The Chemistry of Heteroallene and Heteroallyl Derivatives of Rhenium. Part 2.1 Reactivity of [ReO(OR)Cl $\mathbf{I}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$] ($\mathrm{R}=\mathrm{Me}$ or Et) with RNCS ($\mathrm{R}=\mathrm{Ph}$ or $p-\mathrm{MeC}_{6} \mathrm{H}_{4}$). Crystal Structure of the Thiazetidine Rhenium(v) Complex $\left[\mathrm{ReOCl}_{2}\left(\mathrm{PPh}_{3}\right)\left\{p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathbf{N}=\mathbf{C}(\mathrm{OEt})-\mathrm{S}\right\}\right] \dagger$

Roberto Rossi,* Andrea Marchi, Adriano Duatti, and Luciano Magon* Laboratorio di Chimica Nucleare ed Inorganica, Dipartimento di Chimica, Università di Ferrara, Italy Umberto Casellato
Istituto di Chimica e Tecnologia dei Radioelementi del C.N.R., Padova, Italy
Rodolfo Graziani
Dipartimento di Chimica Inorganica, Metallorganica e Analitica, Università di Padova, Italy

Abstract

The complex $\left[\mathrm{ReO}(\mathrm{OR}) \mathrm{Cl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](\mathrm{R}=\mathrm{Me}$ or Et$)$ reacts with an excess of $\mathrm{RNCS}(\mathrm{R}=\mathrm{Ph}$ or $\left.p-\mathrm{MeC}_{6} \mathrm{H}_{4}\right)$ to give the thiazetidine complexes $\left[\mathrm{ReOCl}_{2}\left(\mathrm{PPh}_{3}\right)\{\mathrm{RN}=\mathrm{C}(\mathrm{OR})-\mathrm{S}\}\right.$] obtained by formal insertion of the heterocumulene molecule into the Re-OR bond. The crystal structure of the complex $\left[\mathrm{ReOCl}_{2}\left(\mathrm{PPh}_{3}\right)\left\{p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{~N}=\mathrm{C}(\mathrm{OEt})-\mathrm{S}\right\}\right.$] was determined by X-ray crystallography. The compound is triclinic, space group $P \overline{1}$ with $a=12.991$ (5), $b=11.394(5), c=10.024$ (5) \AA, $\alpha=93.53(3), \beta=100.29(3), \gamma=77.74(3)^{\circ}$, and $Z=2$. The structure was refined to $R=0.035$ for 4626 independent reflections. The Re atom is six-co-ordinate distorted octahedral. The organic ligand is chelated through the nitrogen and sulphur atoms and makes with the metal a roughly planar four-membered ring. Selected bond distances are: $\mathrm{Re}-\mathrm{O} 1.671$ (4), $\mathrm{Re}-\mathrm{P} 2.488(2), \mathrm{Re}-\mathrm{Cl}$ 2.381 (2) and 2.437(2), $\operatorname{Re}-N 2.087(5)$, and $\operatorname{Re}-S 2.406(2) \AA$.

In Part 1 of this series we have described the reactions of RNCS ($\mathrm{R}=\mathrm{Ph}$ or $p-\mathrm{MeC}_{6} \mathrm{H}_{4}$) and PhNCO with rhenium(1) carbonyl complexes which gave rise to thiazetidine and oxazetidine complexes of the type $\left[\operatorname{Re}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\{\mathrm{RNC}(\mathrm{OEt}) \mathrm{S}\}\right]$ and $\left[\operatorname{Re}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\{\mathrm{PhNC}(\mathrm{OEt}) \mathrm{O}\}\right]$ respectively. ${ }^{1}$ Here we describe the reactions of the rhenium(v) oxo complexes $\left[\mathrm{ReO}(\mathrm{OR}) \mathrm{Cl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](\mathrm{R}=\mathrm{Me}$ or Et$)$ with $\mathrm{RNCS}(\mathrm{R}=\mathrm{Ph}$ or $p-\mathrm{MeC}_{6} \mathrm{H}_{4}$) in order to obtain thiazetidine rhenium compounds with the metal in a higher oxidation state.

