Amine, Imine, and Aminocarbene Complexes of Platinum(II) †

Ronald J. Cross * and Michael F. Davidson

Department of Chemistry, University of Glasgow, Glasgow G12 800 Mercè Rocamora Departament de Quimica Inorganica, Facultat de Quimica, Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain

Solutions of the chloride-bridged binuclear platinum complexes $[Pt_2(\mu-Cl)_2Cl_2L_2]$ (L = PMe_2Ph or PBu₃) readily react with the amines NH₂Ph, 4-NO₂C₆H₄NH₂, 3-MeOC₆H₄NH₂, NHPh₂, or NH₂Me to produce trans-[PtCl₂(am)L] in the presence or absence of phenylethyne. The imines PhCH=NPh, PhCH=NMe, 2-MeC_H,CH=NPh, or Ph₂C=NH also react with $[Pt_2(\mu-Cl)_2Cl_2L_2]$ to produce the analogous N-bonded imine complexes, but reactions of the amines NHEt, or NH₂Bu^t with the binuclear compounds lead to additional platinum-containing compounds resulting from ligand redistribution reactions. The complexes of NH₂Ph, 4-NO₂C₆H₄NH₂, 3-MeOC₆H₄NH₂, and NHPh, react with phenylethyne over several days at ambient temperature to yield aminocarbene complexes cis-[PtCl₂{C(NR¹R²)CH₂Ph}L] (R¹R² = H, Ph; H, C₆H₄NO₂-4; H, C₆H₄OMe-3; or Ph₂). Treatment of the imine complexes or any of the other amine complexes with PhC=CH, however, led only to decomposition. 2-Aminophenylethyne reacts rapidly with $[Pt_2(\mu-Cl)_2Cl_2L_2]$ to produce the cyclic carbene complex cis-[PtCl₂(CCH₂C₄H₄NH)L] in only 1 h, and although the amine-N complexes were observed in solution as transients they were not isolated. Treatment of the carbene complexes with tertiary phosphine, L, leads to cationic complexes trans-[PtCl{C(NR¹R²)CH₂Ph}L₂]Cl. Both the uncharged and cationic aminocarbene compounds are less reactive than their alkoxycarbene analogues, and show no reaction with Cl⁻ and little tendency towards H/D exchange with CD₃OD. Hydrogen-1, ¹³C, and ³¹P n.m.r. spectroscopic parameters for

All of the many known carbene complexes of platinum contain one or two heteroatoms (N, O, or S) attached to the carbene carbon.¹ The most convenient synthetic routes usually involve attack of alcohol, amine, or thiol at co-ordinated ethynes, ethynyls, or isonitriles. The majority of the complexes prepared in this manner are cationic, but a few years ago we described a route to uncharged alkoxycarbene complexes by treating halidebridged binuclear compounds with ethynes and alcohols,^{2.3} equation (1) (L = tertiary phosphine, X = Cl or Br, R = alkyl or aryl).

the complexes are reported and related to the likely solution conformations.

$$[Pt_{2}(\mu-X)_{2}X_{2}L_{2}] + 2 RC \equiv CH + 2 R'OH \longrightarrow$$

2 cis-[PtX_{2}{C(OR')CH_{2}R}L] (1)

Here we describe attempts to modify this reaction to produce uncharged amino- or imino-carbene complexes of platinum by substituting the R'OH of equation (1) by R'NH₂ or R'CH=NH. The properties of the aminocarbene complexes obtained from some of the reactions are compared with those of analogous alkoxycarbene materials.

Results and Discussion

Amine and Imine Complexes.—The most notable difference between the amine and imine systems under examination, and those with alcohols previously examined,² is the ready formation of amine or imine complexes of platinum(II). Thus treatment of CHCl₃ solutions of $[Pt_2(\mu-Cl)_2Cl_2L_2]$ (L = PMe₂Ph or PBu₃) by a variety of amines (am) in the presence of PhC=CH led first to the formation of *trans*-[PtCl₂(am)L], detected as the sole product by ³¹P n.m.r. spectroscopy. Several such compounds were isolated as yellow, crystalline solids from these reactions, repeated more conveniently in the absence of the ethyne, equation (2). Table 1 lists their salient n.m.r. and i.r. characteristics. Similar derivatives have been made this way before,⁴ but no analogous alcohol complexes were isolated or detected during the studies of alkoxycarbenes,² presumably due to the low nucleophile strength of oxygen for platinum(II).

$$[Pt_2(\mu-Cl)_2Cl_2L_2] + 2 \text{ am} \longrightarrow 2 \text{ trans-}[PtCl_2(am)L] \quad (2)$$

