The Reactions of $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right]$ with Nitrogen-containing Heterocycles. Crystal Structures of $\left[R u_{3}(\mu-H)\left(\mu_{3}-\mathrm{ppy}\right)(\mathrm{CO})_{9}\right]$ and $\left[R u_{3}(\mu-n a p y)(\mu-\mathrm{CO})_{3}(\mathrm{CO})_{7}\right] \dagger$

Javier A. Cabeza and Luis A. Oro*
Departamento de Quimica Inorgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
Antonio Tiripicchio * and Marisa Tiripicchio-Camellini
Istituto di Chimica Generale ed Inorganica, Universitá di Parma, Centro di Studio per la Strutturistica Diffrattometrica del CNR, Viale delle Scienze, 43100 Parma, Italy

Abstract

The reactions of $\left[R u_{3}(C O)_{12}\right.$] with several nitrogen-containing heterocycles under thermal conditions have been studied. 1 H -Pyrrolo [2,3-b]pyridine (Hppy) and benzimidazole (Hbzim) give the trinuclear clusters $\left[R u_{3}(\mu-H)\left(\mu_{3}-p p y\right)(C O)_{9}\right](1 a)$ and $\left[R u_{3}(\mu-H)(\mu-b z i m)(C O)_{10}\right]$ (2a), respectively. However, benzotriazole (Hbztz) affords the dinuclear complex $\left[R u_{2}(\mu-\mathrm{bztz})_{2}(\mathrm{CO})_{6}\right]$ (3a). 1,8-Naphthyridine (napy) produces the carbonyl-bridged cluster [$\mathrm{Ru}_{3}(\mu$-napy $\left.)(\mu-\mathrm{CO})_{3}(\mathrm{CO})_{7}\right]$ (4). Complex (4) reacts with HBF_{4} to give the cationic complex $\left[R \mathrm{u}_{3}(\mu-\mathrm{H})(\mu\right.$-napy $\left.)(\mathrm{CO})_{10}\right]\left[B F_{4}\right]$ (5) which has all terminal carbonyls. Complex (5) regenerates complex (4) on reaction with NEt_{3}. 1,10-Phenanthroline (phen), 2,2'-biquinoline(biquin) or 2,2'-bipyrimidine (bipym) react with $\left[R u_{3}(C O)_{12}\right]$ to give $\left[\mathrm{Ru}_{3}(\mathrm{~L}-\mathrm{L})(\mu-\mathrm{CO})_{2}(\mathrm{CO})_{8}\right][\mathrm{L}-\mathrm{L}=$ phen (6a), biquin (6b), or bipym (6c)], in which the L-L ligand chelates one ruthenium, and two carbonyl groups bridge the same edge of the triangle. The structures of compounds (1a) and (4) have been established by X-ray diffraction studies. Complex (1a) crystallizes in the monoclinic space group $P 2_{1} / a$ with $a=14.688(5), b=$ 16.251 (7) , $c=8.594$ (5) $\AA, \beta=97.64(2)^{\circ}$, and $Z=4$. Crystals of (4) are monoclinic, space group $P 2_{1} / c$ with $a=15.374(7), b=17.336(6), c=16.167(7) \AA, \beta=98.02(3)^{\circ}$, and $Z=8$. Both structures were solved from diffractometer data by direct and Fourier methods and refined by fullmatrix [(1a)] and block-matrix [(4)] least-squares to $R=0.0349$ for 3211 observed reflections for (1a) and to $R=0.0405$ for 4205 observed reflections for (4). In (1a) the pyrrolopyridinate ligand is co-ordinated to three Ru atoms, through the pyridinic N atom to one metal and through the pyrrolic N atom symmetrically bridging the other two, which are involved also in a hydridic bridge. In (4) there are two independent, but very similar, complexes in which three carbonyls bridge the three edges of a triangular metal array; the 1,8-naphthyridine ligand bridges two metal atoms through the two N atoms.

Although the substitution of carbonyl groups in [$\mathrm{Ru}_{3}(\mathrm{CO})_{12}$] by uni-, bi-, or tri-dentate phosphorus- or arsenic-donor ligands has been extensively studied, relatively few derivatives of [$\mathrm{Ru}_{3}(\mathrm{CO})_{12}$] which contain nitrogen-donor ligands have been reported. ${ }^{1}$ This may be due to the vigorous conditions required for reaction of the nitrogen compounds, which frequently lead to the break up of the cluster, for example as with Schiff bases, ${ }^{2}$ diazepines, ${ }^{3}$ or diazabutadienes. ${ }^{4}$ However, some nitrogencontaining heterocycles, such as pyridines, ${ }^{5,6}$ quinolines, ${ }^{6.7}$ and pyridazine ${ }^{8}$ are exceptional, giving substitution or cyclometallation reactions where the cluster framework remains unchanged. This contrasts with the extensive derivative chemistry of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{12}\right] .{ }^{9}$

The cluster $\left[\mathrm{Ru}_{3}(\mathrm{NCMe})_{2}(\mathrm{CO})_{10}\right]$, reported recently, ${ }^{10}$ reacts with a variety of nitrogen heterocycles under very mild conditions, but in some cases the products are different from those obtained from $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right]$ under thermal conditions. Thus, $2,2^{\prime}$-bipyridine (bipy) gives $\left[\mathrm{Ru}_{3}\left(\mu\right.\right.$-bipy)(CO) ${ }_{10}$] from $\left[\mathrm{Ru}_{3}(\mathrm{NCMe})_{2}(\mathrm{CO})_{10}\right],{ }^{11}$ whereas with $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right]$ it gives $\left[\mathrm{Ru}_{3}(\mathrm{bipy})(\mu-\mathrm{CO})_{2}(\mathrm{CO})_{8}\right]$, a rare example of a triruthenium
$\dagger 1,1,1,2,2,2,3,3,3-$ Nonacarbonyl-1,2- μ-hydrido- $\left\{\mu_{3}-1 H\right.$-pyrrolo $[2,3-$
b] pyridinato $\left.(1-)-N^{1}\left(\mathrm{Ru}^{1.2}\right) N^{7}\left(\mathrm{Ru}^{3}\right)\right\}$-triangulo-triruthenium and
1,2;1,3;2,3-tri- μ-carbonyl-1,1,1,2,2,3,3-heptacarbonyl-2,3-($\mu-1,8$ -
naphthyridine- $N^{1} N^{8}$)-triangulo-triruthenium respectively.
Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1988, Issue 1, pp. xvii-xx.
cluster with $\mu-\mathrm{CO}$ ligands, with the bipy chelating one ruthenium atom. ${ }^{5}$

During the last few years we have focused our attention on the organometallic chemistry of pyrazoles, ${ }^{12}$ imidazoles, ${ }^{13}$ triazoles, ${ }^{14}$ 1,8-naphthyridine, ${ }^{15}$ and $1 H$-pyrrolo[2,3- b]pyridine(Hppy). ${ }^{16}$ They have proved to be excellent binucleating ligands and afford structurally interesting complexes, as well as versatile catalysts. ${ }^{17}$ We now report studies on the reactions of some of these heterocycles with $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right]$. In addition, direct formation of ethylene glycol and methanol from synthesis gas has been found to be catalysed markedly by [$\mathrm{Ru}_{3}(\mathrm{CO})_{12}$] combined with ligands such as benzimidazole or Hppy. ${ }^{18}$

Results and Discussion

1 H-Pyrrolo[2,3-b]pyridine.-The reaction between [$\mathrm{Ru}_{3^{-}}$ $\left.(\mathrm{CO})_{12}\right]$ and Hppy was carried out in refluxing n-hexane and gave a mixture of two complexes which were separated by column chromatography. The first product eluted \ddagger was identified as the complex $\left[\mathrm{Ru}_{3}(\mu-\mathrm{H})\left(\mu_{3}-\mathrm{ppy}\right)(\mathrm{CO})_{9}\right]$ (1a). Thus, the i.r. spectrum of (1a) shows the presence of terminal CO ligands and the absence of μ-CO and NH groups, while the ${ }^{1} \mathrm{H}$ n.m.r. spectrum contains a resonance at $\delta-10.66$ p.p.m. for the $\mu-\mathrm{H}$ ligand. The proton resonances of the pyridine moiety of the

[^0]
(1a)

(1b)

(2a)

(3a)

(2b)

(3b)
$\left[\mathrm{Ru}_{3}(\mu\right.$-napy $\left.)(\mu-\mathrm{CO})_{3}(\mathrm{CO})_{7}\right]$ (4) as a dark brown (almost black) solid. Although insoluble in hydrocarbons, it dissolves in chlorinated solvents and in tetrahydrofuran (thf). Its i.r. spectrum clearly shows bridging (1867,1821 , and $1807 \mathrm{~cm}^{-1}$) as well as terminal carbonyls. That the napy ligand does not chelate one of the rutheniums is suggested by its ${ }^{1} \mathrm{H}$ n.m.r. spectrum, which displays only three doublets of doublets, indicating that the molecule contains a mirror plane that cuts the napy into two identical halves. In addition, although complexes with chelating napy are known, ${ }^{15,24}$ its chelate 'bite' $(2.2 \AA)^{25}$ and the parallel orientation of the nitrogen lone pairs favour binucleation. ${ }^{15,26}$

The structure of complex (4) has been confirmed by an X-ray diffraction study, discussed below. Only two other trinuclear ruthenium clusters with bridging carbonyls and nitrogen-donor ligands have been reported: $\left[\mathrm{Ru}_{3}\left(\mu\right.\right.$-pydz) $\left.(\mu-\mathrm{CO})_{3}(\mathrm{CO})_{7}\right]$ (pydz $=$ pyridazine $)^{8}$ and $\left[\mathrm{Ru}_{3}(\right.$ bipy $\left.)(\mu-\mathrm{CO})_{2}(\mathrm{CO})_{8}\right] .{ }^{5}$ Furthermore, simple substitution of the carbonyls of $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right]$ by phosphorus-donor ligands gives rise only to bridging carbonyls when tripodal phosphines are used. ${ }^{27}$

Complex (4) reacts with an excess of tetrafluoroboric acid to give the orange cluster $\left[\mathrm{Ru}_{3}(\mu-\mathrm{H})(\mu\right.$-napy $\left.)(\mathrm{CO})_{10}\right]\left[\mathrm{BF}_{4}\right](5)$, as indicated by its i.r. spectrum, which does not show bridging carbonyl bands, and by its ${ }^{1} \mathrm{H}$ n.m.r. spectrum, which contains a hydride peak ($\delta-11.71$ p.p.m.), with the resonances of the napy protons shifted towards higher frequencies than those of (4).

