Reaction of the Lithium Enolate of Acetaldehyde, Li(OCH=CH₂), with Cyclothiaphosphazenes

Kaveripatnam S. Dhathathreyan, Andries P. Jekel, and Johan C. van de Grampel * Department of Inorganic Chemistry, University of Groningen, Nijenborgh 16, 9747 AG Groningen, The Netherlands

Reactions of the lithium enolate of acetaldehyde, $Li(OCH=CH_2)$, with the mixed ring systems $[NS(O)Ph]_{3-n}(NPCl_2)_n$ (n = 1 or 2) lead to a complete series of vinyloxy derivatives. The vinyloxy group is stable in subsequent substitution reactions using amines as nucleophiles. The compound $[NS(O)Ph]NPCl_2[NPCl(OCH=CH_2)]$ is a useful precursor in polymerization reactions.

It has been shown recently that hexahalogenocyclotriphosphazenes (NPX₂)₃ (X = F or Cl) undergo reactions with Li[OC(R)=CH₂] to yield the vinyloxy derivatives N₃P₃X_{6-n}[OC(R)=CH₂]_n (X = F, R = H, n = 1--5;^{1,2} X = Cl, R = H, n = 1--6;³X = Cl, R = Me, $n = 1^{4}$). Some of these derivatives are potential polymer precursors.^{5,6} We have investigated the reaction of the lithium enolate of acetaldehyde, Li(OCH=CH₂), with the cyclothiaphosphazenes [NS(O)Ph]_{3-n}(NPCl₂)_n (n = 1 or 2). This study was carried out in order to (*i*) prepare monovinyloxy derivatives in high yields which could be used in polymerization studies, and (*ii*) isolate the possible isomers formed at various substitution stages.

Results and Discussion

The reaction between $[NS(O)Ph](NPCl_2)_2$ (1) and $Li(OCH=CH_2)$ leads to substitution at phosphorus, the degree of substitution depending on the molar ratios used. The ¹³C n.m.r. spectrum † of the monosubstituted derivative (2) is consistent with a vinyloxy rather than an aldehyde group. 'This means that the vinyloxy group (enolate anion) of $Li(OCH=CH_2)$ attacks the phosphorus through the oxygen atom [equation (1)], as was found for similar reactions with (NPX₂)₃ (X = F or Cl).^{1,2}

$$[NS(O)Ph](NPCl_{2})_{2} \xrightarrow{\text{Li}(OC_{2}H_{3})}$$

$$[NS(O)Ph]N_{2}P_{2}Cl_{4-n}(OCH=CH_{2})_{n} \quad (1)$$

$$n = 1-4$$

Only one of the two possible isomers of [NS(O)Ph]-NPCl₂[NPCl(OCH=CH₂)] (2) could be detected in the various reaction mixtures. Interaction between Li(OCH=CH₂) and the sulphur-bonded oxygen, similar to that reported for nucleophilic additions to carbonyl compounds,⁸ combined with steric constraints may lead to the stereospecific formation of only one isomer, most likely possessing the *trans* structure⁹ (see Figure).

Compound (2) appears to be very reactive in further substitution reactions. Even when using a 1:1 molar ratio of the reactants a disubstituted product (3) is formed in appreciable amounts. Since this isomer shows only one signal ($\delta_p = 15.7$ p.p.m.) in the ³¹P n.m.r. spectrum, it should have the $1\alpha,3\beta,5\beta$ structure (see ref.9 for nomenclature). The alternative $1\alpha,3\alpha,5\beta$ structure can be eliminated as it is expected to give an AB-type

