Chemistry of Polynuclear Metal Complexes with Bridging Carbene or Carbyne Ligands. Part 70. ${ }^{1}$ Tetranuclear Metal Compounds with Rhenium-Molybdenum or -Tungsten Bonds. Crystal Structures of $\left[\mathrm{Mo}_{2} \mathrm{Re}_{2}\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{2}(\mu-\mathrm{CO})_{2}{ }^{-}\right.$ $\left.(\mathrm{CO})_{7}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right] \cdot 1 \cdot 5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\left[\mathrm{W}_{2} \mathrm{Re}_{2}(\mu-\mathrm{H})\left(\mu_{3}-\sigma: \sigma^{\prime}: \eta^{2}-\mathrm{C}=\mathrm{CH}_{2}\right)\left(\mu_{3}-\mathrm{CMe}\right)-\right.$ $\left.(\mu-\mathrm{CO})(\mathrm{CO})_{8}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]^{*}$

John C. Jeffery, Michael J. Parrott, Ute Pyell, and F. Gordon A. Stone Department of Inorganic Chemistry, The University, Bristol BS8 1TS

Abstract

Reactions between the compounds $\left[\mathrm{M}\left(\equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](\mathrm{M}=\mathrm{Mo}$ or W$)$ and $\left[\mathrm{Re}_{2}{ }^{-}\right.$ $\left.(\mu-\mathrm{H})\left(\mu-\sigma: \eta-\mathrm{CH}=\mathrm{CHBu} u^{n}\right)(\mathrm{CO})_{8}\right]$ afford the tetranuclear metal complexes $\left[\mathrm{M}_{2} \mathrm{Re}_{2}\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{2}-\right.$ $\left.(\mu-\mathrm{CO})_{2}(\mathrm{CO}),\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$. The corresponding reaction between $\left[\mathrm{W}(\equiv \mathrm{CMe})(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ and the dirhenium compound yields a mixture of the cluster compounds $\left[\mathrm{W}_{2} \mathrm{Re}_{2}\left(\mu_{3}-\mathrm{CMe}\right)_{2}(\mu-\mathrm{CO})_{2}(\mathrm{CO})_{7}-\right.$ $\left.\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right],\left[\mathrm{W}_{2} \mathrm{Re}_{2}(\mu-\mathrm{H})\left(\mu_{3}-\sigma: \sigma^{\prime}: \eta^{2}-\mathrm{C}=\mathrm{CH}_{2}\right)\left(\mu_{3}-\mathrm{CMe}\right)(\mu-\mathrm{CO})(\mathrm{CO})_{8}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$, and $\left[\mathrm{WRe}_{2}\left(\mu_{3}-\right.\right.$ $\left.\mathrm{CMe})(\mathrm{CO})_{10}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$. The molecular structures of $\left[\mathrm{Mo}_{2} \mathrm{Re}_{2}\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{2}(\mu-\mathrm{CO})_{2}(\mathrm{CO})_{7}(\eta-\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right] \cdot 1.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\left[\mathrm{W}_{2} \mathrm{Re}_{2}(\mu-\mathrm{H})\left(\mu_{3}-\sigma: \sigma^{\prime}: \eta^{2}-\mathrm{C}=\mathrm{CH}_{2}\right)\left(\mu_{3}-\mathrm{CMe}\right)(\mu-\mathrm{CO})(\mathrm{CO})_{8}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$ have been established by X-ray diffraction studies. Crystals of the former contain two very similar crystallographically independent molecules in the asymmetric unit and there are three molecules of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ of crystallisation. The structure has a tetrahedral core of metal atoms (mean metal-metal separations $2.914 \AA$) with two of the faces of the tetrahedron capped by p-tolylmethylidyne ligands and two of the $\mathrm{Mo}-\mathrm{Re}$ edges of the tetrahedron asymmetrically bridged by CO groups [Mo-C-O 155(3) and 157(3) ${ }^{\circ}$]. Each rhenium atom carries three orthogonal terminal CO ligands, with the remaining CO group being terminally attached to a molybdenum atom. As expected, the $\mathrm{C}_{5} \mathrm{H}_{5}$ moieties ligate the Mo atoms. In $\left[\mathrm{W}_{2} \mathrm{Re}_{2}(\mu-\mathrm{H})\left(\mu_{3}-\sigma: \sigma^{\prime}: \eta^{2}-\mathrm{C}=\mathrm{CH}_{2}\right)\left(\mu_{3}-\mathrm{CMe}\right)(\mu-\mathrm{CO})(\mathrm{CO})_{8}(\eta-\right.$ $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$] the four metal atoms adopt a near-planar 'butterfly' arrangement, having a W-Re spine [2.923(1) \AA] and with a W and a Re atom at the wing-tip positions. The $W_{2} R e$ triangle is capped by a CMe group which lies perceptibly closer to the tungsten atoms than the rhenium. On the other side of the $\mathrm{W}_{2} \mathrm{Re}_{2}$ plane, the WRe_{2} triangle is triply bridged by the $\mathrm{C}=\mathrm{CH}_{2}$ group. The latter is σ bonded to the W and Re atoms which form the spine of the butterfly, and is η^{2}-co-ordinated to the Re atom at the wing-tip position. A CO ligand asymmetrically bridges [W-C-O 159(2) ${ }^{\circ}$] the W -Re edge of the WRe_{2} triangle and, although not located by X-ray diffraction, the hydrido ligand must bridge the $\operatorname{Re}-\operatorname{Re}$ edge [3.023(1) \AA], since the latter is perceptibly longer than the other metal-metal separations (mean 2.951 Å). Each rhenium atom is ligated by three terminal CO groups, and the tungsten atom is co-ordinated by two such groups. There is a $\mathrm{C}_{5} \mathrm{H}_{5}$ ligand bonded to each tungsten centre. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectra of the new compounds are reported and discussed.

The complexes $\left[\mathrm{M}(\equiv \mathrm{CR})(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{R}^{\prime}{ }_{5}\right)\right](\mathrm{M}=\mathrm{Mo}$ or W , $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4, \mathrm{R}^{\prime}=\mathrm{H} ; \mathrm{M}=\mathrm{W}, \mathrm{R}=\mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{H} ; \mathrm{M}=\mathrm{W}$, $\left.\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4, \mathrm{R}^{\prime}=\mathrm{Me}\right)$ and $\left[\mathrm{M}(\equiv \mathrm{CR})(\mathrm{CO})_{2}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}\right]$ ($\mathrm{M}=\mathrm{Mo}, \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4 ; \mathrm{M}=\mathrm{W}, \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ or Me ; $\mathrm{HB}(\mathrm{pz})_{3}=$ hydrotris(pyrazol-1-yl)borate] have been extensively employed in the synthesis of compounds with heteronuclear metal-metal bonds and bridging alkylidyne groups. ${ }^{2-6}$ Two strategies for synthetic work are available. In the first [Scheme 1(i)], alkylidyne-molybdenum or -tungsten species are treated with lightly stabilised mononuclear metalligand fragments. The products are usually dimetal complexes, but in some reactions trimetal compounds are obtained. This is because the initially formed dimetal species undergo further

[^0]reaction with either reactant. In the second preparative method [Scheme 1(ii)], trimetal complexes with capping alkylidyne ligands are obtained from reactions between dimetal compounds and the reagents $\left[\mathrm{M}(\equiv \mathrm{CR})(\mathrm{CO})_{2} \mathrm{~L}\right]\left[\mathrm{L}=\mathrm{C}_{5} \mathrm{R}^{\prime}{ }_{5}\right.$ or $\left.\mathrm{HB}(\mathrm{pz})_{3}\right]$. There is some evidence, however, that these syntheses proceed via the intermediacy of dimetal species, ${ }^{7}$ and not directly as implied in the Scheme. Irrespective of the pathway followed in reactions employing the dimetal complexes as precursors, this method has been used successfully to prepare a variety of cluster compounds. Thus treatment of the dimetal compounds $\left[\mathrm{Co}_{2}(\mathrm{CO})_{8}\right], \quad\left[\mathrm{Ni}_{2}(\mu-\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right], \quad\left[\mathrm{Rh}_{2}(\mu-\mathrm{CO})_{2}(\eta-\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2}\right],\left[\mathrm{Mo}_{2}(\mathrm{CO})_{4}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$, and $\left[\operatorname{Re}_{2}(\mathrm{CO})_{10}\right]$ with the appropriate alkylidyne-molybdenum or -tungsten complex affords the following trimetal species: $\left[\mathrm{Co}_{2} \mathrm{~W}\left(\mu_{3}-\mathrm{CR}\right)(\mathrm{CO})_{8}(\eta-\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{R}^{\prime}{ }_{5}\right)\right] \quad\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right.$ or $\mathrm{Me}, \quad \mathrm{R}=\mathrm{H}$ or Me$),{ }^{3,6,8}$ $\left[\mathrm{Co}_{2} \mathrm{~W}\left(\mu_{3}-\mathrm{CR}\right)(\mathrm{CO})_{8}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}\right] \quad\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right.$ or Me$),{ }^{5}$ $\left[\mathrm{Ni}_{2} \mathrm{~W}\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{R}^{\prime}{ }_{5}\right)\right] \quad\left(\mathrm{R}^{\prime}=\mathrm{H}\right.$ or Me), ${ }^{3,9}\left[\mathrm{Rh}_{2} \mathrm{~W}\left(\mu_{3}-\mathrm{CR}\right)(\mu-\mathrm{CO})(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{R}^{\prime}{ }_{5}\right)\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2}\right]$ $\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right.$ or $\left.\mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{H} ; \mathrm{R}=\mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{Me}\right),{ }^{6,9}$ $\left[\mathrm{Mo}_{2} \mathrm{~W}\left(\mu_{3}-\mathrm{CR}\right)(\mathrm{CO})_{6} \mathrm{~L}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]\left[\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4, \mathrm{~L}=\eta-\right.$ $\left.\mathrm{C}_{5} \mathrm{H}_{5} ; \mathrm{R}=\mathrm{Me}, \mathrm{L}=\mathrm{HB}(\mathrm{pz})_{3}\right],{ }^{6,7}$ and $\left[\mathrm{Re}_{2} \mathrm{~W}\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4}-\right.\right.$ $\left.\mathrm{Me}-4)(\mathrm{CO})_{10}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right] .{ }^{10}$

In order to widen the scope of this preparative route, we have

Table 1. Analytical ${ }^{a}$ and physical data for the complexes

				Analysis (\%)	
Compound	Colour	Yield (\%)	$\tilde{v}_{\text {max. }}(\mathrm{CO})^{\mathrm{b}} / \mathrm{cm}^{-1}$	C	H
(3a) $\left[\mathrm{Mo}_{2} \mathrm{Re}_{2}\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{2}(\mu-\mathrm{CO})_{2}(\mathrm{CO})_{7}\left(\mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]^{c}$	Green	15	$2039 \mathrm{~s}, 2007 \mathrm{vs}, 1951 \mathrm{~m}$, $1832 \mathrm{w}(\mathrm{br}), 1775 \mathrm{w}(\mathrm{br})$	$\begin{gathered} 34.2 \\ (34.2) \end{gathered}$	$\begin{gathered} 2.3 \\ (2.1) \end{gathered}$
(3b) $\left[\mathrm{W}_{2} \mathrm{Re}_{2}\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{2}(\mu-\mathrm{CO})_{2}(\mathrm{CO})_{7}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]^{c}$	Green	48	$\begin{aligned} & 2035 \mathrm{~m}, 2003 \mathrm{~s}, 1946 \mathrm{~m}, \\ & 1920(\mathrm{sh}), 1830 \mathrm{w}(\mathrm{br}), 1775 \mathrm{w}(\mathrm{br}) \end{aligned}$	$\begin{gathered} 29.9 \\ (30.1) \end{gathered}$	$\begin{gathered} 1.9 \\ (1.9) \end{gathered}$
(3c) $\left[\mathrm{W}_{2} \mathrm{Re}_{2}\left(\mu_{3}-\mathrm{CMe}\right)_{2}(\mu-\mathrm{CO})_{2}(\mathrm{CO})_{7}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]^{d}$	Brown	41	$\begin{aligned} & 2035 \mathrm{~m}, 1998 \mathrm{~s}, 1949 \mathrm{~m}, \\ & 1918(\mathrm{sh}), 1840 \mathrm{w}(\mathrm{br}), 1735 \mathrm{w}(\mathrm{br}) \end{aligned}$	$\begin{gathered} 22.8 \\ (22.8) \end{gathered}$	$\begin{gathered} 1.5 \\ (1.4) \end{gathered}$
(4) $\left[\mathrm{W}_{2} \mathrm{Re}_{2}(\mu-\mathrm{H})\left(\mu_{3}-\sigma: \sigma^{\prime}: \eta^{2}-\mathrm{C}=\mathrm{CH}_{2}\right)\left(\mu_{3}-\mathrm{CMe}\right)(\mu-\mathrm{CO})(\mathrm{CO})_{8^{-}}\right.$ $\left.\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$	Red	35	$\begin{aligned} & 2037 \mathrm{~s}, 2012 \mathrm{~s}, 1972 \mathrm{~m}, \\ & 1955 \mathrm{~m}, 1940(\mathrm{sh}), 1915 \mathrm{~s} \\ & 1836 \mathrm{w} \end{aligned}$	$\begin{gathered} 23.2 \\ (23.5) \end{gathered}$	$\begin{gathered} 1.4 \\ (1.4) \end{gathered}$
(5a) [WRe $\left.{ }_{2}\left(\mu_{3}-\mathrm{CMe}\right)(\mathrm{CO})_{10}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$	Violet	5	$\begin{aligned} & 2 \text { 030s, } 1995 \mathrm{~s}, 1950 \text { (sh), } \\ & 1937 \mathrm{~m} \end{aligned}$		

