Chemistry of Polynuclear Metal Complexes with Bridging Carbene or Carbyne Ligands. Part 80.¹ Mixed-metal Tungsten and Ruthenium Compounds

F. Gordon A. Stone and Michael L. Williams

Department of Inorganic Chemistry, The University, Bristol BS8 1TS

Treatment of the compounds $[W(\equiv CC_6H_4Me-4)(CO)_2L] \{L = \eta - C_5H_5 \text{ or }HB(pz)_3 [hydrotris(pyrazol-1-yl)borate]\}$ with a three-fold excess of $[Ru(CO)_4(\eta - C_2H_4)]$ in light petroleum affords as the only products the tetranuclear metal cluster complexes $[WRu_3(\mu_3 - CC_6H_4Me-4)(CO)_{11}L]$. In contrast, a similar reaction $(L = \eta - C_5H_5)$ employing a W: Ru mol ratio of 2:1 gives in high yield the trinuclear metal complex $[W_2Ru\{\mu_3 - C_2(C_6H_4Me-4)_2\}(CO)_7(\eta - C_5H_5)_2]$, which in refluxing cyclohexane releases CO and affords the electronically unsaturated species $[W_2Ru(\mu - CC_6H_4Me-4)(\mu_3 - CC_6H_4Me-4)(CO)_5 - (\eta - C_5H_5)_2]$. With hydrogen and with diazomethane the latter compound affords the complexes $[W_2 - RuH(\mu - H)(\mu - CC_6H_4Me-4)(\mu_3 - CC_6H_4Me-4)(CO)_4(\eta - C_5H_5)_2]$ and $[W_2Ru(\mu - CL_2)(\mu - CC_6H_4Me-4)(\mu_3 - CC_6H_4Me-4)(\mu_3 - CC_6H_4Me-4)(\mu_3 - CC_6H_4Me-4)(\mu_3 - CC_6H_4Me-4)(\mu_3 - CC_6H_4Me-4)(LO)_5 - (\eta - C_5H_5)_2]$ with the species $[W_2Ru(\mu - CC_6H_4Me-4)(\mu_3 - CC_6H_4Me-4)(CO)_4(\eta - C_5H_5)_2]$ and $[W_2Ru(\mu - CC_6H_4Me-4)(\mu_3 - CC_6H_4Me-4)(\mu_3 - CC_6H_4Me-4)(CO)_5(\eta - C_5H_5)_2]$ and $[W_2Ru(\mu - CC_6H_4Me-4)(\mu_3 - CC_6H_4Me-4)(CO)_5(\eta - C_5H_5)_2]$ with the alkylidyne-tungsten complexes $[W(\equiv CC_6H_4Me-4)(CO)_2L]$ ($L = \eta - C_5H_5$ or $\eta - C_5Me_5$) afford the tetranuclear metal compounds $[W_3 - Ru(\mu - CO)(\mu_3 - \eta - C_6H_4Me-4)(CO)_2(\eta - C_6H_4Me-4)(CO)_2(\eta - C_6H_5)_2L]$. The n.m.r. data for the new compounds are reported and discussed in relation to their structures.

In this paper we describe several tri- and tetra-nuclear metal compounds containing bonds between tungsten and ruthenium. By employing the alkylidyne-tungsten compounds $[W(\equiv CR)(CO)_2L]$ ${R = C_6H_4Me-4, L = \eta-C_5H_5, \eta-C_5Me_5, or HB(pz)_3$ [hydrotris(pyrazol-1-yl)borate]; R = Me or Ph, $L = \eta-C_5H_5$ as reagents, we have earlier prepared a variety of complexes with bonds between tungsten and iron, ruthenium, or osmium.² However, as described below, the majority of the ruthenium-containing species which have been identified are structurally different from those having tungsten-iron bonds, and in part these differences prompted the work described herein.

Previous studies with iron carbonyl reagents have yielded several di- and tri-metal compounds. Thus treatment of the complexes $[W(\equiv CC_6H_4Me-4)(CO)_2L]$ $(L = \eta - C_5H_5$ or η - C_5Me_5) with $[Fe_2(CO)_9]$ affords the dimetal compounds $[WFe(\mu-CC_6H_4Me-4)(CO)_6L] (1)^{2a,f} However, [W(\equiv CC_6H_4-$ Me-4)(CO)₂{HB(pz)₃}] with $[Fe_2(CO)_9]$ yields the unsaturated 32-valence electron compound [WFe(μ -CC₆H₄Me-4)- $(CO)_{5}[HB(pz)_{3}]$ (2a).^{2e} The related species [WFe(μ -CC₆H₄-Me-4)(CO)₅L] [L = η -C₅H₅ (**2b**) or η -C₅Me₅ (**2c**)] have also been obtained. Complex (2b) has been prepared by treating $[W(\equiv CC_{6}H_{4}Me-4)(CO)_{2}(\eta-C_{5}H_{5})]$ with $[Fe(CO)_{3}(\eta^{2}-C_{8})]$ $[H_{14}]_2]$ (C₈H₁₄ = cyclo-octene).^{2e} Compound (**2c**) is formed simultaneously with (1b) in the reaction of $[Fe_2(CO)_9]$ with. $[W(\equiv CC_6H_4Me-4)(CO)_2(\eta-C_5Me_5)]$, since in the presence of CO the compounds (1b) and (2c) exist together in equilibrium.^{2f} Compound (1a) is unstable, and (2b) has only a fleeting existence at low temperatures, with both species decomposing to give the trimetal complexes [WFe₂(μ_3 -CC₆H₄-Me-4)(μ -CO)(CO)₈(η -C₅H₅)] (**3a**) and $[\bar{W}_2Fe{\mu_3-C_2(C_6H_4-$ Me-4)₂ (CO)₆(η -C₅H₅)₂ (4). However, (3a) is best obtained by treating $[W(\equiv CC_6H_4Me-4)(CO)_2(\eta-C_5H_5)]$ with an excess of $[Fe_2(CO)_q]$, while (4) is formed when an excess of the alkylidyne-tungsten compound is used in the reaction with the iron carbonyl.2ª These syntheses proceed via the intermediacy of the dimetal compounds (1a) and (2b). Compound (3b) is readily prepared from the reaction between $[W(\equiv CC_6H_4Me-4)(CO)_2$ - $(\eta - C_5 Me_5)$ and $[Fe_2(CO)_9]$ when employing an excess of the latter reagent.2f