Figure. Compounds $[NS(O)Ph](NPR^1R^2)(NPR^3R^4)$ and $[NS(O)Ph]_2NPR^1R^2$. For (2): $R^1 = Cl$, $R^2 = OCH=CH_2$, $R^3 = R^4 = Cl$

pattern in the same region. Raising the amount of the enolate present to a 1.5 molar ratio the ³¹P n.m.r. spectrum of the crude reaction mixture shows, in addition to the resonance lines of (2) and (3), a low-intensity AX pattern $[\delta_P = 25.2, -2.0 \text{ p.p.m.}; {}^2J(PP) = 79.4 \text{ Hz}]$, which is tentatively ascribed to the geminal isomer $[NS(O)Ph]NPCl_2[NP(OCH=CH_2)_2]$ (4) {compare $(NPCl_2)_2[NP(OCH=CH_2)_2]:\delta_P = 24.5, -0.6 \text{ p.p.m.}; {}^2J(PP) = 69.0 \text{ Hz}^3$ }. However, a non-geminal pathway is preferred for the second substitution step as the relative yield of (4) is small (5–10% based on n.m.r. data).

Compound (3) reacts easily to give [NS(O)Ph][NPCl-(OCH=CH₂)][NP(OCH=CH₂)₂] (5); the assignment of a *trans* structure follows from the 1 α ,3 β ,5 β structure of (3). Compound (4) is, in principle, capable of forming *cis*-[NS(O)Ph][NPCl-(OCH=CH₂)][NP(OCH=CH₂)₂] (6). Careful analyses of ³¹P n.m.r. spectra of reaction mixtures with stoicheiometry 1:2 or 1:2.5 revealed a low-intensity AX pattern [δ_P = 18.5, 4.6 p.p.m.; ²J(PP) = 86.5 Hz], which might be related to the presence of (6). Efforts to isolate compound (6) were unsuccessful because of its low concentration. Using an excess of Li(OCH=CH₂), [NS(O)Ph][NP(OCH=CH₂)₂]₂ (7) is the major derivative formed, showing the expected singlet in its ³¹P n.m.r. spectrum. As observed for corresponding amino derivatives¹⁰ the δ_P values of equally substituted phosphorus atoms increase with an increasing degree of substitution (Table 1).

The reaction of Li(OCH=CH₂) with trans-[NS(O)Ph]₂-NPCl₂ (8) (see Figure, $R^1 = R^2 = Cl$) takes place smoothly and the mono [(9)] and bis [(10)] derivatives can be isolated in reasonable yields. The monovinyloxy derivatives (2) and (9) can easily form derivatives using other nucleophiles and leaving the vinyloxy group intact. The synthesis of [NS(O)Ph][NP(az)₂]-[NP(az)(OCH=CH₂)] (11) (az = aziridin-1-yl) may serve as an example.

A pilot study on the reactivity of (2) in homo- and copolymerization reactions proved it to be a useful polymer precursor.¹¹

[†] For P–O–C¹=C²; δ_{C} (CDCl₃) 139.9 [C¹, d, ²*J*(CP) 8.9 Hz], 104.7 [C², d, ³*J*(CP) 11.8 Hz].

Compounds [NS(O)Ph](NPR $^{1}R^{2}$)(NPR $^{3}R^{4}$)						$\delta(\mathbf{P})^c$				Analysis (%)		
R ¹	R ²	R ³	R4	(m.p. θ/°C)	PCl ₂	PCl(OCH=CH ₂)	P(OCH=CH ₂)	$\frac{1}{2} J(\mathbf{PP})^c$	С	н	N
Cl	Cl	Cl	Cl	(1)	91.5 92ª	20.7 <i>ª</i>						
Cl	OCH=CH ₂	Cl	Cl	(2)	Liquid	23.4	12.3		75.9	25.10	2.35	10.95
Cl	OCH=CH ₂	Cl	OCH=CH ₂	(3)	Liquid		15.7			(23.40) 30.90 (31.10)	2.95	10.70
OCH=CH ₂	OCH=CH ₂	Cl	Cl	(4)	Not isolated	25.2		-2.0	79.4	(51.10)	(2.85)	(10.90)
OCH=CH ₂	OCH=CH ₂	Cl	OCH=CH ₂	(5)	Liquid		18.3	1.6	88.6	36.55	3.60	10.60
OCH=CH ₂	OCH=CH ₂	OCH=CH ₂	Cl	(6)	Not isolated		18.5	4.6	86.5	(30.00)	(3.60)	(10.65)
OCH=CH ₂	OCH=CH ₂	OCH=CH ₂	OCH=CH ₂	(7)	2729			4.3		41.65 (41.90)	4.30 (4.25)	10.45 (10.45)
Compoun	ds [NS(O)Ph] ₂ NPR ¹ R ²										
Cl	Cl			(8)	124.5— 126ª	22.1 ^d						
Cl	OCH=CH ₂			(9)	Liquid		12.7			41.70	3.50	10.30
OCH=CH ₂	OCH=CH ₂			(10)	57—59			-2.9		46.85 (46.95)	(3.25) 4.00 (3.95)	(10.43) 10.20 (10.25)

