Preparation and Characterization of Diorgano- and Dihalogenc bis(monothio- β diketonato)tin(Iv) Complexes. Crystal and Molecular Structure. of $\mathrm{SnY}_{2}(\mathrm{btbm})_{2}$ and $\mathbf{S n Y}_{\mathbf{2}}(\text { tacac })_{\mathbf{2}} \mathbf{(Y =} \mathbf{M e}$ or $\left.\mathbf{C I}\right) \boldsymbol{\dagger}$

Channareddy Sreelatha, Dileep K. Srivastava, and Vishnu D. Gupta•
Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005, India Heinrich Nöth ${ }^{\text {• }}$
Institute of Inorganic Chemistry, University of Munich, Meiserstr. 1, D-8000 München, Federal Republic of Germany

Abstract

Diorgano- and dihalogeno-bis(monothio- β-diketonato)tin(iv) complexes have been prepared and their structures partially deduced by i.r. and n.m.r. data. In order to ascertain structural conclusions, X-ray crystal structure analyses were performed on the complexes $\mathrm{SnMe}_{2}(\mathrm{btbm})_{2}[\mathrm{Hbtbm}=$ benzoyl(thiobenzoyl)methane] and $\mathrm{SnMe}_{2}(\text { tacac })_{2}$ ($\mathrm{Htacac}=$ monothioacetylacetone), as well as and $\mathrm{SnMe}_{2}(\operatorname{tacac})_{2}$ show a strongly distorted octahedral environment with pairs of the same donor atoms (O, S) in the cis position. The two methyl groups deviate strongly from the trans position, $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ bond angles being 134.2 and 139.4° respectively. Comparatively long $\mathrm{Sn}-\mathrm{O}$ bond distances reveal the anisobidentate nature of the ligand. In contrast, the dichloro complexes $\mathrm{SnCl}_{2}(\mathrm{btbm})_{2}$ and $\mathrm{SnCl}_{2}(\text { tacac })_{2}$ exhibit octahedral geometries, the $\mathrm{Cl}-\mathrm{Sn}-\mathrm{Cl}$ bond angles being only 95.3 and 98.5° respectively, with the chlorine atoms in cis positions and the sulphur atoms in trans positions. The oxygen atoms show normal $\mathrm{Sn}-\mathrm{O}$ bond lengths.

Octahedral diorganotin(IV) complexes ${ }^{1}$ containing oxygen, ${ }^{2}$ nitrogen, ${ }^{3}$ and sulphur ${ }^{4}$ as donor atoms have been assigned cis or trans configurations depending on the nature of the ligand and the organo group on tin, as shown by X-ray crystallographic studies. In spite of the relative abundance of structural data for six-co-ordinate dimethyltin(IV) compounds, apparently only few data are available for the corresponding dichloro compounds. ${ }^{5-7}$ The bonding in tin compounds with coordination number six has been described in terms of d orbital participation or by invoking the concept of three-centre molecular orbitals, particularly in organotin compounds. In order to gain a better understanding of the stereochemistry of organotin compounds, or even to extend the concept of the Zahrobsky model ${ }^{8}$ to chelate structures, asymmetrical sulphur ligand complexes are of special interest. Notably, none of the non-transition metal complexes of asymmetrical organosulphur ligands has been examined so far for structural data, except for our recent report ${ }^{9}$ on tris[benzoyl(thiobenzoyl)methanato$O, S]$ indium(III). On the other hand several transition-metal bis-, ${ }^{10.11}$ tris-, ${ }^{12}$ and tetrakis- ${ }^{13}$ (monothio- β-diketone) complexes have been examined by X-ray structure analysis. In all compounds studied the sulphur atoms of the ligand tend to cluster next to one another irrespective of the geometry of the complex, and normal $\mathrm{M}-\mathrm{O}$ and $\mathrm{M}-\mathrm{S}$ distances are observed.

Preliminary studies on $\mathrm{SnMe}_{2} \mathrm{~L}_{2}$ complexes ($\mathrm{HL}=$ mono-thio- β-diketone) resulted in two sets of data which led to conflicting interpretations with respect to the arrangement of methyl groups in cis or trans positions in an octahedral environment. In contrast, non-linearity of the ClSnCl moiety, and, therefore, cis geometry in $\mathrm{SnCl}_{2} \mathrm{~L}_{2}$ complexes is indicated by infrared spectral studies. In addition, the strength of the

[^0]bonds between tin and the donor atom (O, S) of the chelating ligand in both complexes remains undefined. In order to settle these points an X-ray diffraction study was carried out on $\mathrm{SnY}_{2}(\mathrm{btbm})_{2} \quad$ and $\quad \mathrm{SnY}_{2}(\mathrm{tacac})_{2} \quad[\mathrm{Hbtbm}=$ benzoyl(thiobenzoyl)methane, $\mathrm{Htacac}=$ monothioacetylacetone, $\mathrm{Y}=\mathrm{Me}$ or Cl].

Experimental

Precautions were taken to exclude moisture. Solvents were dried by standard techniques. Ligands were synthesized by literature procedures. ${ }^{14.15}$ The compounds SnCl_{4} (b.p. $114{ }^{\circ} \mathrm{C}$), $\mathrm{SnMe}_{2} \mathrm{Cl}_{2}$ (b.p. $80^{\circ} \mathrm{C}, 20 \mathrm{mmHg}$), $\mathrm{SnBu}_{2} \mathrm{Cl}_{2}$ (b.p. $135^{\circ} \mathrm{C}, 10$ mmHg), and $\mathrm{SnPh}_{2} \mathrm{Cl}_{2}$ (b.p. $100^{\circ} \mathrm{C}, 0.5 \mathrm{mmHg}$) were distilled before use. Tin was estimated as SnO_{2}, and sulphur by Messenger's method. Molecular weights were determined cryoscopically in benzene. I.r. spectra were recorded on a Perkin-Elmer 621 model instrument in the range $4000-200$ cm^{-1} as neat liquids or as Nujol mulls using CsI plates. N.m.r. spectra (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{119} \mathrm{Sn}$) were recorded at approximately $25^{\circ} \mathrm{C}$ on a JEOL-FX 90 Q spectrometer in CDCl_{3} or CCl_{4} (SiMe ${ }_{4}$ as internal standard for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C} ; \mathrm{SnMe}_{4}$ for ${ }^{119} \mathrm{Sn}$; sealed capillaries for ${ }^{119} \mathrm{Sn}$).

General Procedure for the Preparation of Diorgano- and, Dihalogeno-bis(monothioacetylacetonato-O,S)tin(iv) Com-plexes.-A stoicheiometric amount of the respective diorganotin(Iv) dichloride or tin tetrahalide in dichloromethane (ca. $20 \mathrm{~cm}^{3}$) was added to the sodium salt of monothioacetylacetone ${ }^{16}$ suspended in dichloromethane ($c a .30 \mathrm{~cm}^{3}$) with stirring under a nitrogen atmosphere. Stirring was continued for $c a .2 \mathrm{~h}$ and the sodium chloride formed was removed by filtration. The solvent was then removed in vacuo from the filtrate and the products were dried at $28^{\circ} \mathrm{C}, 0.1 \mathrm{mmHg}$ for 4 h . The products $\mathrm{SnR}_{2}(\text { tacac })_{2}(\mathrm{R}=$ alkyl or aryl) were finally recrystallized from a dichloromethane-n-hexane mixture (1:3) and the dihalogenotin complexes from a chloroform-methanol mixture ($1: 3$). Physical properties and analytical data for the vacuum-dried compounds are given in Table 1.

The complexes $\mathrm{SnMe}_{2}(\mathrm{btbm})_{2}$ and $\mathrm{SnCl}_{2}(\mathrm{btbm})_{2}$ were prepared by literature procedures. ${ }^{17}$

X-Ray Structure Analysis.-The X-ray structure determinations were performed using a Syntex R3 four-circle automated diffractometer operating with a graphite monochromator and Mo- K_{α} radiation, $\lambda=0.71069 \AA$, for data collection at $25^{\circ} \mathrm{C}$, and the SHELXTL program ${ }^{18}$ for structure solution and refinement. A NOVA 3 computer from Data General was used

Table 1. Physical properties of $\mathrm{SnY}_{2}(\mathrm{tacac})_{2}$ complexes $(\mathrm{Y}=\mathrm{Me}, \mathrm{Bu}$, Ph, Cl, or I)

Y	Nature	$\begin{aligned} & \text { M.p./ } \\ & { }^{\circ} \mathrm{C} \end{aligned}$	Analysis ${ }^{\text {a }} / \%$		$M^{\text {a,b }}$
			Sn	S	
Me	Light yellow solid	92	$\begin{gathered} 30.8 \\ (31.3) \end{gathered}$	$\begin{gathered} 16.1 \\ (16.9) \end{gathered}$	$\begin{gathered} 382 \\ (379) \end{gathered}$
Bu	Light yellow liquid	c	$\begin{gathered} 25.3 \\ (25.6) \end{gathered}$	$\begin{gathered} 14.0 \\ (13.8) \end{gathered}$	$\begin{gathered} 449 \\ (463) \end{gathered}$
Ph	Light yellow solid	108	$\begin{gathered} 23.1 \\ (23.6) \end{gathered}$	$\begin{gathered} 12.6 \\ (12.7) \end{gathered}$	$\begin{gathered} 531 \\ (520) \end{gathered}$
Cl	Yellow solid	204	$\begin{gathered} 27.8 \\ (28.3) \end{gathered}$	$\begin{gathered} 14.9 \\ (15.2) \end{gathered}$	$\begin{gathered} 402 \\ (419) \end{gathered}$
I	Yellow solid	178	$\begin{gathered} 18.9 \\ (19.6) \end{gathered}$	$\begin{gathered} 11.1 \\ (10.6) \end{gathered}$	$\begin{gathered} 576 \\ (602) \end{gathered}$

in all computational work. Crystal data and other details of the X-ray crystal structure determinations on $\mathrm{SnY}_{2}(\mathrm{btbm})_{2}$ and $\mathrm{SnY}_{2}(\mathrm{tacac})_{2}(\mathrm{Y}=\mathrm{Me}$ or Cl$)$ are summarized in Table 2.