Complex (5) can be deprotonated with triethylamine to regenerate complex (4). As far as we know, this kind of

Table 1. Selected bond distances (\AA) and angles $\left(^{\circ}\right)$ in $\left[\mathrm{Ru}_{3}(\mu-\mathrm{H})\left(\mu_{3} \text {-ppy)(CO) }\right)_{9}\right.$ (1a)

$\mathbf{R u}(1)-\mathbf{R u}(2)$	2.758(2)	$\mathrm{N}(1)-\mathrm{C}(14)$	1.331(7)	$\mathrm{Ru}(2)-\mathrm{C}(5)$	1.943(9)	$\mathrm{C}(1)-\mathrm{O}(1)$	1.111(10)
$\mathrm{Ru}(1)-\mathrm{Ru}(3)$	2.761(2)	$\mathrm{N}(2)-\mathrm{C}(14)$	1.389(7)	$\mathrm{Ru}(2)-\mathrm{C}(6)$	1.883(8)	$\mathrm{C}(2)-\mathrm{O}(2)$	1.121(8)
$\mathbf{R u}(2)-\mathrm{Ru}(3)$	2.764(2)	$\mathrm{N}(2)-\mathrm{C}(15)$	$1.426(9)$	$\mathrm{Ru}(2)-\mathrm{N}(2)$	$2.175(5)$	$\mathrm{C}(3)-\mathrm{O}(3)$	$1.150(9)$
$\mathrm{Ru}(1)-\mathrm{C}(1)$	$1.935(8)$	$\mathrm{C}(10)-\mathrm{C}(11)$	1.397 (9)	$\mathrm{Ru}(3)-\mathrm{H}(1)$	1.68(6)	$\mathrm{C}(4)-\mathrm{O}(4)$	1.136(10)
$\mathrm{Ru}(1)-\mathrm{C}(2)$	1.918(7)	$\mathrm{C}(11)-\mathrm{C}(12)$	1.407(10)	$\mathrm{Ru}(3)-\mathrm{C}(7)$	1.891(7)	$\mathrm{C}(5)-\mathrm{O}(5)$	1.131(11)
$\mathrm{Ru}(1)-\mathrm{C}(3)$	1.871(7)	$\mathrm{C}(12)-\mathrm{C}(13)$	1.394(10)	$\mathrm{Ru}(3)-\mathrm{C}(8)$	1.879(7)	$\mathrm{C}(6)-\mathrm{O}(6)$	1.134(9)
$\mathrm{Ru}(1)-\mathrm{N}(1)$	2.149(4)	$\mathrm{C}(13)-\mathrm{C}(14)$	1.398(8)	$\mathrm{Ru}(3)-\mathrm{C}(9)$	1.965(8)	$\mathrm{C}(7)-\mathrm{O}(7)$	$1.132(9)$
$\mathrm{Ru}(2)-\mathrm{H}(1)$	1.89(6)	$\mathrm{C}(13)-\mathrm{C}(16)$	1.451(10)	$\mathrm{Ru}(3)-\mathrm{N}(2)$	$2.177(5)$	$\mathrm{C}(8)-\mathrm{O}(8)$	1.129(9)
$\mathrm{Ru}(2)-\mathrm{C}(4)$	$1.900(8)$	$\mathrm{C}(15)-\mathrm{C}(16)$	1.351(9)	$\mathrm{N}(1)-\mathrm{C}(10)$	1.346(7)	$\mathrm{C}(9)-\mathrm{O}(9)$	$1.124(9)$
$\mathrm{Ru}(2)-\mathrm{Ru}(1)-\mathrm{Ru}(3)$	60.1(1)	$\mathrm{N}(2)-\mathrm{Ru}(3)-\mathrm{C}(9)$	98.7(2)	$\mathrm{C}(5)-\mathrm{Ru}(2)-\mathrm{Ru}(3)$	112.0(3)	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(16)$	105.6(6)
$\mathrm{Ru}(1)-\mathrm{Ru}(2)-\mathrm{Ru}(3)$	59.9(1)	$\mathrm{N}(2)-\mathrm{Ru}(3)-\mathrm{Ru}(1)$	76.7(1)	$\mathrm{C}(5)-\mathrm{Ru}(2)-\mathrm{C}(6)$	94.0(3)	$\mathrm{N}(1)-\mathrm{C}(14)-\mathrm{C}(13)$	126.3(6)
$\mathrm{Ru}(1)-\mathrm{Ru}(3)-\mathrm{Ru}(2)$	59.9(1)	$\mathrm{N}(2)-\mathrm{Ru}(3)-\mathrm{Ru}(2)$	50.6(1)	$\mathrm{C}(4)-\mathrm{Ru}(2)-\mathrm{N}(2)$	96.9(3)	$\mathrm{N}(1)-\mathrm{C}(14)-\mathrm{N}(2)$	121.9(5)
$\mathrm{C}(1)-\mathrm{Ru}(1)-\mathrm{Ru}(2)$	101.7(2)	$\mathrm{Ru}(1)-\mathrm{N}(1)-\mathrm{C}(10)$	128.1(4)	$\mathrm{C}(5)-\mathrm{Ru}(2)-\mathrm{N}(2)$	96.0(3)	$\mathrm{N}(2)-\mathrm{C}(14)-\mathrm{C}(13)$	111.7(5)
$\mathrm{C}(1)-\mathrm{Ru}(1)-\mathrm{C}(2)$	100.8(3)	$\mathrm{Ru}(1)-\mathrm{N}(1)-\mathrm{C}(14)$	115.9(4)	$\mathrm{C}(6)-\mathrm{Ru}(2)-\mathrm{Ru}(1)$	92.5(3)	$\mathrm{N}(2)-\mathrm{C}(15)-\mathrm{C}(16)$	112.2(6)
$\mathrm{C}(1)-\mathrm{Ru}(1)-\mathrm{C}(3)$	92.4(3)	$\mathrm{C}(10)-\mathrm{N}(1)-\mathrm{C}(14)$	116.0(5)	$\mathrm{C}(6)-\mathrm{Ru}(2)-\mathrm{Ru}(3)$	117.0(3)	$\mathrm{C}(13)-\mathrm{C}(16)-\mathrm{C}(15)$	106.7(6)
$\mathrm{C}(1)-\mathrm{Ru}(1)-\mathrm{N}(1)$	92.2(2)	$\mathrm{Ru}(2)-\mathrm{N}(2)-\mathrm{Ru}(3)$	78.9(2)	$\mathrm{N}(2)-\mathrm{Ru}(2)-\mathrm{Ru}(1)$	76.8(1)	$\mathrm{Ru}(1)-\mathrm{C}(1)-\mathrm{O}(1)$	175.4(7)
$\mathrm{C}(2)-\mathrm{Ru}(1)-\mathrm{Ru}(3)$	97.2(2)	$\mathrm{Ru}(2)-\mathrm{N}(2)-\mathrm{C}(14)$	114.1(4)	$\mathrm{N}(2)-\mathrm{Ru}(2)-\mathrm{Ru}(3)$	50.6(1)	$\mathrm{Ru}(1)-\mathrm{C}(2)-\mathrm{O}(2)$	176.5(6)
$\mathrm{C}(2)-\mathrm{Ru}(1)-\mathrm{C}(3)$	92.0(3)	$\mathrm{Ru}(2)-\mathrm{N}(2)-\mathrm{C}(15)$	122.5(4)	$\mathrm{C}(7)-\mathrm{Ru}(3)-\mathrm{C}(8)$	91.7(3)	$\mathrm{Ru}(1)-\mathrm{C}(3)-\mathrm{O}(3)$	178.7(6)
$\mathrm{C}(2)-\mathrm{Ru}(1)-\mathrm{N}(1)$	92.9(2)	$\mathrm{Ru}(3)-\mathrm{N}(2)-\mathrm{C}(14)$	114.1(4)	$\mathrm{C}(7)-\mathrm{Ru}(3)-\mathrm{C}(9)$	98.9(3)	$\mathrm{Ru}(2)-\mathrm{C}(4)-\mathrm{O}(4)$	179.1(7)
$\mathrm{C}(3)-\mathrm{Ru}(1)-\mathrm{Ru}(2)$	89.7(2)	$\mathrm{Ru}(3)-\mathrm{N}(2)-\mathrm{C}(15)$	122.7(4)	$\mathrm{C}(8)-\mathrm{Ru}(3)-\mathrm{C}(9)$	93.8(3)	$\mathrm{Ru}(2)-\mathrm{C}(5)-\mathrm{O}(5)$	174.1(7)
$\mathrm{C}(3)-\mathrm{Ru}(1)-\mathrm{Ru}(3)$	90.3(2)	$\mathrm{C}(14)-\mathrm{N}(2)-\mathrm{C}(15)$	103.8(5)	$\mathrm{C}(8)-\mathrm{Ru}(3)-\mathrm{Ru}(2)$	117.0(2)	$\mathrm{Ru}(2)-\mathrm{C}(6)-\mathrm{O}(6)$	179.2(7)
$\mathrm{N}(1)-\mathrm{Ru}(1)-\mathrm{Ru}(2)$	83.6(1)	$\mathrm{N}(1)-\mathrm{C}(10)-\mathrm{C}(11)$	123.0(6)	$\mathrm{C}(9)-\mathrm{Ru}(3)-\mathrm{Ru}(2)$	110.8(2)	$\mathrm{Ru}(3)-\mathrm{C}(7)-\mathrm{O}(7)$	178.3(6)
$\mathrm{N}(1)-\mathrm{Ru}(1)-\mathrm{Ru}(3)$	83.5(1)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	119.7(6)	$\mathrm{C}(7)-\mathrm{Ru}(3)-\mathrm{Ru}(1)$	89.7(2)	$\mathrm{Ru}(3)-\mathrm{C}(8)-\mathrm{O}(8)$	177.5(6)
$\mathrm{C}(4)-\mathrm{Ru}(2)-\mathrm{C}(5)$	99.1(3)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	117.9(6)	$\mathrm{C}(8)-\mathrm{Ru}(3)-\mathrm{Ru}(1)$	89.7(2)	$\mathrm{Ru}(3)-\mathrm{C}(9)-\mathrm{O}(9)$	172.2(6)
$\mathrm{C}(4)-\mathrm{Ru}(2)-\mathrm{C}(6)$	90.4(3)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	117.1 (6)	$\mathrm{N}(2)-\mathrm{Ru}(3)-\mathrm{C}(7)$	94.4(2)		
$\mathrm{C}(4)-\mathrm{Ru}(2)-\mathrm{Ru}(1)$	86.3(2)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(16)$	137.2(6)				