The reaction between $[Ru_3(CO)_{12}]$ and $[W(\equiv CC_6H_4Me-4)(CO)_2(\eta-C_5H_5)]$ in toluene at 80 °C affords $[W_2Ru\{\mu_3-C_2(C_6H_4Me-4)_2\}(CO)_7(\eta-C_5H_5)_2]$ (**5a**), but only in low yield (*ca.* 10%).^{2b} This contrasts with the high yields obtained in the synthesis of most of the tungsten-iron compounds mentioned above. Complex (**5a**), like its osmium analogue $[W_2Os\{\mu_3-C_2(C_6H_4Me-4)_2\}(CO)_7(\eta-C_5H_5)_2]$ (**5b**), obtained from reactions between $[Os_3(\mu-H)_2(\mu-CH_2)(CO)_{10}]^{2b}$ or $[Os_3(\mu-H)_2(CO)_{10}]^{3}$ and $[W(\equiv CC_6H_4Me-4)(CO)_2(\eta-C_5H_5)]$, exists as a mixture of two isomers (**A**) and (**B**), with the μ_3 -alkyne adopting the μ_3 -(η^2 -||) bonding mode. Interestingly, an iron analogue of (**5a**) or (**5b**) has not been isolated, although *via* a

Table 1. Analytical^a and physical data for the tungsten-ruthenium complexes

		V:-14		Analysis (%)	
Compound ^b	Colour	(%)	$v_{max.}(CO)^{c}/cm^{-1}$	C	Н
(9a) $[WRu_3(\mu_3-CR)(CO)_{11}{HB(pz)_3}]$	Dark purple	68	2 077m, 2 041vs, 2 035s, 2 008m, 1 997w, 1 983w, 1 861vw(br), 1 819vw(br)	^d 30.2 (30.3)	1.6 (1.5)
(9b) $[WRu_3(\mu_3-CR)(CO)_{11}(\eta-C_5H_5)]$	Dark purple	59	2 076m, 2 040vs, 2 033s, 2 010m, 1 980w, 1 968w, 1 956w, 1 835vw(br)	30.0 (29.9)	1.4 (1.3)
(10a) $[W_2Ru(\mu-CR)(\mu_3-CR)(CO)_5(\eta-C_5H_5)_2]$	Black	85	^e 2 044s, 1 985m, 1 958m	39.3 (39.4)	2.9 (2.6)
(11b) $\begin{bmatrix} W_2 R u \dot{H} (\mu - H) (\mu - C R) (\mu_3 - C R) (C O)_4 (\eta - C_5 H_5)_2 \end{bmatrix}$	Brown	34	2 052vs, 2 024w, 1 990s, 1 968s, 1 887w(br)	38.7 (38.0)	3.1 (2.8)
(12) $[W_2Ru(\mu-CH_2)(\mu-CR)(\mu_3-CR)(CO)_4(\eta-C_5H_5)_2]$	Black	41	2 049s, 1 996m, 1 972m, 1 850vw(br)	39.6 (40.0)	2.9 (2.8)
(13a) $[W_2Ru(\mu-CR)(\mu_3-CR)(\mu_3-C_2Ph_2)(CO)_3(\eta-C_5H_5)_2]$	Red	39	2 048s, 1 994m, 1 980m	48.4 (48.4)	3.6 (3.2)
(13b) $[W_2 Ru(\mu - CR)(\mu_3 - CR)(\mu_3 - C_2 Me_2)(CO)_3(\eta - C_5 H_5)_2]$	Orange	79	2 038s, 1 981m, 1 973m	42.5 (42.0)	3.4 (3.1)
(13c) $[W_2Ru(\mu-CR)(\mu_3-CR)(\mu_3-PhC_2H)(CO)_3(\eta-C_5H_5)_2]$	Orange	40	2 048s, 1 995m, 1 977m	45.5 (44.8)	3.6 (3.1)
(14c) $[W_3 Ru(\mu-CO)(\mu_3-\eta-CO)(\mu-CR)_2(\mu_3-CR)(CO)_2(\eta-C_5H_5)_2(\eta-C_5Me_5)]$	Black	40	1 981s, 1 926vs, 1 749m, 1 369m	43.4 (43.0)	3.7 (3.5)

^{*a*} Calculated values are given in parentheses. ^{*b*} $\mathbf{R} = C_6 H_4 Me$ -4. ^{*c*} Measured in light petroleum unless otherwise stated. ^{*d*} N, 7.5 (7.6%). ^{*e*} In cyclohexane.

C_H_)(O C)

(B)

process involving coupling of alkylidyne fragments at a trimetal centre, the compound $[W_2Fe(\mu_3-MeC_2C_6H_4Me-4)(CO)_7(\eta-C_5H_5)_2]$, structurally similar to (5), has been obtained.⁴

No ruthenium analogues of the species (1) and (2) have as yet been characterised. However, the dimetal compound [WRu(μ -Cl)(μ -CMe)Cl(CO)₂(PPh₃)₂(η -C₅H₅)] (6) has been isolated as a product of the reaction between [W(\equiv CMe)(CO)₂(η -C₅H₅)] and [RuCl₂(PPh₃)₃].^{2c} In another attempt to obtain a dimetal tungsten–ruthenium species with a bridging alkylidyne ligand, the complexes [Ru(CO)_n(PPh₃)_{5-n}] (*n* = 2 or 3) were treated with [W(\equiv CMe)(CO)₂(η -C₅H₅)]. The product, however, was the trimetal compound [W₂Ru(μ_3 -MeC₂Me)(CO)₆(PPh₃)(η -C₅H₅)₂], which on addition of [W(CO)₅(thf)] (thf = tetrahydrofuran) to remove PPh₃, affords [W₂Ru(μ_3 -MeC₂Me)-(CO)₇(η -C₅H₅)₂] (**5c**).^{2c} in an investigation concerned with the coupling of alkylidyne and methylene groups at a trimetal centre, the reaction between $[Ru_2(\mu-CH_2)(\mu-CO)(CO)(NCMe)(\eta-C_5H_5)_2]$ and $[W(\equiv CR)-(CO)_2L](L = \eta-C_5H_5, R = Me \text{ or } C_6H_4Me-4; L = \eta-C_5Me_5, R = C_6H_4Me-4)$ has been studied.^{2g} The products are the tungsten-diruthenium compounds $[WRu_2(\mu-\sigma:\eta-trans-CH=C(H)R](\mu-CO)(CO)_3(\eta-C_5H_5)_2L][L = \eta-C_5H_5, R = Me(7a) or C_6H_4Me-4$ (7b); $L = \eta-C_5Me_5, R = C_6H_4Me-4$ (7c)] and $[WRu_2(\mu_3-CCH_2R)(\mu-CO)_3(CO)(\eta-C_5H_5)_2L] [L = \eta-C_5H_5, R = Me(8a) \text{ or } C_6H_4Me-4$ (8b); $L = \eta-C_5Me_5, R = C_6H_4Me-4$ (8c)].

In extending the range of compounds with W-Ru bonds we have employed the readily available reagent $[Ru(CO)_4(\eta-C_2H_4)]^5$ as a source of the fragment $Ru(CO)_4$, isolobal with methylene, and the results are described herein.

