Chemistry of Polynuclear Metal Complexes with Bridging Carbene or Carbyne Ligands. Part 78. ${ }^{1}$ Reactions of $\left[\mathrm{MoFe}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{6}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ with Alkynes; Crystal Structures of [$\mathrm{MoFe}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}(\mathrm{O}) \mathrm{C}(\mathrm{Et}) \mathrm{C}(\mathrm{Et})\right\}-$ $\left.(\mu-\mathrm{CO})(\mathrm{CO})_{4}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ and $\left[\mathrm{MoFe}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}(\mathrm{Me}) \mathrm{C}[\mathrm{C}(\mathrm{O}) \mathrm{Me}]\right\}(\mathrm{CO})_{5}{ }^{-}\right.$ $\left.\left(\eta-C_{5} H_{5}\right)\right]^{*}$

M. Esther Garcia, John C. Jeffery, Paul Sherwood, and F. Gordon A. Stone Department of Inorganic Chemistry, The University, Bristol BS8 1TS

Abstract

The dimetal compound $\left[\mathrm{MoFe}(\mu-\mathrm{CR})(\mathrm{CO})_{6}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)$ reacts with the alkynes $\mathrm{HC} \equiv \mathrm{CH}$ and $\mathrm{HC} \equiv \mathrm{CEt}$ at room temperature in light petroleum to afford the complexes [$\mathrm{MoFe}\{\mu-\mathrm{C}(\mathrm{R})-$ $\left.\left.\mathrm{CHC}\left(\mathrm{R}^{1}\right)\right\}(\mathrm{CO})_{5}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ and $\left[\mathrm{MoFe}\left\{\mu-\mathrm{C}(\mathrm{R}) \mathrm{CHC}\left(\mathrm{R}^{1}\right) \mathrm{C}(\mathrm{O})\right\}(\mu-\mathrm{CO})(\mathrm{CO})_{4}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]\left(\mathrm{R}^{1}=\mathrm{H}\right.$ or Et), and with $\mathrm{MeC} \equiv \mathrm{CEt}$ to yield a mixture of $\left[\mathrm{MoFe}\left\{\mu-\mathrm{C}(\mathrm{R}) \mathrm{C}\left(\mathrm{R}^{1}\right) \mathrm{C}\left(\mathrm{R}^{2}\right)\right\}(\mathrm{CO})_{5}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ (two isomers: $\left.R^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{Et} ; \mathrm{R}^{1}=\mathrm{Et}, \mathrm{R}^{2}=\mathrm{Me}\right)$ and $\left[\mathrm{MoFe}\left\{\mu-\mathrm{C}(\mathrm{R}) \mathrm{C}(\mathrm{O}) \mathrm{C}\left(\mathrm{R}^{1}\right) \mathrm{C}\left(\mathrm{R}^{2}\right)\right\}(\mu-\mathrm{CO})(\mathrm{CO})_{4}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ (two isomers: $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{Et} ; \mathrm{R}^{1}=\mathrm{Et}, \mathrm{R}^{2}=\mathrm{Me}$). Hex-3-yne and the molybdenum-iron compound react to give a mixture of $\left[\mathrm{MoFe}\{\mu-\mathrm{C}(\mathrm{R}) \mathrm{C}(\mathrm{Et}) \mathrm{C}(\mathrm{Et})\}(\mathrm{CO})_{5}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ and $[\mathrm{MoFe}\{\mu-\mathrm{C}(\mathrm{R}) \mathrm{C}(\mathrm{O}) \mathrm{C}-$ (Et) $\left.\mathrm{C}(\mathrm{Et})\}(\mu-\mathrm{CO})(\mathrm{CO})_{4}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$. Treatment of the former species with CO affords the acyl complex $\left[\mathrm{MoFe}\{\mu-\mathrm{C}(\mathrm{R}) \mathrm{C}(\mathrm{Et}) \mathrm{C}(\mathrm{Et}) \mathrm{C}(\mathrm{O})\}(\mu-\mathrm{CO})(\mathrm{CO})_{4}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right.$], a process which is readily reversed in the presence of a stream of nitrogen. The structure of [MoFe $\{\mu-\mathrm{C}(\mathrm{R}) \mathrm{C}(\mathrm{O}) \mathrm{C}(\mathrm{Et}) \mathrm{C}(\mathrm{Et})\}(\mu-\mathrm{CO})(\mathrm{CO})_{4}(\eta-$ $\mathrm{C}_{5} \mathrm{H}_{5}$)] has been established by an X-ray diffraction study, which revealed that the asymmetric unit contained two crystallographically independent molecules of similar geometry. The $\mathrm{Mo}(1)-\mathrm{Fe}(1)$ bond $[2.694(1) \AA$] is spanned by the $C(R) C(O) C(E t) C(E t)$ group in such a manner that the terminal carbon atoms of the chain are each bonded to the molybdenum and the iron atoms but in addition the molybdenum is ligated by the carbon atom of the CEt group adjacent to the ketonic moiety. The iron atom carries three terminal CO ligands, and the molybdenum atom one such group and the $\mathrm{C}_{5} \mathrm{H}_{5}$ ring. However, another CO group attached to the molybdenum semi-bridges the Mo-Fe bond [Mo (1)-$\mathrm{C}(9)-\mathrm{O}$ (9) $\left.164.2(8)^{\circ}\right]$. Reactions between $\left[\mathrm{MoFe}(\mu-\mathrm{CR})(\mathrm{CO})_{6}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ and the alkynes $\mathrm{MeC}=\mathrm{CEt}$ and $E t C=C E t$ in large excess (ca. 1:60) afforded, in addition to the products mentioned above, the species $\left[\operatorname{MoFe}\left\{\mu-\mathrm{C}(\mathrm{R}) \mathrm{C}\left(\mathrm{R}^{1}\right) \mathrm{C}\left(\mathrm{R}^{2}\right)\right\}(\mathrm{CO})_{5}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]\left[\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{C}(\mathrm{O}) \mathrm{Me}\right.$ and $\mathrm{R}^{1}=\mathrm{C}(\mathrm{O}) \mathrm{Me}$, $R^{2}=M e$ from $M e C \equiv C E t$, and $R^{1}=E t, R^{2}=C(O) M e$ and $R^{1}=C(O) M e, R^{2}=E t$ from $\left.E t C \equiv C E t\right]$. These products arose from the presence of $\mathrm{MeC} \equiv \mathrm{CC}(\mathrm{O}) \mathrm{Me}$ and $\mathrm{EtC} \equiv \mathrm{CC}(\mathrm{O}) \mathrm{Me}$ as impurities in commercial samples of pent-2-yne and hex-3-yne. The structure of $\left[\mathrm{MoFe}\{\mu-\mathrm{C}(\mathrm{R}) \mathrm{C}(\mathrm{Me}) \mathrm{C}[\mathrm{C}(\mathrm{O}) \mathrm{Me}]\}(\mathrm{CO})_{5}{ }^{-}\right.$ $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$] was established by X-ray diffraction. The Mo-Fe bond [2.722(1) \AA] is bridged by the $\mathrm{C}(\mathrm{R}) \mathrm{C}(\mathrm{Me}) \mathrm{C}\{\mathrm{C}(\mathrm{O}) \mathrm{Me}\}$ fragment. The iron atom is ligated by three terminal CO groups, and the molybdenum atom by two such groups and the $\eta-\mathrm{C}_{5} \mathrm{H}_{5}$ ring.

In the preceding paper ${ }^{1}$ we described reactions between but-2-yne and the dimetal compounds $\left[\mathrm{MoFe}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\right.$ $\left.(\mathrm{CO})_{5} \mathrm{~L}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]\left[\mathrm{L}=\mathrm{CO}(\mathbf{1 a})\right.$ or $\left.\mathrm{PMe}_{3}(\mathbf{1 b})\right]$ which afforded the complexes $\left[\mathrm{MoFe}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}(\mathrm{CHMe}) \mathrm{CH}_{2}\right\}(\mathrm{CO})_{5}-\right.$ $\left.\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ (2) (two isomers) and $\left[\mathrm{MoFe}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\right.\right.$ $\left.\left.\mathrm{C}(\mathrm{CHMe}) \mathrm{CH}_{2} \mathrm{C}(\mathrm{O})\right\}(\mu-\mathrm{CO})(\mathrm{CO})_{3}\left(\mathrm{PMe}_{3}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ (3), respectively. These products had unusual structures. Although as expected, coupling occurred between the p tolylmethylidyne groups in (1) and the alkyne, there was also the novel feature of hydrogen-atom migration between carbon centres. A similar transformation of a methyl group takes place in the room-temperature reaction between

[^0]$\mathrm{MeC} \equiv \mathrm{CMe}$ and the dimetal compound $\left[\mathrm{MoW}\left(\equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\right.$ -$\left.(\mathrm{CO})_{7}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$, when the complex $\left[\mathrm{MoW}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4}-\right.\right.\right.$ $\left.\left.\mathrm{Me}-4) \mathrm{C}\left(\mathrm{CH}_{2}\right) \mathrm{CH}(\mathrm{Me}) \mathrm{C}(\mathrm{O})\right\}(\mathrm{CO})_{6}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ (4) is formed. ${ }^{2}$ Activation of a methyl substituent of $\mathrm{MeC} \equiv \mathrm{CMe}$ in this manner at a dimetal centre is as far as we are aware without precedent. Moreover, the synthesis of (2) further illustrates the extraordinary variety of products which may be obtained by treating the heteronuclear compound (1a) with various substrate molecules, ${ }^{3}$ in accord with the idea that mixed-metal cluster compounds are more reactive than their homonuclear counterparts.

In this paper we describe the results of studies on reactions of compound (1a) with the alkynes $\mathrm{HC} \equiv \mathrm{CH}$ and $\mathrm{RC} \equiv \mathrm{CEt}(\mathrm{R}=\mathrm{H}$, Me , or Et), an investigation prompted by the unusual nature of the product (2) obtained with $\mathrm{MeC} \equiv \mathrm{CMe}$. In particular, it was thought that $\mathrm{RC} \equiv \mathrm{CEt}$ containing alkyl groups might yield complexes related to the products (2)-(4). In practice, hydrogen-migration processes did not occur. However, new molybdenum-iron compounds were isolated and characterised, some of which have previously received brief mention. ${ }^{4}$

L
(1a) CO
(1b) PMe_{3}

(2a)

(2b)

(3)

(4)

Table 1. Analytical ${ }^{a}$ and physical data for the molybdenum-iron complexes