The yellow crystals of $\mathrm{SnCl}_{2}(\mathrm{btbm})_{2}$ became opaque in air indicating either slow hydrolysis or the presence of solvent in the crystal lattice. Solvent molecules were detected by density measurement. Refinement of one CHCl_{3} molecule was difficult, freely refined site-occupation factors favoured the presence of one molecule, but $U_{\text {iso }}$ values were still high. Anisotropic refinement indicated disorder, but the split model did not improve results. Therefore, this CHCl_{3} molecule was refined only isotropically. All H atoms could be observed after anisotropic refinement except that of the isotropically refined CHCl_{3}. Positions and $U_{\text {iso }}$ for $\mathrm{H}(33)-\mathrm{H}(35)$ were not refined in the final stage.
Tables 3-6 contain atomic co-ordinates of the non-hydrogen atoms for $\mathrm{SnMe}_{2}(\mathrm{btbm})_{2}, \mathrm{SnMe}_{2}(\mathrm{tacac})_{2}, \mathrm{SnCl}_{2}(\mathrm{btbm})_{2}$, and SnCl_{2} (tacac) ${ }_{2}$, respectively.

Results and Discussion

The i.r. spectra of monothio- β-diketones ${ }^{19,20}$ have been interpreted on the basis of the bands at $1588-1602$ and $1555-1572 \mathrm{~cm}^{-1}$ due to $v(\mathrm{C} \cdots \mathrm{O})$ and $v(\mathrm{C} \cdots \mathrm{C})$ and at 1244 1260 and $820-840 \mathrm{~cm}^{-1}$ due to $v(\mathrm{C} \cdots \mathrm{S})$ and $v(\mathrm{C} \cdots \mathrm{S})+$ $\delta(\mathrm{C}-\mathrm{H})$ respectively. The absorption bands observed in $\mathrm{SnR}_{2}{ }^{-}$ $(\text { tacac })_{2}(\mathrm{R}=\mathrm{Me}, \mathrm{Bu}$, or Ph$)$ complexes (Table 7) at $1620-$ $1595 \mathrm{~cm}^{-1}$ represent $v(\mathrm{C} \cdots \mathrm{O})$ and bands at $1208-1220 \mathrm{~cm}^{-1}$

Table 2. Crystallographic data ${ }^{a}$

Complex	$\mathrm{SnMe}_{2}(\mathrm{btbm})_{2}{ }^{\text {b }}$	$\mathrm{SnMe}_{2}(\mathrm{tacac})_{2}{ }^{\text {c }}$	$\mathrm{SnCl}_{2}(\mathrm{btbm})_{2} \cdot 2 \mathrm{CHCl}_{3}{ }^{\text {d }}$	$\mathrm{SnCl}_{2}(\mathrm{tacac})_{2}{ }^{\text {c }}$
(a) Crystal data				
Formula	$\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{Sn}$	$\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{Sn}$	$\mathrm{C}_{30} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{Sn} \cdot 2 \mathrm{CHCl}_{3}$	$\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{Sn}$
M	627.38	379.10	${ }_{906.97}$	419.91
a / \AA	9.864(3)	7.832(1)	11.731(6)	14.688(8)
b / \AA	11.013(2)	10.658(5)	12.889(8)	8.145(4)
c / \AA	14.418(4)	19.524(5)	14.281(11)	13.939(5)
$x /{ }^{\circ}$	109.45(2)	90	98.56(4)	90
$\beta{ }^{\circ}$	98.89(3)	95.08(4)	114.01(4)	107.66(4)
$\gamma{ }^{\circ}$	92.26(2)	90	98.65(5)	90
U / \AA^{3}	1425	1623	1897	1589
$D_{\mathrm{c}} / \mathrm{g} \mathrm{cm}^{-3}$	1.435	1.541	1.588	1.756
Z	2	4	2	4
Space group	PT	$P 2_{1} / \mathrm{c}$	PT	C2/m
$\mu\left(\mathrm{Mo}-K_{\alpha}\right) / \mathrm{cm}^{-1}$	10.45	18.16	13.78	21.94
$F(000)$	639.54	759.94	899.94	823.95
Size of crystal/mm	$0.36 \times 0.23 \times 0.47$	$0.3 \times 0.28 \times 0.4$	$0.21 \times 0.3 \times 0.35$	$0.3 \times 0.28 \times 0.4$
(b) Data collection ${ }^{\text {e }}$				
2θ range ${ }^{\circ}$	3-50	2-50	2--50	2-50
$h k l$	$-h \pm k \pm l$	$h k \pm l$	$\pm h \pm k \pm l$	$h \pm k \pm l$
Collected reflections	6629	2766	10742	2411
Unique reflections, $F \geqslant 3 \sigma(F)$	4357	2032	5350 $0.762 / 0.672$	1230
Max./min. transmission	0.825/0.742	0.941/0.763	0.762/0.672	0.560/0.448
Structure solution	Heavy-atom method	Heavy-atom method	Direct method	Direct method
Final parameters ${ }^{5}$	406	179	463	106
R	0.0397	0.0485	0.0744	0.0314
R^{\prime}	0.0404	0.0528	0.0781	0.0327
g	0.00036	0.00178	0	0.00057
Largest residual electron density/e \AA^{-3}	$0.75{ }^{\text {g }}$	0.55 ${ }^{\text {n }}$	2.0	$0.39{ }^{\text {i }}$

${ }^{a}$ Data common to all four determinations: reflection:background ratio $=1: 1$, scan speed for $150-2500$ counts $\mathrm{s}^{-1}=3.3-29.3$. ${ }^{b}$ By slow evaporation from dichloromethane solution. ${ }^{\text {c }}$ From dichloromethane-hexane. ${ }^{d}$ From chloroform solution by slow evaporation. ${ }^{e}$ Two check reflections measured after every 48 intensity measurements by the peak-profile method. Intensities corrected for Lorentz and polarization as well as for absorption effects (empirical, ψ-scan). ${ }^{\delta}$ After refining the structure isotropically and anisotropically, all hydrogen atoms were included with fixed $U_{\text {iso }}$ approximated to 1.2 times the $U_{\text {eq }}$ value of its carbon atom. ${ }^{9}$ Four highest peaks near Sn and S atoms. ${ }^{\text {n Disorder of the Me group at }}$ $\mathrm{C}(\mathrm{b})$ atom indicated by the highest residuals. ${ }^{i}$ Highest peaks near Cl atoms.

Table 3. Non-hydrogen atomic co-ordinates $\left(\times 10^{4}\right)$ for SnMe_{2} (btbm) $)_{2}$ with estimated standard deviations (e.s.d.s) in parentheses

