Mixed Rhenium–Gold Polyhydrides that contain ReAu and ReAu₂ Cores

Gregory A. Moehring and Richard A. Walton* Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, U.S.A.

The reactions between $[ReH_5(PPh_3)_3]$ and $[Au(PR_3)]PF_6$ (R = Et or Ph) in acetone- CH_2Cl_2 give the complexes $[ReH_5(PPh_3)_3\{Au(PR_3)\}]PF_6$. Treatment of $[ReH_5(PPh_3)_3\{Au(PPh_3)\}]PF_6$ with NEt₃ affords the ReAu₂ cluster $[ReH_4(PPh_3)_3\{Au(PPh_3)\}_2]PF_6$. The complexes have been characterized by ¹H n.m.r., ³¹P-{¹H} n.m.r., and i.r. spectroscopies as well as by cyclic voltammetry.

Whereas the protonation of the dirhenium polyhydride complex [Re₂(μ -H)₄H₄(PPh₃)₄] with HBF₄ in CH₂Cl₂ affords the salt [Re₂H₉(PPh₃)₄]BF₄,¹ reactions with the isolobal²⁻⁴ species [Au(PR₃)]⁺ (R = Et or Ph) give the ReAu clusters [Re₂H₈(PPh₃)₄{Au(PR₃)}]PF₆, [Re₂H₈(PPh₃)₄{Au(PR₃)}₂]-[PF₆]₂, and related complexes derived therefrom by deprotonation and redox reactions.^{1.5} In the case of the analogous dirhenium polyhydride complex [Re₂(μ -H)₄H₄(PMe₂Ph)₄], isomers of the neutral deprotonated Re₂Au₂ cluster [Re₂H₆-(PMe₂Ph)₄{Au(PPh₃)}₂] have been isolated and characterized.⁶

We have recently examined the related protonation of $[ReH_5(PPh_3)_3]$ to give $[ReH_6(PPh_3)_3]BF_4^7$ and herein describe the analogous reactions with $[Au(PR_3)]PF_6$ (R = Et or Ph) to give ReAu and ReAu₂ clusters, the smallest nuclearity clusters so far obtained from reactions between mononuclear rhenium polyhydride phosphine complexes and $[Au(PR_3)]^+$ species.

Results and Discussion

Reactions between equimolar amounts of $[\text{ReH}_5(\text{PPh}_3)_3]$ and $[\text{Au}(\text{PR}_3)]\text{PF}_6$ (R = Et or Ph) give the ReAu complexes $[\text{ReH}_5(\text{PPh}_3)_3\{\text{Au}(\text{PR}_3)\}]\text{PF}_6$ in high yield (*ca.* 80%). The compound $[\text{ReH}_5(\text{PPh}_3)_3\{\text{Au}(\text{PPh}_3)\}]\text{PF}_6$ behaves as a 1:1 electrolyte in acetone (*ca.* 1 × 10⁻³ mol dm⁻³), $\Lambda_m = 124$ ohm⁻¹ cm² mol^{-1.8} The Nujol mull i.r. spectra of these compounds also show the presence of PF₆⁻ with v(P-F) at *ca.* 840 cm⁻¹. Bands that are assignable to v(Re-H) were not observed.