Reactions of $[Pt_2(\mu-Cl_2)Cl_2(PMe_2Ph)_2]$ with $am = NH_2Ph$. $4-NO_2C_6H_4NH_2$, $3-MeOC_6H_4NH_2$, $NHPh_2$, or NH_2Me were uncomplicated, but those with NHEt₂ or NH₂Bu^t were accompanied by a redistribution of neutral ligands. In both of these cases, cis-[PtCl₂(PMe₂Ph)₂] was precipitated, and pure trans-[PtCl₂(am)(PMe₂Ph)] could be obtained via chromatography of the residues. Part of the mixture decomposed on the column (silica gel), presumably $[PtCl_2(am)_2]$ since none was detected. Independent experiments established that the two complexes $trans-[PtCl_2(am)(PMe_2Ph)]$ (am = NHEt₂ or NH₂Bu^t) did not disproportionate on standing in solution, so the ligand scrambling must have resulted from the initial attack of the amines. The reactions with NH₂Me required care to ensure that only one mole of amine per platinum was used, otherwise bis- or tris-amine complexes were produced by chloride elimination.

The single v(Pt-Cl) band in the i.r. spectra of the amine complexes confirmed the *trans* geometry. Since the *trans* effect order⁵ is $PR_3 > Cl^-$ this isomer would be expected as the kinetic product. The lack of any tendency to isomerise, with or without nucleophilic catalysts,⁶ suggests that this is also the thermodynamic product. The formations of the amine complexes have been described as equilibria,⁴ and this was apparent with

[†] Non-S.I. unit employed: Torr \approx 133 Pa.

	^{31}P N.m.r.		1	H N.m.r.	I.r.		
am	$\delta(\mathbf{P})/p.p.m.$	J_{PtP}/Hz	$\delta(PCH_3)/p.p.m.$	$^{2}J_{\rm PH}/\rm Hz$	³ J _{PtH} /Hz	v(PtCl)/cm ⁻¹	$\nu(NH)/cm^{-1}$
NH ₂ Ph	-23.1	3 673	1.76	12	32	338	3 285, 3 105
$NH_{2}C_{6}H_{4}OMe-3$	-23.1	3 616	1.62	12	33	345	3 220, 3 260
NH ₂ C ₆ H ₄ NO ₂ -4	-22.3	3 666	1.80	12	33	343	3 205, 3 240
NHPh,	-22.2	3 709	1.72	12	36	340	3 190
NEt ₃	-22.0	3 417	1.75	12	29		
NH ₂ Bu ¹	-24.0	3 474	1.78	11	30	337	3 210, 3 245
NH ₂ Me	-23.8	3 431	1.78	11	30	328	3 245, 3 280
NHĒt ₂	-23.2	3 424	1.75	11	29	342	3 230

Table 1. Spectroscopic parameters for trans-[PtCl₂(am)(PMe₂Ph)]

Table 2. Spectroscopic parameters for trans-[PtCl₂(im)L]

		³¹ P N.m.r.		¹ H N.m.r.					
L	im	δ(P)/p.p.m.	$^{1}J_{\mathrm{PtP}}/\mathrm{Hz}$	δ(PCH ₃)/p.p.m.	² J _{PH} /Hz	³ J _{PtH} /Hz	δ(N=CH) /p.p.m.	⁴ J _{PH} /Hz	³ J _{PtH} /Hz
PMe,Ph	PhN=CHPh	-25.5	3 531	1.75	11.7	31.3	8.71	13	60
PMe ₂ Ph	PhN=CHC ₆ H ₄ Me-2	- 24.9	3 552	1.70	11.7	31.3	9.0	13	56
PMe ₂ Ph	MeN=CHPh	-25.9	3 407	1.80	11.3	29.3	8.70	15	64 ª
PMe ₂ Ph	HN=CPh ₂	-24.9	3 455	1.75	11.7	29.3			Ь
PBu ₃	PhN=CHPh	- 7.8	3 459				8.71	12	57
^a δ(NCH ₃) 3.	36 p.p.m. (${}^{4}J_{PH}$ 2.5, ${}^{4}J_{HH}$	1.5 Hz). ^b δ(NH	H) 9.4 p.p.m.	(br).					

 $am = NHPh_2$, a large excess of the amine being needed to complete reaction (3).

$$\begin{bmatrix} Pt_2(\mu-Cl)_2Cl_2L_2 \end{bmatrix} + 2 NHPh_2 \Longrightarrow \\ 2 trans-[PtCl_2(NHPh_2)L] \quad (3)$$

Treatment of the halide-bridged complexes $[Pt_2(\mu-Cl)_2Cl_2L_2]$ by the imines PhCH=NPh, PhCH=NMe, 2-MeC₆H₄CH=NPh, or Ph₂C=NH led to yellow, crystalline imine (im) complexes $[PtCl_2(im)L]$ in analogous manner. The similarity of their appearance and ³¹P n.m.r. parameters to those of the amine complexes suggests that these, too, are of *trans* geometry, though in some cases more than one i.r. band was present in the v(Pt-Cl) region. Spectroscopic parameters are presented in Table 2. Other platinum imine complexes have been synthesised by this method previously.⁷

The proton n.m.r. parameters of these N-substituted imine complexes (1) (L = PMe₂Ph; R = Ph, R' = Ph or 2-MeC₆H₄; R = Me, R' = Ph; L = PBu₃, R = R' = Ph) indicate that the organic substituents, R and R', adopt a *trans* configuration around the double bond. The coupling of the imine hydrogen to ³¹P and ¹⁹⁵Pt suggests this arrangement by comparison with related (and sometimes crystallographically characterised) materials.⁸ Also, the *ortho* proton(s) of R' can be identified at δ *ca.* 9.0 p.p.m. This low-field value indicates a close approach to the Pt atom,^{7,9} compatible only with the arrangement (1).