Atom	x	y	z
Sn	$6927(1)$	$2942(1)$	7 593(1)
S(1)	$7581(1)$	$2062(1)$	$8993(1)$
S(2)	7927 (1)	844(1)	$6775(1)$
$\mathrm{O}(1)$	6 281(3)	4 680(3)	$9051(2)$
$\mathrm{O}(2)$	6 660(4)	$2868(3)$	$5829(2)$
C(1)	$8015(4)$	3 264(4)	$10155(3)$
C(2)	7 784(4)	4 551(4)	10 450(3)
C(3)	6 990(4)	5 219(4)	9 904(3)
C(4)	7 545(4)	226(4)	5473 (3)
C(5)	6 939(4)	750(4)	4816 (3)
C(6)	$6511(4)$	2 022(4)	4 983(3)
C(7)	4 766(4)	2 643(4)	7 221(3)
C(8)	8 401(5)	4 493(4)	7780 (4)
$\mathrm{C}(10)$	$8713(4)$	$2771(4)$	10 922(3)
C(11)	$9749(5)$	$1956(4)$	10730 (4)
C(12)	$10382(6)$	$1517(5)$	$11477(5)$
C(13)	10 014(8)	$1869(5)$	12386 (4)
C(14)	8 998(8)	2 667(5)	$12579(4)$
C(15)	$8332(6)$	$3122(4)$	$11865(3)$
C(20)	7 006(4)	6 658(4)	10381 (3)
C(21)	8 103(5)	7 409(4)	11 073(3)
C(22)	8 133(6)	8 721(5)	11 452(4)
C(23)	7 059(6)	9 306(4)	11 144(4)
C(24)	5 943(6)	8 591(5)	10 481(4)
C(25)	5 896(5)	7 252(4)	$10075(3)$
C(30)	8000 (4)	-1097(4)	5068 (3)
C(31)	8 744(5)	-1376(4)	4 293(4)
C(32)	$9169(6)$	-2 583(5)	3 913(4)
C(33)	8 887(6)	- 3 532(5)	4 291(4)
C(34)	8 162(6)	- 3 268(5)	$5058(4)$
C(35)	7710 (4)	-2050(4)	5 450(3)
C(40)	5850 (4)	$2350(4)$	4 104(3)
C(41)	$5765(7)$	3 633(5)	4220 (4)
C(42)	5 108(9)	3 995(6)	3 450(5)
C(43)	4 534(7)	3090 (7)	2 559(4)
C(44)	4 605(6)	$1802(6)$	2 429(4)
C(45)	5 273(5)	$1447(4)$	3 191(3)
Table 4. Atomic co-ordinates $\left(\times 10^{4}\right)$ for $\mathrm{SnMe}_{2}(\mathrm{tacac})_{2}$ with e.s.d.s in parentheses			
Atom	x	y	z
Sn	$2183(1)$	7 662(1)	$1234(1)$
S(1)	483(3)	7 084(2)	2 213(1)
C(1)	-973(10)	8 240(7)	2341 (4)
C(2)	-1 653(14)	9 126(9)	$1889(6)$
C(3)	-1479(11)	9 316(7)	1 192(4)
C(4)	-1612(12)	8 234(9)	3 067(4)
$\mathrm{C}(5)$	- 2 420(14)	10 390(10)	836(5)
$\mathrm{O}(1)$	-568(8)	8 639(6)	846(3)
S(2)	4 502(3)	6 437(2)	$1925(1)$
C(6)	5 809(10)	5 690(7)	$1384(4)$
C(7)	$6133(11)$	$5993(8)$	729(4)
C(8)	$5617(10)$	7 083(7)	332(4)
$\mathrm{O}(2)$	4631 (8)	$7886(5)$	503(3)
C(9)	6450 (14)	7 246(8)	-333(4)
C(10)	$6697(13)$	4 556(8)	$1715(5)$
C(a)	$2873(13)$	9 595(7)	$1374(4)$
C(b)	$1293(12)$	$6407(8)$	427(4)

result from $v(\mathrm{C} \cdots \mathrm{S})$. The position of the $\mathrm{v}(\mathrm{C} \cdots \mathrm{O})$ band is intermediate between free ${ }^{21.22}$ and chelated carbonyl ${ }^{19.20}$ absorptions indicating asymmetrical or anisobidentate ${ }^{23}$ coordination of the ligand tacac. The diagnostic spectral bands are very similar to those reported ${ }^{17}$ for $\mathrm{SnR}_{2}(\mathrm{btbm})_{2}(\mathrm{R}=\mathrm{Me}, \mathrm{Bu}$, or Ph). Thus, $\mathrm{SnR}_{2}(\mathrm{tacac})_{2}$ may exist as a tetrahedral tin species,

Table 5. Atomic co-ordinates $\left(\times 10^{4}\right)$ for $\mathrm{SnCl}_{2}(\mathrm{btbm})_{2}$ with e.s.d.s in parentheses

Atom	x	y	z
Sn (1)	108(1)	7 516(1)	2 662(1)
$\mathrm{Cl}(1)$	$1688(2)$	$8308(2)$	4 456(2)
$\mathrm{Cl}(2)$	218(3)	5 680(2)	$2762(2)$
S(1)	$1761(2)$	7 947(2)	2 042(2)
C(2)	$1234(8)$	7 083(7)	826(7)
C(3)	49(8)	$6451(7)$	199(7)
C(4)	- $1124(9)$	$6418(7)$	261(7)
$\mathrm{O}(5)$	- 1 208(6)	6 968(5)	$1049(5)$
C(6)	2 242(9)	7 132(7)	428(7)
C(7)	3 545(10)	7 396(8)	$1119(8)$
C(8)	4 462(11)	7 456(10)	728(10)
C(9)	$4095(12)$	7 284(11)	-323(10)
C(10)	2 806(12)	7 037(13)	-1024(9)
C(11)	$1899(10)$	6 955(10)	-635(8)
C(12)	- $2354(8)$	5 789(7)	-615(7)
C(13)	-2455(10)	5 258(8)	$-1572(7)$
C(14)	-3631(11)	4 701(10)	- 2380 (8)
C(15)	-4 735(10)	4 679(10)	-2 238(9)
C(16)	-4 652(11)	5183(11)	- 1281 (10)
C(17)	-3476(11)	5 752(10)	-486(9)
S(20)	$-1826(2)$	7 285(2)	2966 (2)
C(21)	-1905(8)	8 564(7)	3 480(6)
C(22)	-1241(9)	9 536(7)	3 530(7)
C(23)	-439(8)	$9800(7)$	3 032(6)
$\mathrm{O}(24)$	-141(6)	$9085(5)$	2 501(5)
C(25)	-2920(8)	8 515(7)	3 866(6)
C(26)	-3 733(10)	9220 (8)	3 635(8)
C(27)	-4 708(11)	9 153(11)	3 951(10)
C(28)	-4 834(11)	8414(12)	$4523(11)$
C(29)	-4045(11)	7705 (10)	$4764(9)$
C(30)	$-3090(9)$	7 757(9)	4 432(8)
C(31)	74(9)	10 943(7)	3 061(7)
C(32)	-293(10)	11 809(8)	3476 (8)
C(33)	193(13)	12 824(9)	3 468(10)
C(34)	1 104(13)	13 037(9)	3 091(10)
C(35)	$1447(13)$	$12187(10)$	2 669(10)
C(36)	960(11)	$11159(8)$	2 664(9)
C(40)	2 823(12)	$6159(10)$	5 613(9)
$\mathrm{Cl}(41)$	$1913(4)$	5 277(3)	$6018(3)$
$\mathrm{Cl}(42)$	3 675(4)	5 401(4)	$5104(3)$
$\mathrm{Cl}(43)$	$3864(5)$	7 203(3)	6 661(3)
C(50)	2 802(36)	-155(30)	164(30)
$\mathrm{Cl}(51)$	3171 (8)	249(7)	-693(7)
$\mathrm{Cl}(52)$	$3885(10)$	634(8)	$1531(8)$
$\mathrm{Cl}(53)$	$1429(13)$	267(11)	103(11)

Table 6. Atomic co-ordinates $\left(\times 10^{4}\right)$ for $\mathrm{SnCl}_{2}(\operatorname{tacac})_{2}$ with e.s.d.s in parentheses

Atom	x	y	z
Sn	0000	$2092(1)$	2500
S	$-386(1)$	$2276(2)$	$4090(1)$
$\mathrm{C}(1)$	$617(4)$	$3045(6)$	$4975(4)$
$\mathrm{C}(2)$	$1365(4)$	$3864(7)$	$4816(4)$
$\mathrm{C}(3)$	$1506(3)$	$4414(6)$	$3915(4)$
$\mathrm{C}(4)$	$2322(6)$	$5575(11)$	$3990(7)$
$\mathrm{C}(5)$	$578(6)$	$2797(10)$	$6031(5)$
O	$988(2)$	$4076(4)$	$3036(2)$
Cl	$1292(1)$	$155(2)$	$3112(1)$

with very little interaction between the tin atom and oxygen atoms, or as a six-co-ordinate species with weak $\mathrm{Sn}-\mathrm{O}$ bonding.

In the far-i.r. region, all the bis complexes exhibit medium to strong bands at 472-492 and 368-377 cm^{-1}, assignable to $v(\mathrm{Sn}-\mathrm{O})^{24}$ and $v(\mathrm{Sn}-\mathrm{S})^{25}$ vibrations respectively. A band at 567 cm^{-1} is assignable to $v_{\text {asym }}\left(\mathrm{SnC}_{2}\right)^{26}$ and no band due to

Table 7. Selected and typical i.r. bands $\left(\mathrm{cm}^{-1}\right)$ for $\mathrm{SnY}_{2}(\mathrm{tacac})_{2}$ complexes ${ }^{a}$

Y	$v(\mathrm{C}-\mathrm{O})$	$v(\mathrm{C}-\mathrm{C})$	$v(\mathrm{C}-\mathrm{S})$	$v(\mathrm{C}-\mathrm{S})+\delta(\mathrm{C}-\mathrm{H})$	$v(\mathrm{Sn}-\mathrm{C})$	$v(\mathrm{Sn}-\mathrm{O})$	$v(\mathrm{Sn}-\mathrm{S})$	$v(\mathrm{Sn}-\mathrm{Y})$
Me	1620 s	1505 s	1208 vs	827 m	567 s	487 m	377 s	
Bu	1620 s	1505 s	1210 vs	829 m	569 s	482 m	368 s	
Ph	1595 s	1510 s	1220 vs	827 w	287 m	472 m	374 s	
						240 w	235 m	
Cl	1567 s	b	1240 vs			492 sm	370 s	310 m
I	1563 s	b	1235 vs	828 m		492 m	375 s	295 m

${ }^{a} \mathrm{~s}=$ Strong, vs $=$ very strong, $\mathrm{m}=$ medium, $\mathrm{sm}=$ strong medium, $\mathrm{w}=$ weak. ${ }^{b}$ Coupled with Nujol band.