The complex $[\text{ReH}_5(\text{PPh}_3)_3[\text{Au}(\text{PEt}_3)]]\text{PF}_6$ is more readily characterized by n.m.r. spectroscopy than its all PPh₃ analogue because of the presence of alkyl protons on the Au(PEt₃) unit. In the ¹H n.m.r. spectrum (recorded in CD₂Cl₂ at room temperature), a single binomial pentet is observed at $\delta - 3.11$ p.p.m. [J(P-H) 18.8 Hz] assignable to the hydride ligands. This pattern indicates that hydride coupling to the Au bound P atom is equivalent to that of the three Re bound P nuclei. This may indicate a significant hydride interaction between the two metal centres. Elsewhere in the ¹H n.m.r. spectrum there is a multiplet due to the phenyl protons centred at δ ca. 7.2 p.p.m., a multiplet due to the methylene protons centred at δ ca. 1.7 p.p.m., and a multiplet due to the methyl protons centred at δ ca. 1.0 p.p.m. The aryl and alkyl protons integrate in a 3:1 ratio. In the ${}^{31}P-{}^{1}H$ n.m.r. spectrum of [ReH₅(PPh₃)₃{Au(PEt₃)}]PF₆, two resonances, in a 3:1 ratio, at δ 31.9 (doublet) and 53.2 p.p.m. (quartet), respectively, along with a septet centred at $\boldsymbol{\delta}$ -142.9 p.p.m. attributable to PF_6^- , are observed. The two downfield signals are coupled to one another with J(P-P)8.6 Hz. Thus, while there is some fluxional process that renders the hydride ligands equivalent, there is no exchange of the phosphine ligands between metal centres at room temperature. ¹H N.m.r. spectral measurements over the temperature range 35 to -70 °C revealed little change in the hydride resonance.

The ¹H and ³¹P-{¹H} n.m.r. spectra of $[ReH_5(PPh_3)_3$ -{Au(PPh_3)}]PF₆ are very similar to those of $[ReH_5(PPh_3)_3$ -{Au(PEt_3)}]PF₆. Pertinent data (in p.p.m.) are as follows: ¹H n.m.r., $\delta - 3.08$ [pentet, J(P-H) 19.8 Hz]; ³¹P-{¹H} n.m.r., δ 31.1 [intensity 3, doublet, J(P-P) 7.7 Hz], 52.1 [intensity 1, quartet, J(P-P) 7.7 Hz], and - 142.9 (septet).

The electrochemical properties of these two compounds, as measured by cyclic voltammetry (c.v.) on solutions in 0.1 mol dm⁻³ NBu₄PF₆-CH₂Cl₂ at a platinum bead working electrode and referenced to an Ag-AgCl electrode,[†] are essentially identical. For [ReH₅(PPh₃)₃{Au(PPh₃)}]PF₆, a couple occurs at $E_{\frac{1}{2}} = ca$. 1.15 V ($E_{p,a} = 1.21, E_{p,c} = 1.05$ V; $i_{p,a}/i_{p,c} > 1$) and is followed by an irreversible process at $E_{p,a} = ca$. 1.55 V. The oxidation at 1.21 V is shifted to a much less accessible potential than for the starting material [ReH₅(PPh₃)₃], which has $E_{\frac{1}{2}} = 0.37$ V vs. s.c.e.⁹ The magnitude of this shift is consistent with those observed upon forming the [Au(PR₃)]⁺ adducts of [Re₂H₈(PPh₃)₄].¹ Similar behaviour is observed for [ReH₅-(PPh₃)₃{Au(PEt₃)}]PF₆ with $E_{\frac{1}{2}} = 1.09$ V ($E_{p,a} = 1.16, E_{p,c} = 1.03$ V; $i_{p,a} \sim i_{p,c}$).

Although the reaction between [ReH₅(PPh₃)₃] and [Au-(PPh₃)]PF₆ in 1:2 stoicheiometric proportions gave the 1:1 complex $[\text{ReH}_{5}(\text{PPh}_{3})_{3}[\text{Au}(\text{PPh}_{3})]]\text{PF}_{6}$ rather than the expected ReAu₂ cluster, we were able to isolate such a species by a rather surprising means. We had previously shown that the $[Au(PR_3)]^+$ adducts of $[Re_2H_8(PPh_3)_4]$ are readily deprotonated upon treatment with NEt₃, e.g. [Re₂H₈(PPh₃)₄{Au- (PPh_3)]PF₆ is converted into [Re₂H₇(PPh₃)₄{Au(PPh₃)}].¹ However, this is not the case when $[\text{ReH}_5(\text{PPh}_3)_3[\text{Au}(\text{PPh}_3)]]$ -PF₆ is treated with NEt₃ since deprotonation is accompanied by $[Au(PPh_3)]^+$ transfer to produce $[ReH_4(PPh_3)_3]$ {Au- $(PPh_3)_{2}$]PF₆; we have not yet been able to identify the other rhenium-containing species of this reaction although it does not appear to be $[ReH_5(PPh_3)_3]$. It is noteworthy that $[\text{ReH}_{6}(\text{PPh}_{3})_{3}]^{+}$, $[\text{ReH}_{5}(\text{PPh}_{3})_{3}\{\text{Au}(\text{PPh}_{3})\}]^{+}$, and $[\text{ReH}_{4}^{-}$ $(PPh_3)_3 \{Au(PPh_3)\}_2\}^+$ constitute an isoelectronic series.