				Analysis (\%)	
Compound ${ }^{\text {b }}$	Colour	Yield $(\%)$	$\tilde{v}_{\text {co }}(\text { max. })^{c} / \mathrm{cm}^{-1}$	C	H
(5a) $\left[\mathrm{MoFe}\{\mu-\mathrm{C}(\mathrm{R}) \mathrm{CHCH}\}(\mathrm{CO})_{5}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$	Red	20	2052s, 1991 s ,br, 1968w, 1941w	$\begin{gathered} 49.3 \\ (49.4) \end{gathered}$	$\begin{gathered} 3.1 \\ (2.9) \end{gathered}$
(5b) $\left[\mathrm{MoFe}\{\mu-\mathrm{C}(\mathrm{R}) \mathrm{CHC}(\mathrm{Et})\}(\mathrm{CO})_{5}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$	Red	30	2049s, $1987 \mathrm{~s}, 1963 \mathrm{w}, 1939 \mathrm{w}$	$\begin{gathered} 50.7 \\ (51.4) \end{gathered}$	$\begin{gathered} 3.8 \\ (3.5) \end{gathered}$
(5c) $\left.\left[\mathrm{MoFe}\{\mu-\mathrm{C}(\mathrm{R}) \mathrm{C}(\mathrm{Et}) \mathrm{C}(\mathrm{Me})\}(\mathrm{CO})_{5}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]^{d}\right\}$ (5d) $\left.\left[\mathrm{MoFe}\{\mu-\mathrm{C}(\mathrm{R}) \mathrm{C}(\mathrm{Me}) \mathrm{C}(\mathrm{Et})\}(\mathrm{CO})_{5}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]^{d}\right\}$	Red	50	2046s, 1 988s, 1960 w, 1937 w	$\begin{gathered} 52.0 \\ (52.3) \end{gathered}$	$\begin{gathered} 3.8 \\ (3.8) \end{gathered}$
(5e) $\left[\mathrm{MoFe}\{\mu-\mathrm{C}(\mathrm{R}) \mathrm{C}(\mathrm{Et}) \mathrm{C}(\mathrm{Et})\}(\mathrm{CO})_{5}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$	Red	50	2048s, 1998 s , 1958w, 1937 w	$\begin{gathered} 53.1 \\ (53.2) \end{gathered}$	$\begin{gathered} 4.3 \\ (4.1) \end{gathered}$
(5f) $\left[\mathrm{MoFe}\{\mu-\mathrm{C}(\mathrm{R}) \mathrm{C}[\mathrm{C}(\mathrm{O}) \mathrm{Me}] \mathrm{C}(\mathrm{Me})\}(\mathrm{CO})_{5}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$	Red	30	${ }^{e} 2049 \mathrm{~s}, 1991 \mathrm{~s}, 1986 \mathrm{~s}, 1938 \mathrm{w}$, $1697 \mathrm{vw}(\mathrm{br}), 1669 \mathrm{vw}(\mathrm{br})$	$\begin{gathered} 50.8 \\ (51.0) \end{gathered}$	$\begin{gathered} 3.5 \\ (3.4) \end{gathered}$
(5g) $\left[\mathrm{MoFe}\{\mu-\mathrm{C}(\mathrm{R}) \mathrm{C}(\mathrm{Me}) \mathrm{C}[\mathrm{C}(\mathrm{O}) \mathrm{Me}]\}(\mathrm{CO})_{5}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$	Red	20	$\begin{aligned} & 2054 \mathrm{~s}, 1996 \mathrm{~s}, 1970 \mathrm{~m}, 1942 \mathrm{w}, \\ & 1644 \mathrm{w}(\mathrm{br}) \end{aligned}$	$\begin{gathered} 51.1 \\ (51.0) \end{gathered}$	$\begin{gathered} 3.7 \\ (3.4) \end{gathered}$
(5h) $\left[\mathrm{MoFe}\{\mu-\mathrm{C}(\mathrm{R}) \mathrm{C}[\mathrm{C}(\mathrm{O}) \mathrm{Me}] \mathrm{C}(\mathrm{Et})\}(\mathrm{CO})_{5}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$	Red	20	$\begin{gathered} { }^{e} 2048 \mathrm{~s}, 1992 \mathrm{~s}(\mathrm{br}), 1937 \mathrm{w}, \\ 1696 \mathrm{vw}(\mathrm{br}), 1674 \mathrm{vw}(\mathrm{br}) \end{gathered}$	$\begin{gathered} 51.1 \\ (51.8) \end{gathered}$	$\begin{gathered} 3.9 \\ (3.6) \end{gathered}$
(5i) $\left[\mathrm{MoFe}\{\mu-\mathrm{C}(\mathrm{R}) \mathrm{C}(\mathrm{Et}) \mathrm{C}[\mathrm{C}(\mathrm{O}) \mathrm{Me}]\}(\mathrm{CO})_{5}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$	Red	35	$\begin{aligned} & 2055 \mathrm{~s}, 1996 \mathrm{~s}, 1971 \mathrm{w}, 1943 \mathrm{w}, \\ & 1645 \mathrm{vw}(\mathrm{br}) \end{aligned}$	$\begin{gathered} 51.1 \\ (51.8) \end{gathered}$	$\begin{gathered} 3.7 \\ (3.6) \end{gathered}$
(6a) $\left[\mathrm{MoFe}\{\mu-\mathrm{C}(\mathrm{R}) \mathrm{CHCHC}(\mathrm{O})\}(\mu-\mathrm{CO})(\mathrm{CO})_{4}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$	Yellow	75	$\begin{aligned} & { }^{e} 2059 \mathrm{~s}, 2005 \mathrm{~s}(\mathrm{br}), 1841 \mathrm{w}(\mathrm{br}) \\ & \quad 1610 \mathrm{w}(\mathrm{br}) \end{aligned}$	$\begin{gathered} 48.7 \\ (49.1) \end{gathered}$	$\begin{gathered} 2.8 \\ (2.8) \end{gathered}$
(6b) $\left[\mathrm{MoFe}\{\mu-\mathrm{C}(\mathrm{R}) \mathrm{CHC}(\mathrm{Et}) \mathrm{C}(\mathrm{O})\}(\mu-\mathrm{CO})(\mathrm{CO})_{4}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$	Yelloworange	60	$\begin{gathered} { }^{e} 2058 \mathrm{~s}, 1999 \mathrm{~s}, 1987 \mathrm{~m}(\mathrm{sh}), \\ 1831 \mathrm{w}(\mathrm{br}), 1591 \mathrm{w}(\mathrm{br}) \end{gathered}$	$\begin{gathered} 51.0 \\ (51.1) \end{gathered}$	$\begin{gathered} 3.4 \\ (3.4) \end{gathered}$
(6c) $\left[\mathrm{MoFe}\{\mu-\mathrm{C}(\mathrm{R}) \mathrm{C}(\mathrm{Et}) \mathrm{C}(\mathrm{Et}) \mathrm{C}(\mathrm{O})\}(\mu-\mathrm{CO})(\mathrm{CO})_{4}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$	Yellow	94	$\begin{aligned} & { }^{\mathrm{e}} 2055 \mathrm{~s}, 1999 \mathrm{~s}(\mathrm{br}), 1839 \mathrm{w}(\mathrm{br}), \\ & 1586 \mathrm{~m}(\mathrm{br}) \end{aligned}$	$\begin{gathered} 52.6 \\ (52.7) \end{gathered}$	$\begin{gathered} 4.0 \\ (3.9) \end{gathered}$
(7a) $\left.\left[\mathrm{MoFe}\{\mu-\mathrm{C}(\mathrm{R}) \mathrm{C}(\mathrm{O}) \mathrm{C}(\mathrm{Me}) \mathrm{C}(\mathrm{Et})\}(\mu-\mathrm{CO})(\mathrm{CO})_{4}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]^{d}\right\}$ (7b) $\left.\left[\mathrm{MoFe}\{\mu-\mathrm{C}(\mathrm{R}) \mathrm{C}(\mathrm{O}) \mathrm{C}(\mathrm{Et}) \mathrm{C}(\mathrm{Me})\}(\mu-\mathrm{CO})(\mathrm{CO})_{4}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]^{d}\right\}$	Yellow	40	$\begin{aligned} & { }^{\mathrm{e}} 2056 \mathrm{vs}, 2002 \mathrm{~s}, 1994 \mathrm{~s}, \\ & 1895 \mathrm{w}(\mathrm{br}), 1580 \mathrm{w}(\mathrm{br}) \end{aligned}$	$\begin{gathered} 51.0 \\ (51.8) \end{gathered}$	$\begin{gathered} 3.9 \\ (3.6) \end{gathered}$
(7e) $\left[\mathrm{MoFe}\{\mu-\mathrm{C}(\mathrm{R}) \mathrm{C}(\mathrm{O}) \mathrm{C}(\mathrm{Et}) \mathrm{C}(\mathrm{Et})\}(\mu-\mathrm{CO})(\mathrm{CO})_{4}\left(\mathrm{\eta}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$	Yellow	30	$\begin{aligned} & { }^{e} 2054 \mathrm{~s}, 2001 \mathrm{~s}(\mathrm{br}), 1886 \mathrm{w}(\mathrm{br}) \\ & 1601 \mathrm{w}(\mathrm{br}) \end{aligned}$	$\begin{gathered} 52.6 \\ (52.7) \end{gathered}$	$\begin{gathered} 3.9 \\ (3.9) \end{gathered}$

${ }^{a}$ Calculated values are given in parentheses. ${ }^{b} \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4 .{ }^{c}$ Measured in light petroleum, unless otherwise indicated. ${ }^{d}$ Formed as an inseparable mixture of isomers, see text. ${ }^{e}$ In $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Results and Discussion

Complex (1a) and $\mathrm{HC} \equiv \mathrm{CH}$ in light petroleum react to give a chromatographically separable mixture of the two compounds $\left[\mathrm{MoFe}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{CHCH}\right\}(\mathrm{CO})_{5}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ (5a) and $\left[\mathrm{MoFe}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{CHCHC}(\mathrm{O})\right\}(\mu-\mathrm{CO})(\mathrm{CO})_{4}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ ($6 \mathbf{a}$), characterised by the data given in Tables 1 and 2. The structure of (5a), in which a three-carbon chain spans the $\mathrm{Mo}-\mathrm{Fe}$ bond, is similar to that of $\left[\mathrm{MoFe}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\right.\right.$ $\left.\mathrm{C}(\mathrm{Ph}) \mathrm{C}(\mathrm{Ph})\}(\mathrm{CO})_{5}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ obtained from (1a) and PhC $\equiv \mathrm{CPh} .{ }^{1}$ Moreover, several similar alkyne-alkylidyne
coupling reactions affording $\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}(\mathrm{R}) \mathrm{C}(\mathrm{R})$ ($\mathrm{R}=$ alkyl or aryl) fragments have been observed in reactions between alkynes and dimetal complexes containing $\mathrm{W}-\mathrm{Fe},{ }^{5}$ $\mathrm{W}-\mathrm{Co},{ }^{6.7}$ or $\mathrm{W}-\mathrm{Rh}^{8}$ bonds and p-tolylmethylidyne ligands.

In the reaction between (1a) and $\mathrm{HC} \equiv \mathrm{CH}$ the acyl complex is the major product. However, (5a) and (6a) are readily interconverted. The former in thf (tetrahydrofuran) at room temperature reacts with CO to afford the latter quantitatively. Moreover, when solutions of (6a) at ca. $40^{\circ} \mathrm{C}$ are treated with a stream of nitrogen compound (5a) is formed quantitatively after

Table 2. Hydrogen-1 and carbon-13 n.m.r. data ${ }^{a}$ for the complexes

Compound ${ }^{\text {b }}$	${ }^{1} \mathrm{H}(\delta){ }^{\text {c }}$
(5a)	2.29 (s, $3 \mathrm{H}, \mathrm{Me}-4$), 5.08 (s, $5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}$), 5.74 [d, 1 H , $\mathrm{C}(\mathrm{R}) \mathrm{CHC} H, J(\mathrm{HH}) 3], 7.00[\mathrm{~d}, 1 \mathrm{H}, \mathrm{C}(\mathrm{R}) \mathrm{C} H \mathrm{CH}, J(\mathrm{HH}) 3]$, 7.04, $7.17\left[(\mathrm{AB})_{2} 4 \mathrm{H}_{2}, \mathrm{C}_{6} \mathrm{H}_{4}, J(\mathrm{AB}) 8\right]$
(5b)	1.09 [d, of d, $3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Me}, \mathrm{J}(\mathrm{HH}) 7$ 7, 7], $2.30(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-4)$, 2.40 [d of q, $\left.1 \mathrm{H}, \mathrm{CH}_{2}, J(\mathrm{HH}), 16,7\right], 2.68$ [d, of $\mathrm{q}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{Me}, J(\mathrm{HH}) 16,7\right], 5.00\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 7.02(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH})$, $7.04,7.16\left[(\mathrm{AB})_{2}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}, J(\mathrm{AB}) 8\right]$
(5c)	1.15 [d of d, $3 \mathbf{H}, \mathrm{CH}_{2} \mathrm{Me}, J(\mathrm{HH}) 8,8$], $1.92(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me})$, 2.30 (s, $3 \mathrm{H}, \mathrm{Me}-4$), 2.43 [d of q, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Me}, J(\mathrm{HH}) 15,8$], 2.62 [d of q, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Me}, J(\mathrm{HH}) 15.8$], $5.08\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right)$, $7.06,7.13\left[(\mathrm{AB})_{2}, 4 \mathrm{H}_{2}, \mathrm{C}_{6} \mathrm{H}_{4}, J(\mathrm{AB}) 8\right]$
(5d)	1.22 [d of d, $3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Me}, J(\mathrm{HH}) 8,8$], 2.01 [d of $\mathrm{q}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{Me}, J(\mathrm{HH}) 15,8$], 2.25 [d of q, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Me}, J(\mathrm{HH}) 15$, 8], $2.27(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 2.30(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-4), 5.03\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right)$, 7.04, $7.11\left[(\mathrm{AB})_{2}, 4 \mathrm{H}_{2}, \mathrm{C}_{6} \mathrm{H}_{4}, J(\mathrm{AB}) 8\right]$
(5e)	1.18 [d of d, $6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Me}, J(\mathrm{HH}) 8,8$], 2.08 [d of q, 1 H , $\left.\mathrm{CH}_{2} \mathrm{Me}, J(\mathrm{HH}) 14,8\right], 2.30\left[\mathrm{~d}\right.$ of $\mathrm{q}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Me}, J(\mathrm{HH}) 14$, 8], $2.30(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-4), 2.40$ [d of $\mathrm{q}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Me}, J(\mathrm{HH}) 16$, 8], 2.65 [d of q, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Me}, J(\mathrm{HH}) 16,8\right], 5.04(\mathrm{~s}, 5 \mathrm{H}$, $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right), 7.02,7.08\left[(\mathrm{AB})_{2}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}, J(\mathrm{AB}) 9\right]$
(5f)	2.00 (s, $3 \mathrm{H}, \mathrm{Me}$), 2.30 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}-4$), 2.44 (s, $3 \mathrm{H}, \mathrm{Me}$), 5.04 (s, $5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}$), 6.98, $7.04\left[(\mathrm{AB})_{2}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}, J(\mathrm{AB}) 8\right]$