$\mathrm{SnMe}_{2}(\mathrm{tacac})_{2}{ }^{\text {b }}$	$\mathrm{SnBu}_{2}(\mathrm{tacac})_{2}$	SnPh ${ }_{2}(\mathrm{tacac})_{2}$	$\mathrm{SnMe}_{2}(\mathrm{btbm})_{2}$	$\mathrm{SnCl}_{2}(\text { tacac })_{2}$	$\mathrm{SnI}_{2}(\mathrm{tacac})_{2}$	Assignments
${ }^{1} \mathrm{H}$ N.m.r. ${ }^{\text {c }}$						
2.05	d	1.85	d	2.29	2.24	$\mathrm{CH}_{3}-(\mathrm{O})$
2.22		2.18		2.40	2.31	CH_{3}-(S)
6.27		5.98		6.51	6.60	$>\mathrm{CH}-$
0.88						$\mathrm{CH}_{3}-\mathrm{Sn}$
		$6.91-8.14$ (multiplet)				$\mathrm{Ph}-\mathrm{Sn}$
${ }^{13} \mathrm{C}^{e}$						
192.7	196.1	f	189.5	194.7	199.4	$>\mathrm{C}$-(S)
171.5	171.7		174.1	181.7	183.6	$>\mathrm{C}-(\mathrm{O})$
119.2	119.2		117.6	104.9	106.7	$=\mathrm{CH}-$
33.8	35.5			33.6	32.4	$\mathrm{CH}_{3}-(\mathrm{S})$
31.3	30.2			30.4	30.6	CH_{3}-(O)
9.77			9.04			$\mathrm{CH}_{3}-\mathrm{Sn}$
	28.3					$\alpha-C$
	28.0					$\hat{\beta-C} C B u-S n$
	26.0					$\gamma-\mathrm{C}\}^{\mathrm{Bu}-\mathrm{Sn}}$
	13.7					$\delta-C$
		g	g			
${ }^{119} \mathrm{Sn}^{n}$						
-220	-230	-253	-220	-266	-263	

${ }^{a}$ At $90 \mathrm{MHz} .{ }^{b}{ }^{2} J\left({ }^{119} \mathrm{Sn}^{1} \mathrm{H}\right)=88$ and ${ }^{1} J\left({ }^{119} \mathrm{Sn}^{13} \mathrm{C}\right)=724 \mathrm{~Hz} .{ }^{c}{ }^{\mathrm{I}} \mathrm{InCl}_{4}$ with SiMe_{4} as internal reference. ${ }^{d}$ Data reported in ref. 17 . ${ }^{e} \mathrm{In} \mathrm{CDCl}_{3}$ with SiMe_{4} as internal reference. ${ }^{f}$ Could not be recorded due to poor solubility. ${ }^{g}$ Data on phenyl carbons omitted for brevity. ${ }^{h}$ In CDCl_{3} with SnMe_{4} as a reference in sealed capillaries.
$v_{\text {sym }}\left(\mathrm{SnC}_{2}\right)$ is observed in the i.r. spectrum of $\mathrm{SnMe}_{2}(\mathrm{tacac})_{2}$ (Table 7). This indicates that the six-co-ordinate situation, with a trans arrangement of the methyl groups, seems to be a good description of the geometry at the tin atom in this molecule. Tin119 Mössbauer spectra ${ }^{17}$ of $\mathrm{SnMe}_{2} \mathrm{~L}_{2}(\mathrm{~L}=$ btbm or tacac) gave quadrupole splitting values in a narrow range. On the basis of the recent correlation ${ }^{27}$ of the quadrupole splitting with the $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ bond angles in octahedral complexes, Saini et al. ${ }^{17}$ deduced distorted structures for these complexes. In contrast, the two i.r. bands observed at 287 and $235 \mathrm{~cm}^{-1}$ for $\mathrm{SnPh}_{2}(\mathrm{tacac})_{2}$, which we assign ${ }^{26.27}$ to $\mathrm{v}_{\text {asym }}\left(\mathrm{SnC}_{2}\right)$ and $v_{\text {sym }}\left(\mathrm{SnC}_{2}\right)$ modes respectively, not only indicate six-coordination at tin but also cis positions for the aryl groups. It can therefore be concluded from the i.r. data that $\mathrm{SnMe}_{2}(\mathrm{tacac})_{2}$ differs considerably in its structure from $\mathrm{SnPh}_{2}\left(\mathrm{tacac}_{2}{ }_{2}\right.$, although no definite configuration can be suggested.

The ${ }^{1} \mathrm{H}$ n.m.r. spectra of $\mathrm{SnR}_{2}(\mathrm{tacac})_{2}(\mathrm{R}=\mathrm{Me}, \mathrm{Bu}$, or Ph$)$ compounds exhibit three signals (Table 8) corresponding to methine, thioacetyl, and acetyl protons. An additional singlet or multiplet is observed for the protons of the methyl or phenyl groups attached to the tin atom. The value of the observed coupling constant ${ }^{2} J\left({ }^{119} \mathrm{Sn}-\mathrm{Me}\right)$ is ca .88 Hz for SnMe_{2} (tacac) $)_{2}$ which is characteristic of six-co-ordinate tin and lies between the reported values for octahedral SnMe_{2} (quin) ${ }_{2}{ }^{28}$ (quin $=$ quinolin-8-olate) and $\mathrm{SnMe}_{2}(\mathrm{acac})_{2}{ }^{24}$ (Hacac $=$ acetylacetone) complexes having cis and trans configurations
respectively. Carbon-13 n.m.r. spectra of $\mathrm{SnR}_{2}(\mathrm{tacac})_{2}(\mathrm{R}=\mathrm{Me}$ or Bu) are not useful in discriminating further, since they exhibit only one set of resonances for ligand carbons, one for methyl, and four for butyl carbons (Table 8).
The magnitude of $J\left({ }^{119} \mathrm{Sn}^{-13} \mathrm{C}\right)$ coupling constants ${ }^{29}$ of organotin(IV) compounds reflects the hybridization state. The value ${ }^{1} J\left({ }^{119} \mathrm{Sn}^{13} \mathrm{C}\right)=724 \mathrm{~Hz}$ for $\mathrm{SnMe}_{2}(\text { tacac })_{2}$ falls in the region for six-co-ordinate tin. This comparatively low magnitude with respect to regular trans octahedral dialkylbis(β diketonato)tin(Iv) complexes ($901-966 \mathrm{~Hz})^{29.30}$ may be indicative of substantial distortion of $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ bonds from the trans orientation. The low value of 552 Hz reported for $\mathrm{SnEt}_{2}\left[\mathrm{SC}(\mathrm{O}) \mathrm{NMe}_{2}\right]_{2}{ }^{31}$ is, therefore, rather surprising.

Tin-119 chemical shifts (-220 to -266 p.p.m.) of a few bis-(monothio- β-diketonates) are summarized in Table 8. The highfield signals are fully consistent with a six-co-ordinate structure in solution. The somewhat higher value for the diphenyltin complex in comparison to the other dialkyltin compounds may be accounted for in terms of increased polarizability ${ }^{32.33}$ of the phenyl groups or structural changes, since the data are close to those of dichlorotin complexes which have been found to be cis octahedral. The values of δ observed are low-field with respect to those reported for $\mathrm{SnMe}_{2} \mathrm{~L}_{2}^{\prime} \quad\left(\mathrm{L}^{\prime}=\beta\right.$-diketonate or dithiocarbamate; ca. $356^{34.35}$ or ca. 335 p.p.m., ${ }^{35.36}$ respectively) but are comparable to dialkylbis(quinolin-8-olato)tin(Iv) complexes (ca. 235 p.p.m.). ${ }^{35,37.38}$ Consequently, the n.m.r. data

Table 9. Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for $\mathrm{SnH}_{2}(\mathrm{btbm})_{2}$ and $\mathrm{SnY}_{2}(\operatorname{tacac})_{2}(\mathrm{Y}=\mathrm{Me}$ or Cl$)$