reactivity, with simultaneous reversible shift of the carbonyls from bridging to terminal in a trinuclear cluster, has not been reported previously.

1,10-Phenanthroline, 2,2'-Biquinoline, and 2,2'-Bipyrimidine.Before the present work commenced, the cluster [Ru_{3} (bipy) $(\mu-$ $\mathrm{CO})_{2}(\mathrm{CO})_{8}$] was the only known ruthenium compound with a structure similar to that of $\left[\mathrm{Fe}_{3}(\mathrm{CO})_{12}\right] .{ }^{5}$ We observed that the reaction of $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right]$ with 1,10 -phenanthroline (phen), $2,2^{\prime}-$ biquinoline (biquin), and 2,2'-bipyrimidine (bipym) gives rise in all cases to the highly insoluble, very dark brown or black clusters $\left[\mathrm{Ru}_{3}(\mathrm{~L}-\mathrm{L})(\mu-\mathrm{CO})_{2}(\mathrm{CO})_{8}\right][\mathrm{L}-\mathrm{L}=$ phen (6a), biquin ($\mathbf{6 b}$), or bipym ($\mathbf{6 c}$)]. They were characterized by microanalysis and i.r. spectroscopy only, since their high insolubility prevented any other analysis. Nevertheless, their dark colour (which is indicative of bridging carbonyls) and the low wavenumbers of their μ-CO absorptions in their i.r. spectra (which are similar to those reported for $\left[\mathrm{Ru}_{3}(\right.$ bipy $)(\mu$ $\left.\mathrm{CO})_{2}(\mathrm{CO})_{8}\right]$, whose structure has been determined by X-ray diffraction methods ${ }^{5}$) suggested to us the tentative structural assignment shown below.

Crystal Structures of $\left[\mathrm{Ru}_{3}(\mu-\mathrm{H})(\mu-\mathrm{ppy})(\mathrm{CO})_{9}\right]$ (1a) and $\left[\mathrm{Ru}_{3}(\mu\right.$-napy $\left.)(\mu-\mathrm{CO})_{3}(\mathrm{CO})_{7}\right]$ (4). -The structure of (1a) is

Figure 1. View of the complex $\left[\mathrm{Ru}_{3}(\mu-\mathrm{H})\left(\mu_{3}-\mathrm{ppy}\right)(\mathrm{CO})_{9}\right]$ (1a) with the atomic numbering scheme
represented in Figure 1 together with the atomic numbering scheme; important bond distances and angles are given in Table 1. The molecular unit consists of a nearly equilateral array of Ru atoms [$\mathrm{Ru}-\mathrm{Ru} 2.758(2), 2.761(2)$, and 2.764(2) \AA] bonded to nine terminal carbonyl groups, three attached to each metal atom, and to a pyrrolopyridinate $(1-)$ ligand interacting with all three metals. The $R u(2)-R u(3)$ edge of the cluster is bridged

Table 2. Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ in the two independent molecules of $\left[R u_{3}(\mu-n a p y)(\mu-\mathrm{CO})_{3}(\mathrm{CO})_{7}\right](4)$