(5g) $\quad 2.10(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 2.30,2.32(2 \times \mathrm{s}, 6 \mathrm{H}, \mathrm{Me}, \mathrm{Me}-4), 5.12(\mathrm{~s}, 5$ $\left.\mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 7.07\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right)$
(5h) $\quad 1.13\left[\mathrm{~d}\right.$ of d, $\left.3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Me}, J(\mathrm{HH}) 7,7\right], 2.02(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me})$, 2.30 (s, $3 \mathrm{H}, \mathrm{Me}-4$), 2.52 [d of q, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Me}, J(\mathrm{HH}) 15,7\right]$, 2.74 [d of $\left.\mathfrak{q}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Me}, J(\mathrm{HH}) 15,7\right], 5.09\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right)$, 7.04, $7.97\left[(\mathrm{AB})_{2}, 4 \mathrm{H}_{2}, \mathrm{C}_{6} \mathrm{H}_{4}, J(\mathrm{AB}) 8\right]$
(5i) $\quad 1.14\left[\mathrm{~d}\right.$ of d, $\left.3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Me}, J(\mathrm{HH}) 7,7\right], 2.25[\mathrm{~d}$ of $\mathrm{q}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{Me}, J(\mathrm{HH}) 13,7\right], 2.31,2.32(2 \times \mathrm{s}, 6 \mathrm{H}, \mathrm{Me}, \mathrm{Me}-4), 2.45$ [d of $\left.\mathrm{q}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Me}, J(\mathrm{HH}) 13,7\right], 5.17\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 6.95$, $7.06\left[(\mathrm{AB})_{2}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}, J(\mathrm{AB}) 8\right]$
(6a) e $2.33(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-4), 5.03$ [d, $1 \mathrm{H}, \mathrm{C}(\mathrm{H}) \mathrm{C}(\mathrm{O}), J(\mathrm{HH}) 4], 5.18$ (s. $5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}$), $6.18[\mathrm{~d}, 1 \mathrm{H}, \mathrm{C}(\mathrm{R}) \mathrm{CH}, J(\mathrm{HH}) 4], 7.15(\mathrm{~s}, 4 \mathrm{H}$, $\mathrm{C}_{6} \mathrm{H}_{4}$)
(6b) i 1.14 [d of d, $\left.3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Me}, J(\mathrm{HH}) 7,7\right], 2.07$ [d of q, 1 H , $\left.\mathrm{CH}_{2} \mathrm{Me}, J(\mathbf{H H}) 15,7\right], 2.33(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-4), 2.64$ [d of q, 1 H , $\left.\mathrm{C}_{2} \mathrm{Me}, J(\mathrm{HH}) 15,7\right], 5.13\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 6.22(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH})$, 7.11 (s, $4 \mathrm{H}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$)
(6c) $\quad 1.24\left[\mathrm{~d}\right.$ of $\left.\mathrm{d}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Me}, \mathrm{J}(\mathrm{HH}) 7,7\right], 1.41$ [d of d, 3 H , $\left.\mathrm{CH}_{2} \mathrm{Me}, \mathrm{J}(\mathrm{HH}) 7,7\right], 2.14\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH} \mathrm{H}_{2} \mathrm{Me}\right), 2.33(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{Me}-4$), 2.53 [d of q, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Me}, J(\mathrm{HH}) 14,7$], $5.24(\mathrm{~s}, 5 \mathrm{H}$, $\mathrm{C}_{5} \mathrm{H}_{5}$), $6.57\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 7.10\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right)$
(7a) $\quad 1.21\left[\mathrm{~d}\right.$ of d, $\left.3 \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{Me}, J(\mathrm{HH}) 7,7\right], 2.10(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me})$, 2.27 (s, $3 \mathrm{H}, \mathrm{Me}-4$), 2.82 [d of q, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Me}, J(\mathrm{HH}) 13,7$], 3.03 [d of q, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Me}, J(\mathrm{HH}) 13,7\right], 5.10\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right)$, 7.03 (s. $4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}$)
(7b) $\quad 1.29\left[\mathrm{~d}\right.$ of $\left.\mathrm{d}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Me}, J(\mathrm{HH}) 7,7\right], 2.20[\mathrm{~d}$ of $\mathrm{q}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{Me}, J(\mathrm{HH}) 12,7\right], 2.27(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-4), 2.57$ [d of q, 1 H , $\left.\mathrm{CH}_{2} \mathrm{Me}, J(\mathrm{HH}){ }^{2} 2,7\right], 2.77(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 5.09\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right)$, $7.01\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right)$
(7c) e.9 $1.34\left[\mathrm{~d}\right.$ of d, $\left.3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Me}, J(\mathrm{HH}) 7,7\right], 1.41$ [d of d, 3 H , $\left.\mathrm{CH}_{2} \mathrm{Me}, J(\mathrm{HH}) 7,7\right], 2.22$ [d of $\mathrm{q}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Me}, J(\mathrm{HH}) 12$, 7]. $2.31(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-4), 2.53$ [d of $\mathrm{q}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Me}, J(\mathrm{HH}) 12$, 7], $2.80\left[\mathrm{~d}\right.$ of q, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Me}, J(\mathrm{HH}) 13,7\right], 3.14[\mathrm{~d}$ of $\mathrm{q}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{Me}, J(\mathrm{HH}) 13,7\right], 5.20\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 7.00(\mathrm{br} \mathrm{m}, 4 \mathrm{H}$, $\mathrm{C}_{6} \mathrm{H}_{4}$)
${ }^{a}$ Chemical shifts (δ) in p.p.m., coupling constants in Hz . Measurements at room temperature unless otherwise stated. ${ }^{b} \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$. ${ }^{c}$ Measured in CDCl_{3} unless otherwise indicated. ${ }^{d}$ Hydrogen-1 decoupled with chemical shifts positive to high frequency of SiMe_{4}. Measurements in $\mathrm{CD}_{2} \mathrm{Cl}_{2}-$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ unless otherwise indicated. ${ }^{e}$ Measured in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. ${ }^{5}$ Measured in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$-thf. ${ }^{9}$ Data listed are for ($\mathbf{5 c}$) and (5 d). ${ }^{h}$ Measured in CDCl_{3}. ${ }^{i}$ Measurements on CO-saturated solutions. ${ }^{j}$ Measured at $-60^{\circ} \mathrm{C}$.

	R^{\prime}	R^{2}
(7a)	Me	Et
(7b)	Et	Me
(7c)	Et	Et

$c a .2 \mathrm{~h}$. These results are in principle similar to those recently obtained in a study ${ }^{7}$ of the reaction between [$\mathrm{WCo}\left(\equiv \mathrm{CC}_{6} \mathrm{H}_{4}{ }^{-}\right.$ $\left.\mathrm{Me}-4)(\mathrm{CO})_{8}\right]$ and $\mathrm{MeC} \equiv \mathrm{CSiMe}_{3}$. A mixture of $[\mathrm{WCo}\{\mu-$ $\left.\left.\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}(\mathrm{Me}) \mathrm{C}\left(\mathrm{SiMe}_{3}\right)\right\}(\mathrm{CO})_{7}\right]$ and $\quad[\mathrm{WCo}\{\mu-$ $\left.\left.\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}(\mathrm{Me}) \mathrm{C}\left(\mathrm{SiMe}_{3}\right) \mathrm{C}(\mathrm{O})\right\}(\mathrm{CO})_{7}\right]$ is formed. Exposure of the latter product to vacuum yields the former. This decarbonylation process is readily reversed with CO. However, there is a fundamental difference between the cobalt-tungsten system and those described herein. Carbonylation of the complexes (5) to yield (6) results in the $\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right.$ 4) $C\left(R^{1}\right) C\left(R^{2}\right)$ fragment changing from η^{3} co-ordination to iron to η^{3} co-ordination to molybdenum. In the formation of $\left[\mathrm{WCo}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}(\mathrm{Me}) \mathrm{C}\left(\mathrm{SiMe}_{3}\right) \mathrm{C}(\mathrm{O})\right\}(\mathrm{CO})_{7}\right]$ by carbonylation of $\left[\mathrm{WCo}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}(\mathrm{Me}) \mathrm{C}\left(\mathrm{SiMe}_{3}\right)\right\}(\mathrm{CO})_{7}\right]$ the $\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}(\mathrm{Me}) \mathrm{C}\left(\mathrm{SiMe}_{3}\right)$ fragment remains η^{3} coordinated to the $\mathrm{W}(\mathrm{CO})_{4}$ group.
The reaction between (1a) and $\mathrm{HC} \equiv \mathrm{CEt}$ is similar to that with ethyne in affording two products, viz. [$\mathrm{MoFe}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\right.$ -$\left.\mathrm{CHC}(\mathrm{Et})\}(\mathrm{CO})_{5}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right] \quad$ (5b) and $\quad\left[\mathrm{MoFe}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4}-\right.\right.\right.$ $\left.\mathrm{Me}-4) \mathrm{CHC}(\mathrm{Et}) \mathrm{C}(\mathrm{O})\}(\mu-\mathrm{CO})(\mathrm{CO})_{4}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](6 \mathrm{~b})$, characterised in the usual manner (Tables 1 and 2). If the reaction between (1a) and $\mathrm{HC} \equiv \mathrm{CEt}$ is carried out at $c a .-40^{\circ} \mathrm{C}$ compound ($\mathbf{6 b}$) is the sole product, formed in quantitative yield. Solutions of ($\mathbf{6 b}$) are, however, readily converted into ($\mathbf{5 b}$) when treated with a stream of nitrogen gas, a process that is rapidly reversed with CO.
An interesting feature of the reaction between (1a) and $\mathrm{HC} \equiv \mathrm{CEt}$ was the absence of isomers of $(\mathbf{5 b})$ and ($\mathbf{6 b}$) containing the fragment $\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}(\mathrm{Et}) \mathrm{CH}$. Reactions of unsymmetrically substituted alkynes $\mathrm{R}^{1} \mathrm{C} \equiv \mathrm{CR}^{2}$ with dimetal compounds containing p-tolylmethylidyne ligands generally afford isomeric mixtures of products containing either $\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right.$ -

	R^{1}	R^{2}
(6a)	H	H
(6b)	H	$E t$
(6c)	$E t$	$E t$

(8)
4) $\mathrm{C}\left(\mathrm{R}^{1}\right) \mathrm{C}\left(\mathrm{R}^{2}\right)$ or $\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}\left(\mathrm{R}^{2}\right) \mathrm{C}\left(\mathrm{R}^{1}\right)$ groups. ${ }^{6,7,9}$ However, the reaction between $\mathrm{HC} \equiv \mathrm{CPh}$ and $\left[\mathrm{WRh}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4}-\right.\right.$ $\left.\mathrm{Me}-4)(\mathrm{CO})_{3}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\eta^{5}-\mathrm{C}_{9} \mathrm{H}_{7}\right)\right]\left(\mathrm{C}_{9} \mathrm{H}_{7}=\right.$ indenyl) yields a single product $\left[\mathrm{WRh}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{CHC}(\mathrm{Ph})\right\}(\mathrm{CO})_{2}(\eta-\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\eta^{5}-\mathrm{C}_{9} \mathrm{H}_{7}\right)\right]$ having the CH group in the central position in the three-carbon chain, ${ }^{8}$ as found with ($\mathbf{5 b}$) and ($\mathbf{6 b}$). It is possible that formation of a single isomer in reactions with alkynes $\mathrm{HC} \equiv \mathrm{CR}(\mathrm{R}=\mathrm{Et}$ or Ph$)$ is a consequence of a steric effect in one of the several steps in the pathway leading to the products. ${ }^{1}$