Table 2. Hydrogen-1 and carbon-13 n.m.r. data ${ }^{a}$ for the rhenium-molybdenum and -tungsten complexes

Compound	d ${ }^{1} \mathrm{H}(\delta){ }^{\text {b }}$	${ }^{3} \mathrm{C}(\delta){ }^{\text {c }}$
(3a)	$\begin{aligned} & 2.36(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-4), 2.37(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-4), 5.28\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 5.42 \\ & \left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 7.00\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) \end{aligned}$	$\begin{aligned} & 355.3(\mu-\mathrm{C}), 293.0\left(\mu_{3}-\mathrm{C}\right), 264.9(\mu-\mathrm{CO}), 232.9,223.5(\mathrm{MoCO}), \\ & 197.0,193.9(\mathrm{ReCO}), 165.9,163.2\left[\mathrm{C}^{1}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right], 137.9,136.1, \\ & 129.5,128.9,128.7,128.4,127.5\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 101.2,95.8\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), \\ & 21.3,21.2(\mathrm{Me}-4) \end{aligned}$
(3b)	$\begin{aligned} & 2.33(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-4), 2.37(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-4), 5.39\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 5.48 \\ & \left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 7.14\left(\mathrm{~s}, 8 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) \end{aligned}$	$\begin{aligned} & 337.0(\mu-\mathrm{C}), 262.1\left(\mu_{3}-\mathrm{C}\right), 253.7(\mu-\mathrm{CO}), 222.1,206.5(\mathrm{WCO}), \\ & 198.3,193.0(\mathrm{ReCO}), 168.4,165.2\left[\mathrm{C}^{1}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right], 137.4,135.7, \\ & 129.1,129.0,128.8,128.7,128.5\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 99.4,93.6\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), \\ & 21.3,21.1(\mathrm{Me}-4) \end{aligned}$
(3c)	$\begin{aligned} & 3.77(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 3.92(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 5.23\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 5.30(\mathrm{~s}, \\ & \left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), 5.64\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right) \end{aligned}$	
(4)	-19.57 (s, $1 \mathrm{H}, \mu-\mathrm{H}$), 4.65 (s, $3 \mathrm{H}, \mathrm{Me}$), 5.29 [d, $1 \mathrm{H}, \mathrm{CH}_{2}$, $J(\mathrm{HH}) 1], 5.34\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 5.68\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 6.19$ [d, $\left.1 \mathrm{H}, \mathrm{CH}_{2}, J(\mathrm{HH}) 1\right]$	238.7, 229.6, 224.7, 224.3, $207.7\left(\mu_{3}-\mathrm{Me}, \mu_{3}-C=\mathrm{CH}_{2}, 3 \mathrm{WCO}\right)$, 194.2, 190.1, 188.5, 188.2, 187.0, 186.5 (ReCO), 98.4, 93.4 $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 78.0\left(\mathrm{C}=\mathrm{CH}_{2}\right), 52.7\left(\mu_{3}-\mathrm{CMe}\right)$
(5a)	3.76 (s, $3 \mathrm{H}, \mathrm{Me}$), $6.01\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right.$)	

Chemical shifts (δ) in p.p.m., coupling constants in $\mathrm{Hz} .{ }^{b}$ Measured in CDCl_{3} at room temperature. ${ }^{c}$ Hydrogen-1 decoupled chemical shifts are positive to high frequency of SiMe_{4}. Measurements in $\mathrm{CD}_{2} \mathrm{Cl}_{2}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-40^{\circ} \mathrm{C}$.

Scheme 1. $M=M(C O)_{2} L\left[M=M o\right.$ or $W, L=\eta-C_{5} H_{5}, \eta-C_{5} \mathrm{Me}_{5}$, or $\left.\mathrm{HB}(\mathrm{pz})_{3}\right], \mathrm{R}=$ alkyl or aryl. $\mathrm{M}^{\prime}=$ Transition element in low oxidation state with ligands omitted
investigated reactions between the dirhenium species $\left[\mathrm{Re}_{2}(\mu-\right.$ $\left.\mathrm{H})\left(\mu-\sigma: \eta-\mathrm{CH}=\mathrm{CHBu}^{\mathrm{n}}\right)(\mathrm{CO})_{8}\right]$ (1) and the alkylidynemetal complexes $\left[\mathrm{M}(\equiv \mathrm{CR})(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right] \quad(2 ; \mathrm{M}=\mathrm{Mo}$ or W , $\left.\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4 ; \mathrm{M}=\mathrm{W}, \mathrm{R}=\mathrm{Me}\right)$. The dirhenium compound (1) is known to react with nucleophilic substrate molecules with facile loss of $\mathrm{CH}_{2}=\mathrm{CHBu}^{n}$ and formation of complexes [$\{\mathrm{Re}-$ $\left.\left.(\mathrm{CO})_{4} \mathrm{~L}\right\}_{2}\right]\left[\mathrm{L}=\right.$ pyridine, $\mathrm{P}(\mathrm{OMe})_{3}, \mathrm{PPh}_{3}$, etc.]. ${ }^{11}$ These products contain the fragment $\mathrm{Re}_{2}(\mathrm{CO})_{8}$, which is isolobal ${ }^{12}$ with alkynes and with the complexes (2). ${ }^{13}$ It seemed possible, therefore, that reactions between (1) and (2) would afford the trimetal compounds $\left[\operatorname{Re}_{2} \mathrm{M}\left(\mu_{3}-\mathrm{CR}\right)(\mathrm{CO})_{10}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ since, as mentioned above, $\left[\operatorname{Re}_{2}(\mathrm{CO})_{10}\right]$ and (2b) react to give $\left[\mathrm{Re}_{2} \mathrm{~W}\right.$ -
$\left.\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{10}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$. Although reactions readily occur between (1) and (2), the major products are not trimetal compounds [Scheme 1 (ii)] but tetranuclear metal complexes with novel structures.

Results and Discussion

In refluxing thf (tetrahydrofuran), the compounds (1) and (2a) afford the green crystalline complex $\left[\mathrm{Mo}_{2} \mathrm{Re}_{2}\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4}{ }^{-}\right.\right.$ $\mathrm{Me}-4)_{2}(\mu-\mathrm{CO})_{2}(\mathrm{CO})_{7}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$] (3a), isolated by column chromatography on alumina. Data for this product are given in Table 1, but its formulation was not established until after the X-ray diffraction study, described below, had been carried out. The corresponding reaction between (1) and (2b) in toluene at ca. $70^{\circ} \mathrm{C}$ affords the ditungstendirhenium compound $\left[\mathrm{W}_{2} \mathrm{Re}_{2}\right.$ -$\left.\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{2}(\mu-\mathrm{CO})_{2}(\mathrm{CO})_{7}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$ (3b) (Table 1). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. data for (3a) and (3b) are similar (Table 2). However, discussion of these results is deferred until after the structure of (3a) has been described.

Selected structural parameters for compound (3a), obtained from the X-ray diffraction data, are listed in Table 3. Crystals of (3a) contain two very similar crystallographically independent molecules in the asymmetric unit, and these are designated (a) and (b). There are also three molecules of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in the asymmetric unit. Only data for molecule (a) are discussed and this molecule is shown in Figure 1.

It is immediately apparent that the core of the structure consists of a tetrahedral array of two molybdenum and two

(1)

(2a) Mo $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$
(2b) $W \quad \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$
(2c) W Me

(ii)
(i)
M R
(3a) Mo $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$
(3b) W
$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$
(3c)
Me

(4)
rhenium atoms. Two faces of the tetrahedron are capped by p-tolylmethylidyne ligands. The metal-metal separations are very similar (mean $2.914 \AA$). The μ_{3}-C nuclei are slightly closer to $\operatorname{Mo}(1 \mathrm{a})[2.03(3) \AA]$ than they are to the atoms $\mathrm{Mo}(2 \mathrm{a})$, $\operatorname{Re}(1 a)$, and $\operatorname{Re}(2 a)$ (mean $2.12 \AA$). The rhenium atoms each carry three terminal CO ligands, and each molybdenum atom is ligated by a cyclopentadienyl group. However, whereas $\mathrm{Mo}(2 \mathrm{a})$ carries a terminally bonded CO ligand $[\mathrm{Mo}(2 \mathrm{a})-\mathrm{C}(8 \mathrm{a})-\mathrm{O}(8 \mathrm{a})$ $175(3)^{\circ}$], the other two carbonyl groups bonded to the molybdenum atoms strongly semi-bridge the $\mathrm{Mo}(1 \mathrm{a})-\mathrm{Re}(2 \mathrm{a})$ $\left[\mathrm{Mo}(1 \mathrm{a})-\mathrm{C}(9 \mathrm{a})-\mathrm{O}(9 \mathrm{a}) \quad 155(3)^{\circ}, \quad \mathrm{Mo}(1 \mathrm{a})-\mathrm{C}(9 \mathrm{a}) \quad 2.02(4)\right.$, $\operatorname{Re}(2 \mathrm{a}) \cdots \mathrm{C}(9 \mathrm{a}) 2.49(4) \AA]$, and $\mathrm{Mo}(2 \mathrm{a})-\operatorname{Re}(2 \mathrm{a})[\mathrm{Mo}(2 \mathrm{a})-$ $\mathrm{C}(7 \mathrm{a})-\mathrm{O}(7 \mathrm{a}) 157(3)^{\circ}, \mathrm{Mo}(2 \mathrm{a})-\mathrm{C}(7 \mathrm{a}) 2.05(4), \operatorname{Re}(2 \mathrm{a}) \cdots \mathrm{C}(7 \mathrm{a})$ $2.67(3) \AA]$ edges of the tetrahedron, respectively. The $\mathrm{Mo}(1 \mathrm{a})-\mathrm{C}(9 \mathrm{a})-\mathrm{O}(9 \mathrm{a})$ and $\mathrm{Mo}(2 \mathrm{a})-\mathrm{C}(7 \mathrm{a})-\mathrm{O}(7 \mathrm{a})$ angles are approximately half-way between that expected for a linear bound CO group and that for a symmetrical CO bridge across the metal-metal bond. ${ }^{14}$ Hence in this paper the two ligands $\mathrm{C}(7 \mathrm{a}) \mathrm{O}(7 \mathrm{a})$ and $\mathrm{C}(9 \mathrm{a}) \mathrm{O}(9 \mathrm{a})$ are delineated in the molecular formula as bridging species ($\mu-\mathrm{CO}$).

It is very probable that the molecular structure of (3b) is like that of (3a), since the spectroscopic properties of the two species are similar. Both metal cluster compounds have 60 valence electrons, and for a tetrahedral arrangement of metal atoms this might imply a closed 18 -electron configuration at each metal centre. However, the presence of the two asymmetrically bridging carbonyl ligands makes electron counting at the individual metal atoms unrewarding.