$\mathrm{SnMe}_{2}(\mathrm{btbm})_{2}$		$\mathrm{SnMe}_{2}(\mathrm{tacac})_{2}$		$\mathrm{SnCl}_{2}(\mathrm{btbm})_{2}$		$\mathrm{SnCl}_{2}(\mathrm{tacac})_{2}$	
$\mathrm{Sn}-\mathrm{S}(1) \quad 2$	2.526(2)	$\mathrm{Sn}-\mathrm{S}(1) \quad 2.5$	2(2)	$\mathrm{Sn}-\mathrm{Cl}(1) \quad 2$	2.414(2)	$\mathrm{Sn}-\mathrm{Cl} \quad 2$.	2.416 (1)
$\mathrm{Sn}-\mathrm{S}(2) \quad 2$	2.535(2)	$\mathrm{Sn}-\mathrm{S}(2) \quad 2.5$	8(2)	$\mathrm{Sn}-\mathrm{Cl}(2) \quad 2$	2.410 (3)	Sn -S	2.453(2)
$\mathrm{Sn}-\mathrm{O}(1) \quad 2$	2.514(3)	$\mathrm{Sn}-\mathrm{O}(1) \quad 2.4$	(6)	Sn-S(1) 2	2.464(3)	$\mathrm{Sn}-\mathrm{O}$	2.149(3)
$\mathrm{Sn}-\mathrm{O}(2) \quad 2$	2.489(3)	$\mathrm{Sn}-\mathrm{O}(2) \quad 2.5$	1(7)	$\mathrm{Sn}-\mathrm{S}(20)$	2.462(4)	S-C(1)	1.728(5)
$\mathrm{Sn}-\mathrm{C}(7) \quad 2$	2.101(4)	$\mathrm{Sn}-\mathrm{C}(\mathrm{a}) \quad 2.1$	2(8)	$\mathrm{Sn}-\mathrm{O}(5) \quad 2$	$2.117(9)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.360(8)$
$\mathrm{Sn}-\mathrm{C}(8)$	$2.117(5)$	$\mathrm{Sn}-\mathrm{C}(\mathrm{b}) \quad 2.1$	6(8)	$\mathrm{Sn}-\mathrm{O}(24) \quad 2$	2.120 (7)	$\mathrm{C}(2)-\mathrm{C}(3)$	1.407(8)
$\mathrm{S}(1)-\mathrm{C}(1) \quad 1$	1.731(3)	$\mathrm{S}(1)-\mathrm{C}(1) \quad 1.7$	1(8)	$\mathrm{S}(1)-\mathrm{C}(2) \quad 1$	1.727(9)	$\mathrm{O}-\mathrm{C}(3)$	1.261(6)
$\mathrm{S}(2)-\mathrm{C}(4) \quad 1$	1.743(4)	$\mathrm{S}(2)-\mathrm{C}(6) \quad 1.7$	8(8)	$\mathrm{S}(20)-\mathrm{C}(21)$	1.734(10)	C(3)-C(4)	$1.505(10)$
$\mathrm{O}(1)-\mathrm{C}(3) \quad 1$	$1.252(4)$	$\mathrm{O}(1)-\mathrm{C}(3) \quad 1.2$	4(10)	$\mathrm{O}(5)-\mathrm{C}(4) \quad 1$	$1.285(12)$	$\mathrm{C}(1)-\mathrm{C}(5)$	1.504(10)
$\mathrm{O}(2)-\mathrm{C}(6) \quad 1$	1.247(4)	$\mathrm{O}(2)-\mathrm{C}(8) \quad 1.2$	8(10)	$\mathrm{O}(24)-\mathrm{C}(23) \quad 1$	1.285(12)		
$\mathrm{C}(1)-\mathrm{C}(2) \quad 1$	1.377(6)	$\mathrm{C}(1)-\mathrm{C}(2) \quad 1.3$	8(12)	$\mathrm{C}(2)-\mathrm{C}(3) \quad 1$	1.352(11)		
$\mathrm{C}(2)-\mathrm{C}(3) \quad 1$	1.419(6)	$\mathrm{C}(2)-\mathrm{C}(3) \quad 1.39$	$5(14)$	$\mathrm{C}(3)-\mathrm{C}(4) \quad 1$	1.409(16)		
$\mathrm{C}(4)-\mathrm{C}(5) \quad 1$	1.344(6)	$\mathrm{C}(6)-\mathrm{C}(7) \quad 1.3$	$6(11)$	$\mathrm{C}(21)-\mathrm{C}(22)$	1.347 (13)		
$\mathrm{C}(5)-\mathrm{C}(6) \quad 1$	1.432(6)	$\mathrm{C}(7)-\mathrm{C}(8) \quad 1.4$	5(11)	$\mathrm{C}(22)-\mathrm{C}(23) \quad 1$	1.424(16)		
$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	130.0(3)	$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	129.0(7)	$\mathbf{S}(1)-\mathbf{S n}-\mathbf{S}(20)$	166.8(1)	$\mathrm{S}(\mathrm{A})-\mathrm{Sn}-\mathrm{S}$	173.0(1)
$\mathrm{S}(2)-\mathrm{C}(4)-\mathrm{C}(5)$	130.5(3)	$\mathrm{S}(2)-\mathrm{C}(6)-\mathrm{C}(7)$	129.2(6)	$\mathrm{O}(5)-\mathrm{Sn}-\mathrm{O}(24)$	86.9(2)	$\mathrm{O}(\mathrm{A})-\mathrm{Sn}-\mathrm{O}$	82.5(2)
$\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	123.9(4)	$\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	123.5(7)	$\mathrm{Cl}(1)-\mathrm{Sn}-\mathrm{Cl}(2)$	95.3(1)	$\mathrm{Cl}(\mathrm{A})-\mathrm{Sn}-\mathrm{Cl}$	98.5(1)
$\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{C}(5)$	123.1(4)	$\mathrm{O}(2)-\mathrm{C}(8)-\mathrm{C}(7)$	125.1(7)	$\mathrm{S}(1)-\mathrm{Sn}-\mathrm{O}(5)$	86.2(2)	$\mathrm{O}-\mathrm{Sn}-\mathrm{S}$	87.5(1)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	128.9(3)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	131.6(9)	S(20)-Sn-O(5)	84.6(2)	$\mathrm{O}(\mathrm{A})-\mathrm{Sn}-\mathrm{S}$	87.2(1)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	129.8(3)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	129.1(8)	$\mathrm{S}(1)-\mathrm{Sn}-\mathrm{O}(24)$	83.9(2)	$\mathrm{Cl}-\mathrm{Sn}-\mathrm{O}$	89.6(1)
$\mathrm{S}(1)-\mathrm{Sn}-\mathrm{S}(2)$	75.8(1)	$\mathrm{S}(1)-\mathrm{Sn}-\mathrm{S}(2)$	82.6(1)	S(20)-Sn-O(24)	86.3(2)	$\mathrm{S}-\mathrm{Sn}-\mathrm{Cl}$	95.3(0)
$\mathrm{O}(1)-\mathrm{Sn}-\mathrm{O}(2)$	127.4(1)	$\mathrm{O}(1)-\mathrm{Sn}-\mathrm{O}(2)$	118.7(2)	$\mathrm{S}(1)-\mathrm{Sn}-\mathrm{Cl}(1)$	89.9(1)	$\mathrm{O}(\mathrm{A})-\mathrm{Sn}-\mathrm{Cl}$	171.6(1)
$\mathrm{C}(7)-\mathrm{Sn}-\mathrm{C}(8)$	134.2(2)	$\mathrm{C}(\mathrm{a})-\mathrm{Sn}-\mathrm{C}(\mathrm{b})$	139.4(3)	$\mathbf{S}(20)-\mathrm{Sn}-\mathrm{Cl}(1)$	98.5(1)	$\mathrm{Cl}(\mathrm{A})-\mathrm{Sn}-\mathrm{S}$	89.2(0)
$\mathrm{S}(1)-\mathrm{Sn}-\mathrm{O}(1)$	78.3(1)	$\mathrm{S}(1)-\mathrm{Sn}-\mathrm{O}(1)$	80.1(1)	$\mathrm{S}(1)-\mathrm{Sn}-\mathrm{Cl}(2)$	98.7(1)	$\mathrm{Sn}-\mathrm{S}-\mathrm{C}(1)$	106.6(2)
$\mathrm{S}(2)-\mathrm{Sn}-\mathrm{O}(1)$	154.1(1)	$\mathrm{S}(2)-\mathrm{Sn}-\mathrm{O}(1)$	162.7(1)	$\mathbf{S}(20)-\mathrm{Sn}-\mathrm{Cl}(2)$	90.6(1)	$\mathrm{Sn}-\mathrm{O}-\mathrm{C}(3)$	130.3(3)
$\mathrm{S}(2)-\mathrm{Sn}-\mathrm{O}(2)$	78.5(1)	$\mathrm{S}(2)-\mathrm{Sn}-\mathrm{O}(2)$	78.6(1)	$\mathrm{O}(5)-\mathrm{Sn}-\mathrm{Cl}(1)$	174.0(2)	S-C(1)-C(2)	128.2(4)
$\mathrm{S}(1)-\mathrm{Sn}-\mathrm{O}(2)$	154.2(1)	$\mathrm{S}(1)-\mathrm{Sn}-\mathrm{O}(2)$	161.1(1)	$\mathrm{O}(24)-\mathrm{Sn}-\mathrm{Cl}(1)$	88.2(2)	$\mathrm{O}-\mathrm{C}(3)-\mathrm{C}(2)$	126.2(5)
$\mathrm{S}(1)-\mathrm{Sn}-\mathrm{O}(7)$	105.8(2)	$\mathrm{S}(1)-\mathrm{Sn}-\mathrm{C}(\mathrm{b})$	104.4(2)	$\mathrm{O}(5)-\mathrm{Sn}-\mathrm{Cl}(2)$	89.8(2)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$) 130.2(5)
$\mathrm{S}(2)-\mathrm{Sn}-\mathrm{C}(7)$	109.0(1)	$S(2)-S n-C(b)$	104.0(2)	$\mathrm{O}(24)-\mathrm{Sn}-\mathrm{Cl}(2)$	175.6(2)		
S(1)-Sn-C(8)	108.6(2)	S(1)-Sn-C(a)	106.5(2)	$\mathrm{Sn}-\mathrm{S}(1)-\mathrm{C}(2)$	107.0(4)		
$\mathrm{S}(2)-\mathrm{Sn}-\mathrm{C}(8)$	108.0(1)	$\mathrm{S}(2)-\mathrm{Sn}-\mathrm{C}(\mathrm{a})$	105.5(2)	$\mathrm{Sn}-\mathrm{S}(20)-\mathrm{C}(21)$	106.6(3)		
$\mathrm{O}(1)-\mathrm{Sn}-\mathrm{C}(7)$	79.5(1)	$\mathrm{O}(1)-\mathrm{Sn}-\mathrm{C}(\mathrm{a})$	80.5(3)	$\mathrm{Sn}-\mathrm{O}(5)-\mathrm{C}(4)$	131.7(6)		
$\mathrm{O}(2)-\mathrm{Sn}-\mathrm{C}(7)$	81.3(2)	$\mathrm{O}(2)-\mathrm{Sn}-\mathrm{C}(\mathrm{a})$	77.5(3)	$\mathrm{Sn}-\mathrm{O}(24)-\mathrm{C}(23)$	131.3(7)		
$\mathrm{O}(1)-\mathrm{Sn}-\mathrm{C}(8)$	78.9(2)	$\mathrm{O}(1)-\mathrm{Sn}-\mathrm{C}(\mathrm{b})$	79.5(3)	$\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	128.3(9)		
$\mathrm{O}(2)-\mathrm{Sn}-\mathrm{C}(8)$	80.7(2)	$\mathrm{O}(2)-\mathrm{Sn}-\mathrm{C}(\mathrm{b})$	81.7(3)	$\mathrm{S}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	129.4(9)		
$\mathrm{Sn}-\mathrm{S}(1)-\mathrm{C}(1)$	113.0(2)	$\mathrm{Sn}-\mathrm{S}(1)-\mathrm{C}(1)$	109.9(3)	$\mathrm{O}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	122.8(7)		
$\mathrm{Sn}-\mathrm{S}(2)-\mathrm{C}(4)$	115.7(1)	Sn-S(2)-C(6)	110.4(3)	$\mathrm{O}(24)-\mathrm{C}(23)-\mathrm{C}(22)$	$) \quad 123.1(8)$		
$\mathrm{Sn}-\mathrm{O}(1)-\mathrm{C}(3)$	127.8(3)	$\mathrm{Sn}-\mathrm{O}(1)-\mathrm{C}(3)$	127.2(5)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	130.8(9)		
$\mathrm{Sn}-\mathrm{O}(2)-\mathrm{C}(6)$	137.2(3)	$\mathrm{Sn}-\mathrm{O}(2)-\mathrm{C}(8)$	128.8(5)	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	129.5(9)		