In the compounds ($\mathbf{6 a}$) and ($\mathbf{6 b}$) the presence of a semibridging or bridging carbonyl ligand and an acyl group is clearly revealed by the spectroscopic data. In the i.r. spectra bands for the μ-CO ligand are seen at 1841 (6a) and $1831 \mathrm{~cm}^{-1}$ ($\mathbf{6 b}$), with those for the $\mathrm{C}=\mathrm{O}$ group at 1610 (6a) and $1591 \mathrm{~cm}^{-1}$ (6b). In the ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectra (Table 2) resonances at δ 239.3 (6a) and 242.3 p.p.m. (6b) are diagnostic for μ-CO ligands. Assignment of the signals for the acyl carbonyl group is more difficult. In the ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum of each compound there are two peaks at ca. $\delta 226$ p.p.m., one of which must be due to the $\mathrm{C}=\mathrm{O}$ group and the other to the terminal CO ligand coordinated to the molybdenum atom. In each spectrum the $\mathrm{Fe}(\mathrm{CO})_{3}$ groups show three resonances. Evidently in these compounds CO site exchange of the terminal and bridging carbonyl ligands does not occur at room temperature on the n.m.r. time-scale.

The reaction between $\mathrm{MeC} \equiv \mathrm{CEt}$ and (1a) was next investigated. When the reactants are taken in approximately equivalent amounts in light petroleum at room temperature a mixture of the compounds $\left[\mathrm{MoFe}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}\left(\mathrm{R}^{1}\right) \mathrm{C}\right.\right.$ -$\left.\left.\left(\mathbf{R}^{2}\right)\right\}(\mathrm{CO})_{5}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right] \quad\left[(\mathbf{5 c}) ; \quad \mathbf{R}^{1}=\mathrm{Et}, \quad \mathbf{R}^{2}=\mathrm{Me} ; \quad(\mathbf{5 d}) ;\right.$ $\left.\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{Et}\right]$ and $\left[\mathrm{MoFe}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}(\mathrm{O}) \mathrm{C}\left(\mathrm{R}^{1}\right)\right.\right.$ -

Table 3. Selected internuclear separations (\AA) and angles $\left({ }^{\circ}\right)$ for $\left[\mathrm{MoFe}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}(\mathrm{O}) \mathrm{C}(\mathrm{Et}) \mathrm{C}(\mathrm{Et})\right\}(\mu-\mathrm{CO})(\mathrm{CO})_{4}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](7 \mathrm{c})(\mathrm{one}$ of two independent molecules) with estimated standard deviations in parentheses

$\mathrm{Mo}(1)-\mathrm{Fe}(1)$	$2.694(1)$
$\mathrm{Mo}(1)-\mathrm{C}(6)$	$2.39(1)$
$\mathrm{Fe}(1)-\mathrm{C}(1)$	$2.01(1)$
$\mathrm{Fe}(1)-\mathrm{C}(12)$	$1.77(1)$
$\mathrm{C}(2)-\mathrm{O}(2)$	$1.26(1)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.53(1)$
$\mathrm{C}(11)-\mathrm{O}(11)$	$1.14(1)$
$\mathrm{Fe}(1)-\mathrm{Mo}(1)-\mathrm{C}(1)$	$46.8(2)$
$\mathrm{C}(1)-\mathrm{Mo}(1)-\mathrm{C}(6)$	$68.3(3)$
$\mathrm{C}(9)-\mathrm{Mo}(1)-\mathrm{C}(10)$	$80.0(4)$
$\mathrm{C}(6)-\mathrm{Mo}(1)-\mathrm{X}$	143
$\mathrm{Mo}(1)-\mathrm{Fe}(1)-\mathrm{C}(6)$	$59.1(2)$
$\mathrm{C}(11)-\mathrm{Fe}(1)-\mathrm{C}(12)$	$100.8(4)$
$\mathrm{Mo}(1)-\mathrm{C}(1)-\mathrm{Fe}(1)$	$78.5(3)$
$\mathrm{Fe}(1)-\mathrm{C}(1)-\mathrm{C}(21)$	$122.8(5)$
$\mathrm{C}(5)-\mathrm{C}(2)-\mathrm{O}(2)$	$122.4(7)$
$\mathrm{C}(2)-\mathrm{C}(5)-\mathrm{C}(6)$	$113.7(6)$
$\mathrm{Mo}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	$130.0(5)$
$\mathrm{Mo}(1)-\mathrm{C}(9)-\mathrm{O}(9)$	$164.2(8)$
$\mathrm{Fe}(1)-\mathrm{C}(13)-\mathrm{O}(13)$	$174.8(9)$

$\mathrm{Mo}(1)-\mathrm{C}(1)$	$2.24(1)$
$\mathrm{Mo}(1)-\mathrm{C}(9)$	$2.02(1)$
$\mathrm{Fe}(1)-\mathrm{C}(6)$	$1.98(1)$
$\mathrm{Fe}(1)-\mathrm{C}(13)$	$1.80(1)$
$\mathrm{C}(2)-\mathrm{C}(5)$	$1.51(1)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.51(1)$
$\mathrm{C}(12)-\mathrm{O}(12)$	$1.12(1)$
$\mathrm{Fe}(1)-\mathrm{Mo}(1)-\mathrm{C}(5)$	$68.0(2)$
$\mathrm{C}(5)-\mathrm{Mo}(1)-\mathrm{C}(6)$	$33.3(2)$
$\mathrm{Fe}(1)-\mathrm{Mo}(1)-\mathrm{X}^{*}$	161
$\mathrm{C}(9)-\mathrm{Mo}(1)-\mathrm{X}$	114
$\mathrm{C}(1)-\mathrm{Fe}(1)-\mathrm{C}(6)$	$81.5(3)$
$\mathrm{Mo}(1)-\mathrm{Fe}(1)-\mathrm{C}(13)$	$116.4(3)$
$\mathrm{Mo}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$85.7(4)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(21)$	$117.6(6)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$113.8(7)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$128.2(7)$
$\mathrm{Fe}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	$123.8(6)$
$\mathrm{Mo}(1)-\mathrm{C}(10)-\mathrm{O}(10)$	$177.1(7)$

$\mathrm{Mo}(1) \cdots \mathrm{C}(2)$	2.59
$\mathrm{Mo}(1)-\mathrm{C}(10)$	$2.02(1)$
$\mathrm{Fe}(1)-\mathrm{C}(9)$	2.55
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.48(1)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.50(1)$
$\mathrm{C}(9)-\mathrm{O}(9)$	$1.13(1)$
$\mathrm{C}(13)-\mathrm{O}(13)$	$1.13(1)$
$\mathrm{C}(1)-\mathrm{Mo}(1)-\mathrm{C}(5)$	$62.5(3)$
$\mathrm{Fe}(1)-\mathrm{Mo}(1)-\mathrm{C}(9)$	$63.5(3)$
$\mathrm{C}(1)-\mathrm{Mo}(1)-\mathrm{X}$	115
$\mathrm{C}(10)-\mathrm{Mo}(1)-\mathrm{X}$	110
$\mathrm{Mo}(1)-\mathrm{Fe}(1)-\mathrm{C}(11)$	$110.1(3)$
$\mathrm{C}(11)-\mathrm{Fe}(1)-\mathrm{C}(13)$	$94.6(4)$
$\mathrm{Fe}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$111.7(5)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(2)$	$127.7(7)$
$\mathrm{Mo}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	$124.7(5)$
$\mathrm{Mo}(1)-\mathrm{C}(6)-\mathrm{Fe}(1)$	$75.4(2)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$118.4(7)$
$\mathrm{Fe}(1)-\mathrm{C}(11)-\mathrm{O}(11)$	$175.5(9)$

$\mathrm{Mo}(1)-\mathrm{C}(5)$	$2.44(1)$
$\mathrm{Mo}(1)-\mathrm{X}^{*}$	1.98
$\mathrm{Fe}(1)-\mathrm{C}(11)$	$1.80(1)$
$\mathrm{C}(1)-\mathrm{C}(21)$	$1.51(1)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.38(1)$
$\mathrm{C}(10)-\mathrm{O}(10)$	$1.14(1)$
$\mathrm{Fe}(1)-\mathrm{Mo}(1)-\mathrm{C}(6)$	$45.4(2)$
$\mathrm{Fe}(1)-\mathrm{Mo}(1)-\mathrm{C}(10)$	$88.1(2)$
$\mathrm{C}(5)-\mathrm{Mo}(1)-\mathrm{X}$	112
$\mathrm{Mo}(1)-\mathrm{Fe}(1)-\mathrm{C}(1)$	$54.7(2)$
$\mathrm{Mo}(1)-\mathrm{Fe}(1)-\mathrm{C}(12)$	$134.8(3)$
$\mathrm{C}(12)-\mathrm{Fe}(1)-\mathrm{C}(13)$	$92.4(4)$
$\mathrm{Mo}(1)-\mathrm{C}(1)-\mathrm{C}(21)$	$130.6(5)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(5)$	$109.6(6)$
$\mathrm{C}(2)-\mathrm{C}(5)-\mathrm{C}(4)$	$117.7(6)$
$\mathrm{Fe}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$116.3(6)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$111.9(8)$
$\mathrm{Fe}(1)-\mathrm{C}(12)-\mathrm{O}(12)$	$178.9(9)$

Figure 1. The molecular structure of $\left[\mathrm{MoFe}_{4}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}(\mathrm{O}) \mathrm{C}\right.\right.$ $\left.(\mathrm{Et}) \mathrm{C}(\mathrm{Et})\}(\mu-\mathrm{CO})(\mathrm{CO})_{4}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ (7c), showing the crystallographic numbering scheme for one of the two independent molecules
$\left.\left.\mathrm{C}\left(\mathrm{R}^{2}\right)\right\}(\mu-\mathrm{CO})(\mathrm{CO})_{4}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]\left[(7 \mathrm{a}) ; \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{Et} ;(7 \mathrm{~b}) ;\right.$ $\left.R^{1}=E t, R^{2}=M e\right]$ is produced. The isomers (5c) and (5d) are formed in a ratio of $c a .1: 1$, with (7a) and (7b) produced in a ratio of $c a .1: 2$, based on peak intensities observed in the n.m.r. spectra. It was not possible to separate (5c) from (5d), nor (7a) from (7b). Hence the data for these species given in Tables 1 and 2 relate to the mixtures. The various assignments are in agreement with the structures shown. Moreover, those made for (7a) and (7b) are substantiated by an X-ray crystallographic study on a related complex (7c), described below.

The red isomeric mixture of ($\mathbf{5 c}$) and ($\mathbf{5 d}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ reacts rapidly with CO to afford a labile yellow product assumed to be
a mixture of the two isomers $\left[\mathrm{MoFe}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}\left(\mathrm{R}^{1}\right)\right.\right.$ $\left.\left.\mathrm{C}\left(\mathrm{R}^{2}\right) \mathrm{C}(\mathrm{O})\right\}(\mu-\mathrm{CO})(\mathrm{CO})_{4}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right] \quad\left(\mathrm{R}^{1}=\mathrm{Me}, \quad \mathrm{R}^{2}=\mathrm{Et}\right.$; $R^{1}=E t, R^{2}=M e$), acyl species analogous to (6a) or (6b). However, this yellow product $\left[v_{\text {max. }}(\mathrm{CO}) 2056 \mathrm{~s}, 1998 \mathrm{~s}(\mathrm{br})\right.$, $1830 \mathrm{w}(\mathrm{br})$, and $1589 \mathrm{w}(\mathrm{br}) \mathrm{cm}^{-1}$ (in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$)] reverted very readily to the red mixture of $(\mathbf{5 c})$ and $(\mathbf{5 d})$ in the absence of CO .