Table 2. Hydrogen-1 and carbon-13 n.m.r. data^a for the complexes

Compound	${}^{1}\mathrm{H}(\delta)^{b}$	¹³ C(δ) ^{<i>c</i>}
(9a) ^d	2.07 (s, 3 H, Me-4), 6.22–7.79 (C_6H_4 and $C_3H_3N_2$)	329.6 (μ_3 -C), 247.3 [WCO, <i>J</i> (WC) 127], 197.6, 194.8 (RuCO), 162.8 [C ¹ (C ₆ H ₄)], 146.8—106.9 (C ₆ H ₄ and C ₃ H ₃ N ₂), 21.1 (Me-4)
(9b) ^{<i>d</i>}	2.30 (s, 3 H, Me-4), 5.51 (s, 5 H, C_5H_5), 7.11–7.36 (m, 4 H, C_5H_4)	301.3 [μ_3 -C, J(WC) 86], 199.8, 193.5 (CO), 164.7 [C ¹ (C ₆ H ₄)], 137.8, 131.2, 128.4 (C ₆ H ₄), 90.1 (C ₅ H ₅), 21.4 (Me-4)
(10a) ^d	2.23 (s, 3 H, Me-4), 2.54 (s, 3 H, Me-4), 5.31 (s, 10 H, C_5H_5), 6.73–7.44 (m, 8 H, C_6H_4)	381.7 [μ -C, J(WC) 136], 261.9 [μ_3 -C, J(WC) 96], 241.6 [WCO, J(WC) 167], 197.8 (RuCO), 165.9, 162.8 [C ¹ (C ₆ H ₄)], 133.9, 133.6 [C ⁴ (C ₆ H ₄)], 128.5—119.4 (C ₆ H ₄), 94.9 (C ₅ H ₅), 20.0, 19.7 (Me-4)
(11b) ^e	-11.25 [d, 1 H, μ-H, J(HH) 7, J(WH) 17], -0.51 [d, 1 H, WH, J(HH) 7, J(WH) 110, 10], 2.03 (s, 3 H, Me-4), 2.40 (s, 3 H, Me-4), 4.68 (s, 5 H, C ₅ H ₅), 5.23 (s, 5 H, C ₅ H ₅), 6.64—7.46 (m, 8 H, C ₆ H ₄)	³ 72.5 [μ -C, <i>J</i> (WC) 134], 259.6 (μ_3 -C), 217.4 (WCO), 196.0, 195.3, 194.3 (RuCO), 165.0, 162.8 [C ¹ (C ₆ H ₄)], 133.5, 133.3 [C ⁴ (C ₆ H ₄)], 129.3—119.4 (C ₆ H ₄), 96.2, 91.4 (C ₅ H ₅), 21.0, 20.6 (Me-4)
(12)	2.29 (s, 3 H, Me-4), 2.50 (s, 3 H, Me-4), 3.48 [d, 1 H, CH ₂ , J (HH) 10], 5.14 (s, 5 H, C ₅ H ₅), 5.49 (s, 5 H, C ₅ H ₅), 5.63 [d, 1 H, CH ₂ , J (HH) 10], 6.54—7.25 (m, 8 H, C ₆ H ₄)	(16.5) [μ -C, J (WC) 137], 259.3 [μ_3 -C, J (WC) 103], 238.1 [WCO, J (WC) 178], 198.3, 195.5, 190.0 (RuCO), 166.7, 163.2 [C ¹ (C ₆ H ₄)], 132.8, 132.4 [C ⁴ (C ₆ H ₄)], 128.2—118.9 (C ₆ H ₄), [07.9 [μ -CH ₂ , J (WC) 99], 96.9, 95.6 (C ₄ H ₄), 20.8, 20.5 (Me-4)
(1 3a)	2.33 (s, 3 H, Me-4), 2.51 (s, 3 H, Me-4), 5.34 (s, 10 H, C_5H_5), 6.55–7.24 (m, 18 H, C_6H_4 and Ph)	334.0 [μ -C, J(WC) 146], 282.0 [μ_3 -C, J(WC) 113], 199.6, 193.3 (RuCO), 163.5–120.7 (C ₆ H ₄ and Ph), 140.9 [μ_3 -C ₂ Ph ₂ , J(WC) 93], 100.8 (C ₅ H ₅), 20.7, 20.6 (Me-4)
(1 3b)	2.29 (s, 3 H, Me-4), 2.40 (s, 6 H, C_2Me_2), 2.49 (s, 3 H, Me-4), 5.64 (s, 10 H, C_5H_5), 6.43–7.15 (m, 8 H, C_6H_4)	331.4 [μ -C, J(WC) 146], 277.2 [μ_3 -C, J(WC) 111], 197.4 (RuCO), 163.8 [C ¹ (C ₆ H ₄)], 135.3 [μ_3 -C ₂ Me ₂ , J(WC) 98], 132.3—121.0 (C ₆ H ₄), 99.4 (C ₅ H ₅), 29.5 (C ₂ Me ₂), 20.7, 20.6 (Me-4)
(13c)	2.32 (s, 3 H, Me-4), 2.47 (s, 3 H, Me-4), 5.39 (s, 5 H, C_5H_5), 5.72 (s, 5 H, C_5H_5), 6.43–7.13 (m, 13 H, C_6H_4 and Ph), 8.40 (s, 1 H, \equiv CH)	^{<i>j</i>} 337.6 [μ -C, <i>J</i> (WC) 146], 282.5 [μ -C, <i>J</i> (WC) 111], 202.1 196.7, 194.4 (RuCO), 164.4—122.2 (C ₆ H ₄ and Ph), 137.3 [μ_3 -PhC=CH, <i>J</i> (WC) 92], 113.5 [μ_3 -PhC=CH, <i>J</i> (WC) 100], 100.8, 99.2 (C ₅ H ₅), 20.9, 20.7 (Me-4)
(14c)	1.90 (s, 15 H, C_5Me_5), 2.26 (s, 3 H, Me-4), 2.47 (s, 3 H, Me-4), 2.57 (s, 3 H, Me-4), 5.05 (s, 5 H, C_5H_5), 5.72 (s, 5 H, C_5H_5), 6.19–7.35 (m, 12 H, C_6H_4)	347.0, 346.6 (μ -C), 291.1 (μ_3 -C), 289.4 (μ_3 - η -CO), 276.9 [μ -CO, J(WC) 154], 219.1 (WCO), 205.5 (RuCO), 166.2—121.6 (C ₆ H ₄), 104.9 (C ₅ Me ₅), 102.6, 101.1 (C ₅ H ₅), 21.3, 21.0, 20.6 (Me-4), 9.8 (C ₅ Me ₅)

^{*a*} Chemical shifts (δ) in p.p.m., coupling constants in Hz, measurements at room temperature unless otherwise stated. ^{*b*} Measured in CDCl₃ unless otherwise stated. ^{*c*} Hydrogen-1 decoupled; chemical shifts are positive to high frequency of SiMe₄. Measurements in CD₂Cl₂-CH₂Cl₂, unless otherwise stated. ^{*d*} Measured in CD₂Cl₂. ^{*e*} Measured in C₆D₆. ^{*f*} Measured at -80 °C in CD₂Cl₂.

