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Preparation and Redox Properties of the Cuboidal Molybdenum(iii) Aqua Ion 
[Mo4S4(H2O),2l4+ t 
Christopher Sharp and A. Geoffrey Sykes * 
Department of Chemistry, The University, Newcastle upon Tyne NEI 7RU 
- _ _ _ _ ~  ~~ _ _ _ ~  ~ ~ 

A procedure for the electrochemical preparation of the orange cuboidal Moll1 aqua ion [Mo,S,- 
(H20),,]*+ (peak 378 nm; E = 1 100 M-' cm-' per Mo,) from [Mo,S,(H,O),~]~+ (reduction potential 
21 0 mV) is described. The product is air sensitive and at 25 "C 1 mM solutions are oxidised by 0, 
to  Mo,S,~+ within 5 min. With CI0,- ( 2  M HCIO,) there is a slow conversion of  the aqua ion 
Mo,Sd4+ to  tg ca. 12 h at 25  "C. Kinetic studies o n  the 1 : 1 reductions of  seven CoI i1 
complexes have been carried out at 25 "C, / = 2.00 M (LiCIO,), and are independent of  [ H  '3 in the 
range 1 .O-I .8 M. From linear log-log correlations of  rate constants with those for the 
corresponding [V( H20)J2+ and [Ru( NH3)J2+ reductions, it is concluded that the reactions with 
[CO~II(NH,),X]~+ (X = H20, CI-, Br-, or I - )  as wel l  as [Co(bipy),13+ are outer sphere. The rate 
constant (0.27 s-l) for [Co( NH3),(02CCH3)]2+ does not similarly correlate, and this reaction is 
believed t o  be inner sphere. The reaction with [Co(NH3),FI2+ may also be in some part inner 
sphere. From the rate constant (460 M-l s-l) w i th  [Co(bipy),I3+ (370 mV) as oxidant, a self- 
exchange rate constant for Mo,S;+/~+ of  21 M-ls-' is obtained using the Marcus equations. 

The preparation of the green cuboidal mixed-valence (average 
oxidation state + 3.25) aqua ion, core structure Mo,S,'+, 
reduction of the di-p-sulphido Mo" dimer has been described, 
and a crystallographic study of Ca,[Mo4S,(edta),],-28H,O 
(edta = ethylenediaminetetra-acetate) reported., The aqua ion 
is remarkably stable in HCIO, over the range [H+] = 0.01- 
4.0 M, and in 1 M HCIO, decomposes only slowly in air, tt ca. 
4 d at to give the green (incomplete cuboidal) Mo" 
aqua ion, Mo,S,~ +. Decomposition is somewhat faster 
in 1 M HC1, with t +  ca. 9.5 h at 5OoC3 From cyclic voltam- 
metry we have previously determined a reduction potential of 
210 mVS for the one-electron reduction to M o ~ S ~ ~ ~ . ~  Here 
we describe a procedure for the preparation and quantitative 
solution studies on the orange cuboidal Mo"' aqua ion. 
A crystal structure of the edta complex, Mg,[Mo,S,- 
(edta),].22H2O. prepared by one-equivalent reduction of 
[M~,S,(edta),]~-, has been de~cribed,~ and is the basis for 
the formulation of the aqua ion as [MO,S,(H,O)~,]~+. 

b': 

Experimental 
0 \-idunrs. -The cobalt(1ir) complexes [Co(NH,),(O,- 

(NH3),C1]' * . [Co(NH,),Br]'+, [CO(NH,),I]~+, and [Co- 
(bipy),] + (bipy = 2,2'-bipyridine) were prepared by pro- 
cedures described to give u.v.-visible absorbance spectra 
( &  3';;) as reported Table 1. Perchlorate salts 
were obtained by addition of HCIO, to concentrated (acidic) 
solutions. 