Having established the crystal structure of (3a), and by implication that of (3b) also, it is possible to discuss the spectroscopic data for these compounds. Interpretation of the ${ }^{1} \mathrm{H}$ n.m.r. spectra (Table 2) presents no difficulty. In each spectrum the $\mathrm{Me}-4$ and $\mathrm{C}_{5} \mathrm{H}_{5}$ groups each give rise to two resonances. This is as expected, since the two $\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ ligands occupy non-equivalent sites, capping $\mathrm{Mo}_{2} \mathrm{Re}$ and MoRe_{2} faces of the tetrahedron.

Interpretation of the ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ spectra is more difficult, and strongly suggests that in solution compounds (3a) and (3b) adopt structures somewhat different from that established by X ray crystallography for (3a) in the solid state. The ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$

Table 3. Selected internuclear distances (\AA) and angles $\left({ }^{\circ}\right)$ for $\left[\mathrm{Mo}_{2} \mathrm{Re}_{2}\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{2}(\mu-\mathrm{CO})_{2}(\mathrm{CO})_{7}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right] \cdot 1.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{a})$ with estimated standard deviations in parentheses

Molecule a	
$\operatorname{Re}(1 a)-\operatorname{Re}(2 a)$	2.905(2)
$\operatorname{Re}(1 a)-\mathrm{Mo}(2 \mathrm{a})$	2.905(3)
$\mathrm{Re}(1 a)-\mathrm{C}(40 \mathrm{a})$	2.26(3)
$\operatorname{Re}(1 a)-\mathrm{C}(2 \mathrm{a})$	1.90(4)
$\operatorname{Re}(2 \mathrm{a})-\mathrm{Mo}(1 \mathrm{a})$	2.863(3)
$\operatorname{Re}(2 a)-\mathrm{C}(30 \mathrm{a})$	2.24(2)
$\operatorname{Re}(2 a)-\mathrm{C}(5 \mathrm{a})$	1.80(4)
$\operatorname{Re}(2 a) \cdots \mathrm{C}(7 \mathrm{a})$	2.67(3)
$\mathbf{M o}(1 \mathrm{a})-\mathrm{Mo}(2 \mathrm{a})$	3.037(3)
Mo(1a)-C(40a)	2.03(3)
$\mathrm{Mo}(2 \mathrm{a})-\mathrm{C}(40 \mathrm{a})$	2.19 (3)
$\mathrm{Mo}(2 \mathrm{a})-\mathrm{C}(8 \mathrm{a})$	1.96(3)
$\mathrm{C}(2 \mathrm{a}-\mathrm{O}(2 \mathrm{a})$	1.20 (5)
$\mathrm{C}(4 \mathrm{a})-\mathrm{O}(4 \mathrm{a})$	1.25(5)
$\mathrm{C}(6 \mathrm{a})-\mathrm{O}(6 \mathrm{a})$	1.21(5)
$\mathrm{C}(8 \mathrm{a})-\mathrm{O}(8 \mathrm{a})$	1.17(4)
$\begin{aligned} & \mathrm{Mo}-\mathrm{C}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \\ & \text { range } \end{aligned}$	$2.32-2.39(2)$

Molecule b	
$\operatorname{Re}(16)-\operatorname{Re}(2 \mathrm{~b})$	2.876(2)
$\operatorname{Re}(1 \mathrm{~b})-\mathrm{Mo}(2 \mathrm{~b})$	2.957(3)
$\mathrm{Re}(1 \mathrm{~b})-\mathrm{C}(40 \mathrm{~b})$	2.30 (3)
$\mathrm{Re}(1 \mathrm{~b})-\mathrm{C}(2 \mathrm{~b})$	1.87(4)
$\operatorname{Re}(2 \mathrm{~b})-\mathrm{Mo}(1 \mathrm{~b})$	2.909(3)
$\mathrm{Re}(2 \mathrm{~b})-\mathrm{C}(30 \mathrm{~b})$	2.22(3)
$\mathrm{Re}(2 \mathrm{~b})-\mathrm{C}(5 \mathrm{~b})$	1.84(3)
$\operatorname{Re}(2 \mathrm{~b}) \cdots \mathrm{C}(7 \mathrm{~b})$	2.62(3)
$\mathrm{Mo}(1 \mathrm{~b})-\mathrm{Mo}(2 \mathrm{~b})$	3.032(4)
Mo(1b)-C(40b)	2.07(3)
$\mathrm{Mo}(2 \mathrm{~b})-\mathrm{C}(40 \mathrm{~b})$	2.20(2)
$\mathrm{Mo}(2 \mathrm{~b})-\mathrm{C}(8 \mathrm{~b})$	2.00(4)
$\mathrm{C}(2 \mathrm{~b})-\mathrm{O}(2 \mathrm{~b})$	1.21(5)
$\mathrm{C}(4 \mathrm{~b})-\mathrm{O}(4 \mathrm{~b})$	1.23(5)
$\mathrm{C}(6 \mathrm{~b})-\mathrm{O}(6 \mathrm{~b})$	1.17(4)
$\mathrm{C}(8 \mathrm{~b})-\mathrm{O}(8 \mathrm{~b})$	1.11(4)
$\begin{aligned} & \mathrm{Mo}-\mathrm{C}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \\ & \text { range } \end{aligned}$	2.32(2)-2.41(2)

Molecule a		Molecule b	
$\operatorname{Re}(1 a)-\mathrm{Mo}(1 a)$	2.815(3)	$\operatorname{Re}(1 \mathrm{~b})-\mathrm{Mo}(1 \mathrm{~b})$	2.821(3)
$\operatorname{Re}(1 a)-\mathrm{C}(30 \mathrm{a})$	2.19 (3)	$\operatorname{Re}(1 b)-\mathrm{C}(30 \mathrm{~b})$	2.14(3)
$\operatorname{Re}(1 a)-C(1 a)$	1.82(3)	$\operatorname{Re}(1 b)-\mathrm{C}(16)$	1.81(4)
$\operatorname{Re}(1 a)-\mathrm{C}(3 \mathrm{a})$	1.95(4)	$\operatorname{Re}(16)-\mathrm{C}(3 \mathrm{~b})$	1.93(2)
$\operatorname{Re}(2 \mathrm{a})-\mathrm{Mo}(2 \mathrm{a})$	2.959(3)	$\mathrm{Re}(2 \mathrm{~b})-\mathrm{Mo}(2 \mathrm{~b})$	2.967 (3)
$\operatorname{Re}(2 a)-C(4 a)$	1.84(4)	$\operatorname{Re}(2 b)-\mathrm{C}(4 \mathrm{~b})$	1.86(4)
$\operatorname{Re}(2 \mathrm{a})-\mathrm{C}(6 \mathrm{a})$	1.86(4)	$\operatorname{Re}(2 b)-\mathrm{C}(6 \mathrm{~b})$	1.92(3)
$\operatorname{Re}(2 \mathrm{a}) \cdot \mathrm{C}$ C(9a)	2.49(4)	$\operatorname{Re}(2 b) \cdots \mathrm{C}(9 \mathrm{~b})$	2.60(4)
$\mathrm{Mo}(1 \mathrm{a})-\mathrm{C}(30 \mathrm{a})$	2.03(3)	Mo(1b)-C(30b)	1.98 (3)
$\mathrm{Mo}(1 \mathrm{a})-\mathrm{C}(9 \mathrm{a})$	2.02(4)	Mo(1b)-C(9b)	2.00 (4)
$\mathrm{Mo}(2 \mathrm{a})-\mathrm{C}(7 \mathrm{a})$	2.05(4)	$\mathrm{Mo}(2 \mathrm{~b})-\mathrm{C}(7 \mathrm{~b})$	1.99(3)
$\mathrm{C}(1 a)-\mathrm{O}(1 \mathrm{a})$	1.27(4)	$\mathrm{C}(1 \mathrm{~b})-\mathrm{O}(1 \mathrm{~b})$	1.22(5)
$\mathrm{C}(3 \mathrm{a})-\mathrm{O}(3 \mathrm{a})$	1.17(4)	$\mathrm{C}(3 \mathrm{~b})-\mathrm{O}(3 \mathrm{~b})$	1.11(4)
$\mathrm{C}(5 \mathrm{a})-\mathrm{O}(5 \mathrm{a})$	1.20(5)	$\mathrm{C}(5 \mathrm{~b})-\mathrm{O}(5 \mathrm{~b})$	1.21(4)
$\mathrm{C}(7 \mathrm{a})-\mathrm{O}(7 \mathrm{a})$	1.20(4)	$\mathrm{C}(7 \mathrm{~b})-\mathrm{O}(7 \mathrm{~b})$	1.23(4)
$\mathrm{C}(9 \mathrm{a})-\mathrm{O}(9 \mathrm{a})$	1.17(4)	$\mathrm{C}(9 \mathrm{~b})-\mathrm{O}(9 \mathrm{~b})$	1.18(5)

