 0.14 mmol) and complex (20) (0.120 g, 0.14 mmol) were reacted in CH₂Cl₂ (10 cm³). After stirring for 0.25 h, the suspension was filtered. Addition of hexane afforded orange crystals of (21) (yield 0.126 g, 93%), m.p. > 250 °C [Found: C, 57.95; H, 4.00. Calc. for C₄₆H₃₇ClF₆NiO₂P₄ (M = 953.9): C, 57.95; H, 3.90%]; i.r. (KBr) 1 594s, 1 569s cm⁻¹; ¹H n.m.r. (CDCl₃): δ 6.02 [d of virtual t, 2 H, PCH, ²⁺⁴J(PH) 6.6, ⁴J(PH) 1.6 Hz], 6.99–7.82 (35 H, aromatic H); ³¹P-{¹H</sup>} n.m.r. (CDCl₃): δ 1.6 [d, 2 P, PCH, J(PP) 96 Hz], 163.3 [t, 1 P, PO, J(PP) 96 Hz]; u.v. (CH₂Cl₂): 405 (ϵ 4 303), 277 (38 168), 232 (sh), 218 (58 779) nm.

Crystal Structure Determination of (1).—Crystal data. $C_{40}H_{34}Cl_2NiO_2P_2$, M = 738.28. Crystals were grown as red prisms from a toluene-pentane solution of (12) in the presence of HCl. Monoclinic, a = 10.079(3), b = 11.510(3), c = 15.411(3) Å, $\beta = 93.42(2)^\circ$, U = 1.784 Å³ (by least-squares refinement on diffractometer angles for 25 automatically centred reflections, $\lambda = 1.5405$ Å), space group $P2_1/n$, Z = 2, $D_c = 1.374$ g cm⁻³, F(000) = 764. Air-stable crystals cut out from a cluster of crystals with dimensions $0.20 \times 0.24 \times 0.28$ mm, $\mu(Cu-K_n) = 33.10$ cm⁻¹.

Data collection and processing. Philips PW 1100/16 diffractometer, $\theta/2\theta$ flying step scan mode with $\Delta\theta = (1.00 + 0.143 \text{ tan} \theta)^{\circ}$, scan speed = 0.024° s⁻¹, graphite-monochromated Cu- K_{α} radiation; 2 600 reflections measured (4 < θ < 57°, $\pm hkl$), 1 953 independent reflections having $I > 3\sigma(I)$. No intensity decay was observed during the data collection period. Intensity data were corrected for Lorentz, polarisation and absorption factors, the last computed by the empirical method of Walker and Stuart.¹⁷

Structure analysis and refinement. The structure was solved using heavy-atom and difference Fourier methods and refined by full-matrix least squares minimizing $\Sigma w(|F_o| - |F_c|)^2$ with anisotropic thermal parameters for all the non-hydrogen atoms. Hydrogen atoms were not located but introduced by their computed co-ordinates (C-H = 0.95 Å) in structure factor calculations and were given isotropic thermal parameters of $B = 1 + B_{eqv}$.(C) Å². The final difference map showed no significant maximum. The weighting scheme for the refinement was derived from $\sigma^2(F^2) = \sigma_{count}^2 + (0.08 I)^2$ and gave a satisfactory agreement analysis. Final R = 0.050 and R' =0.060. Scattering factors with corrections for the effects of anomalous dispersion were from ref. 18. Calculations were carried out on a PDP 11/60 computer using the Enraf-Nonius SDP/PDP package.¹⁹ The final atomic co-ordinates are listed in Table 3.

Crystal Structure Determination of (3).—Crystal data. $C_{40}H_{34}I_2NiO_2P_2$, M = 921.18. Crystals were grown as dark red prisms from a CH_2CI_2 -pentane solution. Monoclinic, a =9.283(1), b = 10.261(1), c = 19.318(1) Å, $\beta = 96.20(1)^\circ$, U =1 829 Å³ (by least-squares refinement on diffractometer angles for 25 automatically centred reflections, $\lambda = 0.710$ 73 Å), space group $P2_1/c$, Z = 2, $D_c = 1.67$ g cm⁻³, F(000) = 908. Air-stable crystals of dimensions $0.20 \times 0.17 \times 0.07$ mm, μ (Mo- K_2) = 23.21 cm⁻¹.

Data collection and processing. Nonius CAD4 diffractometer, $\theta/2\theta$ mode with scan width = $(1 + 0.35 \tan \theta)^0$, counter aperture $D = (2 + 0.5 \tan \theta)$ mm, variable scan speed, graphitemonochromated Mo- K_{α} radiation; 3 188 reflections measured $(1 < \theta < 25^\circ, hk \pm l)$, 1 731 independent reflections with $I > 3\sigma(I)$. No intensity decay was observed during the data collection period. Intensity data were corrected for Lorentz and polarisation factors. Absorption corrections were omitted in view of the low linear absorption coefficient.