When deuteriochloroform solutions of the imine complexes trans-[PtCl₂(im)(PMe₂Ph)] (im = PhN=CHPh or 2-MeC₆-H₄CH=NPh) were exposed to the atmosphere for several days, a reversible hydrolysis of the ligand was apparent, equation (4).

$$trans-[PtCl_2(NPh=CHR)(PMe_2Ph)] + H_2O \implies trans-[PtCl_2(NH_2Ph)(PMe_2Ph)] + RCHO \quad (4)$$

The amine complex produced could be isolated from the reaction mixture, and the aldehydes were detected by n.m.r. spectroscopy. The analogous MeN=CHPh complex hydrolysed to a lesser extent, reaching 40% after 50 d, and no hydrolysis of

the HN=CPh₂ derivatives was detected at all. We have not established whether the hydrolysis follows ligand release from Pt, or whether it is a reaction of the co-ordinated ligand, though it should be noted that such hydrolyses promoted by Pd^{II} or Pt^{II} have been reported.¹⁰

The co-ordinated imines are readily replaced by more basic (nucleophilic) imines or amines. Thus PhN=CHPh or PhN=CH(o-tolyl) are readily displaced from platinum by MeN=CHPh, NH₂Ph, or NEt₃.

Aminocarbene Complexes.—The complex cis-[PtCl₂{C(NH-Ph)CH₂Ph}(PMe₂Ph)] was isolated in 30% yield as a colourless insoluble solid from mixtures of [Pt₂(μ -Cl)₂Cl₂(PMe₂Ph)₂], NH₂Ph, and PhC=CH in chloroform after 7 d at room temperature. As observed, the first product is the amine complex, and treatment of this with phenylacetylene also led to the carbene complex, equation (5). cis-[PtCl₂{C(NHC₆H₄NO₂-4)CH₂Ph}-

$$trans-[PtCl_2(NH_2Ph)(PMe_2Ph)] + PhC \equiv CH \longrightarrow cis-[PtCl_2\{C(NHPh)CH_2Ph\}(PMe_2Ph)]$$
(5)

Table 3. Spectroscopic data for aminocarbene compounds cis-[PtCl₂{C(NR¹R²)CH₂Ph}L]

•	.			¹ H N.m.r.							
		I.r./0	cm ⁻¹			CH ₂ Ph			PCH ₃		
$NR^{1}R^{2}$	L	v(PtCl)	v(NH)	Solvent	δ/p.p.m.	² J _{HH} /Hz	³ J _{PtH} /Hz	δ/p.p.m.	² J _{PH} /Hz	³ J _{PtH} /Hz	
NHPh	PMe ₂ Ph	305	3 170	CDCl ₃ -	4.55	14.8	0	1.25	11.5	44.6	
		280	3 130	CD ₃ OD	4.29		37	1.16	11.6	46.4	
NHC ₆ H ₄ NO ₂ -4	PMe,Ph	305	3 145	CD ₃ OD	4.60	14.0	0	1.31	11.3	42.0	
0 4 2	-	280		5	4.31		44	0.95	11.2	49.6	
NHC ₆ H ₄ OMe-3	PMe ₂ Ph	305	3 180	$CD_{1}OD$	4.54	14.0	0	1.19	11.7	45.7	
0 4	2	280	3 130	5	4.25		44	0.99	11.5	48.9	
NPh ₂	PMe ₂ Ph	307		CDCl ₂	4.57	14.7	0	1.28	11.6	44.8	
2	2	283		3	4.01		47	1.26	11.6	48.0	
NHPh	PBu ₃	305	3 180	CDCl ₂	4.84	18.2	0				
	5	280	3 1 3 0	- 3	4.29		36				

produce carbene complexes, as did the imine complex *trans*-[PtCl₂(HN=CPh₂)(PMe₂Ph)]: reactions with PhC=CH took place, but were accompanied by decomposition. The reactions between MeC=CH and *trans*-[PtCl₂(NH₂Ph)L] likewise failed to yield any carbene complex. The failures may well be the result of low stability of the desired products. It is known that formation of cationic aminocarbene complexes from aminolysis reactions of alkoxycarbene derivatives with NHEt₂, NHPr₂, or NH₂Bu^t led to decomposition.¹¹