The complex $[\text{ReH}_4(\text{PPh}_3)_3\{\text{Au}(\text{PPh}_3)\}_2]\text{PF}_6$ behaves as a 1:1 electrolyte in acetone $(ca. 1 \times 10^{-3} \text{ mol } \text{dm}^{-3})$, $\Lambda_m = 128$ ohm⁻¹ cm² mol⁻¹, and its Nujol mull i.r. spectrum has v(P-F) of PF₆⁻ at *ca.* 840 cm⁻¹. The ¹H n.m.r. spectrum of a solution of this complex in CD₂Cl₂ displays two resonances at room temperature: a multiplet due to the phenyl protons is centred at δ *ca.* 7.2 p.p.m. while the hydride ligands are characterized by a multiplet at δ -3.40 p.p.m. that can best be described as an overlapping quartet of triplets. Simulation of this spectrum (Figure) gave J(H-Re-P) *ca.* 25 and J(H-Au-P) *ca.* 20 Hz. The quite large value of J(H-Au-P) presumably reflects the presence of strong Re-H-Au interactions which may or may not also involve direct Re-Au bonding. The ³¹P-{¹H} n.m.r. spectrum displays a quartet at δ 51.3 p.p.m. [Au-P, J(P-P) 9.4

[†] Under these same experimental conditions the ferrocenium–ferrocene couple has $E_{\pm} = 0.47$ V vs. Ag–AgCl.

Figure. Proton n.m.r. spectrum (recorded in CD_2Cl_2) of the Re-H resonance of $[ReH_4(PPh_3)_3\{Au(PPh_3)\}_2]PF_6$: (a) experimental data, (b) simulated spectrum

Hz] and a triplet at δ 30.1 p.p.m. [Re-P, J(P-P) 9.4 Hz], in an intensity ratio of 2:3, together with a septet at δ – 143.0 p.p.m. attributable to PF₆⁻.

The c.v. of a solution of the ReAu₂ cluster in 0.1 mol dm⁻³ NBu₄PF₆-CH₂Cl₂ shows a couple at $E_{\frac{1}{4}} = 0.68$ V vs. Ag-AgCl (this corresponds to a bulk oxidation of the complex) and an irreversible reduction process at $E_{p,c} = ca. -1.2$ V. Interestingly, the shift in the potential for the 1 + \longrightarrow 2 + oxidation in 0.1 mol dm⁻³ NBu₄PF₆-CH₂Cl₂ for the set of complexes [ReH₆(PPh₃)₃]⁺, [ReH₅(PPh₃)₃{Au(PPh₃)}]⁺, and [ReH₄-(PPh₃)₃{Au(PPh₃)}₂]⁺, viz. $E_{p,a} = ca. 1.6$,* 1.2, and 0.75 V, respectively, mirrors fairly closely the shifts between [Re₂H₉-(PPh₃)₄]⁺, [Re₂H₈(PPh₃)₄{Au(PPh₃)}]⁺, and [Re₂H₇-(PPh₃)₄{Au(PPh₃)}₂]⁺, viz. $E_{p,a} = ca. 1.05$, 0.5, and 0.2 V, respectively.¹ Thus as H⁺ is replaced by [Au(PPh₃)]⁺ the metal centre(s) becomes more electron rich.