$\mathrm{Ru}(1)-\mathrm{Ru}(2)$	2.838(2)	2.872(2)	$\mathrm{Ru}(3)-\mathrm{N}(2)$	$2.165(9)$	2.187(8)	$\mathrm{C}(9)-\mathrm{O}(9)$	1.151(15)	1.134(15)
$\mathrm{Ru}(1)-\mathrm{Ru}(3)$	2.878(2)	2.848(2)	$\mathrm{Ru}(3)-\mathrm{C}(7)$	$2.112(10)$	$2.113(11)$	$\mathrm{C}(10)-\mathrm{O}(10)$	$1.158(12)$	$1.175(13)$
$\mathrm{Ru}(2)-\mathrm{Ru}(3)$	2.747(3)	2.731 (3)	$\mathrm{Ru}(3)-\mathrm{C}(8)$	1.910(12)	1.879(10)	$\mathrm{N}(1)-\mathrm{C}(11)$	1.325(12)	1.339(12)
$\mathrm{Ru}(1)-\mathrm{C}(1)$	1.881(10)	1.882(10)	$\mathrm{Ru}(3)-\mathrm{C}(9)$	1.836(12)	$1.864(11)$	$\mathrm{N}(1)-\mathrm{C}(18)$	$1.362(12)$	1.377(11)
$\mathrm{Ru}(1)-\mathrm{C}(2)$	1.924(10)	1.933(11)	$\mathrm{Ru}(3)-\mathrm{C}(10)$	$2.108(9)$	$2.095(10)$	$\mathrm{C}(11)-\mathrm{C}(12)$	1.437(16)	1.384(15)
$\mathrm{Ru}(1)-\mathrm{C}(3)$	1.934(11)	1.939(12)	$\mathrm{C}(1)-\mathrm{O}(1)$	1.120(12)	1.130(13)	$\mathrm{C}(12)-\mathrm{C}(13)$	1.380 (18)	1.382(15)
$\mathrm{Ru}(1)-\mathrm{C}(4)$	2.151 (10)	2.290(12)	$\mathrm{C}(2)-\mathrm{O}(2)$	1.122(12)	1.129(14)	$\mathrm{C}(13)-\mathrm{C}(14)$	1.390(18)	1.401(15)
$\mathrm{Ru}(1)-\mathrm{C}(10)$	2.180 (10)	$2.108(10)$	$\mathrm{C}(3)-\mathrm{O}(3)$	1.141(14)	1.134(15)	$\mathrm{C}(14)-\mathrm{C}(15)$	1.468(18)	1.434(15)
$\mathrm{Ru}(2)-\mathrm{N}(1)$	$2.199(8)$	$2.190(8)$	$\mathrm{C}(4)-\mathrm{O}(4)$	1.164(13)	1.148(14)	$\mathrm{C}(14)-\mathrm{C}(18)$	1.444(14)	1.399(13)
$\mathrm{Ru}(2)-\mathrm{C}(4)$	2.076(10)	2.053(10)	$\mathrm{C}(5)-\mathrm{O}(5)$	1.143(12)	$1.125(14)$	$\mathrm{C}(15)-\mathrm{C}(16)$	1.332(20)	1.377(14)
$\mathrm{Ru}(2)-\mathrm{C}(5)$	1.897(10)	1.884(11)	$\mathrm{C}(6)-\mathrm{O}(6)$	$1.136(14)$	$1.130(14)$	$\mathrm{C}(16)-\mathrm{C}(17)$	1.403(16)	1.405 (14)
$\mathrm{Ru}(2)-\mathrm{C}(6)$	1.849(11)	1.872(12)	$\mathrm{C}(7)-\mathrm{O}(7)$	1.144(12)	1.141(12)	$\mathrm{N}(2)-\mathrm{C}(17)$	1.363(14)	1.346(11)
$\mathrm{Ru}(2)-\mathrm{C}(7)$	2.142(10)	$2.159(10)$	$\mathrm{C}(8)-\mathrm{O}(8)$	1.113(15)	1.123(13)	$\mathrm{N}(2)-\mathrm{C}(18)$	1.382(13)	1.387(11)
$\mathrm{Ru}(2)-\mathrm{Ru}(1)-\mathrm{Ru}(3)$	57.4(1)	57.0(1)	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(18)$	116.4(10)	119.6(9)	$\mathrm{C}(9)-\mathrm{Ru}(3)-\mathrm{C}(10)$	94.2(5)	90.5(4)
$\mathrm{Ru}(1)-\mathrm{Ru}(2)-\mathrm{Ru}(3)$	62.0(1)	61.0(1)	$\mathrm{N}(1)-\mathrm{C}(18)-\mathrm{N}(2)$	119.2(8)	116.9(8)	$\mathrm{C}(8)-\mathrm{Ru}(3)-\mathrm{C}(7)$	101.7(5)	103.0(4)
$\mathrm{Ru}(1)-\mathrm{Ru}(3)-\mathrm{Ru}(2)$	60.6(1)	61.9(1)	$\mathrm{N}(1)-\mathrm{C}(18)-\mathrm{C}(14)$	119.4(9)	121.8(8)	$\mathrm{C}(8)-\mathrm{Ru}(3)-\mathrm{C}(10)$	98.6(5)	96.6(4)
$\mathrm{C}(1)-\mathrm{Ru}(1)-\mathrm{C}(2)$	86.1(4)	84.6(5)	$\mathrm{N}(2)-\mathrm{C}(18)-\mathrm{C}(14)$	121.2(9)	121.3(8)	$\mathrm{C}(7)-\mathrm{Ru}(3)-\mathrm{Ru}(1)$	110.8(3)	112.9(3)
$\mathrm{C}(1)-\mathrm{Ru}(1)-\mathrm{C}(3)$	88.5(5)	88.3(5)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	120.1(10)	118.6(9)	$\mathrm{Ru}(1)-\mathrm{C}(1)-\mathrm{O}(1)$	178.0(10)	173.1(10)
$\mathrm{C}(1)-\mathrm{Ru}(1)-\mathrm{C}(4)$	102.7(5)	114.1(5)	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	120.4(12)	118.4(8)	$\mathrm{Ru}(1)-\mathrm{C}(2)-\mathrm{O}(2)$	173.7(9)	173.8(9)
$\mathrm{C}(1)-\mathrm{Ru}(1)-\mathrm{C}(10)$	106.7(5)	96.6(4)	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{N}(2)$	123.0(11)	124.8(8)	$\mathrm{Ru}(1)-\mathrm{C}(3)-\mathrm{O}(3)$	176.6(9)	176.2(10)
$\mathrm{C}(2)-\mathrm{Ru}(1)-\mathrm{Ru}(2)$	95.3(3)	93.6(3)	$\mathrm{C}(17)-\mathrm{N}(2)-\mathrm{C}(18)$	118.5(8)	117.3(8)	$\mathrm{Ru}(1)-\mathrm{C}(4)-\mathrm{O}(4)$	135.2(9)	130.3(9)
$\mathrm{C}(2)-\mathrm{Ru}(1)-\mathrm{Ru}(3)$	95.5(3)	96.2(3)	$\mathrm{Ru}(3)-\mathrm{N}(2)-\mathrm{C}(17)$	116.3(7)	116.1(6)	$\mathrm{Ru}(2)-\mathrm{C}(4)-\mathrm{O}(4)$	140.4(9)	147.1(10)
$\mathrm{C}(2)-\mathrm{Ru}(1)-\mathrm{C}(4)$	89.8(4)	86.6(5)	$\mathrm{Ru}(3)-\mathrm{N}(2)-\mathrm{C}(18)$	125.2(6)	126.6(6)	$\mathrm{Ru}(1)-\mathrm{C}(4)-\mathrm{Ru}(2)$	84.3(4)	82.6(4)
$\mathrm{C}(2)-\mathrm{Ru}(1)-\mathrm{C}(10)$	87.6(4)	91.9(4)	$\mathrm{C}(6)-\mathrm{Ru}(2)-\mathrm{C}(7)$	92.3(4)	89.4(4)	$\mathrm{Ru}(2)-\mathrm{C}(5)-\mathrm{O}(5)$	172.9(9)	177.3(10)
$\mathrm{C}(3)-\mathrm{Ru}(1)-\mathrm{Ru}(2)$	89.9(3)	90.4(4)	$\mathrm{C}(6)-\mathrm{Ru}(2)-\mathrm{Ru}(1)$	94.3(3)	95.2(4)	$\mathrm{Ru}(2)-\mathrm{C}(6)-\mathrm{O}(6)$	177.6(8)	178.0(10)
$\mathrm{C}(3)-\mathrm{Ru}(1)-\mathrm{Ru}(3)$	88.8(3)	93.8(4)	$\mathrm{C}(4)-\mathrm{Ru}(2)-\mathrm{Ru}(3)$	111.0(3)	113.2(3)	$\mathrm{Ru}(2)-\mathrm{C}(7)-\mathrm{O}(7)$	140.0(8)	137.8(8)
$\mathrm{C}(3)-\mathrm{Ru}(1)-\mathrm{C}(4)$	92.5(4)	89.5(5)	$\mathrm{C}(5)-\mathrm{Ru}(2)-\mathrm{C}(4)$	101.6(4)	102.9(5)	$\mathrm{Ru}(3)-\mathrm{C}(7)-\mathrm{O}(7)$	140.0(8)	142.8(8)
$\mathrm{C}(3)-\mathrm{Ru}(1)-\mathrm{C}(10)$	92.8(4)	96.3(5)	$\mathrm{C}(5)-\mathrm{Ru}(2)-\mathrm{C}(7)$	98.1(4)	94.2(5)	$\mathrm{Ru}(2)-\mathrm{C}(7)-\mathrm{Ru}(3)$	80.4(4)	79.5(4)
$\mathrm{C}(4)-\mathrm{Ru}(1)-\mathrm{Ru}(3)$	104.1(3)	102.1(3)	$\mathrm{C}(7)-\mathrm{Ru}(2)-\mathrm{Ru}(1)$	111.3(3)	110.5(3)	$\mathrm{Ru}(3)-\mathrm{C}(8)-\mathrm{O}(8)$	177.8(10)	175.6(10)
$\mathrm{C}(10)-\mathrm{Ru}(1)-\mathrm{Ru}(2)$	104.1(3)	104.1(3)	$\mathrm{N}(2)-\mathrm{Ru}(3)-\mathrm{C}(8)$	90.5(4)	92.1(4)	$\mathrm{Ru}(3)-\mathrm{C}(9)-\mathrm{O}(9)$	176.9(10)	179.5(10)
$\mathrm{N}(1)-\mathrm{Ru}(2)-\mathrm{Ru}(1)$	86.0(2)	88.3(2)	$\mathrm{N}(2)-\mathrm{Ru}(3)-\mathrm{C}(7)$	86.2(4)	88.2(4)	$\mathrm{Ru}(3)-\mathrm{C}(10)-\mathrm{O}(10)$	140.4(8)	139.4(8)
$\mathrm{N}(1)-\mathrm{Ru}(2)-\mathrm{Ru}(3)$	84.4(2)	85.3(2)	$\mathrm{N}(2)-\mathrm{Ru}(3)-\mathrm{C}(10)$	90.4(4)	90.0(4)	$\mathrm{Ru}(1)-\mathrm{C}(10)-\mathrm{O}(10)$	135.2(8)	135.3(10)
$\mathrm{N}(1)-\mathrm{Ru}(2)-\mathrm{C}(5)$	91.5(4)	89.3(4)	$\mathrm{N}(2)-\mathrm{Ru}(3)-\mathrm{Ru}(1)$	90.6(2)	88.0(2)	$\mathrm{Ru}(1)-\mathrm{C}(10)-\mathrm{Ru}(3)$	84.3(4)	85.3(4)
$\mathrm{N}(1)-\mathrm{Ru}(2)-\mathrm{C}(4)$	88.9(4)	89.8(4)	$\mathrm{N}(2)-\mathrm{Ru}(3)-\mathrm{Ru}(2)$	85.4(2)	84.8(2)	$\mathrm{C}(11)-\mathrm{N}(1)-\mathrm{C}(18)$	120.9(8)	116.9(7)
$\mathrm{N}(1)-\mathrm{Ru}(2)-\mathrm{C}(7)$	89.1(4)	88.3(4)	$\mathrm{C}(10)-\mathrm{Ru}(3)-\mathrm{Ru}(2)$	109.3(3)	109.4(3)	$\mathrm{Ru}(2)-\mathrm{N}(1)-\mathrm{C}(11)$	114.4(6)	116.8(6)
$\mathrm{C}(6)-\mathrm{Ru}(2)-\mathrm{Ru}(3)$	97.2(3)	95.3(4)	$\mathrm{C}(9)-\mathrm{Ru}(3)-\mathrm{Ru}(1)$	94.6(4)	93.1(4)	$\mathrm{Ru}(2)-\mathrm{N}(1)-\mathrm{C}(18)$	124.7(6)	126.2(6)
$\mathrm{C}(6)-\mathrm{Ru}(2)-\mathrm{C}(4)$	90.1(5)	93.3(5)	$\mathrm{C}(9)-\mathrm{Ru}(3)-\mathrm{Ru}(2)$	95.8(4)	96.1(3)	$\mathrm{N}(1)-\mathrm{C}(11)-\mathrm{C}(12)$	122.2(9)	124.4(9)
$\mathrm{C}(6)-\mathrm{Ru}(2)-\mathrm{C}(5)$	87.4(4)	88.1(5)	$\mathrm{C}(9)-\mathrm{Ru}(3)-\mathrm{C}(8)$	86.0(5)	86.7(5)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	118.1(10)	119.0(9)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(1)$	124.2(10)	121.0(8)	$\mathrm{C}(9)-\mathrm{Ru}(3)-\mathrm{C}(7)$	90.5(5)	91.7(4)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	119.9(10)	118.5(49)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(18)$	119.3(10)	119.3(9)						

by a hydride with the $\mathrm{Ru}(2) \mathrm{H}(1) \mathrm{Ru}(3)$ plane forming a dihedral angle of $121(3)^{\circ}$ with the metal triangle. The pyrrolopyridinate $(1-)$ anion behaves as tridentate ligand: in fact it is bonded to the $\mathrm{Ru}(1)$ atom through the pyridinic nitrogen $\mathrm{N}(1)$ $[\mathrm{Ru}(1)-\mathrm{N}(1) 2.149(4) \AA]$ and through the pyrrolic nitrogen $\mathrm{N}(2)$ symmetrically bridging the other two Ru atoms [$\mathrm{Ru}(2)$ -$-\mathrm{N}(2) \quad 2.175(5), \quad \mathrm{Ru}(3)-\mathrm{N}(2) \quad 2.177(5) \quad \AA]$. The $\mathrm{Ru}(2)-$ $\mathrm{N}(2)-\mathrm{Ru}(3)$ bridge is nearly perpendicular to the metal plane [dihedral angle $97.6(1)^{\circ}$] and involves the edge already bridged by the hydride.