A striking property of the aminocarbene complexes formed is their low solubility in common organic solvents. Only the tributylphosphine complex *cis*-[PtCl₂{C(NHPh)CH₂Ph}-(PBu₃)] was soluble enough in CDCl₃ to allow convenient recording of its n.m.r. spectra. Interestingly, all the complexes appeared to have an enhanced solubility in methanol, so n.m.r. spectra for the others could be obtained in CD₃OD or CD₃OD-CDCl₃ mixtures;* parameters are listed in Table 3. Most of the spectroscopic features resemble those of related alkoxycarbene compounds.^{2,3} Noticeable is the AB quartet of the benzyl CH₂ protons (²J_{HH} ca. 14 Hz), with only one of these protons showing appreciable coupling to ¹⁹⁵Pt (J_{PtH} ca. 40 Hz). The methyl groups of the PMe₂Ph ligands are also nonequivalent.

The amino proton of the more soluble PBu₃ complex is discernible at δ 10.1 p.p.m., indicative of considerable deshielding. The magnitude of its ${}^{3}J_{PtH}$ (120 Hz) suggests a *trans* arrangement of the proton and platinum about the C····N partial double bond.¹² The enhanced solubility of *cis*-[PtCl₂{C(NHPh)CH₂Ph}(PBu₃)] in CDCl₃-CD₃OD mixtures allowed its 13 C n.m.r. spectrum to be recorded. This revealed the characteristic downfield signal for the carbene carbon at δ (C) 218 p.p.m. (${}^{2}J_{PC}$ 5 Hz), but its 195 Pt satellites were too weak to be detected. The benzyl CH₂ signal was at δ 56.4 p.p.m. (${}^{2}J_{PC}$ 60 Hz). Comparisons of all these data with n.m.r. and structural parameters for other carbene complexes suggest that the plane of the carbene ligands lies perpendicular to the platinum(II) square plane to minimise steric interactions, as in structure (2), and that the likely arrangement about the benzyl CH_2 carbon atom is that shown in structure (3).

Reactions of these uncharged aminocarbene complexes show some interesting differences to those of related alkoxycarbene compounds. Treatment of the former with CD_3OD (or even D_2O) caused no H-D exchange at the benzyl CH_2 group, and no alkoxy carbenes were formed (exchange of NH for ND was, however, apparent). The implications are that the benzyl CH_2 protons are less acidic than those of the alkoxycarbene compounds, and that the aminocarbene complexes are more stable than their alkoxycarbene analogues (aminolysis of alkoxycarbene complexes does proceed readily).

Halide ions, X⁻, are known to react readily with the alkoxycarbene complexes cis-[PtCl₂{C(OR)R'}L], eliminating RX and producing acyl derivatives.³ In the present work, treatment of cis-[PtCl₂{C(NHPh)CH₂Ph}(PMe₂Ph)] with [NEt₄]Cl markedly increased the solubility of the complex in CH₂Cl₂, but the unchanged carbene compound could be recovered quantitatively from the solution. cis-[PtCl₂{C(NHPh)CH₂Ph}(PBu₃)] behaved similarly. Hydrogen-1 and ³¹P n.m.r. investigation of the chloride-containing solutions revealed minor changes in parameters, but only the single, unchanged carbene complex in solution. Presumably the halide co-ordinates weakly and reversibly to either Pt or the carbene, and behaves in a similar manner to methanol.

Treatment of cis-[PtCl₂{C(NHPh)CH₂Ph}(PMe₂Ph)] by PMe₂Ph released Cl⁻ and produced a new cationic complex, equation (6). Clearly, the cationic aminocarbene compounds

$$cis-[PtCl_{2}(C(NHPh)CH_{2}Ph](PMe_{2}Ph)] \xrightarrow{PMe_{2}Ph} trans-[PtCl_{C}(NHPh)CH_{2}Ph](PMe_{2}Ph)_{2}]Cl \quad (6)$$

are also unreactive towards halide (unlike their alkoxy analogues).³ Hydrogen-1 n.m.r. spectroscopy indicates hindered rotation about the Pt–C bond, as evidenced by the inequivalent phosphine methyl groups. Repeated attempts to crystallise this cationic complex failed, but treatment with $AgClO_4$ allowed ready crystallisation of the perchlorate salt. Treatment with $AgSO_3CF_3$ likewise produced the triflate salt, which curiously revealed apparent equivalence of the phosphine methyl groups, presumably due to chance isochrony of the resonances.

Cyclic Aminocarbene Complexes.—The reaction between $[Pt_2(\mu-Cl)_2Cl_2(PBu_3)_2]$ and $2-H_2NC_6H_4C\equiv CH$ was followed by ³¹P n.m.r. spectroscopy in CDCl₃ at -50 °C. An immediate reaction took place to produce a new material with $\delta(P) - 4.51$ p.p.m. and ${}^{1}J_{PIP}$ 3 500 Hz. Comparison with the amine

^{*} The amount of CD₃OD affects the ¹H n.m.r. parameters: *cf.* references 2 and 12.