Results and Discussion

Treatment of $[Ru(CO)_4(\eta-C_2H_4)]$ in light petroleum with $[W(\equiv CC_6H_4Me-4)(CO)_2\{HB(pz)_3\}]$ in a 3:1 mol ratio affords the tetranuclear metal complex $[WRu_3(\mu_3-CC_6H_4Me-4)(CO)_{11}\{HB(pz)_3\}]$ (9a) as the only product. A similar reaction occurs between $[Ru(CO)_4(\eta-C_2H_4)]$ and $[W(\equiv CC_6H_4Me-4)(CO)_2(\eta-C_5H_5)]$ yielding $[WRu_3(\mu_3-CC_6H_4Me-4)(CO)_{11}-(\eta-C_5H_5)]$ (9b). However, in this synthesis $[W(\equiv CC_6H_4Me-4)(CO)_2(\eta-C_5H_5)]$ must be added dropwise to the ruthenium reagent otherwise a different product is obtained, as described below. Data characterising complexes (9a) and (9b) are given in Tables 1 and 2, and these products are structurally similar to the previously obtained tungsten-osmium compound $[WOs_3(\mu_3-CC_6H_4Me-4)(CO)_{11}(\eta-C_5H_5)]$ (9c) prepared in low yield (16%) by treating $[Os_3(CO)_{10}(\eta^2-C_8H_{14})_2]$ with $[W(\equiv CC_6H_4-Me-4)(CO)_2(\eta-C_5H_5)]^{2b}$

The $^{13}C-\{^{1}H\}$ n.m.r. spectra of compounds (9a) and (9b) show resonances for the μ_{3} -C nuclei at δ 329.6 and 301.3 p.p.m. respectively, while that for (9c) occurs at δ 264.7 p.p.m.^{2b} The significantly more deshielded signals observed for (9a) and (9b) in contrast with (9c) suggests that in (9a) and (9b) the *p*tolylmethylidyne group asymmetrically bridges the WRu₂ triangle.⁶

If the reaction between $[Ru(CO)_4(\eta-C_2H_4)]$ and $[W(\equiv CC_6-H_4Me-4)(CO)_2(\eta-C_5H_5)]$ is carried out with the former reagent added to the latter using a 1:2 mol ratio the product is the trinuclear metal compound $[W_2Ru\{\mu_3-C_2(C_6H_4Me-4)_2\}(CO)_7-(\eta-C_5H_5)_2]$ (5a) isolated in 80% yield. As mentioned earlier, when (5a) is prepared by heating $[Ru_3(CO)_{12}]$ with $[W(\equiv CC_6-$ $H_4Me-4)(CO)_2(\eta-C_5H_5)]$ in toluene at 80 °C the yield is only ca. 10%. Compound (**5a**) was also obtained in the present work in ca. 60% yield by irradiating with visible light mixtures of $[Ru_3(CO)_{12}]$ and $[W(\equiv CC_6H_4Me-4)(CO)_2(\eta-C_5H_5)]$ in light petroleum. Evidently under these conditions the metal-metal bonds in $[Ru_3(CO)_{12}]$ are readily broken so that addition of the *p*-tolylmethylidyne-tungsten group can readily occur.

The ready availability of (5a) has allowed aspects of its chemistry to be explored. When refluxed in cyclohexane (b.p. 82 °C), with the solution purged with a stream of nitrogen, (5a) is smoothly converted into the air-sensitive 46-valence electron complex $[W_2Ru(\mu-CC_6H_4Me-4)(\mu_3-CC_6H_4Me-4)(CO)_5(\eta-C_5H_5)_2]$ (10a), data for which are given in Tables 1 and 2. A similar scission of the alkyne ligand occurs when (5b) is refluxed in methylcyclohexane (b.p. 101 °C) with the solution flushed with argon; a process affording the tungsten–osmium compound $[W_2Os(\mu-CC_6H_4Me-4)(\mu_3-CC_6H_4Me-4)(CO)_5(\eta-C_5H_5)_2]$ (10b).⁷

The n.m.r. data for (10a) are in accord with the structure shown. In the ¹³C-{¹H} spectrum the resonance for the μ -C group occurs at δ 381.7, while that for the μ_3 -C nucleus is seen at 261.9 p.p.m.⁸ The corresponding signals in the spectrum of (10b) occur at δ 384.1 and 244.5 p.p.m.⁷ As expected, the ¹H and the ¹³C-{¹H} n.m.r. spectra of (10a) show two resonances for the chemically non-equivalent Me-4 groups. However, the spectra show only one peak for the η -C₅H₅ ligands, implying that (10a) has a mirror plane.

Both (10a) and (10b) readily react with CO regenerating the μ_3 -alkyne complexes (5a) and (5b), respectively. This result

 $R = C_6 H_4 Me - 4$

prompted us to study reactions of (10a) with other molecules which react readily with unsaturated cluster compounds. Chi and Shapley⁷ have reported that (10b) reacts with hydrogen (1 atm, 101 °C) to afford the 46-valence electron complex $[W_2O_5H)(\mu-H)(\mu-CC_6H_4Me-4)(\mu_3-CC_6H_4Me-4)(CO)_4(\eta-C_5 H_5)_2$] (11a). A similar reaction occurs between (10a) and hydrogen in refluxing cyclohexane to yield [W2RuH(µ-H)- $(\mu - CC_6H_4Me - 4)(\mu_3 - CC_6H_4Me - 4)(CO)_4(\eta - C_5H_5)_2$] (11b). The spectroscopic data for (11a) and (11b) (Tables 1 and 2) are very similar. In particular, the ¹H n.m.r. spectrum of (11b) shows resonances at $\delta - 11.25$ and -0.51 for the bridging and terminal hydrido ligands, respectively, with J(HH) 7 Hz. The corresponding signals in the ¹H n.m.r. spectrum of (11a) are seen at δ -13.15 and -1.87 with J(HH) 7 Hz.⁷ The terminal hydrido ligand in the compounds (11) is coupled in the ¹H spectrum to the two tungsten atoms [(11a), J(WH) 100 and 11 Hz; (11b), J(WH) 110 and 10 Hz].