Figure 1. ORTEP plot of molecular structure of $\mathrm{SnMe}_{2}(\mathrm{btbm})_{2}$. Thermal ellipsoids represent a 30% probability level
are of little help in deriving an unambiguous structural assignment for SnR_{2} (tacac) $)_{2}$.
I.r. spectra of $\operatorname{SnX} X_{2}(\text { tacac })_{2}(X=C l$ or I, see Table 7) show bands in the $1565(\pm 2) \mathrm{cm}^{-1}$ region, assigned to $v(\mathrm{C} \cdots \mathrm{O})$. These are at lower frequency than those found in $\mathrm{SnMe}_{2}(\mathrm{tacac})_{2}$, suggesting $\mathrm{Sn}-\mathrm{O}$ bonding and, therefore, a bidentate mode of attachment of the ligand moiety. In addition, two clearly

(I)

(II)

(III)

Table 10. Dimensions of $\mathrm{SnO}_{2} \mathrm{~S}_{2} \mathrm{C}_{2}, \mathrm{SnS}_{4} \mathrm{C}_{2}$, and $\mathrm{SnO}_{4} \mathrm{C}_{2}$ cores; distances in \AA, angles in ${ }^{\circ}$

Complex	$\mathrm{Sn}-\mathrm{O}$	Sn-S	$\mathrm{Sn}-\mathrm{C}$ or $\mathrm{Sn}-\mathrm{Cl}$	$\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ or $\mathrm{Cl}-\mathrm{Sn}-\mathrm{Cl}$	Ref.
$\mathrm{SnMe}_{2}(\mathrm{btbm})_{2}$	2.514	2.526	2.101	134.2	This work
	2.489	2.535	2.117		
$\mathrm{SnMe}_{2}(\mathrm{tacac})_{2}$	2.452	2.502	2.142	139.4	This work
	2.501	2.528	2.136		
$\mathrm{SnMe}_{2}(\mathrm{dtc})_{2}$		2.515		136.0	4
		$2.497{ }^{\text {a }}$	2.16		
		2.954			
		$3.061{ }^{\text {b }}$	2.13		
$\mathrm{SnMe}_{2}(\mathrm{acac})_{2}$	2.20		2.14	180.0	2
	2.18				
$\mathrm{SnCl}_{2}(\mathrm{btbm})_{2}$	2.117	2.464	2.414	95.3	This work
	2.120	2.462	2.410		
$\mathrm{SnCl}_{2}(\mathrm{tacac})_{2}$	2.149	2.453	2.416	98.5	This work
$\mathrm{SnCl}_{2}(\mathrm{acac})_{2}$	2.058		2.354	96.8	6

${ }^{a}$ Single bond distance. ${ }^{b}$ Longer bond length.

Figure 2. Plot of the distorted octahedral arrangement of atoms bound directly to tin in $\mathrm{SnMe}_{2}(\mathrm{btbm})_{2}$. Contour lines do not represent chemical bonds

Figure 3. ORTEP plot of the molecular structure of $\mathrm{SnMe}_{2}(\text { tacac })_{2}$. Thermal ellipsoids represent a 30% probability level
resolved bands at 310 and $295 \mathrm{~cm}^{-1}$ due to $v_{\text {asym }}\left(\mathrm{SnCl}_{2}\right)$ and $v_{\text {sym }}\left(\mathrm{SnCl}_{2}\right)$ modes ${ }^{39}$ were observed indicating non-linearity of the ClSnCl group and suggesting a cis- $\mathrm{SnCl}_{2} \mathrm{~L}_{2}$ arrangement. This information, along with the ${ }^{13} \mathrm{C}$ n.m.r. data, which exhibit a single set of resonances for the ligands in $\mathrm{SnCl}_{2}(\text { tacac })_{2}$ and $\mathrm{SnI}_{2}(\mathrm{tacac})_{2}$, and ${ }^{119} \mathrm{Sn}$ chemical shifts (Table 8) does not allow one to distinguish between the geometrical isomers (1)-(III). Therefore, the crystal structures of $\mathrm{SnCl}_{2}(\mathrm{btbm})_{2}, \mathrm{SnCl}_{2}$ (tacac) $)_{2}, \mathrm{SnMe}_{2}(\text { tacac })_{2}$, and $\mathrm{SnMe}_{2}(\text { btbm })_{2}$ were determined to provide unequivocal evidence of the configurations of these two classes of compound.

Crystal and Molecular Structures.-The molecular structures of $\mathrm{SnMe}_{2}(\mathrm{btbm})_{2}$ and $\mathrm{SnMe}_{2}(\mathrm{tacac})_{2}$ shown in Figures 1-3 are essentially similar, differing only in crystalline environments. Due to the greater propensity of β-diketones for chelation, the
molecules contain a six-co-ordinate tin atom and the most important feature of the geometry at tin is that pairs of donor atoms of the same type are found next to one another (Figure 2). Data in Table 9 reveal that the bond distances to comparable atoms are almost identical and can be considered as equal by the 3σ criterion.

Although the sulphur atom has a much larger atomic radius than oxygen, the mean $\mathrm{Sn}-\mathrm{O}$ bond distance in $\mathrm{SnMe}_{2}(\mathrm{btbm})_{2}$ and $\mathrm{SnMe}_{2}(\mathrm{tacac})_{2}(\mathrm{Sn}-\mathrm{O}, 2.501$ and $2.475 \AA$ respectively) is almost as long as the mean $\mathrm{Sn}-\mathrm{S}$ distance ($\mathrm{Sn}-\mathrm{S}, 2.530$ and 2.515 \AA respectively). The $\mathrm{Sn}-\mathrm{S}$ bond length falls into the normal range for six-co-ordinate tin (2.49- $2.67 \AA \AA^{4}$ and is comparable to the $\mathrm{Sn}-\mathrm{S}$ single bond distance in the dithiocarbamate (dtc) analogue. ${ }^{4}$ These are slightly longer than the sum ($2.44 \AA$) of the covalent radii of tin and sulphur. ${ }^{40}$ Dimensions of $\mathrm{SnO}_{2} \mathrm{~S}_{2} \mathrm{C}_{2}$, $\mathrm{SnS}_{4} \mathrm{C}_{2}$, and $\mathrm{SnO}_{4} \mathrm{C}_{2}$ cores in $\mathrm{SnX}_{2} \mathrm{~L}_{2}^{\prime}\left[\mathrm{X}=\mathrm{Me}\right.$ or $\mathrm{Cl}^{2} \mathrm{~L}^{\prime}=$ btbm, tacac, acac, or dtc) complexes are given in Table 10 for comparison.