L'	M.p./°C	С	Н	Ν
NH ₂ Ph	182—184	33.8 (33.8)	3.4 (3.65)	2.8 (2.8)
NH ₂ C ₆ H ₄ OMe-3	162—164	34.0 (34.2)	3.9 (3.8)	2.3 (2.7)
NH ₂ C ₅ H ₄ NO ₂ -4	183—185	31.1 (31.0)	3.2 (3.2)	4.9 (4.2)
NHPh,	125—126	41.6 (41.9)	3.7 (3.9)	2.1 (2.4)
NH ₂ Bu ¹	137—138	30.4 (30.2)	4.75 (4.65)	2.9 (2.9)
NH ₂ Me	125-131 (decomp.)	24.8 (24.8)	3.5 (3.7)	3.2 (3.2)
NHĒt ₂	90—91	30.1 (30.2)	4.7 (4.65)	2.9 (2.9)
PhN=ČHPh	153—155	42.8 (43.1)	3.5 (3.8)	2.1 (2.4)
MeN=CHPh	124	36.7 (36.7)	3.6 (3.85)	
PhN=CHC ₆ H ₄ Me-2	152—153	44.2 (44.1)	3.9 (4.0)	2.5 (3.3)
HN=CPh ₂	157-158	43.0 (43.1)	3.3 (3.8)	2.2 (2.4)

Table 4. Physical and analytical data * (%) for trans-[PtCl₂L'(PMe₂Ph)] (L' = am or im)

* Theoretical values given in parentheses.

complexes already described suggests this to be the amine complex (4). At ambient temperature, however, this compound changed in about 1 h to a new material with $\delta(P)$ 2.24 p.p.m. and ${}^{1}J_{PtP}$ 3 792 Hz, assigned to the cyclic aminocarbene complex, (5). This complex is of low solubility, and is readily isolated as a white, crystalline material. The less soluble dimethylphenylphosphine analogue can be made in similar fashion from [Pt₂(μ -Cl)₂(PMe₂Ph)₂] and 2-H₂NC₆H₄C=CH.

A carbon-13 n.m.r. spectroscopic study of the tributylphosphine complex reveals its carbon carbon resonance at δ 208.7 p.p.m., ${}^{2}J_{PC}$ 7 Hz, and its α (benzylic) carbon at δ 54.3 p.p.m., ${}^{2}J_{Pt-C}$ 90.6 Hz. The benzyl CH₂ protons are a singlet at δ 4.1 p.p.m., rather than an AB quartet, the change presumably resulting from the geometric restrictions of the cyclic group.

The short formation times for these cyclic complexes, compared to the acyclic carbene complexes, is presumably a result of the chelate effect, since the similarly slow reaction times of $3\text{-MeOC}_6\text{H}_4\text{NH}_2$ and $4\text{-NO}_2\text{C}_6\text{H}_4\text{NH}_2$ suggest that the process is insensitive to electronic effects of ring substituents. We are unable to say whether the reactions proceed by complete displacement of the co-ordinated NH₂ by the ethyne [which would give an isomer of (4) which would still be amenable to neighbouring group assistance] or whether it results directly from formation of a pseudo-five-co-ordinate intermediate by ring closure.

Deprotonation Reactions.—It was hoped that deprotonation of the aminocarbene complexes might lead to iminoacyl compounds, to enable an investigation of the insertion/elimination behaviour of isocyanide ligands to be made.¹³ In addition, deprotonation of the imine complexes described earlier might conceivably lead to the same species after a shift of the co-ordination site, and could thus enable the relationship between these species to be investigated.

Treatment of *cis*-[PtCl₂{C(NHPh)CH₂Ph}(PMe₂Ph)] with NEt₃ in MeOH precipitated [NHEt₃]Cl, but ³¹P n.m.r. investigation of the platinum-containing residue indicated extensive decomposition leading to many products. Use of NaOEt in ethanol in place of the triethylamine produced a similar range of products, as did [NBu₄]OH in CH₂Cl₂. The intractable array of products could have arisen as a result of the

bases attacking several sites (metal, carbene carbon, or either of the atoms in the α positions). In an attempt to limit the number of attack sites, the platinum complex was treated with 1,8bis(dimethylamino)naphthalene ('proton sponge'), known to be a strong base but a poor nucleophile. No reaction took place, however, over 6 d in chloroform.

Treatment of the imine complex *trans*-[PtCl₂(PhN=CHPh)-(PMe₂Ph)] by bases was equally disappointing. Use of the nitrogen bases NH_2Ph or NEt_3 led only to replacement of the imine and formation of the analogous amine complexes (Table 1). Treatment of *trans*-[PtCl₂(MeN=CHPh)(PMe₂Ph)] by NaOEt in ethanol, or by proton sponge in chloroform, on the other hand, led to no reaction at all. Thus the indications are that the imine proton is relatively unreactive towards bases, and interconversion of the imine and aminocarbene complexes cannot readily be achieved.