Treatment of (1a) with $\mathrm{EtC} \equiv \mathrm{CEt}$ in slight excess gave a mixture of $\left[\mathrm{MoFe}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}(\mathrm{Et}) \mathrm{C}(\mathrm{Et})\right\}(\mathrm{CO})_{5}(\eta-\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](\mathbf{5 e})$ and $\left[\mathrm{MoFe}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}(\mathrm{O}) \mathrm{C}(\mathrm{Et}) \mathrm{C}(\mathrm{Et})\right\}(\mu-\right.$ $\left.\mathrm{CO})(\mathrm{CO})_{4}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](7 \mathrm{c})$. Not surprisingly, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions of (5e) react readily with CO gas to afford the acyl complex $\left[\mathrm{MoFe}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}(\mathrm{Et}) \mathrm{C}(\mathrm{Et}) \mathrm{C}(\mathrm{O})\right\}(\mu-\mathrm{CO})(\mathrm{CO})_{4}\left(\eta-\mathrm{C}_{5}-\right.\right.$ $\left.\left.\mathrm{H}_{5}\right)\right](6 \mathrm{c})$. The latter in solutions through which nitrogen gas is bubbled reverts to (5e). It may be noted that in the reactions of (5a)-(5e) with CO the product is the one where the acyl group is present between the iron atom and the $\mathrm{CR}(\mathrm{R}=\mathrm{H}, \mathrm{Me}$, or Et) fragment. There was no evidence for the formation of species with a CO group inserted into the $\mathrm{Fe}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ bond. This is in agreement with results discussed earlier. ${ }^{7.9}$

The structure of the product (7c) was of particular interest since in the bridging organic moiety the $\mathrm{C}=\mathrm{O}$ group lies between the CEt and $\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ fragments, and is not σ bonded to iron, as in the species (6). This was confirmed by an X-ray diffraction study. The asymmetric unit contains two structurally similar but crystallographically independent molecules, the results for one of which are summarised in Table 3. The structure is shown in Figure 1, from which it is evident that the $\mathrm{Mo}(1)-\mathrm{Fe}(1)$ bond $\left[2.694(1) \AA\right.$] is spanned by the $\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right.$ 4) $\mathrm{C}(\mathrm{O}) \mathrm{C}(\mathrm{Et}) \mathrm{C}(\mathrm{Et})$ group with $\mathrm{C}(1)$ and $\mathrm{C}(6)$ bonded to both metal atoms $[\mathrm{Mo}(1)-\mathrm{C}(1)$ 2.24(1), $\quad \mathrm{Mo}(1)-\mathrm{C}(6) \quad 2.39(1)$, $\mathrm{Fe}(1)-\mathrm{C}(1) 2.01(1), \mathrm{Fe}(1)-\mathrm{C}(6) 1.98(1) \AA]$ and $\mathrm{C}(5)$ bonded to the molybdenum $[\mathrm{Mo}(1)-\mathrm{C}(5) 2.44$ (1) \AA] but not to the iron. A very similar ligand $\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}(\mathrm{O}) \mathrm{C}(\mathrm{Me}) \mathrm{C}(\mathrm{Me})$ has been found previously in the iron-tungsten compound [WFe $\{\mu$ $\left.\left.\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}(\mathrm{O}) \mathrm{C}(\mathrm{Me}) \mathrm{C}(\mathrm{Me})\right\}(\mathrm{CO})_{5}\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right]$ (8). The latter is a product of the reaction between $\mathrm{MeC} \equiv \mathrm{CMe}$ and $\left[\mathrm{WFe}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{5}\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right] .{ }^{5}$ However, there is a significant difference between the arrangement of the bridging organic fragments in (7c) and (8). In the former the atom $\mathrm{C}(5)$ is bonded to the $\operatorname{Mo}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ fragment, whereas in (8) the comparable carbon atom is attached to the $\mathrm{Fe}(\mathrm{CO})_{3}$ group

Table 4. Selected internuclear separations (\AA) and angles $\left({ }^{\circ}\right)$ for $\left[\mathrm{MoFe}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}(\mathrm{Me}) \mathrm{C}[\mathrm{C}(\mathrm{O}) \mathrm{Me}]\right\}(\mathrm{CO})_{5}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](5 \mathrm{~g})$ with estimated standard deviations in parentheses

$\mathrm{Mo}-\mathrm{Fe}$	2.722(1)	Mo-C(1)	$2.186(3)$	Mo...C(3)	2.745	Mo-C(4)	2.183(3)
Mo-C(7)	2.003(4)	$\mathrm{Mo}-\mathrm{C}(8)$	2.022(4)	Mo-X*	1.987	$\mathrm{Fe}-\mathrm{C}(1)$	2.078 (3)
$\mathrm{Fe}-\mathrm{C}(3)$	$2.127(4)$	$\mathrm{Fe}-\mathrm{C}(4)$	2.020 (4)	$\mathrm{Fe}-\mathrm{C}(9)$	1.781(4)	$\mathrm{Fe}-\mathrm{C}(10)$	1.777 (4)
$\mathrm{Fe}-\mathrm{C}(11)$	1.805(4)	$\mathrm{C}(1)-\mathrm{C}(3)$	1.427 (5)	$\mathrm{C}(1)-\mathrm{C}(21)$	1.486(5)	$\mathrm{C}(3)-\mathrm{C}(2)$	$1.501(5)$
$\mathrm{C}(3)-\mathrm{C}(4)$	1.427 (5)	$\mathrm{C}(4)-\mathrm{C}(5)$	1.490 (5)	$\mathrm{C}(5)-\mathrm{O}(5)$	1.184(5)	$\mathrm{C}(5)-\mathrm{C}(6)$	1.496 (7)
$\mathrm{C}(7)-\mathrm{O}(7)$	$1.152(5)$	$\mathrm{C}(8)-\mathrm{O}(8)$	1.136(5)	$\mathrm{C}(9)-\mathrm{O}(9)$	1.141(5)	$\mathrm{C}(10)-\mathrm{O}(10)$	1.143(5)
$\mathrm{C}(11)-\mathrm{O}(11)$	1.135(5)						
$\mathrm{Fe}-\mathrm{Mo}-\mathrm{C}(1)$	48.6(1)	$\mathrm{Fe}-\mathrm{Mo}-\mathrm{C}(4)$	47.1(1)	$\mathrm{C}(1)-\mathrm{Mo}-\mathrm{C}(4)$	60.8(1)	$\mathrm{Fe}-\mathrm{Mo}-\mathrm{C}(7)$	80.7(1)
$\mathrm{Fe}-\mathrm{Mo}-\mathrm{C}(8)$	87.1(1)	C (7)-Mo-C(8)	81.0(2)	$\mathrm{Fe}-\mathrm{Mo}-\mathrm{X}^{*}$	154.6	$\mathrm{C}(1)-\mathrm{Mo}-\mathrm{X}$	113.0
C(4)-Mo-X	111.2	C(7)-Mo-X	117.1	C(8)-Mo-X	112.4	Mo-Fe-C(1)	52.1(1)
$\mathrm{Mo}-\mathrm{Fe}-\mathrm{C}(3)$	67.7(1)	$\mathrm{C}(1)-\mathrm{Fe}-\mathrm{C}(3)$	39.7(1)	$\mathrm{Mo}-\mathrm{Fe}-\mathrm{C}(4)$	52.3(1)	$\mathrm{C}(1)-\mathrm{Fe}-\mathrm{C}(4)$	65.2(1)
$\mathrm{C}(3)-\mathrm{Fe}-\mathrm{C}(4)$	40.1(1)	$\mathrm{Mo}-\mathrm{Fe}-\mathrm{C}(9)$	99.5(1)	$\mathrm{Mo}-\mathrm{Fe}-\mathrm{C}(10)$	154.0(1)	$\mathrm{C}(9)-\mathrm{Fe}-\mathrm{C}(10)$	95.1(2)
$\mathrm{Mo}-\mathrm{Fe}-\mathrm{C}(11)$	104.0(1)	$\mathrm{C}(9)-\mathrm{Fe}-\mathrm{C}(11)$	98.0 (2)	$\mathrm{C}(10)-\mathrm{Fe}-\mathrm{C}(11)$	95.1(2)	Mo-C(1)-Fe	79.3(1)
$\mathrm{Mo}-\mathrm{C}(1)-\mathrm{C}(21)$	130.5(2)	$\mathrm{Fe}-\mathrm{C}(1)-\mathrm{C}(21)$	131.8(2)	$\mathrm{C}(3)-\mathrm{C}(1)-\mathrm{C}(21)$	126.6(3)	$\mathrm{Fe}-\mathrm{C}(3)-\mathrm{C}(2)$	127.7(3)
$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	129.5(3)	$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	101.5(3)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	129.0(3)	$\mathrm{Mo}-\mathrm{C}(4)-\mathrm{Fe}$	80.6(1)
$\mathrm{Mo}-\mathrm{C}(4)-\mathrm{C}(5)$	134.2(3)	$\mathrm{Fe}-\mathrm{C}(4)-\mathrm{C}(5)$	127.1(3)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	123.8(3)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(5)$	121.5(4)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	119.8(4)	$\mathrm{O}(5)-\mathrm{C}(5)-\mathrm{C}(6)$	118.8(4)	$\mathrm{Mo}-\mathrm{C}(7)-\mathrm{O}(7)$	175.6(3)	$\mathrm{Mo}-\mathrm{C}(8)-\mathrm{O}(8)$	174.7(3)
$\mathrm{Fe}-\mathrm{C}(9)-\mathrm{O}(9)$	177.6(4)	$\mathrm{Fe}-\mathrm{C}(10)-\mathrm{O}(10)$	179.4(4)	$\mathrm{Fe}-\mathrm{C}(11)-\mathrm{O}(11)$	179.3(4)		

* X Is the centroid of the atoms $C(31)-C(35)$.

Figure 2. The molecular structure of $\left[\mathrm{MoFe}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}(\mathrm{Me})\right.\right.$ $\left.\mathrm{C}[\mathrm{C}(\mathrm{O}) \mathrm{Me}]\}(\mathrm{CO})_{5}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right] \quad(5 \mathrm{~g})$ showing the crystallographic numbering scheme
rather than the $\mathrm{W}\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)$ moiety. As a consequence, in (7c) a semi-bridging carbonyl group is present [$\mathrm{Mo}(1)-\mathrm{C}(9)-\mathrm{O}(9)$ $\left.164.2(8)^{\circ}, \mathrm{Fe}(1) \cdots \mathrm{C}(9) 2.55 \AA\right]$, and this feature is probably responsible for the band in the i.r. spectrum at $1886 \mathrm{~cm}^{-1}$, with the band at $1601 \mathrm{~cm}^{-1}$ being attributable to the ketonic group $\mathrm{C}(2) \mathrm{O}(2)$. In the i.r. spectrum of (8) the absorption for the $\mathrm{C}=\mathrm{O}$ group occurs at $1585 \mathrm{~cm}^{-1}$, but in contrast with the spectrum of (7c) there is no CO ligand band at a frequency lower than 1931 cm^{-1}, in accord with the absence of any carbonyl-bridge bonding.