The $\mathrm{Sn}-\mathrm{O}$ bond usually falls in the range $2.11-2.45 \AA$ for octahedral tin complexes, ${ }^{1}$ but the $\mathrm{Sn}-\mathrm{O}$ bond lengths in $\mathrm{SnMe}_{2}(\mathrm{btbm})_{2}$ and $\mathrm{SnMe}_{2}(\mathrm{tacac})_{2}$ are much longer than the $2.19 \AA$ reported for $\mathrm{SnMe}_{2}(\mathrm{acac})_{2}{ }^{2}$ indicating weakly coordinated oxygen atoms. They are comparable with the $\mathrm{Sn}-\mathrm{O}$ bond $(2.520 \AA)$ found in $\mathrm{SnCl}_{2}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOMe}\right)_{2}$, a compound thought to contain a six-co-ordinate tin atom. ${ }^{41}$ In fact, the $\mathrm{Sn}-\mathrm{O}$ distances determined in dimethyltin complexes exceed the sum of the covalent radii ($2.11 \AA$) of tin and oxygen ${ }^{40}$ by $c a .18 \%$. Thus, these bis(monothio- β-diketonates) are the first examples of a metal complex where the ligand is found to exhibit an anisobidentate nature with weak $\mathrm{Sn}-\mathrm{O}$ bonds compared to the Sn - S bonds. In monothio- β-diketonates of transition metals ${ }^{10-13}$ the metal to oxygen or sulphur bonds correspond to the sum of the covalent radii.

The result described above has a contrasting mode of bonding to the diphenyltin(iv) complex $\left[\mathrm{SnPh}_{2}(\mathrm{OH}) \mathrm{Sn}\{\mathrm{OP}\right.$ $\left.\left.(\mathrm{S})(\mathrm{OPh})_{2}\right\}\right]_{2} .^{42}$ The ligand is only bound by oxygen to the tin atom at the centre of a highly distorted trigonal-bipyramidal environment; the sulphur atom is not in the bonding range, intra- or inter-molecularly. Furthermore, in similar systems containing the ligand $\left(\mathrm{RCH}_{2} \mathrm{O}\right)_{2} \mathrm{PSO}^{-}$, spectroscopic evidence ${ }^{43}$ for triorganotin complexes suggests a preference for $\mathrm{Sn}-\mathrm{O}$ rather than $\mathrm{Sn}-\mathrm{S}$ covalent bond formation. The difference in the behaviour of organo-sulphur ligands and asymmetrical sulphur phosphate esters towards the organotin moiety is surprising. Spectroscopic results from triorgano(monothio- β diketonato)tin(IV) complexes ${ }^{44}$ and X-ray crystal data on a series of organotin(IV) monothiocarbamates ${ }^{45}$ strongly suggest

Figure 4. Packing diagram for $\mathrm{SnCl}_{2}(\text { btbm })_{2}$ viewed down the a axis. Hydrogen atoms are omitted; CHCl_{3} molecules are arranged along the [011] plane

Figure 5. ORTEP plot of the molecular structure of $\mathrm{SnCl}_{2}(\mathrm{btbm})_{2}$. Thermal ellipsoids represent a 30% probability level
preferential affinity of the organotin moiety to bind to sulphur in such systems.

The $\mathrm{Sn}-\mathrm{C}(\mathrm{Me})$ bond lengths in $\mathrm{SnMe}_{2} \mathrm{~L}_{2}(\mathrm{~L}=\mathrm{btbm}$ or tacac) complexes are in good agreement with reported values ${ }^{2-4}$ and correspond well with the sum of covalent radii $(2.14 \AA)$ of carbon and tin. ${ }^{40}$ The most interesting feature for these complexes is that the $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ bond angles [134.2 and 139.4° respectively for $\mathrm{SnMe}_{2}(\mathrm{btbm})_{2}$ and $\left.\mathrm{SnMe}_{2}(\mathrm{tacac})_{2}\right]$ deviate considerably from 90°, expected for a cis octahedral complex, but also from a trans octahedral geometry, where the ideal $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ bond angle would be 180°. Moreover, this angle is not compatible with a tetrahedral arrangement. The interligand $\mathrm{O}-\mathrm{Sn}-\mathrm{O}$ bond angles, averaging 123°, are in contrast to the acute S-Sn-S angles (75.8 and 82.6° respectively). As expected, the $\mathrm{O}-\mathrm{Sn}-\mathrm{S}$ bond angles are smaller than 90°; this follows from the geometry of the chelate ring where all angles of the sixmembered ring exceed 120°, except at the tin and sulphur atoms. A comparison of the bond angles in the two chelate rings in SnMe_{2} (btbm) $)_{2}$ reveals that they compare favourably except at the oxygen atoms where they differ by almost 10°. The reason for this deviation cannot be readily explained because bond lengths compare well for the two six-membered rings.

The packing diagram for $\mathrm{SnCl}_{2}(\mathrm{btbm})_{2}$ and the molecular structures of $\mathrm{SnCl}_{2}(\mathrm{btbm})_{2}$ and $\mathrm{SnCl}_{2}(\text { tacac })_{2}$ are shown in Figures 4 -6. The molecules contain a six-co-ordinate tin atom and a geometry approaching a regular octahedron, in contrast to the highly distorted octahedral structure of SnMe_{2} complexes. Data in Table 9 contain selected bond lengths and

Figure 6. ORTEP plot of the molecular structure of $\mathrm{SnCl}_{2}(\text { tacac })_{2}$. Thermal ellipsoids represent a 30% probability level
bond angles. However, details of the structure of the two dichlorotin(IV) compounds differ slightly but significantly. Thus, SnCl_{2} (tacac) $\mathbf{2}_{2}$ possesses true C_{2} symmetry due to a crystallographic two-fold axis, in contrast to $\mathrm{SnCl}_{2}(\mathrm{btbm})_{2}$. Notably, the Cl atoms in $\mathrm{SnCl}_{2}(\mathrm{btbm})_{2}$ and $\mathrm{SnCl}_{2}(\mathrm{tacac})_{2}$ adopt a cis orientation with $\mathrm{Cl}-\mathrm{Sn}-\mathrm{Cl}$ bond angles of 95.3 and 98.5° respectively, similar to the analogous compound $\mathrm{SnCl}_{2}{ }^{-}$ $(\mathrm{acac})_{2}{ }^{6}\left(96.8^{\circ}\right)$. The other most important feature is the trans orientation of the two sulphur atoms, the $\mathrm{S}-\mathrm{Sn}-\mathrm{S}$ bond angles being 166.8 and 173.0° for $\mathrm{SnCl}_{2}(\mathrm{btbm})_{2}$ and $\mathrm{SnCl}_{2}(\mathrm{tacac})_{2}$ respectively.

Some significant comparison can be made between the dichloro and the dimethyl compounds with regard to $\mathrm{Sn}-\mathrm{S}$ and $\mathrm{Sn}-\mathrm{O}$ bond distances (Table 10). In the chloro complexes both these distances approach the sum of the covalent radii, revealing a much stronger $\mathrm{Sn}-\mathrm{O}$ interaction as well as a slightly stronger $\mathrm{Sn}-\mathrm{S}$ bond, and, therefore, a bidentate behaviour of the monothio- β-diketonate ligand. Consequently, the ligating properties of the monothio- β-diketones are obviously determined by the Lewis-acid behaviour of the SnY_{2} unit, which is not unexpected in terms of the electronegativity difference between the chlorine atom and the methyl group. This is also reflected in the larger intra-chelate angles $\left(c a .87^{\circ}\right)$ subtended at tin in the dichloro compounds in comparison with the dimethyltin(iv) complexes ($\mathrm{ca} .78^{\circ}$). A comparison (Table 10) of tin-ligand bonds between regular cis octahedral $\mathrm{SnCl}_{2} \mathrm{~L}_{2}$ and the analogous $\mathrm{SnCl}_{2}(\mathrm{acac})_{2}$ complex shows that in the latter both $\mathrm{Sn}-\mathrm{Cl}$ and $\mathrm{Sn}-\mathrm{O}$ bond distances are much shorter, showing that acac is strongly chelated to the tin atom.

