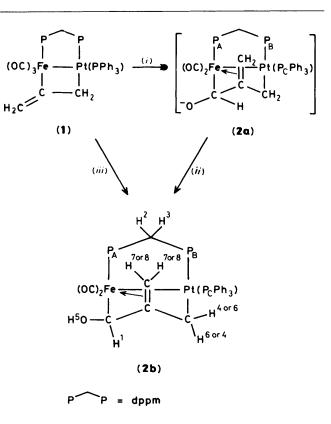
Ring Expansion in Dimetallacycle Chemistry: Preparation of a Dimetallacyclopentanol from a Dimetallacyclobutane

Xavier L. R. Fontaine, Grant B. Jacobsen, and Bernard L. Shaw* School of Chemistry, University of Leeds, Leeds LS2 9JT

Treatment of the dimetallacyclobutane complex $[(OC)_3Fe(\mu-dppm){\mu-C(=CH_2)CH_2}Pt(PPh_3)]$ (dppm = Ph₂PCH₂PPh₂) with an excess of LiBHEt₃ followed by methanol quantitatively gave the dimetallacyclopentanol complex $[(OC)_2Fe(\mu-dppm){\mu-\sigma:\eta^3-CH(OH)C(=CH_2)CH_2}Pt(PPh_3)]$.


In recent publications we have described the preparation and chemistry of the dimetallacyclobutane complex $[(OC)_3Fe(\mu-dppm){\mu-C(=CH_2)CH_2}Pt(PPh_3)]$ (1) $(dppm = Ph_2PCH_2-PPh_2)$, formed by treating $[(OC)_3Fe(\mu-dppm)(\mu-CO)-Pt(PPh_3)]$ with allene.^{1,2} In this work we report that (1) can be converted, quantitatively, *via* a novel carbonyl reduction/ring expansion reaction, into a dimetallacyclopentanol system.

Results and Discussion

Treatment of a tetrahydrofuran (thf) suspension/solution of compound (1) with an excess of LiBHEt₃ in thf gave a single, new, heterobimetallic species (2a) in which the basic metal-phosphine backbone was retained $({}^{31}P{-}{}^{1}H$ n.m.r. evidence). This species was very reactive and was not isolated. However, addition of an excess of MeOH (or water) to this solution resulted in the quantitative formation of a second species (2b) again with retention of the metal-phosphine backbone (${}^{31}P{-}{}^{1}H$ n.m.r. evidence). Compound (2b) was also formed when (1) was treated with NaBH₄ in thf. It was isolated as a yellow, air-sensitive, microcrystalline solid in 70% yield, and characterised by elemental analysis, i.r., and ${}^{31}P{-}{}^{1}H$ and ${}^{1}H$ n.m.r. spectroscopy (see Experimental section for details and the Scheme for assignments).

Examination of the 400-MHz ¹H n.m.r. spectrum of (2b) (see Figure) shows the complex to contain eight non-equivalent nonphenyl protons. Two of these (AB spin system at 4.25 and 4.13 p.p.m.) are assigned to the non-equivalent dppm methylene protons, H(2) and H(3), one of which is coupled to platinum-195. The remaining six protons must arise from the organic ligand and since complex (1) contains only four allene protons it is likely that the other two have come from the sequential addition of H^- (from LiBHEt₃ or NaBH₄) and H^+ (from MeOH or water). In order to accommodate six non-equivalent protons an extra carbon must be incorporated into the allene ligand of (1) and we propose that this comes from one of the carbonyl ligands on iron. Activation of iron carbonyls with sources of hydride is well known,^{3,4} and in this case a metal formyl is probably formed, initially. This could then rearrange by a ring expansion to give the alkoxide (2a) as shown in the Scheme. Protonation of the oxygen atom of (2a) would then give the alcohol (2b).