Table 1. Analytical^a and physical data^b for compounds [NS(O)Ph](NPR¹R²)(NPR³R⁴) and [NS(O)Ph]₂(NPR¹R²)

^a Required values in parentheses. ^b Apart from the Ph resonance the ¹H n.m.r. spectra of all vinyloxy derivatives show multiplets in the regions 4.5—5.3 and 6.2—6.8 p.p.m. ^c Chemical shifts (p.p.m.) positive to low field, coupling constants in Hz. ^d From ref. 13.

Table 2. Experimental data for reactions with Li(OCH=CH₂)

Starting compound (mmol)	LiBu ⁿ (mmol)	Products formed (%) ^a	Yield after purification (%)
(1), 2.5	2.5	(1), 5; (3), 30; (2), 65	(2), 50
(1), 2.5	3.7	(2), 30; (4), 10; (3), 60	(3), 40
(1), 2.5	5.0	(3), 30; (6), 10; (4), 5; (7), 5; (5), 50	~ //
(1), 2.5	6.2	(3), 10; (6), 5; (5), 70; (7), 15	(5), 50
(1), 2.5	15.0	(5), 10; (7) 90	(7), 60
(8), 2.5	2.5	(9), 100	(9), 70
(8), 2.5	5.0	$(10), 90^{b}$	(10), 60

^a Based on ³¹P n.m.r. spectra. ^b 10% Indefinable impurities.

Experimental

General.—All experiments were performed in an atmosphere of dry nitrogen. Solvents were purified and dried by conventional methods.¹² Compounds (1) and (8), as well as Li(OCH=CH₂) were prepared as described elsewhere.^{1,13} Purification by h.p.l.c. was carried out using a Waters model 590 instrument, combined with a R401 RI detector. Separations were performed on Lichrosorb Si 60/10 columns (inside diameter 22 mm, length 30 cm) using n-hexane, containing 5% tetrahydrofuran, as eluant. ¹H N.m.r. spectra were recorded on a Bruker FT-90 instrument using SiMe₄ as internal standard. Phosphorus-31 and ¹³C n.m.r. spectra were determined using a Nicolet NT200 instrument operating at 81.0 and 50.3 MHz, respectively. $(NPCl_2)_3$ in $CDCl_3$ ($\delta_P = 19.9$ p.p.m.) was used as an external reference for the ³¹P spectra; $CDCl_3$ ($\delta_C = 76.9$ p.p.m.) as internal standard for ¹³C spectra. Mass spectra were recorded as a routine purity check on an AEI MS9 mass spectrometer. Elemental analyses were carried out at the Microanalytical Department of the University of Groningen.

Reactions with $Li(OCH=CH_2)$.—The following is a typical reaction. Other reactions were carried out similarly, details are given in Table 2.