Results and Discussion

The reaction of $\left[\mathrm{ReO}(\mathrm{OR}) \mathrm{Cl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](\mathrm{R}=\mathrm{Me}$ or Et$)$ with an excess of RNCS $\left(\mathrm{R}=\mathrm{Ph}\right.$ or $\left.p-\mathrm{MeC}_{6} \mathrm{H}_{4}\right)$ in benzene at room temperature for $7-8 \mathrm{~h}$ or at reflux temperature for $1-2 \mathrm{~h}$ produces the thiazetidine complexes $\left[\mathrm{ReOCl}_{2}\left(\mathrm{PPh}_{3}\right)\{\mathrm{RN}=\mathrm{C}\right.$ -(OR)-S $\left.\mathbf{S}_{\}}\right]$as a consequence of a formal insertion of the ligand into the Re-OR bond of the starting complex. The complex $\left[\mathrm{ReOCl}_{2}\left(\mathrm{PPh}_{3}\right)\{\mathrm{PhN}=\mathrm{C}(\mathrm{OEt})-\mathrm{S}\}\right]$ can also be obtained by reacting [$\mathrm{ReOCl}_{3}\left(\mathrm{PPh}_{3}\right)_{2}$] with an excess of the ligand $\mathrm{PhNC}(\mathrm{OEt}) \mathrm{SH}$ at room or reflux temperature.

Information concerning the reaction mechanism can be obtained by carrying out the reaction in the presence of an excess of free PPh_{3}. No reaction product is obtained when the ethoxy compound $\left[\mathrm{ReO}(\mathrm{OEt}) \mathrm{Cl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ is used in the presence of the PhNCS ligand, and only the starting material is recovered. On the contrary, the PPh_{3} does not affect the reaction when the $\mathrm{PhNC}(\mathrm{OEt}) \mathrm{SH}$ ligand is present and the pseudoallyl complex is formed. On this basis, the first step in the complex formation using the heteroallene ligand is probably the substitution of a PPh_{3} group by a PhNCS molecule co-ordinated to the metal centre via the nitrogen atom. Substitution of a PPh_{3} ligand by a nitrogen atom has already been observed using Schiff-base ligands

[^0](HL). The complex formed, $\left[\mathrm{ReOCl}_{3}\left(\mathrm{PPh}_{3}\right)(\mathrm{HL})\right](\mathrm{HL}=\mathrm{N}-$ methylsalicylideneimine), has the Schiff base co-ordinated as a unidentate ligand through the aldimine nitrogen. ${ }^{2}$

The intermediate product then evolves to the final compound by nucleophilic attack of a lone pair of the ethoxo group on the central carbon of the heteroallene molecule and consequent substitution of the RO^{-}group on the metal centre by the sulphur atom.

When the reaction is carried out with $\mathrm{PhNC}(\mathrm{OEt}) \mathrm{SH}$, the first step in the complex formation is now the electrophilic attack of the acid proton on a lone pair of the ethoxo group and subsequent substitution of the negatively charged group by means of the 'mercaptide' sulphur atom of the ionic form of the ligand. The following ring closure through the nitrogen atom now proceeds via loss of a phosphine ligand. An excess of free PPh_{3} does not inhibit the nitrogen attack because the chelating effect prevails.

The characterization of the complexes was achieved on the basis of elemental analysis, i.r., and ${ }^{1} \mathrm{H}$ n.m.r. spectra (see Experimental section). The i.r. spectra show the phosphine $v(\mathrm{P}-\mathrm{C})$ band at $1090 \mathrm{~cm}^{-1}$ whereas the $\mathrm{Re}=\mathrm{O}$ stretching frequency appears at $985 \mathrm{~cm}^{-1}$, a higher value than in the starting complex $\left[\mathrm{ReOCl}_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[v(\mathrm{Re}=\mathrm{O}) 968 \mathrm{~cm}^{-1}\right]$ or $\left[\mathrm{ReO}(\mathrm{OR}) \mathrm{Cl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{v}(\mathrm{Re}=\mathrm{O}) 949 \mathrm{~cm}^{-1}\right] .{ }^{3}$ This increase in $v(\mathrm{Re} \equiv \mathrm{O})$ is observed in analogous dithiocarbamate complexes. ${ }^{4}$ The $v(\mathrm{C} \cdots \mathrm{N})$ frequency is present at $c a .1510 \mathrm{~cm}^{-1}$ and the occurrence of the band in this range is usually considered as evidence of the partial double-bond character of the $\mathrm{C}-\mathrm{N}$ group, ${ }^{5}$ while the bands present in the $1200-1300 \mathrm{~cm}^{-1}$ region seem to be related to vibrations arising from the chelate ligand.