Experimental

The compounds $[Pt_2(\mu-Cl)_2Cl_2(PMe_2Ph)_2]$,¹⁴ $[Pt_2(\mu-Cl)_2Cl_2(PBu_3)_2]$,¹⁵ and PhN=CHPh¹⁶ were made by literature methods. MeN=CHPh⁷ was prepared from NH₂Me and PhCHO in similar manner to PhN=CHPh; Ph₂C=NH was purchased from Aldrich Chemical Company. 2-H₂NC₆H₄-C=CH was prepared from 2-O₂NC₆H₄CHCHCO₂H by literature methods.¹⁷ Amines were distilled prior to use. N.m.r. spectra were recorded on Perkin-Elmer R32 (¹H, continuous wave at 90 MHz), or Varian XL100 or Bruker WP200SY (¹H, ¹³C, ³¹P, operating in the Fourier-transform modes) instruments. Hydrogen-1 and ³¹P chemical shifts are relative to SiMe₄ and H₃PO₄ respectively, those to high field being positive. I.r. spectra were recorded as KBr discs on Perkin-Elmer 530 or 892 instruments.

2-Methylbenzylideneaniline.—2-Methylbenzaldehyde (6.42 g, 53.3 mmol) and aniline (4.98 g, 53.6 mmol) were vigorously stirred together, and a viscous, cloudy solution formed in 15 s. This was poured into EtOH-H₂O (9:1, 10 cm³) and stood to form two layers. The denser, brown layer was separated and vacuum distilled (116—122 °C/0.4 Torr) to give the *product* (9.85 g, 60%) as a colourless liquid (Found: C, 85.5; H, 6.9; N, 7.5. C₁₄H₁₃N requires C, 86.1; H, 6.7; N, 7.2%). ¹H N.m.r. (in CDCl₃): δ (CH) (imine) 8.61, δ (CH₃) 2.46 p.p.m.

trans-Dichloro(dimethylphenylphosphine)(phenylamine)platinum(11).—To a solution of $[Pt_2(\mu-Cl)_2Cl_2(PMe_2Ph)_2]$ (0.52 g, 0.64 mmol) in CHCl₃ (50 cm³) under N₂ was added NH₂Ph (4 ml). The orange solution changed to yellow-green immediately. The solvent was removed under reduced pressure and the resulting brown oil crystallised from benzene-pentane to afford

Table 5. Physical and analytical data " (%) for aminocarbene compounds cis-[PtX₂{C(NR¹R²)CH₂Ph}L]

х	$NR^{1}R^{2}$	L	M.p./°C	С	Н	N
Cl	NHPh	PMe ₂ Ph	243245	44.2 (44.1)	3.6 (3.6)	1.9 (2.3) ^b
Cl	NHC ₆ H ₄ NO ₂ -4	PMe, Ph	227-229	41.0 (41.0)	3.6 (3.6)	4.3 (4.35)
Cl	NHCLHOMe-3	PMe ₂ Ph	231	43.9 (43.9)	4.1 (4.2)	1.7 (2.2)
Cl	NPh,	PMe,Ph	>205 (decomp.)	49.9 (49.8)	3.8 (4.2)	1.7 (1.6)
Br	NHPh	PMe ₂ Ph	>207 (decomp.)	38.4 (38.2)	3.6 (3.5)	$1.9(2.1)^{\circ}$
Cl	NHPh	PBu ₃	209-212	47.3 (47.1)	6.1 (6.1)	2.2 (2.1)

yellow crystals of *product* (545 mg, 85%). Analytical data are in Table 4.

Similarly prepared were trans-[PtCl₂(NH₂C₆H₄OMe-3)-(PMe₂Ph)], trans-[PtCl₂(NH₂C₆H₄NO₂-4)(PMe₂Ph)], trans-[PtCl₂(NH₂Me)(PMe₂Ph)] (using a 33% solution of NH₂Me in 'industrial spirit'), trans-[PtCl₂(NHPh₂)(PMe₂Ph)] (using an excess of NHPh₂ to prevent precipitation of the starting material), trans-[PtCl₂(PhN=CHPh)(PMe₂Ph)], trans-[PtCl₂-(MeN=CHPh)(PMe₂Ph)], trans-[PtCl₂(PhN=CHC₆H₄Me-2)-(PMe₂Ph)], and trans-[PtCl₂(HN=CPh₂)(PMe₂Ph)]. Data are given in Table 4.

trans-Dichloro(diethylamine)(dimethylphenylphosphine)platinum(II).—To a solution of $[Pt_2(\mu-Cl)_2Cl_2(PMe_2Ph)_2]$ (1.0 g, 1.24 mmol) in CHCl₃ (25 cm³) was added NHEt₂ (135 mg, 2.53 mmol). The colour of the solution changed to yellow-green, and solvent was removed after 30 min. Crystallisation of the resultant yellow oil from MeOH–CH₂Cl₂ produced white crystals of *cis*-[PtCl₂(PMe₂Ph)₂] (379 mg), identified by comparison of its i.r. and n.m.r. spectra with those of authentic samples. Removal of solvent and redissolution in benzene precipitated more *cis*-[PtCl₂(PMe₂Ph)₂] (67 mg). The benzene solution was then chromatographed on silica gel, leaving a brown band on the column. A yellow eluate afforded *trans*-[PtCl₂(NHEt₂)(PMe₂Ph)] (298 mg, 25%), recrystallised from Et₂O-pentane. Analytical data are in Table 4.