The ppy ligand is perfectly planar and nearly perpendicular to the Ru_{3} plane [dihedral angle $90.1(1)^{\circ}$]; the plane through it and $\mathrm{Ru}(1)$ perpendicularly bisecting the $\mathrm{Ru}(2)-\mathrm{Ru}(3)$ edge is roughly a mirror plane of the complex. Because of the bonding of the $N(2)$ atom, the organic ligand loses the aromaticity in the pyrrolic moiety and the double bond is localized in the $C(15)-C(16)$ bond [1.351(9) \AA].
The structure of $(\mathbf{1 a})$ is comparable to that of $\left[R u_{3}(\mu-H)\left(\mu_{3}-\right.\right.$ $\left.\mathrm{mbt})(\mathrm{CO})_{9}\right]^{21}$ in which the 2 -mercaptobenzothiazolate ligand (mbt) interacts with all three metals through the thiazolic nitrogen atom to one Ru atom $[\mathrm{Ru}-\mathrm{N} 2.177(9) \AA]$ and through the exocyclic sulphur bridging the other two metals. In this case the edge bridged by the sulphur and by the hydride is slightly longer than the other two [2.836(5) versus $2.786(5)$ and $2.798(6)$ $\AA]$. Also in $\left[\mathrm{Ru}_{3}(\mu-\mathrm{OCPh})\left\{\mu_{3}-\mathrm{PPh}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right\}(\mathrm{CO})_{9}\right]^{20}$ the fragment $\mathrm{PPh}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)$ interacts with a Ru atom through the N
atom $[\mathrm{Ru}-\mathrm{N} 2.165(8) \AA]$ and through the P atom spans the other two Ru atoms, which are at a non-bonding distance of 3.639 (1) \AA; these two Ru atoms are bridged also by an acyl ligand.

In the crystals of (4) there are two independent, but almost identical molecules. The structure of one of them is represented in Figure 2; bond distances and angles are given in Table 2. In the complex the three Ru atoms are at the vertices of an isosceles triangle with $\mathrm{Ru}-\mathrm{Ru}$ bonds of 2.747(3), 2.838(2), and 2.878(2) \AA [2.731(3), 2.872(2), and $2.848(3) \AA$ in the other independent molecule; hereafter values in brackets refer to this]. Ten carbonyl groups are bonded to the metal atoms, seven are terminal [three attached to the $\mathrm{Ru}(1)$ atom, two to each of the other two Ru atoms], and three more or less symmetrically bridge the three edges of the triangular cluster. The different asymmetries of these carbonyls in each of the two independent complexes are attributable rather to packing forces than to electronic factors. The carbon atoms of the bridging carbonyls are nearly coplanar with the metal triangle, the displacement of $C(4), C(7)$, and $C(10)$ from the triangle being $0.06(1),-0.06(1)$, and $0.16(1) \AA$ respectively $[0.09(1),-0.07(1)$, and $0.08(1) \AA]$.

The 1,8 -naphthyridine ligand acts as a bridge between the two Ru atoms of the shortest edge, through the two pyridinic N atoms, with $\mathrm{Ru}-\mathrm{N}$ bonds of 2.199 (8) and $2.165(9) \AA[2.190(8)$ and $2.187(8) \AA]$. The organic ligand presents no peculiar structural factors, it is only roughly planar with the two

Figure 2. View of one of the two independent molecules of $\left[\mathrm{Ru}_{3}(\mu-\right.$ napy $\left.)(\mu-\mathrm{CO})_{3}(\mathrm{CO})_{7}\right](4)$ with the atomic numbering scheme
pyridinic moieties making an angle of $6.7(3)^{\circ}\left[4.0(3)^{\circ}\right]$ and the mean plane through it is quasi-perpendicular to the metal triangle, the dihedral angle being $85.6(1)^{\circ}\left[91.2(2)^{\circ}\right]$.

The complex as a whole has approximate C_{s} symmetry with the mirror plane bisecting the naphthyridine molecule and the $\mathrm{Ru}(2)-\mathrm{Ru}(3)$ edge.

The structure of (4) is comparable with that of $\left[\mathrm{Ru}_{3}(\mu-\right.$ pydz $\left.)(\mu-\mathrm{CO})_{3}(\mathrm{CO})_{7}\right]^{8}$ in which the two nitrogen atoms of the organic ligand interact with the two Ru atoms of the shortest edge of the metal triangle [2.743(4) versus 2.857(4) and 2.859(4) \AA] and the three carbonyl bridges are all slightly asymmetric. In $\left[\mathrm{Ru}_{3} \text { (bipy) }(\mu-\mathrm{CO})_{2}(\mathrm{CO})_{8}\right]^{5}$ the bipyridyl ligand chelates one Ru atom and a double carbonyl bridge involves the shortest edge of the triangle [$\mathrm{Ru}-\mathrm{Ru}$ bonds 2.757(1), 2.836(1), and 2.855(1) \AA].

Experimental

General Procedures and Measurements.-All reactions were carried out under nitrogen. Elemental analyses were carried out on a Perkin-Elmer 240-C microanalyzer. I.r. spectra were recorded on a Perkin-Elmer 783 spectrophotometer and were calibrated against a sharp peak ($1601.4 \mathrm{~cm}^{-1}$) of polystyrene film. ${ }^{1} \mathrm{H}$ N.m.r. spectra were recorded on a Varian XL200 spectrometer at $20^{\circ} \mathrm{C}$ with SiMe_{4} as internal reference ($\delta=0$ p.p.m.). Mass spectra were obtained by using the fast atom bombardment (f.a.b) technique on a Kratos MS-80 spectrometer, using xenon as bombarding gas.

Materials.-Tetrahydrofuran (thf) and diethyl ether were distilled from sodium-benzophenone under N_{2}. Dichloromethane and n-hexane were distilled from $\mathrm{P}_{4} \mathrm{O}_{10}$ and CaH_{2} respectively. 1,8 -Naphthyridine was prepared as described elsewhere. ${ }^{28}\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right]$ (Strem) and all other reagents (Aldrich) were used as purchased commercially.

Preparation of $\left[\mathrm{Ru}_{3}(\mu-\mathrm{H})(\mu-\mathrm{ppy})(\mathrm{CO})_{9}\right](\mathbf{1 a})-\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right]$ ($200 \mathrm{mg}, 0.313 \mathrm{mmol}$) and Hppy ($37.8 \mathrm{mg}, 0.32 \mathrm{mmol}$) were stirred in refluxing n -hexane ($20 \mathrm{~cm}^{3}$) for 3 h . The red-orange

Table 3. Experimental data for the X-ray diffraction study of (1a) and (4)*

	$(\mathbf{1 a)}$	$(\mathbf{4})$
Molecular formula	$\mathrm{C}_{16} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{Ru}_{3}$	$\mathrm{C}_{18} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{Ru}_{3}$
M	673.44	713.46
Monoclinic	Monoclinic	
Space group	$P 2_{1} / a$	$P 2_{1} / \mathrm{c}$
a / \AA	$14.688(5)$	$15.374(7)$
b / \AA	$16.251(7)$	$17.336(6)$
c / \AA	$8.594(5)$	$16.167(7)$
$\beta /^{\circ}$	$97.64(2)$	$98.02(3)$
U / \AA^{3}	$2033(2)$	$4267(3)$
Z	4	8
$D{ }_{c} / \mathrm{g} \mathrm{cm}^{-3}$	2.200	2.221
$F(000)$	1280	2720
Crystal dimensions (mm)	$0.15 \times 0.24 \times 0.28$	$0.20 \times 0.22 \times 0.30$
Linear absorption $\left(\mu / \mathrm{cm}^{-1}\right)$	22.09	21.15
2θ range $\left({ }^{\circ}\right)$	$6-54$	$6-50$
Unique total data	4448	7697
Unique observed data	3211	4205
$[I>2 \sigma(I)]$		
R	0.0349	0.0405
R^{\prime}	0.0440	0.0491

* Details common to both: Nb-filtered Mo- K_{α} radiation ($\lambda=0.71069$ \AA); Siemens AED diffractometer; $\theta / 2 \theta$ scan, speed $3-12^{\circ} \mathrm{min}^{-1}$, width $\left[(\theta-0.55)-(\theta+0.55+0.346 \tan \theta]^{\circ} ;\right.$ reflections measured $\pm h$, $\pm k, \pm l$; standard reflections, one every 50 .
solution was evaporated to dryness and the residue dissolved in dichloromethane ($c a .2 \mathrm{~cm}^{3}$) and chromatographed on a silicagel column. n-Hexane afforded two fractions. The first one contained a small amount of $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right]$ (i.r. identification). From the second fraction, orange crystals of (1a) were obtained on evaporation ($60 \mathrm{mg}, 28 \%$). Subsequent elution of the column with dichloromethane-n-hexane (1:2) afforded a yellow fraction of an as yet unidentified compound [Found for (1a): C, 29.0; $\mathrm{H}, 0.8 ; \mathrm{N}, 4.2$. Calc. for $\mathrm{C}_{16} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{Ru}_{3}$: C, 28.5; H, 0.9; N , 4.2%]. I.r. (n-hexane): $v(\mathrm{CO}) 2092 \mathrm{~m}$ (sh), $2089 \mathrm{~s}, 2058 \mathrm{vs}$, $2037 \mathrm{vs}, 2018 \mathrm{~s}$ (sh), $2008 \mathrm{vs}, 1999 \mathrm{vs}$ (sh), 1978 m (sh), 1975 m cm^{-1}. ${ }^{1} \mathrm{H}$ N.m.r. $\left(\mathrm{CDCl}_{3}\right): \delta 7.92(\mathrm{dd}, J=5.5$ and $1.3,1 \mathrm{H}), 7.78$ (dd, $J=7.9$ and $1.3,1 \mathrm{H}), 7.05(\mathrm{dd}, J=7.9$ and $5.5 \mathrm{~Hz}, 1 \mathrm{H})$, 6.46 (s, 2 H), -10.66 p.p.m. (s, 1 H). M.s. (m / e): $674\left(\mathrm{M}^{+}\right)$.