Since compound (11b) does not have a plane of symmetry both the ¹H and the ¹³C-{¹H} n.m.r. spectra show two resonances for each of the groups Me-4 and η -C₅H₅ (Table 2). The signals for the μ -C and μ_3 -C nuclei in the ¹³C-{¹H} spectrum occur at δ 372.5 and 259.6 p.p.m., respectively. The Ru(CO)₃ moiety shows three resonances, in contrast with the spectrum of (10a) where only one peak for this group occurs, indicating site-exchange of the carbonyl groups at the ruthenium centre in the latter species.

Compound (10a) reacts with diazomethane in Et₂O, yielding a product formulated as $[W_2Ru(\mu-CH_2)(\mu-CC_6H_4Me-4)(\mu_3-CC_6H_4Me-4)(CO)_4(\eta-C_5H_5)_2]$ (12). The n.m.r. spectra of this complex (Table 2) revealed that no C–C bond formation had occurred between the methylene group and *p*-tolylmethylidyne fragments. This is in marked contrast with the ready formation of μ -vinyl groups as a consequence of coupling of CH₂ and μ - CR fragments in the reaction of (1b) with CH_2N_2 ,^{2f} and in the synthesis of the compounds (7).^{2g}

The ${}^{13}C-{}^{1}H$ n.m.r. spectrum of (12) shows the characteristic signals for the μ -C (365.9 p.p.m.) and μ_3 -C (259.3 p.p.m.) groups, a resonance for the WCO group, and three peaks for the Ru(CO)₃ moiety (Table 2). The resonance for the μ -CH₂ ligand occurs at δ 107.9 p.p.m. [J(WC) 99 Hz]. In the ${}^{13}C-{}^{1}H$ spectrum of the complex [MoFe(μ -CH₂){ μ - σ : η -C(C₆H₄Me-4)=CH₂}(CO)₅(η -C₅H₅)], the signal for the μ -CH₂ group is at δ 107.4 p.p.m.,⁹ while in the spectra of [WFe(μ -CH₂){ μ - σ : η -C(C₆H₄Me-4)=CH₂}(CO)₅(η -C₅Me₅)] and [WFe(μ -CH₂){ μ - σ : η -CH=C(H)C₆H₄Me-4}(CO)₅(η -C₅Me₅)] the μ -CH₂ resonances are at δ 89.9 and 88.2 p.p.m., respectively, with J(WC) 58 and 61 Hz.^{2f}

Although the ¹H and ¹³C-{¹H} n.m.r. spectra of (12) identify the various groups present, there are two possible molecular structures, (12a) and (12b), which fit the data. Unfortunately, it was not possible to grow crystals for an X-ray diffraction study. In (12b) the methylene group spans the W–W bond while in (12a) it bridges the W–Ru bond. Structure (12a) is favoured, since that of (12b) suggests that coupling of the CH₂ and CC_6H_4Me-4 groups so as to generate a vinyl group would occur, on account of their proximity, but as mentioned this feature is not observed.

We have also studied reactions of (10a) with the alkynes PhC=CPh, MeC=CMe, and PhC=CH. Similar products of formulation $[W_2Ru(\mu-CC_6H_4Me-4)(\mu_3-CC_6H_4Me-4)(\mu_3-R^1-C_2R^2)(CO)_3(\eta-C_5H_5)_2]$ [R¹ = R² = Ph (13a) or Me (13b); R¹ = Ph, R² = H (13c)] were obtained from each of the alkynes, and data for these products are given in Tables 1 and 2.

It is evident from the ¹³C-{¹H} n.m.r. data for the complexes (13) that these species each retain the μ -CC₆H₄Me-4 and μ_3 -

 $\begin{array}{cccc} R & L & L' \\ \textbf{(14a)} & C_6^{}H_4^{}Me-4 & \eta-C_5^{}H_5 & \eta-C_5^{}H_5 \\ \textbf{(14b)} & Ph & \eta-C_5^{}H_5 & \eta-C_5^{}H_5 \\ \textbf{(14c)} & C_6^{}H_4^{}Me-4 & \eta-C_5^{}H_5 & \eta-C_5^{}Me_5 \end{array}$

L'(OC)W

 CC_6H_4 Me-4 fragments present in the precursor (10a), since characteristic resonances for these alkylidyne groups occur in each spectrum [μ -C, δ 334.0 (13a), 331.4 (13b), 337.6 p.p.m. (13c); μ_3 -C, δ 282.0 (13a), 277.2 (13b), and 282.5 p.p.m. (13c)]. Coupling between the alkylidyne groups and the alkynes has therefore not occurred. This is a somewhat surprising result in view of the many alkylidyne–alkyne coupling reactions observed in reactions of the compounds (1)—(3) with alkynes.¹⁰

Examination of the n.m.r. data for (13a) and (13b) reveals that in these molecules there must be a mirror plane, *i.e.* the alkyne adopts the μ_3 -(η^2 -||) bonding mode with the axis of the ligating carbon atoms lying parallel to the W-W bond. Thus in the ¹H and ${}^{13}C-{}^{1}H$ n.m.r. spectra of (13a) and (13b) (Table 2) there is only one resonance for the C_5H_5 ligands, and in the ¹H spectrum of (13b) there is only one signal for the μ_3 -C₂Me₂ group, a feature also apparent in the ¹³C-{¹H} spectrum. Moreover, in the latter there is a single peak for the ligating carbon atoms of the C_2Me_2 ligand. The ¹³C-{¹H} n.m.r. spectra of (13a) and (13b) are also revealing in showing the absence of any resonance due to a WCO group. The Ru(CO)₃ moiety in the spectrum of (13a) gives rise to two peaks at δ 199.6 and 193.3 p.p.m. of relative intensity 1:2. Only one such signal is observed in the spectrum of (13b) (8 197.4 p.p.m.) probably due to dynamic behaviour. A mass spectrum of (13b), however, showed that this species contained three carbonyl groups.

The n.m.r. spectra of (13c) are more complex, since this species lacks a mirror plane. The ${}^{13}C{}^{1}H$ n.m.r. spectrum (at -80 °C) showed resonances for two η -C₅H₅ ligands (δ 100.8 and 99.2 p.p.m.), and two peaks for the ligating carbon atoms of the alkyne (δ 137.3 and 113.5 p.p.m.). Both μ_3 -C₂ signals showed ¹⁸³W satellite peaks in support of the assignment. Three resonances occur for the Ru(CO)₃ moiety (δ 202.1, 196.7, and 194.4 p.p.m.), but there was no peak assignable to a carbonyl group ligating tungsten. In a spectrum measured at room temperature only one resonance was observed for the Ru(CO)₃

fragment, indicating site-exchange of the CO ligands under these conditions.