It seems likely that the complexes (7) are formed via a pathway which involves alkyne attack on a ketenyl ligand
$\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}(\mathrm{O})$ formed by migration of a CO group onto the alkylidyne moiety present in (1a). The overall mechanism would be similar to that discussed earlier to accord for the formation of (8), ${ }^{5}$ or products obtained from (1a) and diazomethane. ${ }^{3 a}$
In an attempt to obtain the compounds (7) in higher yield, we investigated reactions of (1a) with $\mathrm{MeC} \equiv \mathrm{CEt}$ and with $\mathrm{EtC} \equiv \mathrm{CEt}$ with the alkyne in very large excess, as described in the Experimental section. Complex mixtures of products were obtained and separated by column chromatography. As in the reactions employing the alkynes in slight excess, the compounds $(5 c),(5 d),(7 a)$, and (7b) were obtained from $\mathrm{MeC} \equiv \mathrm{CEt}$, and (5e) and (7c) from $\mathrm{EtC} \equiv \mathrm{CEt}$. However, in addition unexpected products were isolated. These were characterised as the isomeric pairs of compounds $\left[\mathrm{MoFe}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}\left(\mathrm{R}^{1}\right) \mathrm{C}\left(\mathrm{R}^{2}\right)\right\}\right.$ -$\left.(\mathrm{CO})_{5}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]\left[(5 f) ; \mathrm{R}^{1}=\mathrm{C}(\mathrm{O}) \mathrm{Me}, \mathrm{R}^{2}=\mathrm{Me}\right.$ and $(5 \mathrm{~g}) ;$ $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{C}(\mathrm{O}) \mathrm{Me}$ from $\mathrm{MeC} \equiv \mathrm{CEt}$ and (5h); $\mathrm{R}^{1} \xlongequal{=}$ $\mathrm{C}(\mathrm{O}) \mathrm{Me}, \mathrm{R}^{2}=\mathrm{Et}$ and (5i); $\mathrm{R}^{1}=\mathrm{Et}, \mathrm{R}^{2}=\mathrm{C}(\mathrm{O}) \mathrm{Me}$ from $\mathrm{EtC} \equiv \mathrm{CEt}]$. Data for (5f)--(5i) are given in Tables 1 and 2. The structures of these species were not, however, recognised until the results of an X-ray diffraction study on $(\mathbf{5 g})$ became available. The selected bond distances and angles are given in Table 4, and the structure is shown in Figure 2.
The $\mathrm{Mo}-\mathrm{Fe}$ bond $[2.722(1) \AA]$ is bridged by a $\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4}^{-}\right.$ $\mathrm{Me}-4) \mathrm{C}(\mathrm{Me}) \mathrm{C}\{\mathrm{C}(\mathrm{O}) \mathrm{Me}\}$ fragment, with $\mathrm{C}(1)$ and $\mathrm{C}(4)$ bonded to the molybdenum atom [Mo-C(1) 2.186(3), Mo-C(4) 2.183(3) $\AA]$ and all three carbon atoms of the chain attached to the iron atom $[\mathrm{Fe}-\mathrm{C}(1) 2.078(3), \mathrm{Fe}-\mathrm{C}(3) 2.127(4), \mathrm{Fe}-\mathrm{C}(4) 2.020(4) \AA]$. The iron atom carries three terminal CO groups, and the molybdenum two of these ligands and the $\mathrm{C}_{5} \mathrm{H}_{5}$ ring. Compound $(5 \mathrm{~g})$ is thus a member of the growing class of complex in which a three-carbon fragment, formed by the linking of an alkylidyne group with an alkyne, bridges a heteronuclear metal-metal bond. Three other compounds of this type have been the subject of X-ray diffraction studies, viz. $\left[\mathrm{MoFe}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}(\mathrm{OMe}) \mathrm{CH}\right\}(\mathrm{CO})_{5}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right],{ }^{3 a}$ $\left[\mathrm{WFe}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}(\mathrm{Me}) \mathrm{C}(\mathrm{Me})\right\}(\mathrm{CO})_{5}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]{ }^{6} \quad$ and $\left[\mathrm{WRh}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}(\mathrm{Ph}) \mathrm{C}(\mathrm{Ph})\right\}(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\eta^{5}-\right.\right.$ $\left.\left.\mathrm{C}_{9} \mathrm{H}_{7}\right)\right] .{ }^{8}$ The core geometries of $(\mathbf{5 g})$ and $\left[\mathrm{MoFe}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-\right.\right.\right.$ 4) $\left.\mathrm{C}(\mathrm{OMe}) \mathrm{CH}\}(\mathrm{CO})_{5}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ are very similar as shown by comparing the following molecular parameters for $(5 \mathrm{~g})$ with those of the latter complex (given in brackets): Mo-Fe 2.722(1) $[2.704(1) \AA] ; C(1)-C(3)-C(4) 101.5(3)\left[103.4(6)^{\circ}\right]$. Since the

(B) \downarrow (iii) (5) $\underset{(i v)}{\stackrel{(i v i)}{\rightleftharpoons}}(6)$

Scheme. $\mathrm{cp}=\eta-\mathrm{C}_{5} \mathrm{H}_{5}, \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4, \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}, \mathrm{Me}$, or $\mathrm{Et} ; \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Et}$. (i) -2 CO ; (ii) $+\mathrm{R}^{1} \mathrm{C}_{2} \mathrm{R}^{2}$; (iii) +CO ; (iv) -CO
group $\mathrm{Mo}(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ is isolobal with a CR moiety, these two complexes may be regarded as comprising an $\mathrm{Fe}(\mathrm{CO})_{3}$ group co-ordinated by a metallacyclobutadiene fragment. ${ }^{10,11}$

The source of the $\mathrm{C}(\mathrm{O}) \mathrm{Me}$ groups in compounds $(\mathbf{5 f})-(\mathbf{5 i})$ was of interest, but was eventually traced to small amounts of the alkynes $\mathrm{MeC} \equiv \mathrm{CC}(\mathrm{O}) \mathrm{Me}$ and $\mathrm{EtC} \equiv \mathrm{CC}(\mathrm{O}) \mathrm{Me}$ present as impurities in commercial samples of $\mathrm{MeC} \equiv \mathrm{CEt}$ and $\mathrm{EtC} \equiv \mathrm{CEt}$, respectively. Hence when large ratios of the alkynes $\mathrm{RC} \equiv \mathrm{CEt}$ ($\mathrm{R}=\mathrm{Me}$ or Et) are employed in reactions with (1a), a sufficient amount of the impurity $\mathrm{RC} \equiv \mathrm{CC}(\mathrm{O}) \mathrm{Me}(\mathrm{R}=\mathrm{Me}$ or Et$)$ is present to afford the observed species with a $\mathrm{C}(\mathrm{O}) \mathrm{Me}$ substituent in the bridging ligand. Dickson and co-workers ${ }^{12}$ have obtained a similar result in studies on the reaction between $\left[\mathrm{Rh}_{2}\left(\mu-\mathrm{CF}_{3} \mathrm{C}_{2} \mathrm{CF}_{3}\right)(\mu-\mathrm{CO})\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$ and $\mathrm{MeC} \equiv \mathrm{CEt}$. One product of this reaction is the complex $\left[\mathrm{Rh}_{2}\left\{\mu-\mathrm{C}\left(\mathrm{CF}_{3}\right)\right.\right.$ $\left.\left.\mathrm{C}\left(\mathrm{CF}_{3}\right) \mathrm{C}(\mathrm{Me}) \mathrm{C}[\mathrm{C}(\mathrm{O}) \mathrm{Me}]\right\}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$. The impurity $\mathrm{MeC} \equiv \mathrm{C}$ $\mathrm{C}(\mathrm{O}) \mathrm{Me}$ in pent-2-yne is the source of this product. ${ }^{13}$

The reactions between (1a) and the alkynes $\mathrm{RC} \equiv \mathrm{CEt}(\mathrm{R}=\mathrm{H}$, Me , or Et) differ from those with $\mathrm{MeC} \equiv \mathrm{CMe}$ in that none of the products described herein involves hydrogen migration from a Me or Et substituent on the alkyne. Evidently $\mathrm{MeC} \equiv \mathrm{CMe}$ is unique in enabling the reactions to proceed along a different pathway. We have suggested ${ }^{1}$ that compound (2) might form from (1a) and but-2-yne via the steps shown in the Scheme. In the unsaturated species $(B)\left(R^{1}=R^{2}=M e\right)$ the methyl group is activated via the intermediate (C) with the agostic $\mathrm{C}-\mathrm{H} \rightarrow \mathrm{Fe}$ interaction. In this manner a metal-assisted hydrogen shift between carbon centres becomes possible leading to one or other of the two isomers of (2). Evidently with the other alkynes the preferred pathway leads to the compounds (5), and this could occur via CO addition to either (\mathbf{B}) or (\mathbf{C}). If these ideas are valid it would suggest that the hydrogen atoms of the methyl group attached to the central carbon of the $\mu-\mathrm{C}_{3}$ group in (\mathbf{C}) are more active than those in a similar intermediate involving the alkynes $\mathrm{RC} \equiv \mathrm{CEt}$ ($\mathrm{R}=\mathrm{H}$, Me, or Et). Hence under the condition studied with $\mathrm{MeC} \equiv \mathrm{CMe}$ the steps $(\mathbf{B}) \longrightarrow(\mathbf{C}) \longrightarrow$ (D) are faster than CO addition to yield $\left[\mathrm{MoFe}\left\{\mu \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right.\right.\right.$ -
4) $\left.\mathrm{C}(\mathrm{Me}) \mathrm{C}(\mathrm{Me})\}(\mathrm{CO})_{5}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$. As mentioned earlier, formation of the complexes (7) can be rationalised in terms of pathways described previously to account for the synthesis of (8). ${ }^{5}$

Experimental

Details of experimental procedures used, and the instrumentation employed, are given in the preceding paper. ${ }^{1}$ The compound $\quad\left[\mathrm{MoFe}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{6}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right] \quad$ was prepared as reported earlier. ${ }^{3 d}$ Light petroleum refers to that fraction of b.p. $40-60^{\circ} \mathrm{C}$. Analytical and other data for new compounds are given in Table 1.

Reactions of $\left[\mathrm{MoFe}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{6}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ with Alkynes.-(i) Ethyne. A stream of $\mathrm{HC} \equiv \mathrm{CH}$ was bubbled through a light petroleum ($20 \mathrm{~cm}^{3}$) solution of compound (1a) $(0.15 \mathrm{~g}$, 0.30 mmol) at room temperature for 1 h . Solvent was removed in vacuo, and the residue was redissolved in thf-light petroleum ($10 \mathrm{~cm}^{3}, 1: 4$) and chromatographed on a Florisil column $(2 \times 30 \mathrm{~cm})$ at $-30^{\circ} \mathrm{C}$. Elution with the same solvent mixture recovered a red fraction which after removal of solvent in vacuo gave red microcrystals of $\left[\mathrm{MoFe}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{CHCH}\right\}\right.$ -$\left.(\mathrm{CO})_{5}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](5 \mathrm{a})(0.03 \mathrm{~g})$. Further elution of the column with thf-light petroleum ($3: 2$) gave a yellow eluate, which after removal of solvent in vacuo yielded yellow-orange microcrystals of $\quad\left[\mathrm{MoFe}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{CHCHC}(\mathrm{O})\right\}(\mu-\mathrm{CO})(\mathrm{CO})_{4}(\eta\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ (6a) (0.12 g).
(ii) But-1-yne. A light petroleum ($10 \mathrm{~cm}^{3}$) solution of compound (1a) $(0.15 \mathrm{~g}, 0.30 \mathrm{mmol})$ was treated with a stream of $\mathrm{HC} \equiv \mathrm{CEt}$ at room temperature for 15 min . Solvent was removed in vacuo, and the yellow-orange residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum ($10 \mathrm{~cm}^{3}, 2: 3$) and chromatographed on a Florisil column. Elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ light petroleum $(1: 4)$ gave a red eluate, which after removal of solvent in vacuo yielded red microcrystals of $\left[\mathrm{MoFe}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{CHC}(\mathrm{Et})\right\}-\right.$ $\left.(\mathrm{CO})_{5}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](\mathbf{5 b})(0.05 \mathrm{~g})$. Further elution with thf-light

Table 5. Fractional atomic co-ordinates $\left(\times 10^{4}\right)$ for complex (7c) with estimated standard deviations in parentheses