Similarly prepared was trans-[PtCl₂(NH₂Bu^t)(PMe₂Ph)].

cis-[(Benzyl)(phenylamino)carbene]dichloro(dimethylphenylphosphine)platinum(II).—To a solution of $[Pt_2(\mu-Cl)_2Cl_2(PMe_2-Ph)_2]$ (1 g, 1.24 mmol) in CHCl₃ (100 cm³) under N₂ was added NH₂Ph (255 mg, 2.74 mmol) and PhC=CH (793 mg, 7.8 mmol). The solution was stirred for 7 d at ambient temperatures, during which time it turned brown and precipitated crude *product*, which was isolated by filtration (400 mg, 27%). This was recrystallised from methanol; analytical data are given in Table 5. Removal of solvent from the motherliquors and dissolution in benzene afforded a small amount of *cis*-[PtCl₂(PMe₂Ph)₂], as a precipitate, before crystals of *trans*-[PtCl₂(NH₂Ph)(PMe₂Ph)] were obtained.

Similarly were obtained cis-[PtCl₂{C(NHPh)CH₂Ph}-(PBu₃)], cis-[PtCl₂{C(NHC₆H₄NO₂-4)CH₂Ph}(PMe₂Ph)], cis-[PtCl₂{C(NHC₆H₄OMe-3)CH₂Ph}(PMe₂Ph)], cis-[PtCl₂{C(NHC₆H₄OMe-3)CH₂Ph}(PMe₂Ph)], cis-[Pt-Cl₂{C(NPh₂)CH₂Ph}(PMe₂Ph)], and cis-[PtBr₂{C(NHPh)-CH₂Ph}(PMe₂Ph)] {from [Pt₂(μ -Br)₂Br₂(PMe₂Ph)₂]}. Analytical data are given in Table 5.

cis-[PtCl₂(CCH₂C₆H₄NH-2)(PMe₂Ph)].—To a solution of [Pt₂(μ -Cl)₂Cl₂(PMe₂Ph)₂] (0.395 g, 0.49 mmol) in CHCl₃ (25 cm³) was added 2-H₂NC₆H₄C=CH (0.115 g, 0.98 mmol). The colour changed from orange to yellow–green, then back to orange whilst stirring at room temperature was maintained for 1 h. Removal of the solvent and recrystallisation from CH₂Cl₂- pentane produced white crystals of the *product* (0.301 g, 60%) (Found: C, 36.6; H, 3.0; N, 2.75. $C_{16}H_{18}Cl_2NPPt$ requires C, 36.9; H, 3.5; N, 2.7%).

Similarly prepared was cis-[PtCl₂(CCH₂C₆H₄NH-2)-(PBu₃)] (21%) (Found: C, 40.8; H, 5.45; N, 2.4. C₂₀H₃₄Cl₂NPPt requires C, 41.1; H, 5.9; N, 2.4%).

trans-[(*Benzyl*)(*phenylamino*)*carbene*]*chlorobis*(*dimethyl-phenylphosphine*)*platinum*(II) *Perchlorate.*—To a suspension of *cis*-[PtCl₂{C(NHPh)CH₂Ph}(PMe₂Ph)] (211 mg, 0.35 mmol) in CH₂Cl₂ (15 cm³) was added PMe₂Ph (50.2 µl, 0.35 mmol) followed immediately by AgClO₄•H₂O (95.5 mg, 0.42 mmol). The mixture was protected from light whilst stirred at room temperature for 2 h. AgCl was removed by filtration and the solution was dried over anhydrous MgSO₄ prior to removing the solvent by evaporation. Crystallisation from CHCl₃–MeOH produced colourless crystals of *trans*-[PtCl{C(NHPh)CH₂-Ph}(PMe₂Ph)₂]ClO₄ (154 mg, 46%), m.p. 200—202 °C (Found: C, 44.8; H, 4.5; N, 1.45. C₃₀H₃₇Cl₂NO₄P₂Pt requires C, 44.95; H, 4.4; N, 1.75%). I.r.: v(PtCl), 310; v(NH), 3 250 and 3 200 cm⁻¹. ³¹P N.m.r.: $\delta - 10.8$ p.p.m. ($J_{PPP} 2$ 489 Hz). ¹H N.m.r. (in CDCl₃): δ (CH₂) 3.98 ($^{3}J_{PtH}$ 40), δ (PCH₃) 1.57, 1.56 ($^{2}J_{PH}$ 7.0, 7.0; $^{3}J_{PtH}$ 29, 31 Hz).