Preparation of $\left[\mathrm{Ru}_{3}(\mu-\mathrm{H})(\mu\right.$-bzim $\left.)(\mathrm{CO})_{10}\right] \quad$ (2a).- $\left[\mathrm{Ru}_{3}\right.$ $\left.(\mathrm{CO})_{12}\right](200 \mathrm{mg}, 0.313 \mathrm{mmol})$ and benzimidazole $(60 \mathrm{mg}, 0.51$ mmol) were stirred in refluxing benzene $\left(30 \mathrm{~cm}^{3}\right)$ for 4 h . The dark red solution was evaporated to dryness and the residue was chromatographed on a silica-gel column. Elution with nhexane afforded some $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right]$ (i.r. identification). Subsequent elution with dichloromethane afforded an orange fraction from which orange-red crystals, crystallized from dichloro-methane-n-hexane, of ($\mathbf{2 a}$) were obtained ($81 \mathrm{mg}, 38 \%$) (Found: $\mathrm{C}, 29.3 ; \mathrm{H}, 1.0 ; \mathrm{N}, 4.0$. Calc. for $\mathrm{C}_{17} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{Ru}_{3}$: C, 29.1; H, 0.9; $\mathrm{N}, 4.0 \%$). I.r. (n-hexane): $v(\mathrm{CO}) 2102 \mathrm{~m}, 2061 \mathrm{vs}, 2053 \mathrm{vs}, 2022 \mathrm{~s}$ (sh), $2019 \mathrm{vs}, 2002 \mathrm{~s}, 1987 \mathrm{w}, 1974 \mathrm{w} \mathrm{cm}{ }^{-1}$. ${ }^{1} \mathrm{H}$ N.m.r. $\left[\left(\mathrm{CD}_{3}\right)_{2}-\right.$ CO]: $\delta 12.04(\mathrm{~s}, \mathrm{br}, \mathrm{NH}), 7.43$ (ddd, $J=7.6,1.3$, and $0.9,1 \mathrm{H}$), $7.32(\mathrm{ddd}, J=7.8,1.6$, and $0.9,1 \mathrm{H}), 7.17(\mathrm{td}, J=7.8$ and 1.3 , $1 \mathrm{H}), 7.13(\mathrm{ddd}, J=7.8,7.6$, and $1.6 \mathrm{~Hz}, 1 \mathrm{H}),-14.39$ p.p.m. (s, $1 \mathrm{H})$. M.s. $(m / e): 675\left(M^{+}-\mathrm{CO}\right)$.

Preparation of $\left[\mathrm{Ru}_{2}(\mu \text {-bztz })_{2}(\mathrm{CO})_{6}\right]$ (3a).-- $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right]$ $(200 \mathrm{mg}, 0.313 \mathrm{mmol})$ and benzotriazole ($119 \mathrm{mg}, 0.92 \mathrm{mmol}$) were stirred in refluxing benzene ($30 \mathrm{~cm}^{3}$) for 4 h . The solvent was removed from the red solution and the residue was chromatographed on a silica-gel column. Elution with n-hexane afforded some $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right]$ and $\left[\mathrm{Ru}_{4} \mathrm{H}_{4}(\mathrm{CO})_{12}\right]$ (i.r. identification). Subsequent elution with dichloromethane afforded an

Table 4. Fractional atomic co-ordinates $\left(\times 10^{4}\right)$ with e.s.d.s in parentheses for the non-hydrogen atoms of (1a)

Atom	X / a	Y / b	Z / c	Atom	X / a	Y / b	Z / c
$\mathrm{Ru}(1)$	$2833(1)$	$365(1)$	$6066(1)$	$\mathrm{C}(2)$	$3153(4)$	$-727(4)$	$6787(7)$
$\mathrm{Ru}(2)$	$1937(1)$	$1860(1)$	$5944(1)$	$\mathrm{C}(3)$	$1954(5)$	$-30(4)$	$4465(8)$
$\mathrm{Ru}(3)$	$1478(1)$	$641(1)$	$7944(1)$	$\mathrm{C}(4)$	$3048(5)$	$2321(4)$	$5430(9)$
$\mathrm{O}(1)$	$4196(4)$	$623(4)$	$3734(7)$	$\mathrm{C}(5)$	$1256(6)$	$2869(5)$	$6161(9)$
$\mathrm{O}(2)$	$3298(4)$	$-1378(3)$	$7173(6)$	$\mathrm{C}(6)$	$1498(5)$	$1738(5)$	$3796(9)$
$\mathrm{O}(3)$	$1426(4)$	$-284(4)$	$3473(6)$	$\mathrm{C}(7)$	$2121(4)$	$-29(4)$	$9521(8)$
$\mathrm{O}(4)$	$3709(4)$	$2593(4)$	$5103(9)$	$\mathrm{C}(8)$	$822(5)$	$-267(4)$	$7021(8)$
$\mathrm{O}(5)$	$862(6)$	$3467(4)$	$6153(9)$	$\mathrm{C}(9)$	$471(5)$	$1003(4)$	$9075(8)$
$\mathrm{O}(6)$	$1226(4)$	$1670(4)$	$2505(6)$	$\mathrm{C}(10)$	$4601(4)$	$779(4)$	$8458(8)$
$\mathrm{O}(7)$	$2526(4)$	$-422(4)$	$10457(7)$	$\mathrm{C}(11)$	$5102(4)$	$1191(4)$	$9718(8)$
$\mathrm{O}(8)$	$448(4)$	$-831(4)$	$6503(7)$	$\mathrm{C}(12)$	$4665(5)$	$1783(4)$	$10556(8)$
$\mathrm{O}(9)$	$-162(3)$	$1142(4)$	$9632(7)$	$\mathrm{C}(13)$	$3736(5)$	$1936(4)$	$10080(8)$
$\mathrm{N}(1)$	$3706(3)$	$0927(3)$	$7978(5)$	$\mathrm{C}(14)$	$3310(4)$	$1487(3)$	$8798(6)$
$\mathrm{N}(2)$	$2388(3)$	$1693(3)$	$8439(6)$	$\mathrm{C}(15)$	$2250(4)$	$2303(4)$	$9578(8)$
$\mathrm{C}(1)$	$3724(4)$	$544(4)$	$4632(8)$	$\mathrm{C}(16)$	$3026(5)$	$2462(4)$	$10562(8)$

Table 5. Fractional atomic co-ordinates $\left(\times 10^{4}\right)$ with e.s.d.s in parentheses for the non-hydrogen atoms of (4)

Atom	X/a	Y / b	Z/c	Atom	X/a	Y / b	Z/c
$\mathrm{Ru}(11)$	$1342(1)$	$1094(1)$	-751(1)	$\mathrm{Ru}(12)$	$6324(1)$	$1043(1)$	4413(1)
$\mathrm{Ru}(21)$	2 605(1)	$1947(1)$	328(1)	$\mathrm{Ru}(22)$	7 703(1)	$2132(1)$	4 920(1)
$\mathrm{Ru}(31)$	$2948(1)$	419(1)	61(1)	$\mathrm{Ru}(32)$	$7742(1)$	733(1)	$5701(1)$
$\mathrm{O}(11)$	-413(5)	$1038(5)$	-1826(5)	$\mathrm{O}(12)$	$4701(5)$	305(5)	3 491(5)
$\mathrm{O}(21)$	1993 (5)	$1510(5)$	-2386(4)	$\mathrm{O}(22)$	$7143(5)$	404(6)	2936 (5)
$\mathrm{O}(31)$	406(5)	617(5)	730(5)	$\mathrm{O}(32)$	$5148(6)$	1801 (5)	5 569(6)
$\mathrm{O}(41)$	973(5)	2820 (5)	--483(5)	$\mathrm{O}(42)$	6340 (5)	2615 (5)	3 430(5)
O(51)	$3236(6)$	$3454(4)$	$1158(5)$	O(52)	8 762(6)	3 573(5)	4 776(6)
$\mathrm{O}(61)$	$1702(6)$	$1753(5)$	$1833(5)$	$\mathrm{O}(62)$	6770 (6)	$2959(4)$	6170 (5)
$\mathrm{O}(71)$	$4318(5)$	$1267(4)$	$1302(5)$	$\mathrm{O}(72)$	9 231(5)	$1874(4)$	6 360(5)
$\mathrm{O}(81)$	4120 (6)	-985(5)	314(6)	$\mathrm{O}(82)$	8 508(6)	-497(5)	6890 (5)
$\mathrm{O}(91)$	2 183(6)	-163(5)	$1542(5)$	O(92)	$6712(6)$	$1225(5)$	7 054(5)
$\mathrm{O}(101)$	$1788(5)$	-581(4)	-1237(5)	$\mathrm{O}(102)$	$6398(5)$	-563(4)	5 200(5)
$\mathrm{N}(11)$	$3257(5)$	2 144(4)	-781(4)	$\mathrm{N}(12)$	8479 (5)	1566 (4)	$4057(4)$
N(21)	$3645(5)$	835(5)	-925(5)	N(22)	8 509(5)	360(4)	$4731(4)$
C(11)	238(7)	$1048(7)$	$-1417(6)$	C(12)	5 293(7)	625(6)	$3815(7)$
C(21)	$1799(6)$	$1368(6)$	-1760(6)	C(22)	$6887(6)$	642(7)	3 506(6)
C(31)	778(7)	792(6)	196(6)	C(32)	$5603(7)$	1516 (7)	5166 (7)
C(41)	1426 (7)	2 282(6)	- 364(6)	C(42)	$6675(7)$	2 244(7)	3 971(7)
C(51)	$3029(7)$	$2898(6)$	805(6)	C(52)	8349 (7)	3 045(6)	4 832(7)
C(61)	$2044(7)$	1810 (5)	$1257(6)$	C(62)	7 107(7)	2 642(6)	5 693(7)
C(71)	$3687(7)$	$1234(6)$	836(6)	C(72)	$8613(7)$	$1675(6)$	5940 (6)
C(81)	$3692(7)$	-467(7)	205(7)	C(82)	$8253(7)$	-23(6)	6 448(6)
C(91)	$2459(7)$	52(6)	957(7)	C(92)	7 105(7)	$1039(6)$	6 545(6)
C(101)	1950 (6)	-34(6)	-834(6)	C(102)	$6681(6)$	63(6)	$5155(6)$
C(111)	3210 (7)	$2864(6)$	-1 058(6)	C(112)	8 692(7)	$1993(6)$	3 425(6)
C(121)	$3639(8)$	3 109(7)	-1748(6)	C(122)	9 194(7)	$1733(6)$	$2835(6)$
C(131)	4 164(7)	2 584(8)	-2087(7)	C(132)	9 508(7)	985(6)	2890 (6)
C(141)	4 195(6)	$1822(7)$	-1817(6)	C(142)	9 287(6)	513(6)	3 533(5)
C(151)	4 685(7)	1 208(9)	-2 174(6)	C(152)	9 543(6)	- 283(6)	3 588(6)
C(161)	$4607(7)$	479(8)	-1935(7)	C(162)	9 263(6)	-733(5)	4 201(6)
C(171)	$4072(7)$	293(7)	- $1328(6)$	C(172)	8750 (6)	-387(5)	$4753(6)$
C(181)	$3716(6)$	$1600(6)$	- $1147(5)$	C(182)	$8774(6)$	815(5)	4 106(5)