Molecule a		Molecule b	
$\operatorname{Re}(2 \mathrm{a})-\mathrm{Re}(1 \mathrm{a})-\mathrm{Mo}(1 \mathrm{a})$	60.0(1)	$\operatorname{Re}(2 b)-\operatorname{Re}(1 \mathrm{~b})-\mathrm{Mo}(1 \mathrm{~b})$	61.4(1)
$\mathrm{Mo}(1 \mathrm{a})-\mathrm{Re}(1 \mathrm{a})-\mathrm{Mo}(2 \mathrm{a})$	64.1(1)	$\mathrm{Mo}(1 \mathrm{~b})-\mathrm{Re}(1 \mathrm{~b})-\mathrm{Mo}(2 \mathrm{~b})$	63.2(1)
$\operatorname{Re}(1 a)-\operatorname{Re}(2 a)-\mathrm{Mo}(2 \mathrm{a})$	59.4(1)	$\operatorname{Re}(1 b)-\operatorname{Re}(2 b)-\mathrm{Mo}(2 \mathrm{~b})$	60.8(1)
$\operatorname{Re}(1 a)-\mathrm{Mo}(1 a)-\operatorname{Re}(2 \mathrm{a})$	61.6(1)	$\mathrm{Re}(1 \mathrm{~b})-\mathrm{Mo}(1 \mathrm{~b})-\mathrm{Re}(2 \mathrm{~b})$	60.2(1)
$\operatorname{Re}(2 \mathrm{a})-\mathrm{Mo}(1 \mathrm{a})-\mathrm{Mo}(2 \mathrm{a})$	60.1(1)	$\mathrm{Re}(2 \mathrm{~b})-\mathrm{Mo}(1 \mathrm{~b})-\mathrm{Mo}(2 \mathrm{~b})$	60.6(1)
$\mathrm{Re}(1 \mathrm{a})-\mathrm{Mo}(2 \mathrm{a})-\mathrm{Mo}(1 \mathrm{a})$	56.5(1)	$\mathrm{Re}(1 \mathrm{~b})-\mathrm{Mo}(2 \mathrm{~b})-\mathrm{Mo}(1 \mathrm{~b})$	56.2(1)
$\operatorname{Re}(1 a)-C(30 a)-\operatorname{Re}(2 a)$	82.0(8)	$\operatorname{Re}(1 b)-\mathrm{C}(30 \mathrm{~b})-\operatorname{Re}(2 \mathrm{~b})$	83(1)
$\operatorname{Re}(2 \mathrm{a})-\mathrm{C}(30 \mathrm{a})-\mathrm{Mo}(1 \mathrm{a})$	84.0(9)	$\operatorname{Re}(2 b)-\mathrm{C}(30 \mathrm{~b})-\mathrm{Mo}(1 \mathrm{~b})$	87(1)
$\operatorname{Re}(2 a)-\mathrm{C}(30 \mathrm{a})-\mathrm{C}(31 \mathrm{a})$	120(2)	$\operatorname{Re}(2 b)-\mathrm{C}(30 \mathrm{~b})-\mathrm{C}(31 \mathrm{~b})$	117(2)
$\mathrm{Re}(1 \mathrm{a})-\mathrm{C}(40 \mathrm{a})-\mathrm{Mo}(1 \mathrm{a})$	82(1)	$\mathrm{Re}(1 \mathrm{~b})-\mathrm{C}(40 \mathrm{~b})-\mathrm{Mo}(1 \mathrm{~b})$	80.4(8)
$\operatorname{Re}(2 \mathrm{a})-\operatorname{Re}(1 \mathrm{a})-\mathrm{Mo}(2 \mathrm{a})$	61.2(1)	$\operatorname{Re}(2 b)-\operatorname{Re}(1 b)-\mathrm{Mo}(2 \mathrm{~b})$	61.1(1)
$\operatorname{Re}(1 \mathrm{a})-\mathrm{Re}(2 \mathrm{a})-\mathrm{Mo}(1 \mathrm{a})$	58.4(1)	$\operatorname{Re}(1 b)-\operatorname{Re}(2 b)-\mathrm{Mo}(1 \mathrm{~b})$	58.4(1)
$\mathrm{Mo}(1 \mathrm{a})-\mathrm{Re}(2 \mathrm{a})-\mathrm{Mo}(2 \mathrm{a})$	62.9(1)	$\mathrm{Mo}(1 \mathrm{~b})-\mathrm{Re}(2 \mathrm{~b})-\mathrm{Mo}(2 \mathrm{~b})$	62.1(1)
$\operatorname{Re}(1 a)-\mathrm{Mo}(1 a)-\mathrm{Mo}(2 \mathrm{a})$	59.4(1)	$\mathrm{Re}(1 \mathrm{~b})-\mathrm{Mo}(1 \mathrm{~b})-\mathrm{Mo}(2 \mathrm{~b})$	60.6(1)
$\operatorname{Re}(1 a)-\mathrm{Mo}(2 \mathrm{a})-\operatorname{Re}(2 \mathrm{a})$	59.4(1)	$\mathrm{Re}(1 \mathrm{~b})-\mathrm{Mo}(2 \mathrm{~b})-\mathrm{Re}(2 \mathrm{~b})$	58.1(1)
$\operatorname{Re}(2 \mathrm{a})-\mathrm{Mo}(2 \mathrm{a})-\mathrm{Mo}(1 \mathrm{a})$	57.0(1)	$\operatorname{Re}(2 \mathrm{~b})-\mathrm{Mo}(2 \mathrm{~b})-\mathrm{Mo}(1 \mathrm{~b})$	58.0(1)
$\mathrm{Re}(1 \mathrm{a})-\mathrm{C}(30 \mathrm{a})-\mathrm{Mo}(1 \mathrm{a})$	83.6(9)	$\operatorname{Re}(1 b)-\mathrm{C}(30 \mathrm{~b})-\mathrm{Mo}(1 \mathrm{~b})$	86(1)
$\operatorname{Re}(1 a)-\mathrm{C}(30 \mathrm{a})-\mathrm{C}(31 \mathrm{a})$	130(2)	$\operatorname{Re}(1 \mathrm{~b})-\mathrm{C}(30 \mathrm{~b})-\mathrm{C}(31 \mathrm{~b})$	130(2)
$\mathrm{Mo}(1 \mathrm{a})-\mathrm{C}(30 \mathrm{a})-\mathrm{C}(31 \mathrm{a})$	138(2)	$\mathrm{Mo}(1 \mathrm{~b})-\mathrm{C}(30 \mathrm{~b})-\mathrm{C}(31 \mathrm{~b})$	136(2)
$\mathrm{Re}(1 \mathrm{a})-\mathrm{C}(40 \mathrm{a})-\mathrm{Mo}(2 \mathrm{a})$	82(1)	$\mathrm{Re}(1 \mathrm{~b})-\mathrm{C}(40 \mathrm{~b})-\mathrm{Mo}(2 \mathrm{~b})$	82.2(8)
$\mathrm{Mo}(1 \mathrm{a})-\mathrm{C}(40 \mathrm{a})-\mathrm{Mo}(2 \mathrm{a})$	92(1)	$\mathrm{Mo}(1 \mathrm{~b})-\mathrm{C}(40 \mathrm{~b})-\mathrm{Mo}(2 \mathrm{~b})$	90(1)
$\mathbf{M o}(1 a)-\mathbf{C}(40 a)-\mathbf{C}(41 a)$	130(2)	$\mathrm{Mo}(1 \mathrm{~b})-\mathrm{C}(40 \mathrm{~b})-\mathrm{C}(41 \mathrm{~b})$	131(2)
$\mathrm{Re}(1 \mathrm{a})-\mathrm{C}(1 \mathrm{a})-\mathrm{O}(1 \mathrm{a})$	172(2)	$\mathrm{Re}(1 \mathrm{~b})-\mathrm{C}(1 \mathrm{~b})-\mathrm{O}(1 \mathrm{~b})$	174(3)
$\operatorname{Re}(1 a)-\mathrm{C}(3 \mathrm{a})-\mathrm{O}(3 \mathrm{a})$	173(3)	$\mathrm{Re}(1 \mathrm{~b})-\mathrm{C}(3 \mathrm{~b})-\mathrm{O}(3 \mathrm{~b})$	176(3)
$\operatorname{Re}(2 \mathrm{a})-\mathrm{C}(5 \mathrm{a})-\mathrm{O}(5 \mathrm{a})$	176(3)	$\operatorname{Re}(2 b)-\mathrm{C}(5 \mathrm{~b})-\mathrm{O}(5 \mathrm{~b})$	177(3)
$\operatorname{Re}(2 a)-\mathrm{C}(7 a)-\mathrm{O}(7 \mathrm{a})$	124(2)	$\mathrm{Re}(2 \mathrm{~b})-\mathrm{C}(7 \mathrm{~b})-\mathrm{O}(7 \mathrm{~b})$	123(2)
$\mathrm{Mo}(2 \mathrm{a})-\mathrm{C}(8 \mathrm{a})-\mathrm{O}(8 \mathrm{a})$	175(3)	$\mathrm{Mo}(2 \mathrm{~b})-\mathrm{C}(8 \mathrm{~b})-\mathrm{O}(8 \mathrm{~b})$	171(3)
$\mathrm{Mo}(1 \mathrm{a})-\mathrm{C}(9 \mathrm{a})-\mathrm{O}(9 \mathrm{a})$	155(3)	$\mathrm{Mo}(1 \mathrm{~b})-\mathrm{C}(9 \mathrm{~b})-\mathrm{O}(9 \mathrm{~b})$	158(3)
$\operatorname{Re}(1 a)-C(40 a)-C(41 a)$	128(2)	$\operatorname{Re}(1 \mathrm{~b})-\mathrm{C}(40 \mathrm{~b})-\mathrm{C}(41 \mathrm{~b})$	125(2)
$\mathrm{Mo}(2 \mathrm{a})-\mathrm{C}(40 \mathrm{a})-\mathrm{C}(41 \mathrm{a})$	128(2)	$\mathrm{Mo}(2 \mathrm{~b})-\mathrm{C}(40 \mathrm{~b})-\mathrm{C}(41 \mathrm{~b})$	130(2)
$\mathrm{Re}(1 \mathrm{a})-\mathrm{C}(2 \mathrm{a})-\mathrm{O}(2 \mathrm{a})$	173(3)	$\mathrm{Re}(1 \mathrm{~b})-\mathrm{C}(2 \mathrm{~b})-\mathrm{O}(2 \mathrm{~b})$	179(3)
$\operatorname{Re}(2 \mathrm{a})-\mathrm{C}(4 \mathrm{a})-\mathrm{O}(4 \mathrm{a})$	173(3)	$\mathrm{Re}(2 \mathrm{~b})-\mathrm{C}(4 \mathrm{~b})-\mathrm{O}(4 \mathrm{~b})$	177(3)
$\operatorname{Re}(2 \mathrm{a})-\mathrm{C}(6 \mathrm{a})-\mathrm{O}(6 \mathrm{a})$	176(4)	$\mathrm{Re}(2 \mathrm{~b})-\mathrm{C}(6 \mathrm{~b})-\mathrm{O}(6 \mathrm{~b})$	175(3)
$\mathrm{Mo}(2 \mathrm{a})-\mathrm{C}(7 \mathrm{a})-\mathrm{O}(7 \mathrm{a})$	157(3)	$\mathrm{Mo}(2 \mathrm{~b})-\mathrm{C}(7 \mathrm{~b})-\mathrm{O}(7 \mathrm{~b})$	158(3)
$\operatorname{Re}(2 a)-\mathrm{C}(9 \mathrm{a})-\mathrm{O}(9 \mathrm{a})$	126(3)	$\mathrm{Re}(2 \mathrm{~b})-\mathrm{C}(9 \mathrm{~b})-\mathrm{O}(9 \mathrm{~b})$	124(3)

characteristic for the ligating carbon atoms of triply bridging alkylidyne groups. However, the more deshielded resonance in each spectrum [355.3 (3a) and 337.0 p.p.m. (3b)] is in the chemical shift range expected for an alkylidyne group edgebridging a metal-metal bond. ${ }^{15}$ The non-equivalence of the $\mathrm{C}_{6} \mathrm{H}_{4}$ fragments in these molecules is further demonstrated by the appearance in the ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectra (Table 2) of nine peaks due to these moieties. Usually a $\mathrm{C}_{6} \mathrm{H}_{4}$ group in a bridging $\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ ligand shows four resonances, unless there is restricted rotation about the $\mathrm{C}-\mathrm{C}_{6} \mathrm{H}_{4}$ bond, in which case six

Table 4. Selected internuclear distances (\AA) and angles $\left({ }^{\circ}\right)$ for $\left[\mathrm{W}_{2} \mathrm{Re}_{2}(\mu-\mathrm{H})\left(\mu_{3}-\mathrm{C}=\mathrm{CH}_{2}\right)\left(\mu_{3}-\mathrm{CMe}\right)(\mu-\mathrm{CO})(\mathrm{CO})_{8}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$ (4) with estimated standard deviations in parentheses

$\mathrm{W}(1)-\mathrm{Re}(1)$	$2.923(1)$
$\mathrm{W}(1)-\mathrm{C}(31)$	$2.10(1)$
$\mathrm{Re}(1)-\mathrm{C}(4)$	$1.95(2)$
$\mathrm{Re}(1)-\mathrm{C}(41)$	$2.19(1)$
$\operatorname{Re}(2) \cdots \mathrm{C}(1)$	$2.60(2)$
$\operatorname{Re}(2)-\mathrm{C}(41)$	$2.18(2)$
$\mathrm{C}(1)-\mathrm{O}(2)$	$1.14(3)$
$\mathrm{C}(7)-\mathrm{O}(7)$	$1.13(3)$
$\mathrm{C}(41)-\mathrm{C}(42)$	$1.41(2)$

$\mathrm{Re}(1)-\mathrm{W}(1)-\mathrm{W}(2)$	$61.8(1)$
$\operatorname{Re}(1)-\mathrm{W}(1)-\mathrm{C}(31)$	$51.2(4)$
$\mathrm{W}(2)-\mathrm{W}(1)-\mathrm{C}(41)$	$102.5(4)$
$\mathrm{W}(2)-\operatorname{Re}(1)-\operatorname{Re}(2)$	$116.2(1)$
$\mathrm{W}(1)-\operatorname{Re}(1)-\mathrm{C}(41)$	$44.0(4)$
$\mathrm{W}(1)-\mathrm{W}(2)-\operatorname{Re}(1)$	$59.3(1)$
$\mathrm{W}(1)-\operatorname{Re}(2)-\mathrm{C}(41)$	$43.0(4)$
$\mathrm{C}(41)-\operatorname{Re}(2)-\mathrm{C}(42)$	$35.2(5)$
$\mathrm{W}(2)-\mathrm{C}(2)-\mathrm{O}(2)$	$171(1)$
$\operatorname{Re}(1)-\mathrm{C}(6)-\mathrm{O}(6)$	$176(2)$
$\mathrm{W}(1)-\mathrm{C}(31)-\operatorname{Re}(1)$	$83.2(5)$
$\operatorname{Re}(1)-\mathrm{C}(31)-\mathrm{C}(32)$	$118(1)$
$\operatorname{Re}(1)-\mathrm{C}(41)-\operatorname{Re}(2)$	$87.6(5)$
$\operatorname{Re}(2)-\mathrm{C}(42)-\mathrm{C}(41)$	$63(1)$