The n.m.r. spectra show the expected signals due to the alkoxo groups and the heterocumulene moiety. The spectroscopic and analytical data suggest the formation of the complexes $\left[\mathrm{ReOCl}_{2}\left(\mathrm{PPh}_{3}\right)\{\mathrm{RN}=\mathrm{C}(\mathrm{OR})-\mathrm{S}\}\right]$ (1).

Structural studies carried out on the complex [$\left.\mathrm{ReOCl}_{2}\left(\mathrm{PPh}_{3}\right)\left\{p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{~N}=\mathrm{C}(\mathrm{OEt})-\mathrm{S}\right\}\right]$ (2) (see Figure) show the rhenium atom in a distorted octahedral co-ordination with the chelate ligand in the equatorial plane and a Cl atom in apical position trans to the $\mathrm{Re}=\mathrm{O}_{\mathrm{oxo}}$ group. The structure reveals

Table 1. Bond distances (\AA) and angles $\left(^{\circ}\right)$ in (2)

$\mathrm{Re}-\mathrm{O}(1)$	1.671(4)	$\mathrm{Re}-\mathrm{S}(1)$	2.406 (2)	$\mathrm{P}(1)-\mathrm{C}(13)$	1.826(5)	$\mathrm{O}(2)-\mathrm{C}(20)$	1.479(7)
$\mathrm{Re}-\mathrm{Cl}(1)$	2.381(2)	$\mathrm{Re}-\mathrm{P}(1)$	2.488(2)	$\mathrm{C}(19)-\mathrm{S}(1)$	$1.735(6)$	$\mathrm{C}(20)-\mathrm{C}(21)$	$1.506(10)$
$\mathrm{Re}-\mathrm{Cl}(2)$	2.437(2)	$\mathrm{P}(1)-\mathrm{C}(1)$	$1.825(5)$	$\mathrm{C}(19)-\mathrm{N}(1)$	$1.319(8)$	$\mathrm{N}(1)-\mathrm{C}(22)$	1.417(6)
$\mathrm{Re}-\mathrm{N}(1)$	2.087(5)	$\mathrm{P}(1)-\mathrm{C}(7)$	$1.820(5)$	$\mathrm{C}(19)-\mathrm{O}(2)$	1.298(7)	$\mathrm{C}(25)-\mathrm{C}(28)$	1.529(9)
$\mathrm{Cl}(1)-\mathrm{Re}-\mathrm{Cl}(2)$	85.1(1)	$\mathrm{Cl}(2)-\mathrm{Re}-\mathrm{S}(1)$	84.3(1)	$\mathrm{Re}-\mathrm{S}(1)-\mathrm{C}(19)$	78.8(2)	$\mathrm{Re}-\mathrm{N}(1)-\mathrm{C}(22)$	134.0(3)
$\mathrm{Cl}(1)-\mathrm{Re}-\mathrm{P}(1)$	93.7(1)	$\mathrm{Cl}(2)-\mathrm{Re}-\mathrm{O}(1)$	169.3(2)	$\mathrm{Re}-\mathrm{N}(1)-\mathrm{C}(19)$	101.4(4)	$\mathrm{C}(19)-\mathrm{N}(1)-\mathrm{C}(22)$	124.6(5)
$\mathrm{Cl}(1)-\mathrm{Re}-\mathrm{N}(1)$	93.4(1)	$\mathrm{P}(1)-\mathrm{Re}-\mathrm{N}(1)$	166.6(1)	$\mathrm{S}(1)-\mathrm{C}(19)-\mathrm{N}(1)$	111.5(4)	$\mathrm{Re}-\mathrm{P}(1)-\mathrm{C}(7)$	111.9(2)
$\mathrm{Cl}(1)-\mathrm{Re}-\mathrm{S}(1)$	159.1(1)	$\mathrm{P}(1)-\mathrm{Re}-\mathrm{O}(1)$	87.8(2)	$\mathrm{S}(1)-\mathrm{C}(19)-\mathrm{O}(2)$	127.1(5)	$\mathrm{Re}-\mathrm{P}(1)-\mathrm{C}(13)$	109.8(2)
$\mathrm{Cl}(1)-\mathrm{Re}-\mathrm{O}(1)$	96.5(2)	$\mathrm{N}(1)-\mathrm{Re}-\mathrm{S}(1)$	68.3(1)	$\mathrm{N}(1)-\mathrm{C}(19)-\mathrm{O}(2)$	121.3(6)	$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{C}(7)$	103.7(2)
$\mathrm{Cl}(2)-\mathrm{Re}-\mathrm{P}(1)$	81.5(1)	$\mathrm{N}(1)-\mathrm{Re}-\mathrm{O}(1)$	102.6(2)	$\mathrm{C}(19)-\mathrm{O}(2)-\mathrm{C}(20)$	119.4(5)	$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{C}(13)$	105.4(2)
$\mathrm{Cl}(2)-\mathrm{Re}-\mathrm{N}(1)$	87.8(2)	$\mathrm{S}(1)-\mathrm{Re}-\mathrm{O}(1)$	97.2(2)	$\mathrm{O}(2)-\mathrm{C}(20)-\mathrm{C}(21)$	110.2(6)	$\mathrm{C}(7)-\mathrm{P}(1)-\mathrm{C}(13)$	105.6(2)