orange solution. The solvent was removed and methanol (5 cm^{3}) was added to the oily residue which then solidified, giving (3a) as a yellow-orange powder ($141 \mathrm{mg}, 49 \%$) (Found: C, 35.0 ; $\mathrm{H}, 1.5 ; \mathrm{N}, 13.7$. Calc. for $\mathrm{C}_{18} \mathrm{H}_{8} \mathrm{~N}_{6} \mathrm{O}_{6} \mathrm{Ru}_{2}: \mathrm{C}, 35.6 ; \mathrm{H}, 1.3 ; \mathrm{N}$, 13.9%). I.r. $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): v(\mathrm{CO}) 2087 \mathrm{~m}, 2078 \mathrm{~m}(\mathrm{sh}), 2035 \mathrm{vs}$, $1995 \mathrm{~s}, 1967 \mathrm{vs}, 1943 \mathrm{~m}(\mathrm{sh}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ N.m.r. $\left(\mathrm{CDCl}_{3}\right): \delta 7.3$ p.p.m. (m). M.s. $(m / e): 607\left(M^{+}\right)$and the successive loss of six CO ligands.

Preparation of $\left[\mathrm{Ru}_{3}(\mu\right.$-napy $\left.)(\mu-\mathrm{CO})_{3}(\mathrm{CO})_{7}\right]$.- $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right]$ $(200 \mathrm{mg}, 0.313 \mathrm{mmol})$ and 1,8 -naphthyridine $(42.5 \mathrm{mg}, 0.326$ mmol) were stirred in refluxing n -hexane ($30 \mathrm{~cm}^{3}$) for 1 h to give a dark brown solid. The solid was filtered hot, washed with hot
n -hexane and recrystallized from dichloromethane -n -hexane to give black crystals of (4) ($198 \mathrm{mg}, 88 \%$) (Found: C, $30.3 ; \mathrm{H}, 1.0$; $\mathrm{N}, 4.1$. Calc. for $\mathrm{C}_{18} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{Ru}_{3}$: C, 30.3; H, $0.8 ; \mathrm{N}, 3.9 \%$). I.r. $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): v(\mathrm{CO}) 2084 \mathrm{~m}, 2027 \mathrm{vs}, 2003 \mathrm{vs}, 1976 \mathrm{~m}(\mathrm{sh}), 1962 \mathrm{~s}$, br, $1940 \mathrm{~m}(\mathrm{sh}), 1867 \mathrm{w}(\mathrm{sh}), 1821 \mathrm{~s}(\mathrm{sh}), 1807 \mathrm{~s}, \mathrm{br} \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ N.m.r. $\left(\mathrm{CDCl}_{3}\right): \delta 9.66(\mathrm{dd}, J=5.2$ and $1.7,1 \mathrm{H}), 8.26(\mathrm{dd}, J=$ 8.1 and $1.7,1 \mathrm{H}$), 7.52 p.p.m. (dd, $J=8.1$ and $5.2 \mathrm{~Hz}, 1 \mathrm{H}$). M.s. $(m / e): 714\left(M^{+}\right)$.

Preparation of $\left[\mathrm{Ru}_{3}(\mu-\mathrm{H})(\mu\right.$-napy $\left.)(\mathrm{CO})_{10}\right]\left[\mathrm{BF}_{4}\right]$ (5).-An excess of $\mathrm{HBF}_{4}\left(0.5 \mathrm{~cm}^{3}, 53 \% \mathrm{w} / \mathrm{w}\right.$ solution in diethyl ether) was injected dropwise into a solution of complex (4) $(60 \mathrm{mg}, 0.084$ $\mathrm{mmol})$ in thf $\left(5 \mathrm{~cm}^{3}\right)$. The initial dark brown solution changed
to orange during 10 min , an orange solid appearing in suspension. After stirring for 30 min , the solvent was removed and diethyl ether ($10 \mathrm{~cm}^{3}$) was added to the oily residue which then solidified. The product was filtered off, washed with portions ($5 \times 5 \mathrm{~cm}^{3}$) of diethyl ether (to remove the excess HBF_{4}) and dried to afford (5) as orange crystals ($60 \mathrm{mg}, 89 \%$) (Found: C, 26.9; H, 1.2; $\mathrm{N}, 3.3$. Calc. for $\mathrm{C}_{18} \mathrm{H}_{7} \mathrm{BF}_{4} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{Ru}_{3}$: $\mathrm{C}, 27.0 ; \mathrm{H}$, $0.9 ; \mathrm{N}, 3.5 \%$). I.r. $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): v(\mathrm{CO}) 2060 \mathrm{~s}$, vbr (with several shoulders), 2024 vs , vbr (with several shoulders), 2005 s vbr cm^{-1} (with several shoulders). ${ }^{1} \mathrm{H}$ N.m.r. $\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right]: \delta 10.15$ $(\mathrm{dd}, J=5.1$ and $1.4,2 \mathrm{H}), 9.02(\mathrm{dd}, J=8.2$ and $1.4,2 \mathrm{H}), 8.05$ (dd, $J=8.2$ and $5.1 \mathrm{~Hz}, 2 \mathrm{H}$), -11.71 p.p.m. ($\mathrm{s}, 1 \mathrm{H}$). M.s. (m / e) : $715\left(M^{+}-\mathrm{BF}_{4}\right)$.

Reaction of Complex (5) with NEt_{3}.- An excess of $\mathrm{NEt}_{3}(0.1$ cm^{3}) was injected into a solution of complex (5) ($20 \mathrm{mg}, 0.025$ mmol) in dichloromethane ($5 \mathrm{~cm}^{3}$). The solution immediately changed from orange to dark brown. I.r. analysis of this solution confirmed the quantitative transformation of (5) into (4).

General Procedure for the Synthesis of $\left[\mathrm{Ru}_{3}(\mathrm{~L}-\mathrm{L})(\mu-\mathrm{CO})_{2^{-}}\right.$ $\left.(\mathrm{CO})_{8}\right] \quad[\mathrm{L}-\mathrm{L}=$ phen (6a), biquin (6b), bipym (6c)].$\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right](200 \mathrm{mg}, 0.313 \mathrm{mmol})$ and the appropriate $\mathrm{L}-\mathrm{L}$ ligand (0.32 mmol) were refluxed in thf $\left(30 \mathrm{~cm}^{3}\right)$ for 3 h . The resulting black or very dark brown solid was filtered hot, washed with diethyl ether and dried. (6a): yield 84% (Found: C, 34.7; $\mathrm{H}, 1.3 ; \mathrm{N}, 3.8$. Calc. for $\mathrm{C}_{22} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{Ru}_{3}$: $\mathrm{C}, 34.6 ; \mathrm{H}, 1.1 ; \mathrm{N}$, 3.4%). I.r. (Nujol mull): $v(\mathrm{CO}) 2060-1920 \mathrm{vs}, \mathrm{vbr}, 1800 \mathrm{w}(\mathrm{sh})$, $1745 \mathrm{~m}, \mathrm{vbrcm}^{-1}$. (6b): yield 69% (Found: C, $39.5 ; \mathrm{H}, 2.0 ; \mathrm{N}, 3.6$. Calc. for $\mathrm{C}_{28} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{Ru}_{3}$: C, $40.0 ; \mathrm{H}, 1.4 ; \mathrm{N}, 3.3 \%$). I.r. (Nujol mull): v(CO) 2050-1920vs, vbr, $1755 \mathrm{~m}, \mathrm{vbr}, \mathrm{cm}^{-1}$). (6 c): yield 73% (Found: C, $28.9 ; \mathrm{H}, 1.2 ; \mathrm{N}, 7.7$. Calc. for $\mathrm{C}_{18} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{O}_{10} \mathrm{Ru}_{3}$: C, 29.2; H. 0.80 ; N, 7.6\%). I.r. (Nujol mull): v(CO) $2075-$ 1940 vs , vbr. $1745 \mathrm{~m}, \mathrm{vbr} \mathrm{cm}^{-1}$.

Crystal Structure Determinations of Complexes (1a) and (4).-Crystals of the complexes (1a) and (4) were selected for the X-ray analyses. The crystallographic data for both complexes are collected in Table 3. Unit-cell parameters were obtained by least-squares refinement of the θ values (in the range $10-16^{\circ}$) of 30 carefully centred reflections chosen from different regions of the reciprocal space. Data were collected at room temperature, the individual profiles having been analyzed following Lehmann and Larsen. ${ }^{29}$ The structure amplitudes were obtained after usual Lorentz and polarization reduction. No corrections were applied for the absorption effects because of the low absorbance of the samples.