Atom	x	y	z	Atom	x	y	z
Mo(1)	$1453(1)$	$2878(1)$	$-9(1)$	Mo(2)	$5931(1)$	$7062(1)$	2113(1)
$\mathrm{Fe}(1)$	$2902(1)$	3 203(1)	-29(1)	$\mathrm{Fe}(2)$	4 497(1)	$6772(1)$	2 282(1)
C(1)	$2160(4)$	4 458(6)	95(4)	C(51)	5 207(3)	$5479(6)$	2060 (3)
C(2)	$1895(4)$	4 481(7)	706(3)	C(52)	5 371(4)	5 444(6)	$1439(3)$
$\mathrm{O}(2)$	$1604(3)$	5319 (5)	973(3)	$\mathrm{O}(52)$	5 626(3)	4 629(4)	$1165(2)$
C(3)	$1995(5)$	3270 (11)	$2070(5)$	C(53)	5 105(7)	$6622(12)$	84(6)
C(4)	$1542(4)$	3 056(7)	$1529(3)$	C(54)	$5619(5)$	$6887(8)$	591(4)
C(5)	1940 (4)	$3277(7)$	965(3)	C(55)	5 306(4)	$6648(7)$	$1193(4)$
C(6)	2416 (4)	$2545(7)$	673(3)	C(56)	$4880(4)$	$7409(7)$	$1531(4)$
C(7)	2 655(5)	1420 (7)	977(4)	C(57)	$4617(5)$	$8549(8)$	1250 (5)
C(8)	3 359(6)	$1574(11)$	$1306(5)$	C(58)	3870 (5)	$8382(10)$	970(6)
C(9)	$1945(5)$	$2735(9)$	-798(4)	C(59)	5590 (5)	7 217(9)	2 923(4)
$\mathrm{O}(9)$	$2060(4)$	2 623(8)	-1280(3)	$\mathrm{O}(59)$	5 540(4)	$7414(7)$	3 427(3)
$\mathrm{C}(10)$	1640 (4)	$1146(7)$	-26(5)	C(60)	$5748(4)$	$8803(7)$	2 129(4)
$\mathrm{O}(10)$	$1719(4)$	166(5)	-48(4)	$\mathrm{O}(60)$	$5655(4)$	$9769(5)$	2 182(4)
C(11)	3 357(4)	$1852(8)$	-195(4)	C(61)	$4092(4)$	$8120(7)$	2 506(4)
$\mathrm{O}(11)$	3636 (4)	$1011(7)$	-338(4)	$\mathrm{O}(61)$	$3806(4)$	$8985(6)$	2 634(4)
C(12)	$3538(4)$	3 854(8)	450(4)	C(62)	3780 (4)	$6101(8)$	$1917(4)$
$\mathrm{O}(12)$	3 944(3)	4 278(7)	746(4)	$\mathrm{O}(62)$	3 319(3)	5 604(7)	1668 (4)
C(13)	3260 (5)	$3962(8)$	-653(4)	C(63)	4 264(4)	$6085(8)$	2975 (4)
$\mathrm{O}(13)$	3 519(4)	4 487(7)	-1018(3)	$\mathrm{O}(63)$	$4092(4)$	$5676(6)$	3 403(3)
C(22)	2 534(3)	6540 (4)	3(2)	C(72)	4823 (3)	3 425(5)	2 202(2)
$\mathrm{C}(23)$	2625	7556	-324	C(73)	4794	2397	2527
C(24)	2350	7622	-893	C(74)	5162	2316	3060
C(25)	1983	6672	-1134	C(75)	5561	3264	3268
C(26)	1893	5656	-806	C (76)	5590	4292	2943
C(21)	2168	5590	-238	C(71)	5221	4373	2410
C(27)	2 456(7)	8730 (10)	$-1252(6)$	C(77)	5 099(6)	$1192(10)$	3 432(5)
C(31)	406(3)	3 591(6)	433(2)	C(81)	$6911(3)$	6 370(6)	$1571(2)$
C(32)	507	4230	-94	C(82)	6880	5695	2092
C(33)	457	3439	-570	C(83)	6999	6452	2575
C(34)	325	2311	-339	C(84)	7104	7595	2352
C(35)	293	2405	281	C(85)	7050	7544	1732

petroleum ($3: 2$) afforded a yellow fraction from which solvent was removed in vacuo to give yellow-orange microcrystals of $\left[\mathrm{MoFe}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{CHC}(\mathrm{Et}) \mathrm{C}(\mathrm{O})\right\}(\mu-\mathrm{CO})(\mathrm{CO})_{4}\left(\eta-\mathrm{C}_{5}-\right.\right.$ $\left.\left.\mathrm{H}_{5}\right)\right](6 \mathrm{~b})(0.10 \mathrm{~g})$.
Treatment of compound (1a) ($0.15 \mathrm{~g}, 0.30 \mathrm{mmol}$) in light petroleum ($10 \mathrm{~cm}^{3}$) at $-40^{\circ} \mathrm{C}$ with an excess of $\mathrm{HC} \equiv \mathrm{CEt}$, followed by removal of solvent in vacuo, gave a yellow-orange residue. The latter was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum (20 $\mathrm{cm}^{3}, 3: 1$), and the mixture was filtered through a Celite pad ($2 \times 3 \mathrm{~cm}$). After removal of solvent in vacuo, compound ($\mathbf{6 b}$) was obtained $(0.15 \mathrm{~g})$ in essentially quantitative yield.
A stream of nitrogen gas was bubbled (1.5 h) through a sample of compound ($\mathbf{6 b}$) $(0.11 \mathrm{~g}, 0.20 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10$ cm^{3}) affording complex (5b) in quantitative yield. Treatment of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions of the latter with CO results in quantitative conversion into ($\mathbf{6 b}$).
(iii) Pent-2-yne. (a) A mixture of compound (1a) $(0.15 \mathrm{~g}, 0.30$ mmol) and $\mathrm{MeC} \equiv \mathrm{CEt}\left(0.40 \mathrm{mmol}\right.$) in light petroleum ($20 \mathrm{~cm}^{3}$) was stirred at room temperature for 2 d . Solvent was removed in vacuo, the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum (7 $\mathrm{cm}^{3}, 3: 2$), and the mixture was chromatographed on a Florisil column $(2 \times 40 \mathrm{~cm})$ at $0^{\circ} \mathrm{C}$. Elution of the column with the same solvent mixture gave a red eluate. Removal of solvent in vacuo yielded an isomeric mixture ($1: 1$) of red microcrystals of $\left[\mathrm{MoFe}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}\left(\mathrm{R}^{1}\right) \mathrm{C}\left(\mathrm{R}^{2}\right)\right\}(\mathrm{CO})_{5}\left(\mathrm{\eta}_{-} \mathrm{C}_{5} \mathrm{H}_{5}\right)\right] \quad[(\mathbf{5 c}) ;$ $\left.\mathbf{R}^{1}=\mathrm{Et}, \mathrm{R}^{2}=\mathrm{Me} ;(\mathbf{5 d}) ; \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{Et}\right](0.08 \mathrm{~g})$. Further elution of the column with thf-light petroleum (1:4) afforded a yellow eluate. Removal of solvent in vacuo gave an isomeric mixture ($1: 2$) of yellow microcrystals of $\left[\mathrm{MoFe}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4}-\right.\right.\right.$ $\left.\left.\mathrm{Me}-4) \mathrm{C}(\mathrm{O}) \mathrm{C}\left(\mathrm{R}^{1}\right) \mathrm{C}\left(\mathrm{R}^{2}\right)\right\}(\mu-\mathrm{CO})(\mathrm{CO})_{4}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right] \quad\left[(7 \mathrm{a}) ; \mathrm{R}^{1}=\right.$ $\left.\mathrm{Me}, \mathrm{R}^{2}=\mathrm{Et} ;(7 \mathrm{~b}) ; \mathrm{R}^{1}=\mathrm{Et}, \mathrm{R}^{2}=\mathrm{Me}\right]$.
(b) A mixture of compound (1a) ($0.15 \mathrm{~g}, 0.30 \mathrm{mmol}$) and $\mathrm{MeC} \equiv \mathrm{CEt}\left(2.0 \mathrm{~cm}^{3}, 21 \mathrm{mmol}\right)$ in light petroleum $\left(20 \mathrm{~cm}^{3}\right)$ was stirred at $10^{\circ} \mathrm{C}$ for 20 h . Solvent and excess alkyne were removed in vacuo, the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$, and the solution was adsorbed on Florisil (ca.2g). This material was transferred to the top of a Florisil chromatography column $(2 \times 40 \mathrm{~cm})$ maintained at $-20^{\circ} \mathrm{C}$. Elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ light petroleum (1:4) gave in the first eluate traces of the isomers ($\mathbf{5 c}$) and ($\mathbf{5 d}$), identified by i.r. spectroscopy. Further elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ light petroleum (3:2) afforded, after removal of solvent in vacuo, red microcrystals of $\left[\mathrm{MoFe}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}[\mathrm{C}(\mathrm{O})\right.\right.$ $\left.\mathrm{Me}] \mathrm{C}(\mathrm{Me})\}(\mathrm{CO})_{5}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right] \quad(\mathbf{5 f}) \quad(0.05 \mathrm{~g})$. Elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum (4:1) gave red microcrystals of $\left[\mathrm{MoFe}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}(\mathrm{Me}) \mathrm{C}[\mathrm{C}(\mathrm{O}) \mathrm{Me}]\right\}(\mathrm{CO})_{5}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ (0.03 g), after removal of solvent. Final elution with thf-light petroleum ($1: 4$) gave an eluate which contained a $1: 2$ mixture of (7a) and (7b) $(0.03 \mathrm{~g})$.
(iv) Hex-3-yne. (a) Compound (1a) $(0.15 \mathrm{~g}, 0.30 \mathrm{mmol})$ and $\mathrm{EtC}=\mathrm{CEt}(0.40 \mathrm{mmol})$ were stirred together in light petroleum $\left(20 \mathrm{~cm}^{3}\right)$ for 2 d . Solvent was removed in vacuo, the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum (3:2), and the mixture was chromatographed at $0^{\circ} \mathrm{C}$. Elution with the same mixture of solvents gave a red fraction, which after solvent removal afforded red microcrystals of $\left[\mathrm{MoFe}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}(\mathrm{Et})-\right.\right.$ $\left.\mathrm{C}(\mathrm{Et})\}(\mathrm{CO})_{5}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ (5e) $(0.08 \mathrm{~g})$. Further elution of the column with thf-light petroleum (1:4) afforded, after removal of solvent in vacuo, yellow microcrystals of $\left[\mathrm{MoFe}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4}-\right.\right.\right.$ $\left.\mathrm{Me}-4) \mathrm{C}(\mathrm{O}) \mathrm{C}(\mathrm{Et}) \mathrm{C}(\mathrm{Et})\}(\mu-\mathrm{CO})(\mathrm{CO})_{4}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](7 \mathrm{c})(0.05 \mathrm{~g})$.

A $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ solution of compound (5e) was treated with a stream of CO gas for 20 min . Solvent was removed in vacuo, and the residue was washed with cold (ca. $-30^{\circ} \mathrm{C}$) light

Table 6. Fractional atomic co-ordinates ($\times 10^{4}$) for complex (5 g) with estimated standard deviations in parentheses