Figure. Crystal structure of $\left[\mathrm{ReOCl}_{2}\left(\mathrm{PPh}_{3}\right)\left\{p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{~N}=\mathrm{C}\right.\right.$ (OEt) -S ;] (2)
how the charged donor atom (S^{-}) of the thiazetidine does not take the place of the leaving RO^{-}group. This situation is in contrast with that observed for analogous complexes in which the chelate ligand is an $\mathrm{O}^{-}, \mathrm{N}$-co-ordinated Schiff base. In these complexes the charged donor atom is always trans with respect to the $\mathrm{Re} \equiv \mathrm{O}_{\mathrm{oxo}}$ group. ${ }^{6}$ This different observed behaviour can be understood by admitting a definite trans influence (and therefore a trans weakening) caused by the $\mathrm{Re} \equiv \mathrm{O}_{\text {oxo }}$ bond, which increases according to the trans ligand, in the order $\mathrm{RO}^{-}<\mathrm{Cl}^{-}, \mathrm{Br}^{-}<\mathrm{RN}<\mathrm{S}^{-}$in agreement with the hard acid character of $\mathrm{Re}^{\mathrm{V}} .{ }^{6}$

X-Ray Structure of $\quad\left[\mathrm{ReOCl}_{2}\left(\mathrm{PPh}_{3}\right)\left\{p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{~N}=\mathrm{C}\right.\right.$ (OEt) $\left.-\mathrm{S}_{j}^{1}\right]$ (2).-The molecular structure of the compound is shown in the Figure. The Re atom is six-co-ordinate distorted octahedral, the major asymmetries in bond angles being due to the geometrical constraints of the chelate ligand, which subtends an angle of only 68° at the metal atom, while those in bond lengths are mainly due to the nature of the bonded atoms.

The $\mathrm{Re}-\mathrm{O}(1)$ distance of $1.671(4) \AA$ (Table 1) indicates the presence of a triple bond and compares well with the values found in other Re^{v} oxo complexes. ${ }^{6-10}$ The $\mathrm{Re}-\mathrm{Cl}$ distances are significantly different and deserve some attention. The lengthening of the $\mathrm{Re}-\mathrm{Cl}(2)$ bond $[2.437(2) \AA]$ trans to the multiply bonded oxygen atom can be reasonably ascribed to trans weakening, which is absent or negligible in the $\mathrm{Re}-\mathrm{Cl}(1)$ bond $[2.381(2) \AA]$ trans to sulphur. The $\operatorname{Re}-\mathrm{P}$ distance $[2.488(2)$ $\AA]$ and the Re-N distance $[2.087(5) \AA$] are normal if compared
with other $\mathrm{Re}^{\mathrm{V}}-\mathrm{P}$ and $\mathrm{Re}^{\mathrm{V}}-\mathrm{N}$ distances in octahedral complexes. ${ }^{6}$ The Re-S distance [2.406(2) \AA] can be compared with values in the range $2.38-2.47 \AA$ in two Re^{V} dithiocarbamates. ${ }^{11}$ It is noteworthy that corresponding $\mathrm{Re}^{1}-\mathrm{S}$ distances are significantly longer, ranging from 2.47 to $2.55 \AA$.