Because of the isolobal relationship between alkynes and the species $[W(\equiv CC_6H_4Me-4)(CO)_2L](L = \eta-C_5H_5 \text{ or }\eta-C_5Me_5)$, we have also studied reactions of the latter with compound (**10a**). In refluxing heptane, (**10a**) and $[W(\equiv CC_6H_4Me-4)(CO)_2(\eta-C_5H_5)]$ afford the tetranuclear metal compound $[W_3Ru-(\mu-CO)(\mu_3-\eta-CO)(\mu-CC_6H_4Me-4)_2(\mu_3-CC_6H_4Me-4)(CO)_2(\eta-C_5H_5)_3]$ (**14a**). This product has been previously obtained ¹¹ by treating the mononuclear ruthenium compounds $[Ru(\eta^6-C_8H_{10})(cod)]$ ($C_8H_{10} = cyclo-octa-1,3,5$ -triene, cod = cyclo-octa-1,5-diene) or $[Ru(\eta^6-C_{10}H_8)(cod)]$ ($C_{10}H_8 =$ napthalene) with $[W(\equiv CC_6H_4Me-4)(CO)_2(\eta-C_5H_5)]$. Moreover, the structure of the phenylmethylidyne analogue (**14b**) has been established by X-ray diffraction.¹¹

The preparation of (14a) from (10a) and $[W(\equiv CC_6H_4Me-4)(CO)_2(\eta-C_5H_5)]$ is a more rational synthesis than that described earlier, and the compound was isolated in better yield, since in the earlier work (5a) was obtained as a side product. Evidently the electronically unsaturated compound (10a) should combine with a variety of metal-ligand fragments to afford cluster compounds. Thus (10a) with $[W(\equiv CC_6H_4Me-4)(CO)_2(\eta-C_5Me_5)]$, when refluxed together in heptane, affords $[W_3Ru(\mu-CO)(\mu_3-\eta-CO)(\mu-CC_6H_4Me-4)_2(\mu_3-CC_6H_4Me-4)-(CO)_2(\eta-C_5Me_5)]$ (14c), data for which are given in Tables 1 and 2.

The i.r. spectrum of (14) in the carbonyl stretching region shows four bands at 1 981, 1 926, 1 749, and 1 369 cm⁻¹. These absorptions may be compared with those in the spectrum of (14a) at 1 972, 1 936, 1 734, and 1 380 cm⁻¹. The two bands in each spectrum at lowest frequency may be assigned to the μ -CO and μ_3 - η -CO groups, respectively. However, the assignment¹² for the μ_3 - η -CO ligand must be regarded as tentative because of the appearance of C–C bands in this region due to the organic groups.

In the ${}^{13}C-{}^{1}H$ n.m.r. spectrum of (14c) resonances for the

edge-bridging μ -CC₆H₄Me-4 nuclei are seen at δ 347.0 and 346.6 p.p.m., while that for the μ_3 -CC₆H₄Me-4 nucleus occurs at δ 291.1 p.p.m. The corresponding peaks in the spectrum of (14a) are observed at δ 350.1 and 348.0 p.p.m., and at 292.8 p.p.m. The data for the two compounds are also very similar in the carbonyl region of the ¹³C-{¹H} n.m.r. spectrum, in accord with their similar structures: μ_3 -η-CO, δ 290.4 (14a), 289.4 (14c); μ -CO, δ 275.8 (14a), 276.9 (14c); WCO, δ 215.3 (14a), 219.1 (14c); and RuCO, δ 205.5 (14a), 205.5 p.p.m. (14c).

The results described in this paper extend the range of known compounds with Ru–W bonds. Conversion of (5a) into (10a), and the reaction of the latter with hydrogen to yield (11b), occur under milder conditions than the corresponding reactions involving the osmium-containing species (5b) and (10b). Formation of the tetranuclear metal compounds (9a) and (9b), from the reactions between [Ru(CO)₄(η -C₂H₄)] and [W(\equiv CC₆-H₄Me-4)(CO)₂L] [L = HB(pz)₃ or η -C₅H₅], rather than dimetal products, reflects the ease with which carbonyl ruthenium fragments combine to form Ru–Ru bonds.

Experimental

All experiments were carried out using Schlenk-tube techniques under an atmosphere of dry oxygen-free nitrogen, with all solvents dried and distilled under nitrogen prior to use. Light petroleum refers to that fraction of b.p. 40-60 °C. Chromatography columns (ca. 3×20 cm) were packed with alumina (Brockman activity II). Infrared spectra were measured with Nicolet MX5 and MX10 spectrophotometers, and n.m.r. spectra with JEOL JNM GX400, GX270, and FX90Q instruments. The compounds $[W(\equiv CC_6H_4Me-4)(CO)_2L] [L = \eta$ - C_5H_5 ,¹³ η - C_5Me_5 ,^{2f} or $HB(pz)_3^{2e}$] were prepared by published methods. The reagent $[Ru(CO)_4(\eta - C_2H_4)]$ was prepared as follows. A suspension of finely divided $[Ru_3(CO)_{12}]$ in light petroleum at 10 °C was irradiated with visible light (two 100-W bulbs) while C₂H₄ was passed in slow stream through the mixture. Conversion to $[Ru(CO)_4(\eta-C_2H_4)]$ is complete when the yellow-orange colour due to $[Ru_3(CO)_{12}]$ has disappeared (ca. 2-6 h), and the i.r. spectrum of the resulting colourless solution shows v_{max} (CO) bands at 2 104w, 2 023s, and 1 998s cm⁻¹. Diazomethane was generated using Aldrich Chemical Co. Diazald kits. Analytical and other data for the new compounds are given in Table 1.

Reactions of $[Ru(CO)_4(\eta-C_2H_4)]$.—(i) A light petroleum (150 cm³) solution of $[Ru(CO)_4(\eta-C_2H_4)]$ (0.94 mmol of Ru) was treated at room temperature dropwise (30 min) with $[W(\equiv CC_6H_4Me-4)(CO)_2\{HB(pz)_3\}]$ (0.17 g, 0.31 mmol) in the same solvent (100 cm³). The resulting mixture was stirred, and after 18 h all the reactants had been consumed (monitored by i.r.), and a dark purple solid had formed. Solvent was decanted, and the residue was washed with light petroleum (3 × 10 cm³), and crystallised from CH₂Cl₂–n-hexane (1:2) to afford large purple-black crystals of $[WRu_3(\mu_3-CC_6H_4Me-4)(CO)_{11}-\{HB(pz)_3\}]$ (9a) (0.23 g).

(*ii*) (a) Similarly, $[W(\equiv CC_6H_4Me-4)(CO)_2(\eta-C_5H_5)]$ (0.13 g, 0.32 mmol) in light petroleum (100 cm³) was added dropwise to $[Ru(CO)_4(\eta-C_2H_4)]$ (0.94 mmol of Ru) in the same solvent (150 cm³), giving a black solution. Solvent was removed *in vacuo*, and the residue was dissolved in CH₂Cl₂-light petroleum (20 cm³, 1:1) and chromatographed. Eluting with the same solvent mixture removed a trace of $[Ru_3(CO)_{12}]$ (identified by i.r.), followed by a purple fraction. Removal of solvent *in vacuo* from the latter, and crystallisation of the residue from CH₂Cl₂-light petroleum (1:4) gave dark purple *crystals* of $[WRu_3(\mu_3-CC_6H_4Me-4)(CO)_{11}(\eta-C_5H_5)]$ (9b) (0.18 g).