$\operatorname{Re}(1)-\mathrm{W}(1)-\operatorname{Re}(2)$	$61.6(1)$	$\mathrm{W}(2)-\mathrm{W}(1)-\operatorname{Re}(2)$	$120.5(1)$
$\mathrm{W}(2)-\mathrm{W}(1)-\mathrm{C}(31)$	$45.0(4)$	$\operatorname{Re}(2)-\mathrm{W}(1)-\mathrm{C}(31)$	$84.7(4)$
$\operatorname{Re}(2)-\mathrm{W}(1)-\mathrm{C}(41)$	$47.0(5)$	$\mathrm{W}(1)-\operatorname{Re}(1)-\mathrm{W}(2)$	$58.8(1)$
$\mathrm{W}(1)-\operatorname{Re}(1)-\mathrm{C}(31)$	$45.6(4)$	$\mathrm{W}(2)-\operatorname{Re}(1)-\mathrm{C}(31)$	$43.3(4)$
$\mathrm{W}(2)-\operatorname{Re}(1)-\mathrm{C}(41)$	$96.0(4)$	$\operatorname{Re}(2)-\operatorname{Re}(1)-\mathrm{C}(41)$	$46.0(4)$
$\mathrm{W}(1)-\mathrm{W}(2)-\mathrm{C}(31)$	$46.3(4)$	$\operatorname{Re}(1)-\mathrm{W}(2)-\mathrm{C}(31)$	$49.9(5)$
$\operatorname{Re}(1)-\operatorname{Re}(2)-\mathrm{C}(41)$	$46.4(4)$	$\mathrm{W}(1)-\operatorname{Re}(2)-\mathrm{C}(42)$	$73.6(4)$
$\mathrm{W}(1)-\mathrm{C}(1)-\operatorname{Re}(2)$	$80.3(7)$	$\mathrm{W}(1)-\mathrm{C}(1)-\mathrm{O}(1)$	$159(2)$
$\mathrm{W}(2)-\mathrm{C}(3)-\mathrm{O}(3)$	$175(2)$	$\operatorname{Re}(1)-\mathrm{C}(4)-\mathrm{O}(4)$	$178(1)$
$\operatorname{Re}(2)-\mathrm{C}(7)-\mathrm{O}(7)$	$178(2)$	$\operatorname{Re}(2)-\mathrm{C}(8)-\mathrm{O}(8)$	$175(2)$
$\mathrm{W}(1)-\mathrm{C}(31)-\mathrm{W}(2)$	$88.7(6)$	$\operatorname{Re}(1)-\mathrm{C}(31)-\mathrm{W}(2)$	$86.8(6)$
$\mathrm{W}(2)-\mathrm{C}(31)-\mathrm{C}(32)$	$128(1)$	$\mathrm{W}(1)-\mathrm{C}(41)-\operatorname{Re}(1)$	$87.5(6)$
$\mathrm{W}(1)-\mathrm{C}(41)-\mathrm{C}(42)$	$142(1)$	$\operatorname{Re}(1)-\mathrm{C}(41)-\mathrm{C}(42)$	$128(1)$

$\operatorname{Re}(1)-\mathrm{W}(1)-\mathrm{C}(1)$	$98.9(6)$
$\operatorname{Re}(1)-\mathrm{W}(1)-\mathrm{C}(41)$	$48.5(4)$
$\mathrm{W}(1)-\operatorname{Re}(1)-\operatorname{Re}(2)$	$60.1(1)$
$\operatorname{Re}(3)-\operatorname{Re}(1)-\mathrm{C}(31)$	$80.6(3)$
$\mathrm{C}(13)-\operatorname{Re}(1)-\mathrm{C}(41)$	$88.4(6)$
$\mathrm{W}(1)-\operatorname{Re}(2)-\operatorname{Re}(1)$	$58.3(1)$
$\operatorname{Re}(1)-\operatorname{Re}(2)-\mathrm{C}(42)$	$72.6(4)$
$\operatorname{Re}(2)-\mathrm{C}(1)-\mathrm{O}(1)$	$120(1)$
$\operatorname{Re}(1)-\mathrm{C}(5)-\mathrm{O}(5)$	$171(2)$
$\operatorname{Re}(2)-\mathrm{C}(9)-\mathrm{O}(9)$	$178(2)$
$\mathrm{W}(1)-\mathrm{C}(31)-\mathrm{C}(32)$	$136(1)$
$\mathrm{W}(1)-\mathrm{C}(41)-\operatorname{Re}(2)$	$90.0(7)$
$\operatorname{Re}(2)-\mathrm{C}(41)-\mathrm{C}(42)$	$82(1)$

Figure 1. The molecular structure of $\left[\mathrm{Mo}_{2} \mathrm{Re}_{2}\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{2}(\mu-\right.$ $\left.\mathrm{CO})_{2}(\mathrm{CO})_{7}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right] \cdot 1.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3a) (molecule a) showing the atomlabelling scheme
signals may be observed. ${ }^{16}$ However, coincidence of peaks can occur, thereby reducing the number of signals. The number and relative intensities of the peaks indicates that this is the case for (3a) and (3b), and it is not possible to deduce whether only one or both of the $\mathrm{C}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ fragments has restricted rotation.

From their chemical shifts it is probable that the peaks in the spectra of the complexes (3) at $\delta 264.9$ (3a) and 253.7 p.p.m. (3b) are due to the presence of a fully bridging carbonyl group in each molecule. The resonances at $\delta 232.9$ and 223.5 p.p.m. (3a), and at 222.1 and 206.5 p.p.m. (3b), can then reasonably be assigned to a semi-bridging and a terminal CO ligand, respectively, in each complex.

Thus whereas in the crystal structure of (3a), and by inference in that of (3b) as well, there are two triply bridging $\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ groups and two asymmetrically bridging CO ligands [see (3)(i)], the ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. data imply structures having both an edge- and a triply-bridging $\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ group, together with a fully bridging CO ligand [see (3)(ii)]. The i.r. spectra in the carbonyl region, measured in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Table 1), support this idea showing a band corresponding to a bridging CO group at

Figure 2. The molecular structure of $\left[\mathrm{W}_{2} \mathrm{Re}_{2}(\mu-\mathrm{H})\left(\mu_{3}-\sigma: \sigma^{\prime}: \eta^{2}-\right.\right.$ $\left.\left.\mathrm{C}=\mathrm{CH}_{2}\right)\left(\mu_{3}-\mathrm{CMe}\right)(\mu-\mathrm{CO})(\mathrm{CO})_{8}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$ (4) showing the atomlabelling scheme. The position of the $\mu-\mathrm{H}$ ligand was calculated
$1775 \mathrm{~cm}^{-1}$, with absorptions at 1832 (3a) and $1830 \mathrm{~cm}^{-1}$ (3b) corresponding to semi-bridging CO ligands.

The transformation between structures [3(i)] and [3(ii)] would require minimal rearrangement of the $\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ and CO ligands. Interestingly, in the n.m.r. spectra resonances attributable to only a single isomer were observed, indicating the absence of any equilibrium between [3(i)] and [3(ii)] in solution at $-40^{\circ} \mathrm{C}$. In the synthesis of (3a) a trace amount of a brown complex was obtained. The latter, unlike (3a), is soluble in light petroleum, but has an i.r. spectrum almost identical with (3a). However, the appearance of a band at $1735 \mathrm{~cm}^{-1}$ attributable to a bridging CO is evidence that this compound cannot be equivalent to the solid-state structure of (3a). The ${ }^{1} \mathrm{H}$ n.m.r. spectrum showed the presence of two $\mathrm{Me}-4$ and two $\mathrm{C}_{5} \mathrm{H}_{5}$ groups [$\delta 2.37$ and $2.38(2 \times \mathrm{s}, 3 \mathrm{H}, 4-\mathrm{Me})$, and 5.51 and 5.65 $\left.\left(2 \times \mathrm{s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$. This compound was obtained in insufficient amount for ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. studies. It may be an

Table 5. Atomic positional parameters (fractional co-ordinates $\times 10^{4}$) for compound (3a), with estimated standard deviations in parentheses

Atom	x	y	z	Atom	x	y	z
$\mathrm{Re}(1 \mathrm{a})$	$4797(1)$	2920 (1)	$1859(1)$	C(12b)	-1729	7673	5382
$\operatorname{Re}(2 a)$	4 742(1)	$1481(1)$	$1461(1)$	C(13b)	-1395	7074	5642
Mo(1a)	$6012(1)$	2 080(1)	$2003(1)$	C(14b)	-1643	6492	5290
Mo(2a)	$5471(1)$	2 530(1)	697(1)	C(15b)	-2 130	6731	4812
C(11a)	7 214(12)	$2352(11)$	2 284(10)	C(21b)	-724(12)	7936 (10)	2 284(11)
C(12a)	6776	2607	2765	C(22b)	-1387	7957	2582
C(13a)	6436	2032	3045	C(23b)	-1535	7281	2808
$\mathrm{C}(14 \mathrm{a})$	6664	1422	2737	C(24b)	-962	6843	2649
C(15a)	7145	1620	2267	C(25b)	-461	7248	2325
C(21a)	5 627(11)	2 706(9)	-389(9)	C(30b)	-34(17)	7 109(16)	$5034(14)$
C(22a)	6305	2725	-74	C(31b)	295(10)	$6767(10)$	5 672(7)
C(23a)	6444	2059	186	C(32b)	875	7069	5996
C(24a)	5853	1628	32	C(33b)	1187	6737	6521
C(25a)	5348	2028	-323	C(34b)	920	6103	6722
C(30a)	5 047(14)	$1973(13)$	2390 (11)	C(35b)	341	5802	6399
C(31a)	4 736(9)	1 699(9)	$3007(7)$	C(36b)	29	6134	5874
C(32a)	4148	2022	3260	C(37b)	$1295(21)$	5 724(20)	$7286(16)$
C(33a)	3836	1744	3792	C(40b)	-965(14)	8 154(13)	4 215(11)
C(34a)	4113	1144	4071	C(41b)	-1443(9)	$8764(8)$	4 289(9)
C(35a)	4702	821	3818	C(42b)	-1326	9306	4715
C(36a)	5013	1099	3286	C(43b)	-1810	9851	4739
C(37a)	3 732(18)	827(17)	4 649(14)	C(44b)	-2412	9854	4336
C(40a)	5 931(15)	$3008(15)$	$1558(12)$	C(45b)	-2 530	9312	3909
C(41a)	6 422(9)	3 651(8)	1 606(9)	C(46b)	-2 045	8767	3886
C(42a)	6244	4235	1955	C(47b)	-2940(19)	10 454(18)	$4347(15)$
C(43a)	6686	4814	1964	C(1b)	302(19)	8 992(19)	$4447(16)$
C(44a)	7308	4809	1623	$\mathrm{O}(1 \mathrm{~b})$	436(14)	$9596(14)$	4 323(11)
C(45a)	7486	4225	1274	C(2b)	$1172(20)$	8 088(19)	$4759(16)$
C(46a)	7044	3646	1266	O (2b)	$1809(14)$	$8096(13)$	4 855(11)
C(47a)	$7805(19)$	$5448(18)$	$1622(15)$	C(3b)	5(18)	$8403(17)$	5440 (15)
C(1a)	4 584(17)	$3800(17)$	$1616(14)$	$\mathrm{O}(3 \mathrm{~b})$	-113(12)	$8550(12)$	$5931(11)$
O(1a)	$4385(12)$	$4418(12)$	$1511(10)$	C(4b)	$1314(18)$	6745 (17)	$4038(14)$
C(2a)	$3805(20)$	$2870(18)$	$1986(15)$	$\mathrm{O}(4 \mathrm{~b})$	$1964(15)$	$6795(14)$	$4007(12)$
$\mathrm{O}(2 \mathrm{a})$	$3170(13)$	2870 (12)	$2000(10)$	C(5b)	539(18)	5 883(18)	4550 (14)
C(3a)	4 997(20)	3 303(19)	2 698(17)	O (5b)	688(14)	5339 (13)	4 807(11)
$\mathrm{O}(3 \mathrm{a})$	$5123(13)$	$3465(12)$	$3222(11)$	C(6b)	322(18)	$6103(18)$	3 392(15)
C(4a)	$3788(22)$	$1392(20)$	1610 (17)	O(6b)	261(14)	$5737(14)$	2 953(12)
$\mathrm{O}(4 \mathrm{a})$	3 128(17)	$1338(15)$	$1641(13)$	C(7b)	552(18)	7 688(16)	3 314(14)
C(5a)	4 868(22)	662(21)	$1851(17)$	O(7b)	$1146(14)$	$7848(13)$	$3144(11)$
O (5a)	4 937(14)	99(14)	$2082(12)$	C(8b)	-414(17)	8 743(18)	$3285(14)$
C(6a)	4 553(20)	965(19)	734(17)	$\mathrm{O}(8 \mathrm{~b})$	-373(14)	9 297(14)	$3157(11)$
O(6a)	4 468(15)	644(14)	244(13)	C(9b)	-1 005(20)	6 374(20)	4030 (16)
C(7a)	$4385(20)$	2 486(18)	642(15)	$\mathrm{O}(9 \mathrm{~b})$	-1 232(14)	$5888(13)$	3749 (11)
$\mathrm{O}(7 \mathrm{a})$	3 799(13)	$2557(12)$	410(10)	$\mathrm{Cl}(1)$	3 295(16)	3 531(12)	3 947(15)
$\mathrm{C}(8 \mathrm{a})$	5 414(16)	3 536(17)	573(13)	$\mathrm{Cl}(2)$	3 311(15)	$4351(14)$	2 939(10)
$\mathrm{O}(8 \mathrm{a})$	5 392(12)	4 128(12)	455(10)	C(1)	3 422(35)	4342 (33)	3 703(28)
C(9a)	6 043(19)	$1278(19)$	1390 (15)	$\mathrm{Cl}(3)$	1736 (10)	$5152(10)$	2 459(10)
$\mathrm{O}(9 \mathrm{a})$	$6307(12)$	815(12)	$1129(10)$	$\mathrm{Cl}(4)$	$1477(13)$	6380 (14)	$1711(15)$
$\operatorname{Re}(1 \mathrm{~b})$	188(1)	$8079(1)$	4 597(1)	C(2)	$1148(40)$	5 523(36)	$1773(31)$
$\operatorname{Re}(2 b)$	337(1)	6 692(1)	4 124(1)	$\mathrm{Cl}(5)$	$2613(10)$	$9734(10)$	61(7)
Mo(2b)	-498(1)	7716 (2)	3 363(1)	$\mathrm{Cl}(6)$	3 177(13)	9 381(11)	$1257(7)$
Mo(1b)	-993(1)	7 182(1)	4 622(1)	C(3)	2396 (32)	9469 (29)	780(25)
C(11b)	-2 184(11)	$7461(12)$	$4869(9)$				