Bond distances in the chelate ligand show the $\mathrm{C}-\mathrm{S}$ bond is single ${ }^{12}$ while the double bond character is localized on the $\mathrm{C}-\mathrm{N}$ bond $[1.319(8) \AA]$, and that, as a consequence, the negative charge of the bidentate anion should be mainly attributed to the sulphur atom. These and other structural details are fully comparable with those determined for the ligand $\mathrm{PhN}=\mathrm{C}(\mathrm{OEt}) \mathrm{S}^{-}$in $\left[\operatorname{Re}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\{\mathrm{PhN}=\mathrm{C}-\right.$ (OEt)]. ${ }^{1}$ Mean plane calculations show that the metal lies on the plane defined by $\mathrm{S}(1), \mathrm{N}(1), \mathrm{Cl}(1), \mathrm{P}(1)$, the chelate moiety defined by $\mathrm{S}(1), \mathrm{N}(1), \mathrm{C}(19), \mathrm{O}(2)$ being slightly inclined (by 8°) with respect to this plane. As in the above compound the attached phenylene ring is rotated about the $\mathrm{N}(1)-\mathrm{C}(22)$ axis (by 50°).

Experimental

Solvents, when necessary, were purified and dried before use. The starting compounds $\left[\mathrm{ReOCl}_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and $\left[\mathrm{ReO}(\mathrm{OR}) \mathrm{Cl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right] \quad(\mathrm{R}=\mathrm{Me}$ or Et$)$ were prepared following the literature methods. The RNCS compounds were commercially available. ${ }^{13}$ For the preparation of $\mathrm{PhNC}(\mathrm{OEt})$ SH and other technical details, see ref. 1.

Synthesis of the Complexes. $-\left[\mathrm{ReOCl}_{2}\left(\mathrm{PPh}_{3}\right)\left\{\mathrm{RN}=\mathrm{C}\left(\mathrm{OR}^{\prime}\right)-\right.\right.$ $\mathrm{S}\}]\left[\mathrm{R}=\mathrm{Ph}, \mathrm{R}^{\prime}=\mathrm{Et}(1) ; \mathrm{R}=p-\mathrm{MeC}_{6} \mathrm{H}_{4}, \mathrm{R}^{\prime}=\mathrm{Et}(2) ; \mathrm{R}=\right.$ $\mathrm{Ph}, \mathrm{R}^{\prime}=\mathrm{Me}(3) ; \mathrm{R}=p-\mathrm{MeC}_{6} \mathrm{H}_{4}, \mathrm{R}^{\prime}=\mathrm{Me}$ (4)].-A large excess of the appropriate ligand $\mathrm{RNCS}\left(\mathrm{R}=\mathrm{Ph}\right.$ or $\left.p-\mathrm{MeC}_{6} \mathrm{H}_{4}\right)$ was added to a benzene solution ($40 \mathrm{~cm}^{3}$) of the compound $\left[\mathrm{ReO}(\mathrm{OR}) \mathrm{Cl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](0.18 \mathrm{mmol})(\mathrm{R}=\mathrm{Et}$ or Me$)$. After $7-8 \mathrm{~h}$ at room temperature or $1-2 \mathrm{~h}$ at reflux temperature the green solution was filtered and then concentrated in vacuo. The resulting green precipitate was removed by filtration, and washed with EtOH and $\mathrm{Et}_{2} \mathrm{O}$. The complexes were crystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$.