CCH3)]2t, [CO(NH~)~(H,O)]~ ' ,  [Co(NH3),FI2+, [CO- 

Orhtv RrrrK~~.nts.-Lithium perchlorate, LiCI04-3H,0 (Ald- 
rich), was recrystallised twice from water. Perchloric acid 
(BDH, AnalaR) and sodium thiocyanate (BDH, AnalaR) were 
used as supplied. 

Hexa-ammineruthenium(m) chloride, [Ru(NH,),]Cl, 
(Johnson Matthey) (2.5 mM), in 0.010 M HCI, was reduced by 
passing down a column (25 x 1.5 cm) of amalgamated zinc shot 
under rigorously air-free conditions (Ar gas). Solutions were 

t Non-S.I. uni! w i p i o j w l :  M = mol dm-3. 

elect rode. 
A11 reduction potentials quoted are against the normal hydrogen 

Table 1. Details of U.v.-visible spectra * of cobalt(m) complexes 

Complex h,,,./nm E/M-'cm-' 3Lmax./nm E/M-'cm ' 
[CO(NH,),(O,CCH,)]~+ 352 59 502 75 
CCo(NH3)5(H2O)I + 345 44 492 47 
CCo(NH,),FI2 + 352 38 511 45 
[CO(NH,),CI]~ + 362 45 530 47.3 
[Co(NH,),Br]' + 55 1 53 
IICo(NH,>,IJ2 + 388 2700 580 79 
CC0(biPY),l3 + 448 67.9 
* See e.g. refs. 8-15. 

Calomel 
(reference) 

It (anode) 

Figure 1. Diagram of electrochemical cell used for the preparation of 
I ] M O ~ S ~ ( H ~ O ) I  2 1 4 +  

standardised using [(NH3)5Co0,Co(NH,)5]s + (peak 670 nm; 
E = 890 M-' cm-I), which behaves as a 1 : 1 oxidant.I6 

Preparation of MO,S,~+.--A solution of MO,S,~ + (50 cm3, 
1.2 mM)' in 1 M p-toluenesulphonic acid (Hpts; Sigma 
Chemicals) was reduced under N, at a carbon cloth (RVG 10oO; 
Le Carbonne, Brighton) electrode, at a potential of - 120 mV 
us. s.c.e. for 2 h using the glass cell as in Figure 1. The cathode 
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consisted of a single layer of carbon cloth wrapped around a 
glass rod and tied in position using Teflon tape. Electrical 
contact at the upper end was made by attaching (with epoxide 
resin) a carbon rod to the glass rod. The carbon cloth covered 
both these sections and fitted tightly into the glass entry. After 
reduction was complete the orange solution of Mo,S,~+ was 
millipore filtered (8 pm pore size), to remove any small carbon 
particles, diluted four times with 0,-free H,O, and loaded onto 
a short Dowex 50W-X2 cation-exchange column (3 x 1 cm) 
under rigorous 0,-free conditions. The column was washed 
with 0.5 M HCIO, (50 cm3) to remove any pts-, and the 
Mo4S4,+ then eluted (without standing) with 4 M HClO,, and 
collected in a vessel cooled in ice. When all the MOqS44+ had 
been eluted the stock was diluted to 2 M HCIO,. All these 
procedures were under 0,-free conditions (N, gas). Yields of 
MO&4+ were at best 85%. Stock solutions were typically 1.5 
mM Mo4S4, + in 2 M HCIO,. These were stored in ice and used 
the same day. Decomposition was cu. 5% over 8 h. 

Reaction with O,.-A sample of Mo,S,,+ (3 cm3, 0.86 mM) 
in 2 M HCIO, was bubbled with 0, (at a slow rate) for 2 min, 
the cell stoppered and placed in a spectrophotometer housing at 
25 "C. The reaction (1) was complete within a further 3 min. 