A solution of n-butyl-lithium (2.5 mmol) in hexane (1.6 cm³) was added slowly to tetrahydrofuran (25 cm³) at room temperature. This solution was stirred for 20 h at room temperature and then added to [NS(O)Ph](NPCl₂)₂ (1) (2.5 mmol), in tetrahydrofuran (25 cm³) at 0 °C. The reaction mixture was stirred for 3 d at room temperature. The solvent was removed under reduced pressure, the residue dissolved in diethyl ether and filtered quickly through a silica column. The solvent was removed and the residue subjected to various spectroscopic measurements. The ³¹P n.m.r. spectrum gave a clear idea about the composition of the mixture which, in this case, was found to contain (1), (2), and (3). The mixture was separated by h.p.l.c. techniques; K' 1.88 (1), 2.38 (2), and 3.38 (3) for analytical column (inside diameter 4.6 mm, length 30 cm), Lichrosorb Si 60/7, eluant n-hexane containing 5% tetrahydrofuran.

Preparation of (11).—To a stirred solution of (2) (1.0 mmol) in diethyl ether (25 cm³), cooled at -80 °C, a solution of aziridine (16.0 mmol) in diethyl ether (25 cm³) was added slowly. After warming to room temperature and stirring overnight the reaction mixture was refluxed during 6 h and then evaporated *in vacuo*. The residue was extracted three times with diethyl ether (50 cm³). After evaporation of the combined extracts the crude product was recrystallized from diethyl ether yielding white *crystals* of (11) (0.27 g, 0.68 mmol, 68%), m.p. 115—118 °C (Found: C, 42.50; H, 5.25; N, 20.80. C₁₄H₂₀-N₆O₂P₂S requires C, 42.20; H, 5.05; N, 21.10%); $\delta_{\rm H}$ (CDCl₃) 7.4— 7.9 (5 H, m, C₆H₅), 6.3—6.7 (1 H, m, CH), 4.4—4.9 [2 H, m, CH₂ (vinyloxy)], 2.20 [8 H, d, ³J(PH) 17.4 Hz, 4 CH₂], 1.98 [4 H, d, ³J(PH) 16.9 Hz, 2 CH₂]; $\delta_{\rm P}$ (CDCl₃) 34.7 [P(az)₂], 22.1 [P(az)(OCH=CH₂)], ²J(PP) 50.4 Hz.

References

- 1 C. W. Allen, K. Ramachandran, R. P. Bright, and J. C. Shaw, Inorg. Chim. Acta, 1982, 64, L109.
- 2 R. P. Bright, Ph.D. Thesis, University of Vermont, U.S.A., 1984.
- 3 K. Ramachandran and C. W. Allen, Inorg. Chem., 1983, 22, 1445.
- 4 P. J. Harris, M. A. Schwalke, V. Liu, and B. L. Fisher, Inorg. Chem., 1983, 22, 1812.
- 5 C. W. Allen, J. Polym. Sci., Polym. Symp., 1983, **70**, 79. 6 C. W. Allen and R. P. Bright, Macromolecules, 1986, **19**, 571.
- 7 J. B. Strothers, 'Carbon-13 NMR Spectroscopy,' Academic Press, New York, 1972.
- 8 J-M. Lefour and A. Loupy, Tetrahedron, 1978, 34, 2597.
- 9 B. de Ruiter and J. C. van de Grampel, J. Chem. Soc., Dalton Trans., 1982, 1773.

- 10 R. Keat, R. A. Shaw, and M. Woods, J. Chem. Soc., Dalton Trans., 1976, 1582; B. de Ruiter and J. C. van de Grampel, Inorg. Chim. Acta, 1978, 31, 195.
- 11 J. C. van de Grampel, A. P. Jekel, K. S. Dhathathreyan, C. W. Allen, and D. E. Brown, Proceedings of the 193rd A.C.S. National Meeting, Denver, U.S.A., 1987.
- 12 A. I. Vogel, 'A Textbook of Practical Organic Chemistry including Qualitative Organic Analysis,' 4th edn., Longman, London and New York, 1986.
- 13 J. B. van de Berg, B. de Ruiter, and J. C. van de Grampel, Z. Naturforsch., Teil B, 1976, 31, 1216.

Received 11th May 1987; Paper 7/829