Complex (2) was also obtained by the same procedure starting from $\left[\mathrm{ReOCl}_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ or $\left[\mathrm{ReO}(\mathrm{OEt}) \mathrm{Cl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and using a large excess of the ligand $\mathrm{PhNC}(\mathrm{OEt}) \mathrm{SH}$.
$\left[\mathrm{ReOCl}_{2}\left(\mathrm{PPh}_{3}\right)\{\mathrm{PhNC}(\mathrm{OEt}) \mathrm{S}\}\right]$ (1) (green): yield 80%, m.p. $175^{\circ} \mathrm{C}$ (Found: C, 43.2; H, 3.4; N, 1.5; S, 4.0. Calc. for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{NO}_{2} \mathrm{PReS}$: C, $\left.45.3 ; \mathrm{H}, 3.5 ; \mathrm{N}, 1.9 ; \mathrm{S}, 4.5 \%\right)$. Infrared data $\left(\mathrm{cm}^{-1}, \mathrm{Nujol}\right): v(\mathrm{C} \cdots \mathrm{N}) 1510 ; v(\mathrm{Re}=\mathrm{O}) 985 ; v(\mathrm{Re}-\mathrm{Cl}) 315$. ${ }^{1} \mathrm{H}$ N.m.r. $\left(\mathrm{CDCl}_{3}\right): \delta 4.56\left(\mathrm{q}, \mathrm{CH}_{2}\right)$; $1.47\left(\mathrm{t}, \mathrm{CH}_{3}\right)$.
$\left[\mathrm{ReOCl}_{2}\left(\mathrm{PPh}_{3}\right)\left\{p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{NC}(\mathrm{OEt}) \mathrm{S}\right\}\right]$ (2) (green): yield 70%, m.p. $173{ }^{\circ} \mathrm{C}$ (Found: C, $45.4 ; \mathrm{H}, 3.7 ; \mathrm{N}, 1.7 ; \mathrm{S}, 3.7$. Calc. for $\mathrm{C}_{28} \mathrm{H}_{2}{ }_{7} \mathrm{Cl}_{2} \mathrm{NO}_{2}$ PReS: C, $46.1 ; \mathrm{H}, 3.7 ; \mathrm{N}, 1.9 ; \mathrm{S}, 4.4 \%$). Infrared data $\left(\mathrm{cm}^{-1}\right.$, Nujol$): v(\mathrm{C} \cdots \mathrm{N}) 1510 ; v(\mathrm{Re}=\mathrm{O}) 985 ; v(\mathrm{Re}-\mathrm{Cl}) 310$. ${ }^{1} \mathrm{H}$ N.m.r. $\left(\mathrm{CDCl}_{3}\right): \delta 4.55\left(\mathrm{q}, \mathrm{CH}_{2}\right) ; 2.35\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right) ; 1.41(\mathrm{t}$, $\mathrm{CH}_{3} \mathrm{CH}_{2}$).

Table 2. Final fractional atomic co-ordinates for (2)