The details of the ¹H n.m.r. spectrum of complex (**2b**) are in agreement with the proposed structure. The broad resonance at 2.30 p.p.m. disappears on addition of D_2O and thus is assigned to the hydroxy proton, H(5). The ¹H–¹H COSY spectrum with ³¹P decoupling (Figure) shows that this hydroxy proton is weakly coupled to H(1) at 5.18 p.m. which is thus assigned to

Scheme. (i) LiBHEt₃, thf; (ii) MeOH or water; (iii) NaBH₄, thf

CH(OH). The strongly mutually coupled protons at 2.86 and 1.99 p.p.m. are assigned to the non-equivalent Pt-CH₂ protons, H(4) and H(6). Their large couplings to platinum [J(PtH) 65 and 78 Hz] and their couplings to the phosphorus atoms on platinum (P_{B} and P_{C}) support these assignments. The remaining two resonances are weakly mutually coupled (COSY evidence); only one, H(8), is coupled to platinum [J(PtH) 25 Hz] and weakly coupled to P_{c} . The other, H(7), is coupled only to the phosphorus atom on iron, P_A. The COSY spectrum also shows that H(4) is weakly coupled to H(8). An alternative structure for the reduction product, in which a carbonyl ligand in (1) has been converted into a hydroxycarbene [-C(OH)H] leaving the bridging allene intact, can be effectively ruled out because of the absence of the two vinylic proton resonances in the ¹H n.m.r. spectrum, which for (1) occur at 5.52 and 5.11 p.p.m. Also, such a hydroxycarbene group might be expected to be very unstable.

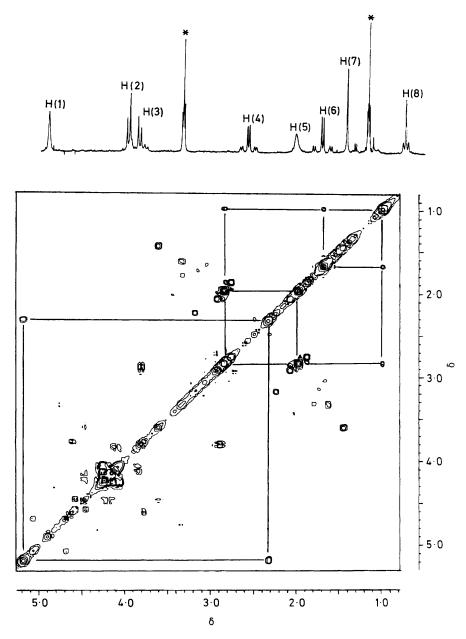


Figure. Part of the 400-MHz ${}^{1}H-{}^{3}P$ n.m.r. spectrum and ${}^{1}H-{}^{1}H$ COSY spectrum (with ${}^{3}P$ decoupling) of compound (2b), recorded in C₆D₆. The peaks marked with an asterisk are due to tetrahydrofuran

The ³¹P-{¹H} n.m.r. spectra of compounds (**2a**) and (**2b**) are very similar, suggesting closely related structures. In (**2b**), the olefin function probably makes a π interaction with the iron atom in order to raise the electron count to eighteen. The i.r. spectrum (CH₂Cl₂ solution) supports this in that it shows only two bands attributable to terminal v(CO). The organic ligand in (**2b**) can therefore be regarded as a three-electron donor to iron and a one-electron donor to platinum.

Other, related complexes, viz. $[(OC)_3Fe(\mu-dppm)(\mu-CO)-Pt(PPh_3)]$, $[(OC)_2Fe(\mu-dppm)(\mu-CO)Pt(PPh_3)]$, $[(OC)_2Fe(\mu-dppm)\{\mu-\sigma:\eta^3-C(O)C_2H_2\}Pt(PPh_3)]$, and $[(OC)_3Fe(\mu-dppm)\{\mu-C(O)CH_2C(=CH_2)\}Pt(PPh_3)]$, do not react cleanly with LiBHEt₃ to give new heterobimetallic complexes. Compound (1) therefore, appears to be a special case, possibly because of the availability of the vinylic function to take up the vacant co-ordination site on iron.