The intra-chelate angles merit some comment. All the angles subtended at carbon atoms are found in the range of $123-132^{\circ}$, exceeding the ideal 120°, indicating some opening of the angles after chelation. The co-ordination asymmetry results in $\mathrm{Sn}-\mathrm{S}-\mathrm{C}$ and $\mathrm{Sn}-\mathrm{O}-\mathrm{C}$ angles in the ranges of 107-116 and $127-137^{\circ}$ respectively which may be compared with the corresponding angles (110.8 and 133.8°) in [$\mathrm{Ni}-$ (tacac) $)_{2}$, ${ }^{10}\left[\mathrm{Co}(\text { dtacac })_{2}\right]^{46}\left(\mathrm{Co}-\mathrm{S}-\mathrm{C} 118^{\circ}\right.$; dtacac $=$ dithioacetylacetonate), and $\mathrm{SnCl}_{2}(\mathrm{acac})_{2}\left(\mathrm{Sn}-\mathrm{O}-\mathrm{C} 125^{\circ}\right) .{ }^{6}$ In the case of $\left[\mathrm{Zr}(\mathrm{tacac})_{4}\right],{ }^{13}$ the angle at oxygen opens further to 145°. In fact, the $\mathrm{Zr}-\mathrm{O}$ bond appears to be shortened at the expense of the $\mathrm{Zr}-\mathrm{S}$ bond.

The observed interatomic distances in the chelate rings are

consistent with delocalization of the π-bond frame. However, it is interesting that the $\mathrm{C}-\mathrm{C}$ bond adjacent to the $\mathrm{C}-\mathrm{S}$ bond is slightly shorter than the $\mathrm{C}-\mathrm{C}$ bond adjacent to the $\mathrm{C}-\mathrm{O}$ group. This feature compares favourably with $\mathrm{C}-\mathrm{O}$ bond lengths found in carboxylates, suggesting that the resonance form (A) contributes more to the ground state than (B). The substituents on the pseudo-aromatic ring do not effect the configuration of the bis(monothio- β-diketonato)tin(IV) complexes. On the contrary ${ }^{47}$ in dithiophosphates, $\mathrm{SnPh}_{2}\left[\mathrm{SP}(\mathrm{S})(\mathrm{OR})_{2}\right]_{2}$ the $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ angle opens from 135° in the case of diethyl phosphate $(\mathrm{R}=\mathrm{Et})$ to $c a .180^{\circ}$ in the di-isopropyl phosphate $\left(\mathrm{R}=\operatorname{Pr}^{\mathrm{i}}\right)$, and the ligand loses its asymmetrical mode of bonding in the latter case.

Acknowledgements

Miss Ch. Sreelatha and Mr. D. K. Srivastava are grateful to C.S.I.R., New Delhi (India) for the award of SRF. The assistance of Dr. W. Rattay in the structure determination is gratefully acknowledged.

References

1 J. A. Zubieta and J. J. Zuckerman, Prog. Inorg. Chem., 1978, 24, 251.
2 G. A. Miller and E. O. Schlemper, Inorg. Chem., 1973, 12, 677.
3 E. O. Schlemper, Inorg. Chem., 1967, 6, 2012.
4 T. Kimura, N. Yasuoka, N. Kasai, and M. Kakudo, Bull. Chem. Soc. Jpn., 1972, 45, 1649; J. S. Morris and E. O. Schlemper, J. Cryst. Mol. Struct., 1979, 9, 13.
5 P. G. Harrison, T. J. King, and J. A. Richards, J. Chem. Soc., Dalton Trans., 1976, 1414.
6 G. A. Miller and E. O. Schlemper, Inorg. Chim. Acta, 1978, 30, 131.
7 S. W. Cowan, R. W. Gable, B. F. Hoskins, and G. Winter, Inorg. Chim. Acta, 1983, 77, L 225.
8 R. F. Zahrobsky, J. Am. Chem. Soc., 1971, 93, 3313.
9 Ch. Sreelatha, V. D. Gupta, C. K. Narula, and H. Nöth, J. Chem. Soc., Dalton Trans., 1985, 2623.
10 O. Siiman, D. D. Titus, C. D. Cowman, J. Fresco, and H. B. Gray, J. Am. Chem. Soc., 1974, 96, 2353.
11 J. Coetzler and J. C. A. Boyens, J. Cryst. Mol. Struct., 1971, 1, 277.
12 B. F. Hoskins and C. D. Pannan, Inorg. Nucl. Chem. Lett., 1975, 11, 409.

13 M. E. Silver, H. K. Chun, and R. C. Fay, Inorg. Chem., 1982, 21, 3765.
14 E. Uhlemann and H. Müller, Angew. Chem., Int. Ed. Engl., 1965, 4, 154.

15 F. Duus and J. W. Anthonsen, Acta Chem. Scand., Ser. B, 1977, 31, 40.
16 O. Siiman and J. Fresco, J. Chem. Phys., 1971, 54, 734.
17 S. K. Saini, V. D. Gupta, R. C. Mehrotra, and R. P. Tripathi, Aust. J. Chem., 1980, 33, 1137.

18 G. M. Sheldrick, SHELXTL, program for crystal structure determination, Göttingen, 1983.
19 S. E. Livingstone, Coord. Chem. Rev., 1971, 7, 59.
20 M. Cox and J. Darken, Coord. Chem. Rev., 1971, 7, 29.
21 S. H. H. Chaston and S. E. Livingstone, Aust. J. Chem., 1967, $20,1079$.
22 F. Duus, J. Org. Chem., 1977, 42, 3123.
23 J. L. K. F. deVries and R. H. Herber, Inorg. Chem., 1972, 11, 2458.
24 M. M. McGrady and R. S. Tobias, J. Am. Chem. Soc., 1965, 87, 1909.
25 D. C. Bradley and M. H. Gitlitz, J. Chem. Soc. A, 1969, 1152.
26 M. K. Das, M. Nath, and J. J. Zuckerman, Inorg. Chim. Acta, 1983, 71, 49.
27 T. K. Sham and G. M. Bancroft, Inorg. Chem., 1975, 14, 2281.
28 K. Kawakami and R. Okawara, J. Organomet. Chem., 1966, 6, 249.
29 T. N. Mitchell, J. Organomet. Chem., 1973, 59, 189.
30 G. Domazetis, R. J. Magee, and B. D. James, J. Organomet. Chem., 1978, 148, 339.
31 A. B. Crosby, R. J. Magee, and M. J. O'Connor, Inorg. Chim. Acta, 1979, 34, 107.
32 P. J. Smith and L. Smith, Inorg. Chim. Acta Rev., 1973, 7, 11.
33 L. Vordonock and G. P. vander Kelen, J. Organomet. Chem., 1972, 40, 139.
34 J. Otera, T. Hinoishi, and R. Okawara, J. Organomet. Chem., 1980, 202, C93.
35 J. Otera, T. Hinoishi, Y. Kawabe, and R. Okawara, Chem. Lett., 1981, 273.
36 A. G. Davies, P. G. Harrison, J. D. Kennedy, T. N. Mitchell, R. J. Puddephatt, and W. McFarlane, J. Chem. Soc. C, 1969, 1136.
37 W. McFarlane, J. C. Maire, and M. Delmas, J. Chem. Soc., Dalton Trans., 1972, 1862.
38 H. C. Clark, V. K. Jain, I. J. McMahon, and R. C. Mehrotra, J. Organomet. Chem., 1983, 243, 299.
39 I. Douek, M. J. Frazer, Z. Goffer, M. Goldstein, B. Rimmer, and H. A. Willis, Spectrochim. Acta, Part A, 1967, 23, 373.

40 L. Pauling, 'The Nature of the Chemical Bond,' 3rd edn., Cornell University Press, Ithaca, 1960, (a) p. 246; (b) p. 224; (c) p. 224, 229.
41 P. G. Harrison, T. J. King, and M. A. Healy, J. Organomet. Chem., 1979, 182, 17.
42 F. A. K. Nasser, M. B. Hossain, D. van der Helm, and J. J. Zuckerman, Inorg. Chem., 1983, 22, 3107.
43 I. A. Duncan and C. Glidewell, J. Organomet. Chem., 1975, 97, 51.
44 S. K. Saini, V. D. Gupta, and R. C. Mehrotra, Aust. J. Chem., 1982, 35, 2215.
45 D. K. Srivastava, V. K. Gupta, and V. D. Gupta, Indian J. Chem., 1986, in the press; D. K. Srivastava, Anil K. Mishra, V. D. Gupta, and H. Nöth, unpublished work.

46 R. Beckett and B. F. Hoskins, J. Chem. Soc., Dalton Trans., 1974, 622.
47 K. C. Molloy and J. J. Zuckerman, Acc. Chem. Res., 1983, 16, 386.

Received 8th January 1987; Paper 7/045

[^0]: † Bis[benzoyl(thiobenzoyl)methanato-O,S]dimethyltin(tv), bis[benz-oyl(thiobenzoyl)methanato- O, S]dichlorotin(IV), and dimethyl- and dichloro-(monothioacetylacetonato-O,S)tin(iv).
 Supplementary data available: see Instructions for Authors, J. Chem. Soc.. Dalton Trans., 1988, Issue 1, pp. xvii-xx.
 Non-S.I. unit employed: $\mathrm{mmHg} \approx 133 \mathrm{~N} \mathrm{~m}^{-2}$.