Atom	X / a	Y / b	Z/c	Atom	X/a	Y / b	Z/c
$\mathrm{Re}(1)$	0.333 40(2)	1.070 67(2)	$0.31387(3)$	C(21)	0.747 50(66)	$112553(81)$	0.333 46(94)
O(1)	0.362 29(35)	$1.06373(41)$	$0.48288(45)$	C(22)	$0.50315(37)$	0.838 31(37)	$0.23088(36)$
$\mathrm{Cl}(1)$	0.236 24(13)	$0.91300(15)$	0.279 31(20)	C(23)	$0.49815(37)$	$0.76094(37)$	0.331 04(36)
$\mathrm{Cl}(2)$	0.264 30(14)	$1.11148(17)$	$0.07514(16)$	C(24)	0.533 65(37)	0.637 33(37)	0.314 63(36)
S(1)	$0.46171(13)$	$1.18747(14)$	0.285 61(18)	C(25)	$0.57417(37)$	0.591 10(37)	0.198 07(36)
$\mathrm{P}(1)$	0.173 28(12)	1.228 23(14)	$0.34197(16)$	C(26)	0.579 18(37)	0.668 47(37)	0.097 91(36)
N(1)	0.469 40(39)	0.963 45(45)	0.253 46(54)	C(27)	0.543 67(37)	0.792 07(37)	$0.11432(36)$
$\mathrm{O}(2)$	$0.61898(35)$	1.014 19(40)	0.204 37(50)	C(28)	0.613 78(90)	0.455 48(79)	0.183 08(130)
C(1)	0.053 24(42)	$1.24142(34)$	$0.21295(54)$	H(2)	$0.02433(42)$	1.434 20(34)	$0.21061(54)$
C(2)	$-0.00370(42)$	$1.35453(34)$	0.169 62(54)	H(3)	$-0.14095(42)$	$1.45231(34)$	0.039 82(54)
C(3)	$-0.09687(42)$	$1.36474(34)$	0.073 36(54)	H(4)	-0.205 20(42)	$1.26974(34)$	-0.054 11(54)
C(4)	-0.133 08(42)	$1.26184(34)$	0.020 42(54)	H(5)	-0.104 17(42)	$1.06906(34)$	0.022 76(54)
C(5)	-0.076 13(42)	$1.14873(34)$	0.063 74(54)	H(6)	0.061 12(42)	$1.05095(34)$	0.193 55(54)
C(6)	0.017 03(42)	$1.13852(34)$	$0.16001(54)$	H(8)	0.281 42(41)	1.342 37(42)	$0.18043(45)$
C(7)	0.202 39(41)	1.378 30(42)	0.353 95(45)	H(9)	0.326 95(41)	1.543 18(42)	$0.18868(45)$
C(8)	$0.25813(41)$	1.407 44(42)	$0.25818(45)$	H(10)	0.273 59(41)	1.692 29(42)	$0.36687(45)$
C(9)	$0.28380(41)$	1.520 62(42)	$0.26283(45)$	H(11)	$0.17470(41)$	1.640 59(42)	$0.53679(45)$
C(10)	0.253 72(41)	1.604 66(42)	0.363 26(45)	H(12)	0.129 17(41)	$1.43978(42)$	0.528 53(45)
C(11)	0.197 98(41)	1.575 52(42)	0.459 03(45)	H(14)	$0.26818(30)$	$1.25933(44)$	0.623 23(44)
C(12)	0.172 32(41)	$1.46234(42)$	0.454 38(45)	H(15)	$0.21271(30)$	$1.23195(44)$	0.841 05(44)
C(13)	0.13023 (30)	$1.20811(44)$	$0.50133(44)$	H(16)	0.043 50(30)	$1.16531(44)$	0.841 93(44)
C(14)	0.194 34(30)	1.230 24(44)	0.623 61(44)	H(17)	$-0.07025(30)$	$1.12603(44)$	0.624 98(44)
C(15)	0.163 08(30)	$1.21482(44)$	0.746 38(44)	H(18)	-0.014 78(30)	$1.15341(44)$	$0.40716(44)$
C(16)	0.067 70(30)	1.177 25(44)	0.746 88(44)	H(23)	$0.46678(37)$	$0.79673(37)$	$0.42128(36)$
C(17)	0.003 59(30)	$1.15512(44)$	0.624 60(44)	H(24)	$0.52978(37)$	0.577 43(37)	$0.39217(36)$
C(18)	$0.03485(30)$	1.170 54(44)	$0.50182(44)$	H(25)	$0.60166(37)$	$0.49540(37)$	0.185 36(36)
C(19)	0.526 62(48)	1.044 25(57)	0.243 36(63)	H(26)	$0.61054(37)$	0.632 67(37)	$0.00767(36)$
C(20)	$0.68121(58)$	$1.10763(67)$	0.197 19(80)	H(27)	0.547 55(37)	0.851 97(37)	$0.03678(36)$

$\left[\mathrm{ReOCl}_{2}\left(\mathrm{PPh}_{3}\right)\{\mathrm{PhNC}(\mathrm{OMe}) \mathrm{S}\}\right]$ (3) (green): yield 65%, m.p. $168^{\circ} \mathrm{C}$ (Found: C, 43.6; H, 3.3; N, 1.9; S, 4.3. Calc. for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{NO}_{2}$ PReS: C, 44.6; H, 3.2; N, 2.0; S, 4.6\%). Infrared data (cm^{-1}, Nujol$): v(\mathrm{C} \cdots \mathrm{N}) 1510 ; v(\mathrm{Re}=\mathrm{O}) 985 ; v(\mathrm{Re}-\mathrm{Cl}) 315$. ${ }^{1} \mathrm{H}$ N.m.r. $\left(\mathrm{CDCl}_{3}\right): \delta 4.56\left(\mathrm{q}, \mathrm{CH}_{2}\right) ; 1.47\left(\mathrm{t}, \mathrm{CH}_{3}\right)$.
$\left[\mathrm{ReOCl}_{2}\left(\mathrm{PPh}_{3}\right)\left\{p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{NC}(\mathrm{OMe}) \mathrm{S}\right\}\right]$ (4) (green): yield, m.p. $165^{\circ} \mathrm{C}$ (Found: C, 43.3; H, 3.3; N, 1.4; S, 3.6. Calc. for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{NO}_{2}$ PReS: C, 45.3; H, 3.5; N, 1.9; S, 4.5\%). Infrared data (cm^{-1}, Nujol): $v(\mathrm{C} \cdots \mathrm{N}) 1520 ; v(\mathrm{Re}=\mathrm{O}) 985 ; v(\mathrm{Re}-\mathrm{Cl}) 310$. ${ }^{1} \mathrm{H}$ N.m.r. $\left(\mathrm{CDCl}_{3}\right): \delta 4.02\left(\mathrm{~s}, \mathrm{CH}_{3}\right) ; 2.37\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)$.