Experimental

General methods were as previously described in recent papers from this laboratory.⁵

Preparation of $[(OC)_2Fe(\mu-dppm){\mu-\sigma: η^3-CH(OH)C-(=CH_2)CH_2}Pt(PPh_3)]$ (2b).—An excess of LiBHEt₃ [0.5 mmol in thf (0.5 cm³)] was added to a solution/suspension of $[(OC)_3Fe(\mu-dppm){\mu-C(=CH_2)CH_2}Pt(PPh_3)]$ (0.1 g, 0.1 mmol) in thf (4 cm³). All the solid dissolved to give an orange solution. This was reduced in volume to *ca*. 1.5 cm³ and MeOH (2 cm³) was added. The resultant yellow-brown solution was refrigerated (-20 °C) for *ca*. 16 h to give the desired product, as bright yellow microcrystals. Yield 0.07 g (70%), v(CO) (in CH₂Cl₂) at 1 942s and 1 880m cm⁻¹. N.m.r. (C₆D₆): ¹H, δ 5.18 [s, 1 H, H(1)], 4.25 [AB, 1 H, H(2) or H(3), J(HH) 14], 4.13 [AB, 1 H, H(2) or H(3), J(HH) 14, J(PtH) 60], 2.86 [d of d of d, 1 H,

H(4) or H(6), J(HH) 10, J(P_BH) 15, J(P_CH) 7, J(PtH) 65], 2.30 [s, br, 1 H, H(5)], 1.99 [d of d of d, 1 H, H(4) or H(6), J(HH) 10, J(P_BH) 10, J(P_CH) 10, J(PtH) 78], 1.71 [d, 1 H, H(7) or H(8), J(P_AH) 5], and 1.05 [d, 1 H, H(7) or H(8), J(P_CH) 2, J(PtH) 25]; ³¹P-{¹H}, δ 63.4 [d of d, P_A, J(P_AP_B) 115, J(P_AP_C) 37, J(PtP_A) 88], 21.4 [d, P_C, J(P_AP_C) 37, J(PtP_C) 2 570], and 3.3 [d, P_B, J(P_AP_B) 115, J(PtP_B) 2 700 Hz] (Found: C, 56.85; H, 4.5. C₄₉H₄₃FeO₃P₃Pt requires C, 57.5; H, 4.25%). ³¹P-{¹H} N.m.r. data for (**2a**): δ 71.9 [d of d, P_A, J(P_AP_B) 137,

³¹P-{¹H} N.m.r. data for (**2a**): δ 71.9 [d of d, P_A, $J(P_AP_B)$ 137, $J(P_AP_C)$ 37], 20.1 [d, P_C, $J(P_AP_C)$ 37, $J(PtP_C)$ 2 251], and 8.6 [d, P_B, $J(P_AP_B)$ 137, $J(PtP_B)$ 2 544 Hz].

Acknowledgements

We thank the S.E.R.C. for support and Johnson Matthey Ltd. for the generous loan of platinum metal salts.

References

- 1 X. L. R. Fontaine, G. B. Jacobsen, B. L. Shaw, and M. Thornton-Pett, J. Chem. Soc., Chem. Commun., 1987, 662.
- 2 X. L. R. Fontaine, G. B. Jacobsen, B. L. Shaw, and M. Thornton-Pett, J. Chem. Soc., Dalton Trans., 1988, 1185.
- 3 C. P. Casey and S. M. Newmann, J. Am. Chem. Soc., 1976, 98, 5395.
- 4 S. R. Winter, G. W. Cornett, and E. A. Thompson, J. Organomet. Chem., 1977, 133, 339.
- 5 S. W. Carr, B. L. Shaw, and M. Thornton-Pett, J. Chem. Soc., Dalton Trans., 1985, 2131.

Received 1st October 1987; Paper 7/1760