Conclusions

The present work is an extension of our interest in small Re–Au clusters. The isolation of ReAu and ReAu₂ clusters provides examples of well defined molecular polyhydride complexes which complement recent studies on the synthesis and characterization of Re₂Au and Re₂Au₂ clusters that have been designed around the starting materials [Re₂H₈(PR₃)₄] (PR₃ = PPh₃ or PMe₂Ph).^{1.5.6} Previously, the reactions between [ReH₅(PMe₂Ph)₃] and [Au(PPh₃)(OR)] (R = Bu⁴ or C₆H₂Bu⁴₃-2,4,6),¹⁰ and between [ReH₇(PC₆H₄Me-*p*)₃]₂]) and [Au(PPh₃)]NO₃^{5.11} have been examined, but in these instances the larger ReAu₃,¹⁰ and ReAu₅^{5.11} or ReAu₄⁵ clusters were obtained. Clearly, by varying the nature of the mononuclear rhenium hydride starting material a wide variety of cluster sizes (so far from ReAu up to ReAu₅) can be isolated. Such a methodology is also adaptable to related Re–Cu^{12.13} and Re-Ag¹³ cluster chemistry.

Experimental

Starting Materials.—The complex $[ReH_5(PPh_3)_3]$ was prepared by the standard literature method.¹⁴ All other reagents and solvents were obtained from commercial sources. Solvents were thoroughly deoxygenated prior to use. All reactions were carried out under an atmosphere of nitrogen.

Preparations.—(a) [ReH₅(PPh₃)₃{Au(PPh₃)}]PF₆. A solution of [Au(PPh₃)]PF₆ in acetone (5 cm³) was prepared by reacting [AuCl(PPh₃)] (0.050 g, 0.100 mmol) with AgPF₆ (0.025 g, 0.099 mmol). This mixture was filtered into CH₂Cl₂ (5 cm³) that contained [ReH₅(PPh₃)₃] (0.100 g, 0.102 mmol). The solution was stirred for 10 min, then mixed with diethyl ether (25 cm³) and filtered into n-pentane (50 cm³). The white precipitate of [ReH₅(PPh₃)₃{Au(PPh₃)}]PF₆ was filtered off and recrystallized from dichloromethane–diethyl ether–n-pentane; yield 0.125 g (77%) (Found: C, 54.0; H, 4.4. C₇₂H₆₅AuF₆P₅Re requires C, 54.65; H, 4.1%).

(b) $[\text{ReH}_{5}(\text{PPh}_{3})_{3}\{\text{Au}(\text{PEt}_{3})\}]\text{PF}_{6}$. This compound was prepared in the same manner as (a), starting from $[\text{AuCl}(\text{PEt}_{3})]$ (0.036 g, 0.102 mmol), TlPF₆ (0.036 g, 0.102 mmol), and $[\text{ReH}_{5}(\text{PPh}_{3})_{3}]$ (0.080 g, 0.082 mmol); yield 0.092 g (78%) (Found: C, 50.0; H, 4.9. $C_{60}\text{H}_{65}\text{AuF}_{6}\text{P}_{5}\text{Re}$ requires C, 50.1; H, 4.6%).

(c) $[\text{ReH}_4(\text{PPh}_3)_3[\text{Au}(\text{PPh}_3)]_2]\text{PF}_6$. A solution of $[\text{ReH}_5-(\text{PPh}_3)_3[\text{Au}(\text{PPh}_3)]]\text{PF}_6$ (0.118 g, 0.082 mmol) in acetonitrile (5 cm³) was treated with NEt₃ (1 cm³) and refluxed for 20 min. The mixture was filtered into diethyl ether (50 cm³) and n-pentane (50 cm³) added to the filtrate to induce precipitation of the yellow product; yield 0.047 (62% based on Au) (Found: C, 52.2; H, 4.0. C₉₀H₇₉Au₂F₆P₆Re requires C, 53.0; H, 3.9%).