Both structures were solved by direct and Fourier methods and refined by full-matrix [(1a)] and block-matrix [(4)] leastsquares using the SHELX system of computer programs ${ }^{30}$ first with isotropic and then anisotropic thermal parameters for all the non-hydrogen atoms. All the hydrogen atoms of (1a) were located from the final difference Fourier map and refined isotropically. The hydrogen atoms of (4) were placed at their geometrically calculated positions and introduced in the final structure factor calculation with fixed isotropic thermal parameters.

The weighting scheme used in the last cycles of refinement was $n^{\prime}=K\left[\sigma^{2}\left(F_{\mathrm{o}}\right)+g F_{\mathrm{o}}{ }^{2}\right]^{-1}$, with $K=0.874[(\mathbf{1 a})]$ and 0.796 $[(4)]$, and $g=0.0051[(1 \mathbf{a})]$ and $0.0056[(4)]$. Atomic scattering factors, corrected for the anomalous dispersion of Ru , were taken from ref. 31. Final atomic co-ordinates for the nonhydrogen atoms are given in Tables 4 and 5. Additional material available from the Cambridge Crystallographic Data Centre comprises thermal parameters, H -atom co-ordinates, and remaining bond distances and angles.

The calculations were carried out on the CRAY X-MP/12 computer of the Consorzio per la Gestione del Centro di

Calcolo Elettronico Interuniversitario dell'Italia NordOrientale (CINECA, Casalecchio, Bologna) and on the GOULD-SEL 32/77 computer of the Centro di Studio per la Strutturistica Diffrattometrica del CNR, Parma.

Acknowledgements

We thank the Consejo Superior de Investigaciones CientificasConsiglio Nazionale di la Reserche Joint Programme (81987/88) and Comisión Asesora de Investigación Cientifica y Técnica for support, the Spanish Ministry of Education for the award of a grant (to J. A. C.), Dr. D. W. Bruce and Mr. P. Ashton (University of Sheffield) for f.a.b. mass spectra, and Dr. M. A. Ciriano (University of Zaragoza) and Dr. G. J. Leigh (University of Brighton) for helpful discussions.

References

1 See, for example, M. I. Bruce, in 'Comprehensive Organometallic Chemistry,' eds. G. Wilkinson, F. G. A. Stone, and E. W. Abel, Pergamon Press, Oxford, 1982, vol. 4, p. 843.
2 F. Calderazzo, C. Floriani, R. Henzi, and F. L'Eplattenier, J. Chem. Soc. A, 1969, 1378; R. L. Bennett, M. I. Bruce, B. L. Goodall, M. Z. Iqbal, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1972, 1787.
3 D. P. Maddern, A. J. Carty, and T. Birchall, Inorg. Chem., 1972, 11, 1453.

4 L. H. Staal, L. H. Polm, R. W. Balk, G. van Koten, D. Vrieze, and A. M. F. Brouwers, Inorg. Chem., 1980, 19, 3343.

5 M. I. Bruce, M. G. Humphrey, M. R. Snow, E. R. T. Tiekink, and R. C. Wallis, J. Organomet. Chem., 1986, 314, 311; T. Venäläinen, J. Pursiainen, and T. A. Pakkanen, J. Chem. Soc., Chem. Commun., 1985, 1348.
6 A. Eisenstadt, C. M. Giandomenico, M. F. Frederick, and R. M. Laine, Organometallics, 1985, 4, 2033.
7 R. H. Fish, T-J. Kim, J. L. Stewart, J. H. Bushweller, R. K. Rosen, and J. W. Dupon, Organometallics, 1986, 5, 2193.

8 F. A. Cotton and D. J. Jamerson, J. Am. Chem. Soc., 1976, 98, 5396. 9 K. Burgess, Polyhedron, 1984, 3, 1175.
10 G. A. Foulds, B. F. G. Johnson, and J. Lewis, J. Organomet. Chem., 1985, 296, 147.
11 G. A. Foulds, B. F. G. Johnson, and J. Lewis, J. Organomet. Chem., 1985, 294, 123.
12 R. Usón, L. A. Oro, M. A. Ciriano, M. T. Pinillos, A. Tiripicchio, and M. Tiripicchio-Camellini, J. Organomet. Chem., 1981, 205, 247; A. Tiripicchio, F. J. Lahoz, L. A. Oro, and M. T. Pinillos, J. Chem. Soc., Chem. Commun., 1984, 936; L. A. Oro, D. Carmona, P. L. Pérez, M. Esteban, A. Tiripicchio, and M. Tiripicchio-Camellini, J. Chem. Soc., Dalton Trans., 1985, 1973; L. A. Oro, D. Carmona, M. P. Lamata, M. C. Apreda, C. Foces-Foces, F. H. Cano, and P. M. Maitlis, ibid., 1984, 1823; L. A. Oro, M. P. García, D. Carmona, C. Foces-Foces, and F. H. Cano, Inorg. Chim. Acta, 1985, 96, L21; M. P. García, A. Portilla, L. A. Oro, C. Foces-Foces, and F. H. Cano, J. Organomet. Chem., 1987, 322, 111.
13 A. Tiripicchio, M. Tiripicchio-Camellini, R. Usón, L. A. Oro, M. A. Ciriano, and M. T. Pinillos, J. Organomet. Chem., 1982, 224. 207; R. Usón, L. A. Oro, M. A. Ciriano, M. T. Pinillos, and J. A. Cabeza, ihid., 1981, 221, 249.
14 L. A. Oro, M. T. Pinillos, C. Tejel, C. Foces-Foces, and F. H. Cano, J. Chem. Soc.. Chem. Commun., 1984, 1687; J. Chem. Soc., Dalton Trans., 1986, 1087, 2193; L. A. Oro, M. T. Pinillos, and C. Tejel, J. Organomet. Chem., 1985, 280, 261.
15 A. M. Manotti-Lanfredi, A. Tiripicchio, R. Usón, L. A. Oro, M. A. Ciriano, and B. E. Villarroya, Inorg. Chim. Acta, 1984, 88, L9; A. Tiripicchio, M. Tiripicchio-Camellini, R. Usón, L. A. Oro, M. A. Ciriano, and F. Viguri, J. Chem. Soc., Dalton Trans., 1984, 125; A. Tiripicchio, F. J. Lahoz, L. A. Oro, M. A. Ciriano, and B. E. Villarroya, Inorg. Chim. Acta, 1986, 111, L1; M. A. Ciriano, B. E. Villarroya, and L. A. Oro, ibid., 1986, 120, 43.
16 L. A. Oro, M. A. Ciriano, B. E. Villarroya, A. Tiripicchio, and F. J. Lahoz, J. Chem. Soc., Chem. Commun., 1984, 521; J. Chem. Soc., Dalton Trans., 1985, 1891.
17 R. Usón, L. A. Oro, M. T. Pinillos, M. Royo, and E. Pastor, J. Mol. Catal., 1982, 14, 375; P. Kalck, A. Thorez, M. T. Pinillos, and L. A. Oro, ibid., 1985, 31, 311.

18 Y. Kiso and K. Saeki, J. Organomet. Chem., 1986, 309, C26.
19 F. A. Cotton, D. G. Lay, and M. Millar, Inorg. Chem., 1978, 17, 186.
20 N. Lugan, G. Lavigne, and J-J. Bonnet, Inorg. Chem., 1986, 25, 7.
21 S. Jeannin, Y. Jeannin, and G. Lavigne, Inorg. Chem., 1978, 17, 2103.
22 J. R. Shapley, D. E. Samkoff, C. Bueno, and M. R. Churchill, Inorg. Chem., 1982, 21, 634.
23 J. A. Cabeza, C. Landázuri, L. A. Oro, A. Tiripicchio, and M. Tiripicchio-Camellini, J. Organomet. Chem., 1987, 322, C16.
24 See, for example, D. G. Hendricker and T. E. Reed, Inorg. Chem., 1969, 8, 685; R. L. Bodner and D. G. Hendricker, ibid., 1973, 12, 33; A. Emad and K. Emerson, ibid., 1972, 11, 2288; M. A. Cavanaugh, V. M. Cappo, C. J. Alexander, and M. L. Good, ibid., 1976, 15, 2615 ; J. C. Dewan, D. L. Kepert, and A. H. White, J. Chem. Soc., Dalton Trans., 1975, 490.
25 A. Clearfield, P. Singh, and I. Bernal, J. Coord. Chem., 1971, 1, 29. 26 See, for example, L. Sacconi, C. Mealli, and D. Gatteschi, Inorg.

Chem., 1974, 13, 1985; D. Gatteschi, C. Mealli, and L. Sacconi, ibid., 1976, 15, 2774; C. Mealli and F. Zanobini, J. Chem. Soc., Chem. Commии., 1982, 97.
27 J. J. de Boer, J. A. van Doorn, and C. Masters, J. Chem. Soc., Chem. Commun., 1978, 1005; J. A. Clucas, M. M. Harding, B. S. Nicholls, and A. K. Smith, J. Chem. Soc., Dalton Trans., 1985, 1835.
28 W. W. Paudler and T. J. Kress, J. Heterocycl. Chem., 1967, 4, 284.
29 M. S. Lehmann and F. K. Larsen, Acta Crystallogr., Sect. A, 1983, 30, 580.

30 G. M. Sheldrick, SHELX, Program for crystal structure determination, University of Cambridge, 1976.
31 'International Tables for X-Ray Crystallography,' Kynoch Press, Birmingham, 1974, vol. 4.

[^0]: \ddagger The second product eluted still remains unidentified although we know it contains only terminal CO ligands and one hydride per ppy ligand ($\delta-14.07$ p.p.m. in CDCl_{3}).