isomer of (3a), but the two species could not be interconverted.
The reaction between compound (1) and the ethylidynetungsten complex (3c) was also studied. After refluxing the reactants in thf, column chromatography of the mixture of products obtained afforded the three complexes $\left[\mathrm{W}_{2} \operatorname{Re}_{2}\left(\mu_{3}-\right.\right.$ $\left.\mathrm{CMe})_{2}(\mu-\mathrm{CO})_{2}(\mathrm{CO})_{7}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right] \quad(3 \mathrm{c}), \quad\left[\mathrm{W}_{2} \mathrm{Re}_{2}(\mu-\mathrm{H})\left(\mu_{3}-\sigma\right.\right.$: $\left.\left.\sigma^{\prime}: \eta^{2}-\mathrm{C}=\mathrm{CH}_{2}\right)\left(\mu_{3}-\mathrm{CMe}\right)(\mu-\mathrm{CO})(\mathrm{CO})_{8}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right] \quad$ (4), and $\left[\mathrm{WRe}_{2}\left(\mu_{3}-\mathrm{CMe}\right)(\mathrm{CO})_{10}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](5 \mathrm{5})$. The latter was a very minor product, and was characterised only by its i.r. and ${ }^{1} \mathrm{H}$ n.m.r. spectra (Tables 1 and 2). The i.r. spectrum is very similar to that of (5b), the product of the reaction between ($\mathbf{2 b}$) and $\left[\operatorname{Re}_{2}(\mathrm{CO})_{10}\right]$, mentioned in the Introduction.

Compound (3c) was fully characterised by the data given in Tables 1 and 2, which showed it to be of similar formulation to
that of (3a) and (3b). However, (3c) was very insoluble, and no ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. data could be obtained.

The nature of compound (4) was established by a singlecrystal X-ray diffraction study. Selected data are given in Table 4, and the structure is shown in Figure 2. The four metal atoms form two triangles sharing a common edge [W(1)-Re(1) $2.923(1) \AA]$. The metal core thus has a nearly flat butterfly arrangement with the dihedral angle between the planes defined by $W(1) \operatorname{Re}(1) W(2)$ and $W(1) \operatorname{Re}(1) \operatorname{Re}(2)$ being only 19.4°. The $\mathrm{W}(1) \operatorname{Re}(1) \mathrm{W}(2)$ triangle is capped by an ethylidyne ligand [W(1)-C(31) 2.10(1), W(2)-C(31) 2.06(2), $\operatorname{Re}(1)-\mathrm{C}(31)$ 2.30(2) \AA] lying somewhat further from the rhenium than from the tungsten atoms. The $W(1) \operatorname{Re}(1) \operatorname{Re}(2)$ triangle is bridged by a vinylidene ligand such that the latter is σ bonded to $\mathrm{W}(1)$ and

Scheme 2. $\mathrm{cp}=\eta-\mathrm{C}_{5} \mathrm{H}_{5} .(i)+\left[\mathrm{W}(\equiv \mathrm{CMe})(\mathrm{CO})_{2}(\mathrm{cp})\right] ;(i i)-\mathrm{CH}_{2}=\mathrm{CHBu}^{n} ;(i i i)-\mathrm{CO}$

Table 6. Atomic positional parameters (fractional co-ordinates $\times 10^{4}$) for compound (4), with estimated standard deviations in parentheses

Atom	x	y	z
W(1)	$2569(1)$	$3627(1)$	389(1)
$\operatorname{Re}(1)$	$2855(1)$	6 207(1)	-544(1)
W(2)	1540 (1)	$3752(1)$	-1158(1)
$\mathrm{Re}(2)$	3 428(1)	6449 (1)	1 148(1)
C(1)	2 057(13)	$4756(23)$	1 098(10)
$\mathrm{O}(1)$	$1588(9)$	$5026(15)$	$1505(8)$
C(2)	2 468(11)	2225 (20)	- $1164(8)$
$\mathrm{O}(2)$	2 951(10)	$1311(15)$	-1 269(8)
C(3)	882(14)	2 202(24)	-692(11)
$\mathrm{O}(3)$	454(11)	$1351(17)$	-471(9)
$\mathrm{C}(4)$	3 854(12)	7545 (19)	- 521(10)
$\mathrm{O}(4)$	4 419(9)	$8351(15)$	-519(7)
C(5)	3 155(11)	5 237(18)	- $1397(9)$
$\mathrm{O}(5)$	3 422(9)	4790 (16)	-1884(7)
C(6)	$2076(11)$	7730 (20)	$-1113(9)$
$\mathrm{O}(6)$	$1574(9)$	8 649(15)	- 1 429(7)
C(7)	2 643(14)	$7665(19)$	$1565(9)$
$\mathrm{O}(7)$	2 175(11)	$8347(15)$	$1813(8)$
C(8)	4 267(11)	8 039(18)	1269 (8)
$\mathrm{O}(8)$	4829 (10)	$8986(16)$	1321 (\%)
C(9)	3 940(12)	$5696(24)$	2130 (11)
O(9)	$4256(10)$	$5289(17)$	2730 (8)
C(31)	$1648(10)$	5 167(18)	-243(8)
C(32)	945(11)	6 297(19)	-83(11)
C(41)	3 674(10)	4 782(16)	340(9)
$\mathrm{C}(42)$	4 544(11)	$5036(21)$	740(10)
C(11)	3 591(15)	$1933(21)$	1160 (11)
C(12)	3 382(14)	$1292(18)$	453(11)
C(13)	2 492(13)	887(19)	$315(10)$
$\mathrm{C}(14)$	2 192(16)	1400 (20)	934(12)
C(15)	2 892(18)	2041(22)	$1459(11)$
C(21)	682(14)	2748 (27)	- 2 250(10)
C(22)	129(11)	3 649(26)	-1946(10)
C(23)	428(15)	$5183(26)$	-1961(11)
C(24)	$1176(13)$	$5148(29)$	-2 292(10)
C(25)	1350 (12)	$3674(22)$	-2 455(9)

$\operatorname{Re}(1)[W(1)-\mathrm{C}(41) 2.03(2), \operatorname{Re}(1)-\mathrm{C}(41) 2.19(1) \AA]$ and η-coordinated to $\operatorname{Re}(2)[\operatorname{Re}(2)-\mathrm{C}(41) 2.18(2), \operatorname{Re}(2)-\mathrm{C}(42) 2.41(2)$ $\AA]$. The $\mu_{3}-\mathrm{CMe}$ and $\mu_{3}-\sigma: \sigma^{\prime}: \eta^{2}-\mathrm{C}=\mathrm{CH}_{2}$ ligands lie on opposite sides of the $\mathrm{W}_{2} \mathrm{Re}_{2}$ array.

The $\mathrm{W}(1)-\mathrm{Re}(2)$ edge is strongly semi-bridged by a CO group $\left[\mathrm{W}(1)-\mathrm{C}(1)-\mathrm{O}(1) 159(2)^{\circ}, \mathrm{W}(1)-\mathrm{C}(1) 1.96(2)\right.$, $\operatorname{Re}(2) \cdots \mathrm{C}(1)$ $2.60(2) \AA]$. There is unequivocal n.m.r. evidence (see below) for the presence of a $\mu-\mathrm{H}$ ligand in (4). It is likely that the hydrido group bridges the $\operatorname{Re}(1)-\operatorname{Re}(2)$ edge [3.023(1) \AA], since this metal-metal separation is somewhat longer than the other metal-metal distances (mean $2.951 \AA$). Moreover, although the hydrido ligand was not detected from the X-ray diffraction data, its location along the $\operatorname{Re}(1)-\operatorname{Re}(2)$ vector is in accord with calculations based on the potential-energy minimisation technique. ${ }^{17}$

The two rhenium atoms in (4) carry three essentially orthogonal CO groups. The tungsten atoms are both ligated by a $\mathrm{C}_{5} \mathrm{H}_{5}$ group, and in addition $\mathrm{W}(2)$ is co-ordinated by two terminally bound CO ligands. The $\mathrm{C}_{5} \mathrm{H}_{5}$ fragment attached to $\mathrm{W}(1)$ lies on the same side of the $\mathrm{W}_{2} \mathrm{Re}_{2}$ cluster as the $\mu_{3}-\mathrm{C}=$ CH_{2} group, whereas the $\mathrm{C}_{5} \mathrm{H}_{5}$ ligand attached to $\mathrm{W}(2)$ lies on the other side of the metal array.

Compound (4) has 62 cluster valence electrons, and the metal atom core is nearly flat. This configuration is relatively rare, ${ }^{18}$ but is found ${ }^{19}$ also in the tetrarhenium anion $\left[\mathrm{Re}_{4}(\mathrm{CO})_{16}\right]^{2-}$. The $\mu_{3}-\sigma: \sigma^{\prime}: \eta^{2}-\mathrm{C}=\mathrm{CH}_{2}$ group present in (4) is well established in metal cluster chemistry, and is commonly formed via degradation of a μ_{3}-CMe ligand. ${ }^{20,21}$ Thus recently we have reported ${ }^{22}$ that the reaction between (2c) and $\left[\mathrm{Fe}_{2} \mathrm{~W}\left(\mu_{3}-\mathrm{CC}_{6}-\right.\right.$ $\left.\left.\mathrm{H}_{4} \mathrm{Me}-4\right)(\mu-\mathrm{CO})(\mathrm{CO})_{8}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ affords a mixture of trimetal compounds, including $\left[\mathrm{FeW}_{2}\left(\mu_{3}-\sigma: \sigma^{\prime}: \eta^{2}-\mathrm{C}=\mathrm{CH}_{2}\right)(\mathrm{CO})_{7^{-}}\right.$ $\left.\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$.