In similar experiments performed in the absence of $AgClO_4$, trans-[PtCl{C(NHPh)CH₂Ph}(PMe₂Ph)₂]Cl was produced in CDCl₃ or CH₂Cl₂ solution. The compound remained unchanged over 6 d, but could not be crystallised.

Reaction of cis-[PtCl₂{C(NHPh)CH₂Ph}(PMe₂Ph)] with Bases.—To a suspension of the complex (191 mg) in MeOH (20 cm³) was added NEt₃ (21.2 mg). The suspension was stirred at room temperature for 27 h, then solvent was removed. Phosphorus-31 n.m.r. spectroscopic examination of the residue indicated the presence of many products, none of which was identified or isolated.

Similar reactions were performed with $[NBu_4]OH$ in CH_2 - Cl_2 and with NaOEt in EtOH, and in these cases also, ³¹P n.m.r. investigation revealed the presence of many compounds.

Reaction of trans-[PtCl₂(PhN=CHPh)(PMe₂Ph)] with Amines.—To a solution of the imine complex (20 mg) in CDCl₃ was added one equivalent of NEt₃. Phosphorus-31 and ¹H n.m.r. spectroscopic investigation indicated the presence in solution of unco-ordinated PhN=CHPh and trans-[PtCl₂(NEt₃)(PMe₂-Ph)](identical to a sample prepared from [Pt₂(μ -Cl)₂Cl₂(PMe₂-Ph)₂] and NEt₃; parameters are given in Table 1). In a similar experiment, co-ordinated PhN=CHPh was displaced by aniline.

Acknowledgements

We thank Johnson-Matthey for a loan of platinum salts, the S.E.R.C. for a maintenance award (to M. F. D.), and the Ministerio de Educacion y Ciencia, Spain, for a scholarship (to M. R.).

References

- F. A. Cotton and C. M. Lukehart, *Prog. Inorg. Chem.*, 1972, 16, 487;
 D. J. Cardin, B. Cetinkaya, and M. F. Lappert, *Chem. Rev.*, 1972, 72, 545;
 D. J. Cardin, B. Cetinkaya, M. J. Doyle, and M. F. Lappert, *Chem. Soc. Rev.*, 1973, 2, 99.
- 2 G. K. Anderson and R. J. Cross, J. Chem. Soc., Dalton Trans., 1979, 684.
- 3 G. K. Anderson and R. J. Cross, J. Chem. Soc., Dalton Trans., 1979, 690.
- 4 J. Chatt and L. M. Venanzi, *J. Chem. Soc.*, 1955, 3858; 1957, 2445; H. van der Poel, G. van Koten, D. M. Grove, P. S. Pregosin, and K. A. D. Starzewski, *Helv. Chim. Acta*, 1981, **64**, 1174.
- 5 F. R. Hartley, Chem. Soc. Rev., 1973, 2, 163.
- 6 G. K. Anderson and R. J. Cross, Chem. Soc. Rev., 1980, 9, 185.
- 7 J. F. van Baar, K. Vrieze, and D. J. Stufkens, J. Organomet. Chem., 1974, 81, 247.
- 8 D. Hottentot and C. H. Stam, *Cryst. Struct. Commun.*, 1975, 4, 421; H. van der Poel, G. van Koten, M. Kokkes, and C. H. Stam, *Inorg. Chem.*, 1981, 20, 2941; M. R. P. van Vliet, G. van Koten, J. A. M. van Beck, K. Vrieze, F. Muller, and C. H. Stam, *Inorg. Chim. Acta*, 1986, 112, 77.

- 9 H. van der Poel, G. van Koten, and K. Vrieze, *Inorg. Chem.*, 1980, 19, 1145.
- 10 I. Jardine and F. J. McQuillin, Tetrahedron Lett., 1972, 459.
- 11 M. H. Chisholm, H. C. Clark, W. S. Johns, J. E. H. Ward, and K. Yasufuku, *Inorg. Chem.*, 1975, 14, 900.
- 12 B. Crociani and R. L. Richards, J. Chem. Soc., Dalton Trans., 1974, 693.
- 13 G. K. Anderson and R. J. Cross, Acc. Chem. Res., 1984, 17, 87.
- 14 A. C. Smithies, P. Schmidt, and M. Orchin, *Inorg. Synth.*, 1970, 12, 240.
- 15 G. B. Kauffman and L. A. Teter, *Inorg. Synth.*, 1963, 2, 246; J. Chatt and L. M. Venanzi, J. Chem. Soc., 1955, 2787.
- 16 L. A. Bigelow and H. Eatough, Org. Synth., Coll. vol. 1, 2nd edn., 1967, 80.
- 17 K. Schofield and J. C. E. Simpson, J. Chem. Soc., 1945, 512; K. Schofield and T. Swain, *ibid.*, 1949, 2393.

Received 4th June 1987; Paper 7/978