X-Ray Crystal Structure Determination of $\left[\mathrm{ReOCl}_{2}\left(\mathrm{PPh}_{3}\right)\right.$ -$\left.\left\{p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{~N}=\mathrm{C}(\mathrm{OEt})-\mathrm{S}\right\}\right]$ (2).-A well formed fragment of maximum dimension 0.2 mm was used for the X-ray work.

Crystal data. $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{Cl}_{2} \mathrm{NO}_{2} \mathrm{PReS}, M=729, a=12.991(5)$, $b=11.394(5), c=10.024(5) \AA, \alpha=93.53(3), \beta=100.29(3)$, $\gamma=77.74(3)^{\circ}, U=1426 \AA^{3}, D_{\mathrm{c}}=1.70 \mathrm{~g} \mathrm{~cm}^{-3}$ for $Z=2$, $\mu\left(\right.$ Mo- $\left.K_{\gamma}\right)=45 \mathrm{~cm}^{-1}$, triclinic, space group $P \overline{1}$.

The intensities of 5341 reflections were measured as described in ref. 1. Reference reflections recorded at regular intervals during data collection showed no significant change in intensity. The intensities were corrected for Lorentz polarization and absorption, ${ }^{14}$ and 4626 independent reflections with $I>3 \sigma(I)$ were considered as observed and used in subsequent calculations. The structure was solved by standard methods and refined to the final R factor of 0.035 when the maximum shift on the refined parameters was 0.1σ. Phenyl groups were refined as rigid bodies (C-C $1.395 \AA, \mathrm{C}-\mathrm{H} 1.08 \AA$). For other procedural details regarding structure determination see ref. 1. Final atomic parameters are listed in Table 2, bond distances and angles in Table 1.

Additional material available from the Cambridge Crystallographic Data Centre comprises thermal parameters and remaining bond distances and angles.

Acknowledgements

We thank Dr. C. Fantin and Mr. M. Fratta for technical assistance.

References

1 Part 1, R. Rossi, A. Marchi, A. Duatti, L. Magon, U. Casellato, R. Graziani, and A. Hussein, preceding paper.
2 E. Roncari, U. Mazzi, R. Rossi, A. Duatti, and L. Magon, Transition Met. Chem., 1981, 6, 169.
3 R. Rossi, A. Marchi, A. Duatti, L. Magon, and P. Di Bernardo, Transition Met. Chem., 1985, 10, 151.
4 J. F. Rowbottom and G. Wilkinson, J. Chem. Soc., Dalton Trans., 1972, 826.
5 B. F. G. Johnson, K. H. Al-Obidi, and J. A. McCleverty, J. Chem. Soc. A, 1969, 1668.
6 G. Gilli, M. Sacerdoti, V. Bertolasi, and R. Rossi, Acta Crystallogr., Sect. B, 1982, 38, 100.
7 C. J. L. Lock and Che'ng Wan, Can. J. Chem., 1975, 53, 1548.
8 G. Bombieri, U. Mazzi, G. Gilli, and F. Hernandez-Cano, J. Organomet. Chem., 1978, 159, 53.
9 M. B. Hursthouse, S. A. A. Jayaweera, and A. Quick, J. Chem. Soc., Dalton Trans., 1979, 279.
10 V. Bertolasi, M. Sacerdoti, G. Gilli, and U. Mazzi, Acta Crystallogr., Sect. B, 1982, 38, 426.
11 S. R. Fletcher, J. F. Rowbottom, A. C. Skapski, and G. Wilkinson, Chem. Commun., 1970, 1572.
12 R. D. G. Jones and L. F. Power, Acta Crystallogr., Sect. B, 1976, 32, 1801.

13 J. Chatt, J. R. Dilworth, and G. J. Leigh, J. Chem. Soc. A, 1970. 2239.
14 A. C. T. North, D. C. Phillips, and F. S. Mathews, Acta Crystallogr., Sect. A, 1968, 24, 351.

[^0]: \dagger Dichloro[O-ethyl (p-tolylphenylimino)thiocarbonato-SN $]$ oxorhenium(v).
 Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1988, Issue 1, pp. xvii-xx.