Having established the molecular structure of (4) by X-ray diffraction, the spectroscopic data are readily interpretable. The asymmetrically bridging carbonyl group $\mathrm{C}(1) \mathrm{O}(1)$ reveals itself by a band in the i.r. spectrum at $1836 \mathrm{~cm}^{-1}$ (Table 1). The ${ }^{1} \mathrm{H}$ n.m.r. spectrum (Table 2) shows a characteristic resonance for the $\mu-\mathrm{H}$ ligand at $\delta-19.57$, and doublet signals for the $\mu-$ $\mathrm{C}=\mathrm{CH}_{2}$ group at $\delta 5.29$ and $6.19[J(\mathrm{HH}) 1 \mathrm{~Hz}]$. The absence of ${ }^{183} \mathrm{~W}$ satellite peaks on the peak at $\delta-19.57$ is in accord with the hydrido ligand bridging the $\operatorname{Re}-\operatorname{Re}$ bond. As expected, the ${ }^{1} \mathrm{H}$ n.m.r. spectrum shows resonances for the two nonequivalent $\mathrm{C}_{5} \mathrm{H}_{5}$ groups, and a characteristic peak for the $\mu_{3}-$ CMe ligand.

The ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum of (4) (Table 2) indicates that at the temperature of the measurement $\left(-40^{\circ} \mathrm{C}\right)$ site exchange of CO ligands does not occur. The two $\operatorname{Re}(\mathrm{CO})_{3}$ groups give rise
to six resonances. The $\mu_{3}-C \mathrm{Me}, \mu_{3}-C=\mathrm{CH}_{2}$, and WCO groups would be expected to show five distinct signals, and these are seen at $\delta 238.7,229.6,224.7,224.3$, and 207.7 p.p.m. Unfortunately, a definitive assignment of these resonances to specific groups cannot be made. However, based on data reported in previous papers in this series, the following assignment might be reasonable: $238.7\left(\mu_{3}-C=\mathrm{CH}_{2}\right), 229.6(\mu-$ CO), 224.7, 224.3 (CO), and 207.7 p.p.m. $\left(\mu_{3}-\mathrm{CMe}\right)$. The ${ }^{13} \mathrm{C}-$ $\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum of (4) shows a resonance for the $\mu_{3^{-}}$ $\mathrm{C}=C \mathrm{H}_{2}$ nucleus at $\delta 78.0$ p.p.m. In the spectrum of $\left[\mathrm{FeW}_{2}\left(\mu_{3^{-}}\right.\right.$ $\left.\left.\sigma: \sigma^{\prime}: \eta^{2}-\mathrm{C}=\mathrm{CH}_{2}\right)(\mathrm{CO})_{7}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$ the corresponding signal occurs at $\delta 80.7$ p.p.m. ${ }^{22}$

Compounds (3c) and (4) are isomers. When the former was refluxed in thf only unidentified decomposition products were observed. However, when (4) is heated under similar conditions it is partially converted into ($\mathbf{3 c}$), but the reaction is not clean. Moreover, since (4) has a $\mu_{3}-\mathrm{C}=\mathrm{CH}_{2}$ ligand derived from a $\mu_{3}-$ CMe group, compounds similar to (4) cannot be intermediates in the formation of (3a) and (3b).

The pathways by which the new compounds described herein are formed are of interest. As mentioned in the Introduction, it had seemed likely that the products would have had structures like that of $(\mathbf{5 b}),{ }^{10}$ since decomposition of (1) might release $\mathrm{Re}_{2}(\mathrm{CO})_{8}$ fragments which could be captured by the alkylidyne metal complexes (2). However, only in the formation of (5a) does this process appear to occur, and then only to a very minor extent. An explanation for the formation of the tetranuclear metal compounds (4) and (5) can be based on Nubel's and Brown's ${ }^{11}$ kinetic studies on reactions between pyridine (py) and either of the two complexes (1) and $\left[\operatorname{Re}_{2}(\mu-H)(\mu-\sigma: \eta-C H=\right.$ $\left.\left.\mathrm{CH}_{2}\right)(\mathrm{CO})_{8}\right]$ which afford $\left[\left\{\operatorname{Re}(\mathrm{CO})_{4}(\mathrm{py})\right\}_{2}\right]$. The first step in these reactions is an intramolecular $\mathrm{C}-\mathrm{H}$ reductive elimination to produce an intermediate $\left[(\mathrm{OC})_{4} \mathrm{Re}-\mathrm{Re}(\mathrm{CO})_{4}\left(\eta-\mathrm{CH}_{2}=\mathrm{CHR}\right)\right]$ ($\mathrm{R}=\mathrm{H}$ or $\mathrm{Bu} \mathbf{u}^{\mathrm{n}}$) with a vacant site at one rhenium centre and with a co-ordinated alkene at the other. This species can add a molecule of py. Displacement of the alkene by a second molecule of pyridine yields the end product $\left[\left\{\operatorname{Re}(\mathrm{CO})_{4}-\right.\right.$ (py) $\}_{2}$]. If similar steps are involved in the reactions between (1) and (2) formation of the complexes (3) and (4) would proceed according to the pathways shown in Scheme 2 for (3c) and (4). As mentioned above, in the reactions involving (2a) and (2b), leading to (3a) and (3b), respectively, a $\mu_{3}-\mathrm{C}=\mathrm{CH}_{2}$ tetranuclear metal complex could not form.

The synthesis reported in this paper provides the first examples wherein alkylidyne metal compounds react with lowvalent dimetal complexes to afford tetranuclear rather than trinuclear metal cluster species. Other tetranuclear metal cluster compounds obtained directly from an alkylidynetungsten complex include: $(i)\left[\mathrm{Os}_{3} \mathrm{~W}\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{11}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ from (2b) and $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}\right] ;{ }^{23}$ (ii) $\left[\mathrm{RuW}_{3}(\mu-\right.$ $\left.\mathrm{CR})_{2}\left(\mu_{3}-\mathrm{CR}\right)(\mu-\mathrm{CO})\left(\mu_{3}-\eta-\mathrm{CO}\right)(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3}\right] \quad\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4}-\right.$ $\mathrm{Me}-4$ or Ph$)$ from $(\mathbf{2 b})$ or $\left[\mathrm{W}(\equiv \mathrm{CPh})(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ and $\left[\mathrm{Ru}\left(\eta^{6}-\mathrm{C}_{8} \mathrm{H}_{10}\right)(\operatorname{cod})\right] \quad(\operatorname{cod}=$ cyclo-octa-1,5-diene $), \quad$ respectively; ${ }^{24}$ and (iii) $\left[\mathrm{Co}_{2} \mathrm{RuW}\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mu-\mathrm{CO})_{2}(\mathrm{CO})_{8}(\eta-\right.$ $\mathrm{C}_{5} \mathrm{H}_{5}$)] from (2b) and $\left[\mathrm{Co}_{2} \mathrm{Ru}(\mathrm{CO})_{11}\right] .{ }^{25}$

Experimental

Experiments were carried out using Schlenk-tube techniques, under a dry oxygen-free nitrogen atmosphere. Light petroleum refers to that fraction of b.p. $40-60^{\circ} \mathrm{C}$. Brockman activity II alumina was used for chromatography. Analytical and other data for the new compounds are given in Table 1. The i.r. spectra were measured with Nicolet MX 10 or MX 5 spectrophotometers, and n.m.r. spectra were recorded with JNM FX 90Q, GX 270, and GX 400 instruments. The compounds $\left[\operatorname{Re}_{2}(\mu-\right.$ $\left.\mathrm{H})\left(\mu-\sigma: \eta-\mathrm{CH}=\mathrm{CHBu}^{n}\right)(\mathrm{CO})_{8}\right]^{11}$ and $\left[\mathrm{M}(\equiv \mathrm{CR})(\mathrm{CO})_{2}(\eta-\right.$
$\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]\left(\mathrm{M}=\mathrm{Mo}\right.$ or $\mathrm{W}, \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4 ; \mathrm{M}=\mathrm{W}, \mathrm{R}=$ Me) ${ }^{26}$ were prepared as described elsewhere.

Reactions of $\left[\mathrm{Re}_{2}(\mu-\mathrm{H})\left(\mu-\sigma: \eta-\mathrm{CH}=\mathrm{CHBu}^{\mathrm{n}}\right)(\mathrm{CO})_{8}\right]$.- (i) With $\left[\mathrm{Mo}\left(\equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$. A sample of $\left[\operatorname{Re}_{2}(\mu-\right.$ $\left.\mathrm{H})\left(\mu-\sigma: \eta-\mathrm{CH}=\mathrm{CHBu} \mathrm{a}^{\mathrm{n}}\right)(\mathrm{CO})_{8}\right](0.44 \mathrm{mmol})$ was prepared from $\left[\operatorname{Re}_{2}(\mathrm{CO})_{10}\right](0.29 \mathrm{~g}, 0.44 \mathrm{mmol})$ and hex-1-ene $\left(5 \mathrm{~cm}^{3}\right)$ in toluene ($15 \mathrm{~cm}^{3}$). Volatile material was removed in vacuo affording a yellow oil. The latter was dissolved in thf $\left(20 \mathrm{~cm}^{3}\right)$ and $\left[\mathrm{Mo}\left(\equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](0.30 \mathrm{~g}, 0.94 \mathrm{mmol})$ was added. The mixture was refluxed for 12 h , after which volatile material was removed in vacuo. The residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \times 10 \mathrm{~cm}^{3}\right)$, and the extracts were added to alumina ($c a .2 .5 \mathrm{~g}$). After pumping to dryness, the alumina was placed on top of a chromatography column (ca. $3 \times 20 \mathrm{~cm}$). Elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ light petroleum (1:4) removed traces of unreacted $\left[\mathrm{Mo}\left(\equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}(\eta\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ and $\left[\mathrm{Mo}_{2}\left\{\mu-\mathrm{C}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{2}\right\}(\mathrm{CO})_{4}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$ (identified by i.r. spectroscopy). Further elution gave two unidentified inseparable orange eluates which yielded $<30 \mathrm{mg}$ of material. Continued elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum (1:1) gave a green eluate from which solvent was removed in vacuo. The residue was washed with light petroleum ($20 \mathrm{~cm}^{3}$) yielding green microcrystals of $\left[\mathrm{Mo}_{2} \mathrm{Re}_{2}\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{2}(\mu-\right.$ $\left.\mathrm{CO})_{2}(\mathrm{CO})_{7}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right](3 \mathrm{a})(0.084 \mathrm{~g})$. Evaporation of the light petroleum washings afforded a trace of a brown compound, possibly an isomer of (3a) (see Discussion section).
(ii) With $\left[\mathrm{W}\left(\equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$. A sample $(0.44 \mathrm{mmol})$ of $\left[\operatorname{Re}_{2}(\mu-\mathrm{H})\left(\mu-\sigma: \eta-\mathrm{CH}=\mathrm{CHBu}^{\mathrm{n}}\right)(\mathrm{CO})_{8}\right]$ in toluene $\left(20 \mathrm{~cm}^{3}\right)$ was treated with $\left[\mathrm{W}\left(\equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}(\eta\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](0.34 \mathrm{~g}, 0.88 \mathrm{mmol})$ in a Schlenk tube fitted with a highpressure stopcock. The reaction vessel was heated in an oven at $70^{\circ} \mathrm{C}$ for 20 h , after which volatile material was removed in vacuo. The green residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{light}$ petroleum ($5 \mathrm{~cm}^{3}, 1: 1$) and chromatographed ($2 \times 15 \mathrm{~cm}$ column). Elution with the same solvent mixture removed a trace of unreacted $\left[\mathrm{W}\left(\equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$. Continued elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum (7:3) gave a green eluate. Removal of solvent in vacuo followed by crystallisation of the residue from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ light petroleum ($5 \mathrm{~cm}^{3}, 1: 4$) gave green microcrystals of $\left[\mathrm{W}_{2} \mathrm{Re}_{2}\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{2}(\mu-\mathrm{CO})_{2}(\mathrm{CO})_{7}(\eta-\right.$ $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$] (3b) $(0.28 \mathrm{~g})$.
(iii) With $\left[\mathrm{W}(\equiv \mathrm{CMe})(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$. A mixture of $\left[\mathrm{Re}_{2}-\right.$ $\left.(\mu-\mathrm{H})\left(\mu-\sigma: \eta-\mathrm{CH}=\mathrm{CHBu}^{n}\right)(\mathrm{CO})_{8}\right](0.46 \mathrm{mmol})$ and $[\mathrm{W}(\equiv \mathrm{CMe})-$ $\left.(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](0.31 \mathrm{~g}, 0.92 \mathrm{mmol})$ in thf $\left(20 \mathrm{~cm}^{3}\right)$ was refluxed for 18 h . Solvent was removed in vacuo, the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum ($7 \mathrm{~cm}^{3}, 1: 2$), and chromatographed ($3 \times 15 \mathrm{~cm}$ column). Elution with the same solvent mixture removed traces of unreacted [$\mathrm{W}(\equiv \mathrm{CMe})(\mathrm{CO})_{2^{-}}$ $\left.\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$, contaminated with $\left[\mathrm{Re}_{2}(\mathrm{CO})_{10}\right]$ (identified by i.r. spectroscopy). Elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum (2:1) gave a red eluate, which after removal of solvent in vacuo and crystallisation of the residue from a mixture of the same solvents $\left(10 \mathrm{~cm}^{3}, 1: 1\right)$ afforded red microcrystals of $\left[\mathrm{W}_{2} \mathrm{Re}_{2}(\mu-\mathrm{H})\left(\mu_{3}-\right.\right.$ $\left.\left.\sigma: \sigma^{\prime}: \eta^{2}-\mathrm{C}=\mathrm{CH}_{2}\right)\left(\mu_{3}-\mathrm{CMe}\right)(\mu-\mathrm{CO})(\mathrm{CO})_{8}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$ (4) (0.19 g). Elution of the column with neat $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave a brown eluate which after removal of solvent in vacuo gave brown microcrystals of $\left[\mathrm{W}_{2} \mathrm{Re}_{2}\left(\mu_{3}-\mathrm{CMe}\right)_{2}(\mu-\mathrm{CO})_{2}(\mathrm{CO})_{7}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$ (3c) $(0.22 \mathrm{~g})$. Finally, further elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave a blue band which yielded, after removal of solvent in vacuo, violet microcrystals of $\left[\mathrm{WRe}_{2}\left(\mu_{3}-\mathrm{CMe}\right)(\mathrm{CO})_{10}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](5 a)(0.02 \mathrm{~g})$.