(*ii*) (*b*) A light petroleum (150 cm³) solution of $[Ru(CO)_4(\eta-C_2H_4)]$ (0.94 mmol in Ru) was added dropwise (*ca.* 1 h) to a

rapidly stirred solution of $[W(\equiv CC_6H_4Me-4)(CO)_2(\eta-C_5H_5)]$ (0.80 g, 1.96 mmol) in Et₂O (100 cm³). After 18 h, solvent was removed *in vacuo*, and the residue was dissolved in CH₂Cl₂-light petroleum (30 cm³, 1:1) and chromatographed. Elution with the same solvent mixture removed in succession unreacted $[W(\equiv CC_6H_4Me-4)(CO)_2(\eta-C_5H_5)]$, $[Ru_3(CO)_{12}]$, and a red fraction. Removal of solvent *in vacuo* from the latter and crystallisation from CH₂Cl₂--light petroleum (1:4) afforded red *crystals* of $[W_2Ru\{\mu_3-C_2(C_6H_4Me-4)_2\}(CO)_7(\eta-C_5H_5)_2]$ (5a) (0.75 g, 80%), identified spectroscopically.^{2b}

Reaction between $[Ru_3(CO)_{12}]$ and $[W(\equiv CC_6H_4Me-4)-(CO)_2(\eta-C_5H_5)]$.—A mixture of $[Ru_3(CO)_{12}]$ (0.03 g, 0.047 mmol) and $[W(\equiv CC_6H_4Me-4)(CO)_2(\eta-C_5H_5)]$ (0.12 g, 0.29 mmol) in light petroleum (100 cm³) at *ca*. 10 °C was irradiated with visible light for 48 h. Solvent was removed *in vacuo*, and the residue dissolved in CH₂Cl₂–light petroleum (30 cm³, 1:1) and chromatographed. Elution with the same solvent mixture separated in sequence unreacted $[W(\equiv CC_6H_4Me-4)(CO)_2(\eta-C_5H_5)]$ and $[Ru_3(CO)_{12}]$, and a red fraction. Removal of solvent *in vacuo* from the latter afforded red *crystals* of (**5a**) (0.085 g, 60%), identified spectroscopically.

Thermolysis of $[W_2Ru{\mu_3-C_2(C_6H_4Me-4)_2}(CO)_7(\eta-C_5H_5)_2]$.—A cyclohexane (80 cm³) solution of (**5a**) (0.20 g, 0.20 mmol) was refluxed for 25 min while purging the mixture with a stream of nitrogen. The colour of the solution changed from red to black, and monitoring by i.r. showed that all of (**5a**) had been consumed. Solvent was removed *in vacuo*, and the residue was dissolved in Et₂O (50 cm³) and passed through an alumina pad (3 × 3 cm). The solution was concentrated to *ca.* 1 cm³. Slow addition of n-hexane (10 cm³) with cooling (*ca.* -30 °C) overnight gave black *microcrystals* of $[W_2Ru(\mu-CC_6H_4Me-4)(\mu_3-CC_6H_4Me-4)(CO)_5(\eta-C_5H_5)_2]$ (**10a**) (0.16 g).

Reactions of $[W_2Ru(\mu-CC_6H_4Me-4)(\mu_3-CC_6H_4Me-4)-(CO)_5(\eta-C_5H_5)_2]$ (10a).—(*i*) With hydrogen. A stream of H₂ was passed through a refluxing cyclohexane (100 cm³) solution of (10a) (0.35 mmol, prepared *in situ* as described above). The reaction mixture was placed on a chromatography column. Elution with Et₂O-light petroleum (1:9) yielded one major yellow-brown fraction. Removal of solvent *in vacuo*, and crystallisation of the residue from CH₂Cl₂-light petroleum (1:5), gave brown *microcrystals* of $[W_2RuH(\mu-H)(\mu-CC_6H_4-Me-4)(\mu_3-CC_6H_4Me-4)(CO)_4(\eta-C_5H_5)_2]$ (11b) (0.11 g).

(*ii*) With diazomethane. An Et₂O (30 cm³) solution of (**10a**) (0.39 mmol) at 0 °C was treated with an excess of CH₂N₂. The mixture was warmed to room temperature and stirred for 2 h; after which time monitoring by i.r. revealed that all of (**10a**) had been consumed. Solvent was removed *in vacuo*, and the residue was dissolved in the minimum amount (*ca.* 10 cm³) of CH₂Cl₂–light petroleum (1:5), and chromatographed. Elution with the same solvent mixture removed in sequence a mustard yellow fraction, a trace of an unidentified purple fraction, and a red eluate [identified by i.r. as (**5a**) (0.05 g)]. Removal of solvent *in vacuo* from the yellow eluate, and crystallisation of the residue from CH₂Cl₂–light petroleum (1:4), yielded black *crystals* of [W₂Ru(μ -CH₂)(μ -CC₆H₄Me-4)(μ ₃-CC₆H₄Me-4)(CO)₄(η -C₅H₅)₂] (**12**) (0.15 g).

(iii) With diphenylacetylene. A mixture of (10a) (0.21 mmol) and PhC=CPh (0.045 g, 0.25 mmol) was refluxed in cyclohexane (80 cm^3) for 3.5 h, after which period monitoring by i.r. showed that the reaction was complete. The cooled solution was added to a chromatography column, which was eluted initially with light petroleum, to remove unreacted PhC=CPh. Subsequent elution with CH₂Cl₂-light petroleum (1:5) gave an orange fraction. Removal of solvent *in vacuo*, and crystallisation from light petroleum, yielded dark red *crystals* of [W₂Ru(µ-

 $CC_6H_4Me-4)(\mu_3-CC_6H_4Me-4)(\mu_3-C_2Ph_2)(CO)_3(\eta-C_5H_5)_2$ (13a) (0.09 g).

(iv) With but-2-yne. A mixture of (10a) (0.20 mmol) and MeC=CMe (0.5 cm³, excess) was refluxed in cyclohexane (80 cm³), the Schlenk tube being attached to a reflux condenser to retain the alkyne in the reaction mixture. After 10 h, when i.r. monitoring revealed that the reaction was complete, the solution was cooled to room temperature and chromatographed. The chromatography column was eluted with CH₂Cl₂-light petroleum (1:4) affording one major orange fraction, followed by traces of (5a) and (10a). Removal of solvent *in vacuo* from the orange eluate, and crystallisation of the residue from CH₂Cl₂-light petroleum (1:3), gave orange *microcrystals* of [W₂Ru(μ -CC₆H₄Me-4)(μ ₃-CC₆H₄Me-4)(μ ₃-C₂Me₂)(CO)₃(η -C₅H₅)₂] (13b) (0.15 g).