Atom	x	y	
Mo	$2533(1)$	$8289(1)$	$6000(1)$
Fe	$868(1)$	$7110(1)$	$6307(1)$
$\mathrm{C}(1)$	$3055(3)$	$7196(2)$	$6351(1)$
$\mathrm{C}(2)$	$2761(4)$	$6991(3)$	$7328(2)$
$\mathrm{C}(3)$	$2488(4)$	$7369(2)$	$6833(1)$
$\mathrm{C}(4)$	$1582(4)$	$7998(2)$	$6719(1)$
$\mathrm{C}(5)$	$782(4)$	$8438(2)$	$7104(1)$
$\mathrm{O}(5)$	$875(5)$	$8290(2)$	$7536(1)$
$\mathrm{C}(6)$	$-175(7)$	$9074(3)$	$6946(2)$
$\mathrm{C}(7)$	$674(4)$	$8648(2)$	$5728(1)$
$\mathrm{O}(7)$	$-349(3)$	$8877(2)$	$5548(1)$
$\mathrm{C}(8)$	$2598(4)$	$7772(2)$	$5323(1)$
$\mathrm{O}(8)$	$2658(4)$	$7535(2)$	$4928(1)$
$\mathrm{C}(9)$	$827(4)$	$6562(2)$	$5745(2)$
$\mathrm{O}(9)$	$754(4)$	$6205(2)$	$5389(1)$
$\mathrm{C}(10)$	$418(4)$	$6332(2)$	$6706(2)$
$\mathrm{O}(10)$	$131(3)$	$5828(2)$	$6958(1)$
$\mathrm{C}(11)$	$-902(4)$	$7492(2)$	$6276(2)$
$\mathrm{O}(11)$	$-2014(3)$	$7734(2)$	$6261(2)$
$\mathrm{C}(21)$	$4199(4)$	$6640(2)$	$6238(1)$
$\mathrm{C}(22)$	$4328(4)$	$6268(2)$	$5783(1)$
$\mathrm{C}(23)$	$5446(4)$	$5783(2)$	$5684(2)$
$\mathrm{C}(24)$	$6501(4)$	$5653(2)$	$6035(2)$
$\mathrm{C}(25)$	$6378(4)$	$6018(3)$	$6484(2)$
$\mathrm{C}(26)$	$5254(4)$	$6508(2)$	$6589(2)$
$\mathrm{C}(27)$	$7725(4)$	$5128(3)$	$5921(2)$
$\mathrm{C}(31)$	$4743(4)$	$8643(2)$	$6327(2)$
$\mathrm{C}(32)$	$4762(4)$	$8705(2)$	$5802(2)$
$\mathrm{C}(33)$	$3804(5)$	$9281(2)$	$5662(2)$
$\mathrm{C}(34)$	$3156(5)$	$9554(2)$	$6099(2)$
$\mathrm{C}(35)$	$3756(4)$	$9162(2)$	$6511(2)$
$($			

petroleum ($3 \times 5 \mathrm{~cm}^{3}$) to afford yellow crystals of $[\mathrm{MoFe}\{\mu-$ $\left.\left.\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}(\mathrm{Et}) \mathrm{C}(\mathrm{Et}) \mathrm{C}(\mathrm{O})\right\}(\mu-\mathrm{CO})(\mathrm{CO})_{4}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right] \quad$ (6c). Solutions of this product in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under nitrogen rapidly regenerate (5e).
(b) A mixture of compound (1a) ($0.15 \mathrm{~g}, 0.30 \mathrm{mmol}$) and $E t C \equiv C E t\left(2.0 \mathrm{~cm}^{3}, 18 \mathrm{mmol}\right)$ in light petroleum $\left(20 \mathrm{~cm}^{3}\right)$ at $10{ }^{\circ} \mathrm{C}$ was stirred for 24 h . Solvent and excess alkyne were removed in vacuo, and the residue in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ was adsorbed on Florisil (ca. 2 g). The latter was transferred to the top of a chromatography column ($2 \times 40 \mathrm{~cm}$) of the same material, maintained at $-20^{\circ} \mathrm{C}$. Elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ light petroleum ($1: 4$) gave a red fraction from which solvent was removed in vacuo to give red microcrystals of (5e) (0.02 g). Further elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum (3:2), followed by removal of solvent in vacuo, gàve red microcrystals of $\left[\mathrm{MoFe}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}[\mathrm{C}(\mathrm{O}) \mathrm{Me}] \mathrm{C}(\mathrm{Et})\right\}(\mathrm{CO})_{5}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ (5 h) $(0.04 \mathrm{~g})$. Elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ light petroleum ($4: 1$) gave a fraction which after solvent removal afforded red microcrystals of $\left[\mathrm{MoFe}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}(\mathrm{Et}) \mathrm{C}[\mathrm{C}(\mathrm{O}) \mathrm{Me}]\right\}(\mathrm{CO})_{5}{ }^{-}\right.$ $\left.\left(\eta-\mathrm{C}_{5}-\mathrm{H}_{5}\right)\right](5 \mathbf{i})(0.06 \mathrm{~g})$. A final elution of the column with thflight petroleum led to the recovery of compound $(7 \mathbf{c})(0.04 \mathrm{~g})$.

Crystal Structure Determinations.-(a) $\left[\mathrm{MoFe}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4}-\right.\right.\right.$ $\left.\mathrm{Me}-4) \mathrm{C}(\mathrm{O}) \mathrm{C}(\mathrm{Et}) \mathrm{C}(\mathrm{Et})\}(\mu-\mathrm{CO})(\mathrm{CO})_{4}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ (7c). Crystals of the complex grow on cooling from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum$\mathrm{Et}_{2} \mathrm{O}(1: 1: 1)$ as orange plates. Diffracted intensities were collected at 293 K from a crystal of dimensions ca. $0.18 \times 0.30 \times 0.30 \mathrm{~mm}$ on a Nicolet $P 3 m$ diffractometer. Of the 5705 unique data collected ($\omega-2 \theta$ scans, $2 \theta \leqslant 60^{\circ}$, weak data with $40 \leqslant 2 \theta \leqslant 60^{\circ}$ being skipped on the basis of a preliminary prescan), 4300 had $I \geqslant 2.0 \sigma(I)$ and only these were used in structure solution and refinement. The data were corrected for
X-ray absorption (by an empirical method based on azimuthal scan data ${ }^{14}$), Lorentz and polarisation effects.

Crystal data. $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{FeMoO}_{6}, M=570.21$, orthorhombic, $a=18.407(3), b=11.480(2), c=22.813(4) \AA, U=4821(1)$ $\AA^{3}, Z=8, D_{\mathrm{c}}=1.57 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=2303.4$, space group $P_{\Sigma} n 2_{1}$ (no. 33), $\mathrm{Mo}-K_{\alpha} X$-radiation (graphite monochromator, $\bar{\lambda}=0.71069 \AA), \mu\left(\mathrm{Mo}_{\alpha}-K_{\alpha}\right)=11.45 \mathrm{~cm}^{-1}$.

The structure was solved by direct methods and successive difference Fourier syntheses were used to locate all nonhydrogen atoms. There are two chemically identical molecules in the asymmetric unit, being related approximately by a noncrystallographic centre of inversion with fractional co-ordinates $c a .0 .369,0.498$, and 0.109. All non-hydrogen atoms were refined with anisotropic thermal parameters, all cyclopentadienyl and phenyl rings being constrained to ideal geometries and refined as rigid groups. All hydrogen atoms were included at calculated positions ($\mathrm{C}-\mathrm{H} 0.96 \AA$) with a common refined isotropic thermal parameter for the methyl hydrogen atoms and fixed isotropic thermal parameters (ca. $1.2 U_{\text {equiv. }}$ of the parent carbon atoms) for all other hydrogen atoms. Refinement by blockedcascade least squares led to $R=0.045\left(R^{\prime}=0.042\right)$, and a weighting scheme of the form $w^{-1}=\left[\sigma^{2}(F)+0.0006|F|^{2}\right]$ gave a satisfactory analysis of variance. The final electron-density difference synthesis showed no peaks >0.48 or <-0.59 e \AA^{-3}. As the space group $\left(\mathrm{Pna}_{1}\right)$ is chiral an enantiomeric refinement of the type suggested by Rogers ${ }^{15}$ was carried out, verifying that the chirality of the initial solution was correct.
(b) $\quad\left[\mathrm{MoFe}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}(\mathrm{Me}) \mathrm{C}[\mathrm{C}(\mathrm{O}) \mathrm{Me}]\right\}(\mathrm{CO})_{5}(\eta-\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](5 \mathrm{~g})$. Crystals were grown as large red blocks from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$-light petroleum (1:1:2). Diffracted intensities were collected as for ($7 \mathbf{c}$) from a crystal of dimensions $c a$. $0.50 \times 0.45 \times 0.35 \mathrm{~mm}$. Of the 3879 unique data collected ($\omega-2 \theta$ scans, $2 \theta \leqslant 50^{\circ}$), 2969 had $I \geqslant 2.0 \sigma(I)$ and only these were used in structure solution and refinement, after corrections as for (7c).

Crystal data. $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{FeMoO}_{6}, M=542.2$, orthorhombic, $a=9.461(2), b=17.483(4), c=26.710(6) \AA, U=4418(2) \AA^{3}$, $Z=8, D_{\mathrm{c}}=1.63 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=2175.4$, space group $P b c a$ (no. 61), $\mu\left(\right.$ Mo- $\left.K_{\alpha}\right)=12.5 \mathrm{~cm}^{-1}$.

The structure was solved and all non-hydrogen atoms located by conventional heavy-atom and difference Fourier methods. Non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were included at calculated positions as for (7c). Refinement by blocked-cascade least squares led to $R=0.035\left(R^{\prime}=0.032\right)$, and a weighting scheme of the form $w^{-1}=\left[\sigma^{2}(F)+0.0001|F|^{2}\right]$ gave a satisfactory analysis of variance. The final electron-density difference synthesis showed no peaks >0.38 or <-0.39 e \AA^{-3}. All calculations were performed on a Data General Eclipse computer with the SHELXTL system of programs. ${ }^{14}$ Scattering factors with corrections for anomalous dispersion were taken from ref. 16. The atom co-ordinates for ($\mathbf{7 c}$) and ($\mathbf{5 g}$) are given in Tables 5 and 6 respectively.
Additional material available from the Cambridge Crystallographic Data Centre comprises H -atom co-ordinates, thermal parameters, and remaining bond lengths and angles.

Acknowledgements

We thank the S.E.R.C. for support and for a research studentship (to P. S.), and Professor R. S. Dickson for drawing our attention to the work described in ref. 12.

References

1 Part 77, M. E. Garcia, J. C. Jeffery, P. Sherwood, and F. G. A. Stone, preceding paper.
2 E. Delgado, M. E. Garcia, J. C. Jeffery, P. Sherwood, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1988, 207.

3 (a) M. E. Garcia, N. H. Tran-Huy, J. C. Jeffery, P. Sherwood, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1987, 2201; (b) P. G. Byrne, M. E. Garcia, N. H. Tran-Huy, J. C. Jeffery, and F. G. A. Stone, ibid., p. 1243; (c) P. G. Byrne, M. E. Garcia, J. C. Jeffery, P. Sherwood, and F. G. A. Stone, ibid., p. 1215; (d) M. E. Garcia, J. C. Jeffery, P. Sherwood, and F. G. A. Stone, ibid., p. 1209.
4 P. G. Byrne, M. E. Garcia, J. C. Jeffery, P. Sherwood, and F. G. A. Stone, J. Chem. Soc., Chem. Commun., 1987, 53.
5 J. Hein, J. C. Jeffery, P. Sherwood, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1987, 2211.
6 J. C. Jeffery, K. A. Mead, H. Razay, F. G. A. Stone, M. J. Went, and P. Woodward, J. Chem. Soc., Dalton Trans., 1984, 1383.
7 I. J. Hart and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1988, 1899.
8 M. Green, J. A. K. Howard, S. J. Porter, F. G. A. Stone, and D. C. Tyler, J. Chem. Soc., Dalton Trans., 1984, 2553.

9 I. J. Hart, J. C. Jeffery, M. J. Grosse-Ophoff, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1988, 1867.
10 R. Hoffmann, Angew: Chem., Int. Ed. Engl., 1982, 94, 725.
11 F. G. A. Stone, Angew. Chem., Int. Ed. Engl., 1984, $23,89$.
12 C. W. Baimbridge, R. S. Dickson, G. D. Fallon, I. Grayson, R. J. Nesbit, and J. Weigold, Aust. J. Chem., 1986, 39, 1187.
13 R. S. Dickson, personal communication.
14 G. M. Sheldrick, SHELXTL programs for use with the Nicolet X-ray system, Revision 5.1, 1986.
15 D. Rogers, Acta Crystallogr., Sect. A, 1981, 37, 734.
16 'International Tables for X-Ray Crystallography,' Kynoch Press, Birmingham, 1974, vol. 4.

[^0]: * μ-Carbonyl-1,1,1,2-tetracarbonyl-2- η-cyclopentadienyl- μ - $\left[1^{\prime}, 2^{\prime}\right.$ -diethyl-3'-oxo-4'-p-tolylbut-1'-en-1'-yl-4'-ylidene- $C^{1,4}(\mathrm{Fe}, \mathrm{Mo}) \mathrm{C}^{2^{\prime}}$ -(Mo)]-ironmolybdenum $(F e-M o)$ and μ-[1'-acetyl-2'-methyl-3'-p-tolyl-prop-1'-en-1'-yl-3'-ylidene- $\left.C^{1^{\prime} \cdot 3^{\prime}}(\mathrm{Fe}, \mathrm{Mo}) C^{2^{\prime}}(\mathrm{Fe})\right]$-1,1,1,2,2-penta-carbonyl-2- η-cyclopentadienylironmolybdenum $(F e-M o)$.
 Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1988, Issue 1, pp. xvii-xx.