Structure analysis and refinement. The structure was solved using the MULTAN²⁰ program and refined as for (1) with isotropic thermal parameters of 6.0 Å² for the hydrogen atoms. A weighting scheme $w = \left[\frac{1}{4}|\sigma(I)^2/I + (0.06 I)^2|\right]^{-1}$ gave a satisfactory analysis, and refinement converged at R = 0.032and R' = 0.041. The final difference map showed no significant residual peaks. Scattering factors, corrections were as for (1). The final atomic co-ordinates are listed in Table 4.

Acknowledgements

We thank Mrs. A. Degremont for experimental assistance and Dr. M. L. Luke for discussion. The Groupement Scientifique $CO_2(CNRS-SNPE)$ is acknowledged for financial support and for a grant to D. N.

References

- 1 W. Keim, A. Behr, B. Gruber, B. Hoffmann, F. H. Kowaldt, U. Kürschner, B. Limbäcker, and F. P. Sistig, *Organometallics*, 1986, 5, 2356.
- 2 P. Braunstein, D. Matt, Y. Dusausoy, J. Fischer, A. Mitschler, and L. Ricard, J. Am. Chem. Soc., 1981, 103, 5115.
- 3 (a) S-E. Bouaoud, P. Braunstein, D. Grandjean, D. Matt, and D. Nobel, J. Chem. Soc., Chem. Commun., 1987, 488; (b) P. Braunstein, D. Matt, D. Nobel, and J. Fischer, *ibid.*, p. 1530.
- 4 Part 10, S-E. Bouaoud, P. Braunstein, D. Grandjean, D. Matt, and D. Nobel, *Inorg. Chem.*, 1986, **25**, 3765.
- 5 G. R. van Hecke and W. D. Horrocks, Inorg. Chem., 1966, 5, 1968.
- 6 P. Braunstein, D. Matt, F. Mathey, and D. Thavard, J. Chem. Res., 1978, (S) 232; (M) 3041.
- 7 A. W. Verstuyft, D. A. Redfield, L. W. Cary, and J. H. Nelson, *Inorg. Chem.*, 1976, **15**, 1128.
- 8 P. E. Garrou, Chem. Rev., 1981, 81, 229.
- 9 H. Quichen, X. Minzhi, Q. Yanlong, X. Weihua, S. Meicheng, and T. Youqi, J. Organomet. Chem., 1985, 287, 419.
- 10 A. J. Carty, S. E. Jacobson, R. T. Simpson, and N. J. Taylor, J. Am. Chem. Soc., 1975, 97, 7254.
- 11 C. J. Moulton and B. L. Shaw, J. Chem. Soc., Dalton Trans., 1980, 299.
- 12 M. Peuckert and W. Keim, Organometallics, 1983, 2, 594.
- 13 P. Rigo, B. Corain, and A. Turco, *Inorg. Chem.*, 1968, **8**, 1623; J. W. Dawson, T. J. McLennan, W. Robinson, A. Merle, M. Dartiguenave, Y. Dartiguenave, and H. B. Gray, *J. Am. Chem. Soc.*, 1974, **14**, 4428; C. R. C. Coussmaker, M. Hely Hutchinson, J. R. Mellor, L. E. Sutton, and L. M. Venanzi, *J. Chem. Soc.*, 1961, 2705.
- 14 M. D. Hobday and T. D. Smith, J. Chem. Soc. A, 1970, 1085.
- 15 F. R. Hartley, 'The Chemistry of Platinum and Palladium,' J. Wiley and Sons, New York, 1973.
- 16 F. Balegroune, P. Braunstein, D. Grandjean, D. Matt, and D. Nobel, *Organometallics*, submitted for publication.
- 17 N. Walker and D. Stuart, Acta Crystallogr., Sect. A, 1983, 39, 158.
- 18 'International Tables for X-Ray Crystallography,' Kynoch Press, Birmingham, 1974, vol. 4, Tables 2.2b and 2.3.1.
- 19 B. A. Frenz, 'The Enraf-Nonius CAD4-SDP,' in 'Computing in Crystallography,' eds. H. Schenk, R. Olthof-Hazekamp, H. van Koningsveld, and G. C. Bassi, University Press, Delft, The Netherlands, 1978, pp. 64-71.
- 20 G. Germain, P. Main, and M. M. Woolfson, *Acta Crystallogr., Sect. A*, 1971, **27**, 368.

Received 24th March 1987; Paper 7/538