(v) With phenylacetylene. A mixture of (10a) (0.30 mmol) and PhC=CH (0.50 g, 4.9 mmol) in cyclohexane (80 cm³) was refluxed for 10 min after which time the reaction was complete. After cooling the solution, it was added to a chromatography column which was eluted with CH₂Cl₂-light petroleum (1:4). There was one major orange band followed by trace amounts of several other fractions. Recovery of the orange eluate, removal of solvent *in vacuo*, and crystallisation of the residue from CH₂Cl₂-light petroleum (1:4) afforded orange *microcrystals* of [W₂Ru(μ -CC₆H₄Me-4)(μ_3 -CC₆H₄Me-4)(μ_3 -PhC₂H)(CO)₃(η -C₅H₅)₂] (13c) (0.12 g).

(vi) With $[W(\equiv CC_6H_4Me-4)(CO)_2(\eta-C_5Me_5)]$. A mixture of (10a) (0.18 mmol) and $[W(\equiv CC_6H_4Me-4)(CO)_2(\eta-C_5Me_5)]$ (0.085 g, 0.18 mmol) was refluxed in heptane (80 cm³) for 20 min. The mixture was cooled to room temperature and filtered through a Celite pad (2 × 1 cm). The resulting filtrate was reduced in volume *in vacuo* to *ca.* 30 cm³. Cooling to $-20 \,^{\circ}C$ gave black *crystals* of $[W_3Ru(\mu-CO)(\mu_3-\eta-CO)(\mu-CC_6H_4Me-4)_2(\mu_3-CC_6H_4Me-4)(CO)_2(\eta-C_5H_5)_2(\eta-C_5Me_5)]$ (14c) (0.095 g).

(vii) With $[W(\equiv CC_6H_4Me-4)(CO)_2(\eta-C_5H_5)]$. Similarly, in refluxing heptane (30 cm³) a mixture of $[W(\equiv CC_6H_4Me-4)(CO)_2(\eta-C_5H_5)]$ (0.03 g, 0.072 mmol) and (**10a**) (0.063 mmol) gave, after cooling and removal of solvent *in vacuo*, a residue which was dissolved in Et₂O–light petroleum (20 cm³, 1:4) and chromatographed. Elution with the same solvent mixture afforded in sequence a trace of unreacted $[W(\equiv CC_6H_4Me-4)(CO)_2(\eta-C_5H_5)]$ and a green fraction. Removal of solvent *in vacuo*, and crystallisation of the residue from Et₂O–hexane yielded green *microcrystals* of $[W_3Ru(\mu-CO)(\mu_3-\eta-CO)(\mu-CC_6-H_4Me-4)_2(\mu_3-CC_6H_4Me-4)(CO)_2(\eta-C_5H_5)_3]$ (**14a**) (0.04 g, 44°_{0}), identified spectroscopically.¹¹

Acknowledgements

We thank the S.E.R.C. for support, and the University of Adelaide for a George Murray Fellowship (to M. L. W.).

References

- 1 Part 79, S. J. Dossett, A. F. Hill, J. C. Jeffery, F. Marken, P. Sherwood, and F. G. A. Stone, preceding paper.
- 2 (a) L. Busetto, J. C. Jeffery, R. M. Mills, F. G. A. Stone, M. J. Went, and P. Woodward, J. Chem. Soc., Dalton Trans., 1983, 101; (b) L. Busetto, M. Green, B. Hessner, J. A. K. Howard, J. C. Jeffery, and F. G. A. Stone, *ibid.*, p. 519; (c) J. A. K. Howard, J. C. V. Laurie, O. Johnson, and F. G. A. Stone, *ibid.*, 1985, 2017; (d) E. Delgado, J. C. Jeffery, N. D. Simmons, and F. G. A. Stone, *ibid.*, 1986, 869; (e) M. Green, J. A. K. Howard, A. P. James, A. N. de M. Jelfs, C. M. Nunn, and F. G. A. Stone, *ibid.*, p. 1697; (f) E. Delgado, J. Hein, J. C. Jeffery, A. L. Ratermann, F. G. A. Stone, and L. J. Farrugia, *ibid.*, 1987, 1191; (g) D. L. Davies, M. J. Parrott, P. Sherwood, and F. G. A. Stone, *ibid.*, p. 1201.
- 3 J. R. Shapley, J. T. Park, M. R. Churchill, C. Bueno, and H. Wasserman, J. Am. Chem. Soc., 1981, 103, 7385; M. R. Churchill, C. Bueno, and H. Wasserman, Inorg. Chem., 1982, 21, 240.
- 4 E. Delgado, J. C. Jeffery, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1986, 2105.
- 5 B. F. G. Johnson, J. Lewis, and M. V. Twigg, J. Organomet. Chem., 1974, 67, C75.
- 6 J. A. Abad, E. Delgado, M. E. Garcia, M. J. Grosse-Ophoff, I. J. Hart, J. C. Jeffery, M. S. Simmons, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1987, 41.
- 7 Yun Chi and J. R. Shapley, Organometallics, 1985, 4, 1900.
- 8 D. G. Evans, J. A. K. Howard, J. C. Jeffery, D. B. Lewis, G. E. Lewis, M. J. Grosse-Ophoff, M. J. Parrott, and F. G. A. Stone, *J. Chem. Soc.*, *Dalton Trans.*, 1986, 1723; J. A. Abad, L. W. Bateman, J. C. Jeffery, K. A. Mead, H. Razay, F. G. A. Stone, and P. Woodward, *ibid.*, 1983, 2075.
- 9 M. E. Garcia, N. H. Tran-Huy, J. C. Jeffery, P. Sherwood, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1987, 2201.
- 10 J. Hein, J. C. Jeffery, P. Sherwood, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1987, 2211; J. C. Jeffery, K. A. Mead, H. Razay, F. G. A. Stone, M. J. Went, and P. Woodward, *ibid.*, 1984, 1383.
- 11 L. J. Farrugia, J. C. Jeffery, C. Marsden, P. Sherwood, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1987, 51.
- 12 W. A. Herrmann, H. Biersack, M. L. Ziegler, K. Wiedenhammer, R. Siegel, and R. Rehder, J. Am. Chem. Soc., 1981, 103, 1692.
- 13 E. O. Fischer, T. L. Lindner, G. Hüttner, P. Friedrich, F. R. Kreissl, and J. O. Besenhard, *Chem. Ber.*, 1977, 110, 3397; W. Uedelhoven, K. Eberl, and F. R. Kreissl, *ibid.*, 1979, 112, 3376.

Received 11th November 1987; Paper 7/2005