Crystal Structure Determination and Refinements.-(i) Black poorly diffracting crystals of complex (3a) were eventually obtained from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum (1:10). A crystal of dimensions ca. $0.45 \times 0.25 \times 0.20 \mathrm{~mm}$ was used for data collection at room temperature on a Nicolet P3 automated
diffractometer. Of the 7181 unique data collected (Wyckoff ω scans, $2 \theta \leqslant 40^{\circ}$), 4416 met the criteria $I \geqslant 2.5 \sigma(I)$ and only these were used in the structure solution and refinement. The data were corrected for Lorentz, polarisation, and X-ray absorption effects, the latter by an empirical method based on azimuthal scan data. ${ }^{27}$

Crystal data for complex (3a). $\mathrm{C}_{35} \mathrm{H}_{24} \mathrm{Mo}_{2} \mathrm{O}_{9} \mathrm{Re}_{2}$ (1.5 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), $\quad M=2560.5$, monoclinic, $a=18.841(5), \quad b=$ $19.317(10), c=21.148(7) \AA, \beta=91.96(2)^{\circ}, U=7693(5) \AA^{3}$, $Z=8, D_{\mathrm{c}}=2.21 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=4824$, space group $P 2_{1} / c$, Mo- $K_{\alpha} X$-radiation (graphite monochromator, $\bar{\lambda}=0.71069$ $\AA), \mu\left(\mathrm{Mo}-K_{\alpha}\right)=72.5 \mathrm{~cm}^{-1}$.

The asymmetric unit contains two, very similar, crystallographically independent molecules of the complex (a and b) and three molecules of dichloromethane. Due to the limited data obtained from the poor quality crystal, only the metal atoms were given anisotropic thermal parameters, and hydrogen atoms were not included in the refinement. The structure was solved by conventional heavy-atom methods and difference Fourier syntheses were used to locate all non-hydrogen atoms. The aromatic ring systems were treated as rigid groups [$\mathrm{C}-\mathrm{C}$ 1.395 (phenyl) and $1.420 \AA$ (cyclopentadienyl)] and refinement by blocked-cascade least squares converged at $R=0.061$ ($R^{\prime}=0.059$) with a weighting scheme of the form $w^{-1}=$ $\left[\sigma^{2}(F)+0.0005|F|^{2}\right]$. The final electron-density difference map showed no peaks $\geqslant 1.1$ e \AA^{-3}.
(ii) Red crystals of (4) were grown from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ light petroleum (1:10). Diffracted intensities were collected, as described for (3a), from a crystal of dimensions ca. $0.60 \times 0.20 \times 0.21 \mathrm{~mm}$. Of the 4293 unique data collected (ω scans, $2 \theta \leqslant 50^{\circ}$), 3133 had $I \geqslant 2.5 \sigma(I)$. The data were corrected for Lorentz, polarisation, and X-ray absorption effects. ${ }^{27}$

Crystal data for complex (4). $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{O}_{9} \mathrm{Re}_{2} \mathrm{~W}_{2}, M=1176.5$, monoclinic, $a=15.774(4), b=8.690(3), c=18.370(12) \AA, \beta=$ $104.22(4)^{\circ}, \quad U=2441(2) \AA^{3}, \quad Z=4, \quad D_{\mathrm{c}}=3.20 \mathrm{~g} \mathrm{~cm}^{-3}$, $F(000)=2096$, space group $P 2_{1} / n, \mu\left(\mathrm{Mo}-K_{\alpha}\right)=196.8 \mathrm{~cm}^{-1}$.

The structure was solved as for (3a), except that all the nonhydrogen atoms were refined with anisotropic thermal parameters. Moreover, cyclopentadienyl and methyl hydrogen atoms were included in calculated positions [$\mathrm{C}-\mathrm{H} 0.96 \AA$, refined $U_{\text {iso }}(\mathrm{Me})$, fixed $\left.U_{\text {iso }}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$. The vinylidene [C(42) H_{2}] and $\mu-\mathrm{H}$ hydrogen atoms were not located, but a reasonable position for the latter ligand (fractional co-ordinates 0.279 , $0.739,0.028$) was calculated using the potential-energy minimisation program HYDEX. ${ }^{17}$ Refinement by blocked-cascade least squares, with a weighting scheme of the form $w^{-1}=\left[\sigma^{2}(F)+\right.$ $\left.0.0030|F|^{2}\right]$, led to $R=0.045\left(R^{\prime}=0.046\right)$. The final electrondensity difference synthesis showed no peaks $\geqslant 1.2 \mathrm{e} \AA^{-3}$. The data required substantial correction for X-ray absorption and should therefore be treated with due caution.
For both structures scattering factors and corrections for anomalous dispersion were from ref. 28, and all calculations were carried out on a Data General 'Eclipse' computer with the SHELXTL system of programs. ${ }^{24}$ Atomic co-ordinates for complexes (3a) and (4) are listed in Tables 5 and 6, respectively.
Additional material available from the Cambridge Crystallographic Data Centre comprises H -atom co-ordinates, thermal parameters, and remaining bond lengths and angles.

Acknowledgements

We thank the Deutscher Akademischer Austauschdienst for a Scholarship (to U. P.) and the S.E.R.C. for a research studentship (to M. J. P.).

References

1 Part 69, E. Delgado, M. E. Garcia, J. C. Jeffery, P. Sherwood, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1988, 207.

2 F. G. A. Stone, Pure Appl. Chem., 1986, 58, 529; ACS Symp. Ser., 1983, 211, 383.
3 E. Delgado, L. J. Farrugia, J. Hein, J. C. Jeffery, A. L. Ratermann, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1987, 1191.

4 M. E. Garcia, J. C. Jeffery, P. Sherwood, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1987, 1209.
5 M. Green, J. A. K. Howard, A. P. James, C. M. Nunn, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1986, 187.
6 M. D. Bermudez, E. Delgado, G. P. Elliott, N. H. Tran-Huy, F. Mayor-Real, F. G. A. Stone, and M. J. Winter, J. Chem. Soc., Dalton Trans., 1987, 1235.
7 M. Green, S. J. Porter, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1983, 513 and refs. therein.
8 M. J. Chetcuti, P. A. M. Chetcuti, R. M. Mills, P. Mitrprachachon, S. J. Pickering, F. G. A. Stone, and P. Woodward, J. Chem. Soc., Dalton Trans., 1982, 699.
9 M. Green, J. C. Jeffery, S. J. Porter, H. Razay, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1982, 2475; J. C. Jeffery, C. Marsden, and F. G. A. Stone, ibid., 1985, 1315.

10 G. A. Carriedo, J. C. Jeffery, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1984, 1597.
11 P. O. Nubel and T. L. Brown, J. Am. Chem. Soc., 1984, 106, 644.
12 R. Hoffmann, Angew. Chem., Int. Ed. Engl., 1982, $21,711$.
13 F. G. A. Stone, Angew. Chem., Int. Ed. Engl., 1984, 23, 89
14 R. J. Klinger, W. M. Butler, and M. D. Curtis, J. Am. Chem. Soc., 1978, 100, 5034.
15 J. A. Abad, L. W. Bateman, J. C. Jeffery, K. A. Mead, H. Razay, F. G. A. Stone, and P. Woodward, J. Chem. Soc., Dallon Trans., 1983, 2075; J. A. Abad, E. Delgado, M. E. Garcia, M. J. Grosse-Ophoff, I. J. Hart, J. C. Jeffery, M. S. Simmons, and F. G. A. Stone, ibid., 1987, 41, and refs. therein.
16 D. G. Evans, J. A. K. Howard, J. C. Jeffery, D. B. Lewis, G. E. Lewis, M. J. Grosse-Ophoff, M. J. Parrott, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1986, 1723.
17 A. G. Orpen, J. Chem. Soc., Dalton Trans., 1980, 2509.
18 J. W. Lauher, J. Am. Chem. Soc., 1978, 100, 5303.
19 M. R. Churchill and R. Bau, Inorg. Chem., 1978, 7, 2606.
20 M. I. Bruce and A. G. Swincer, Adv. Organomet. Chem., 1983, 22, 59.
21 R. D. Adams and I. T. Horvath, Prog. Inorg. Chem., 1985, 33, 137.
22 E. Delgado, J. C. Jeffery, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1986, 2105.
23 L. Busetto, M. Green, B. Hessner, J. A. K. Howard, J. C. Jeffery, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1983, 519.

24 L. J. Farrugia, J. C. Jeffery, C. Marsden, P. Sherwood, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1987, 51.
25 E. Roland and H. Vahrenkamp, Organometallics, 1983, 2, 1048.
26 E. O. Fischer, T. Selmayr, F. R. Kreissl, and U. Schubert, Chem. Ber., 1977, 110, 2574; E. O. Fischer, T. L. Lindner, G. Huttner, P. Friedrich, F. R. Kreissl, and J. O. Besenhard, ibid., p. 3397.
27 G. M. Sheldrick, SHELXTL programs for use with the Nicolet P3m X-ray system, University of Cambridge, 1976; updated Göttingen, 1981.

28 'International Tables for X-Ray Crystallography,' Kynoch Press, Birmingham, 1974, vol. 4.

Received 5th May 1987; Paper 7/790

[^0]: * 1,3;1,4-Di- μ-carbonyl-1,1,1,2,2,2,3-heptacarbonyl-3,4-di(η-cyclo-pentadienyl)- $1,2,4 ; 2,3,4$-di- μ - p-tolylmethylidyne-cyclo-1,2-dirhenium-3,4-dimolybdenum $(R e-R e, \quad 4 \quad R e-M o, \quad M o-M o$) dichloromethane (2/3) and 1,4- μ-carbonyl-1,1,1,2,2,2,3,3-octacarbonyl-3,4-di(η-cyclopentadienyl) $-2,3,4-\mu_{3}$-ethylidyne-1,2- μ-hydrido- $1,2,4-\mu_{3}$-[vinylidene$\left.C^{1}\left(\operatorname{Re}^{1,2} \mathrm{~W}^{4}\right) C^{2}\left(\operatorname{Re}^{1}\right)\right]$-cyclo-1,2-dirhenium-3,4-ditungsten $(R e-R e$, $3 R e-W, W-W)$
 Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1988, Issue 1, pp. xvii-xx.