Physical Measurements.—Infrared spectra (4 800—400 cm⁻¹) were recorded as Nujol mulls on an IBM IR/32 spectrometer. Proton n.m.r. spectra were recorded at 90 MHz using a Perkin-Elmer R-32 spectrometer or at 200 MHz with a Varian XL-200 spectrometer. Resonances were referenced internally to residual protons in CD₂Cl₂ (δ 5.35 p.p.m.). The ³¹P n.m.r. spectra were recorded on a Varian XL-200 spectrometer operating at 80.98 MHz with an internal deuterium lock and aqueous 85% H₃PO₄ as external standard. Positive chemical shifts are downfield from H₃PO₄. Conductivities were measured on an Industrial Instruments Inc. model RC 16B2 conductivity bridge. Cyclic voltammetry experiments were performed on CH2Cl2 solutions containing 0.1 mol dm⁻³ NBu₄PF₆ as the supporting electro-lyte. The $E_{\frac{1}{2}}$ [taken as $(E_{p,a} + E_{p,c})/2$] and $E_{p,a}$ values were referenced to the Ag–AgCl reference electrode at room temperature and are uncorrected for junction potentials. Voltammetric measurements were obtained with a Bioanalytical Systems Inc. model CV-1A instrument in conjunction with a Hewlett-Packard model 7035B x-y recorder.

Microanalyses were performed by Dr. H. D. Lee of the Purdue University microanalytical laboratory.

Acknowledgements

We thank the National Science Foundation for research support and the National Institute of Health (through the Division of Sponsored Resources) for funds for the purchase of the Varian XL-200 spectrometer.

References

- 1 G. A. Moehring, P. E. Fanwick, and R. A. Walton, *Inorg. Chem.*, 1987, 26, 1861.
- 2 D. G. Evans and D. M. P. Mingos, J. Organomet. Chem., 1982, 232, 171.

^{*} Data for this complex have not been reported previously ($E_{p,a} = 1.61 \text{ V } vs. \text{ Ag-AgCl}$).

- 3 F. G. A. Stone, Angew. Chem., Int. Ed. Engl., 1984, 96, 85 and refs. therein.
- 4 B. F. G. Johnson, J. Lewis, N. Nicholls, J. Puga, and K. H. Whitmore, J. Chem. Soc., Dalton Trans., 1983, 787.
- 5 P. D. Boyle, B. J. Johnson, B. D. Alexander, J. A. Casalnuovo, P. R. Gannon, S. M. Johnson, E. A. Larka, A. M. Mueting, and L. H. Pignolet, *Inorg. Chem.*, 1987, **26**, 1346.
- 6 B. R. Sutherland, D. M. Ho, J. C. Huffman, and K. G. Caulton, *Angew. Chem., Int. Ed. Engl.*, 1987, 26, 135.
- 7 G. A. Moehring and R. A. Walton, J. Chem. Soc., Dalton Trans., 1987, 715.
- 8 W. J. Geary, Coord. Chem. Rev., 1971, 7, 81.
- 9 J. D. Allison, C. J. Cameron, R. E. Wild, and R. A. Walton, J. Organomet. Chem., 1981, 218, C62.

- 10 B. R. Sutherland, K. Folting, W. E. Streib, D. M. Ho, J. C. Huffman, and K. G. Caulton, J. Am. Chem. Soc., 1987, 109, 3489.
- 11 P. D. Boyle, B. J. Johnson, A. Buehler, and L. H. Pignolet, *Inorg. Chem.*, 1986, **25**, 5.
- 12 L. F. Rhodes, J. C. Huffman, and K. G. Caulton, J. Am. Chem. Soc., 1983, 105, 5137.
- 13 N.G. Connelly, J. A. K. Howard, J. L. Spencer, and P. K. Woodley, J. Chem. Soc., Dalton Trans., 1984, 2003.
- 14 J. Chatt and R. S. Coffey, J. Chem. Soc. A, 1969, 1963.

Received 24th July 1987; Paper 7/1347