4Mo4S,,+ + 0, + 4H+ - 4M04S45+ + 2 H 2 0  (1) 

I 1500 

U.u.- Visible Spectrum.-The spectrum of Mo,S,, +, Figure 2, 
peak at 378 nm ( E  = 1 100 M-lcm-' per Mo,), was quantified 
with reference to the known spectrum of Mo,S,~+,' which is the 
product generated on air oxidation. It should be noted that 
Mo,S,~+ unlike Mo,S,~+ has no absorbance in the near4.r. 
range 80&1 300 nm. 

350 450 500 900 1300 

h l n m  

Figure 2. U.v.-visible spectra of green [ M O , S ~ ( H , O ) ~ ~ ] ~  + (-) and 
orange [Mo,S,(H,O),~]~+ (---) in 1.0 M HClO, or Hpts solu- 
tions 

Table 2. First-order rate constants, kOhs.(25 "C), for the M o ~ S ~ ~ +  reduction of Co"' complexes, I = 2.00 M (LiCIO,) 

2.5 
3.0 
4.0 
4.5 
1.5 
2.5 
3.0 
4.0 
4.0 
4.0 
5.0 
1.5 
2.5 
2.5 
4.0 
4.8 
1.5 
2.0 
2.0 
3.0 
3.0 
4.0 
1.5 
2.0 
2.5 
2.5 
3.0 
4.0 
1.5 
1.5 
1.9 
1.9 
1.6 
2.1 
2.6 
2.9 
3.2 
3.7 

103[M04S44 +]/M 
0.15 
0.25 
0.25 
0.20 
0.20 
0.15 
0.15 
0.25 
0.25 
0.20 
0.20 
0.20 
0.10 
0.15 
0.25 
0.25 
0.25 
0.25 
0.15 
0.20 
0.20 
0.25 
0.25 
0.15 
0.15 
0.20 
0.25 
0.25 
0.15 
0.20 
0.15 
0.15 
0.15 
0.15 
0.15 
0.15 
0.15 
0.20 
0.20 
0.20 

CH + 1/M 
1.80 
1 .oo 
1.80 
1.80 
1.80 
1.80 
1.80 
1.80 
1.80 
1 .oo 
1.40 
1.80 
1.80 
1.80 
1 .oo 
1.80 
1.80 
1.80 
1.80 
1 .oo 
1.80 
1 .oo 
1.80 
1.80 
1.80 
1.80 
1 .oo 
1.80 
1.80 
1.80 
I .oo 
1.80 
1 .oo 
1.80 
1.8 
1.8 
1 .o 
1 .o 
1.8 
1.8 

kohs./S-l 

4.2 x 10-4 
7.1 x 10-4 
6.7 x 10-4 
8.1 x 10-4 

10.8 x 10-4 
12.1 x 10-4 

10.0 x 10-4 
12.3 x 10-4 
16.3 x 10-~  
16.4 x 10-4 

20.3 x 10-4 
6.1 x 10-4 

10.3 x 10-4 
10.3 x 10-4 
16.1 x 10-4 
18.9 x 10-4 
11.1 x 10-3 
13.4 x 10-3 
14.0 x 10-3 
23.0 x 10-3 
22.6 x 10-3 
30.3 x 10-3 

6.5 x 

16.0 x lop4 

3.9 x 
5.4 x 
7.1 x 
7.2 x 
8.2 x 

11.2 x lo-, 
0.3 1 
0.30 
0.41 
0.40 
0.70 
0.97 
1.18 
1.30 
1.48 
1.67 

http://dx.doi.org/10.1039/DT9880002579


J. CHEM. SOC. DALTON TRANS. 1988 258 1 

Table 3. Summary of second-order rate constants, k (25 "C), for the 
Mo,S,~ +, [Ru(NH3),I2 +, and [v(H,0),l2 + reductions of cobait(rn) 
complexes, I = 2.0 M (LiClO,) 

kM,,/M-' s-l 
0.26( kO.01) 
0.40( kO.01) 
0.39( _+ 0.01) 
8.1( & 0.4) 
28.9( k 1.0) 
208( k 7) 
460( & 13) 

k,,"/M-' s-' kVb/M--' s-l 
0.022 1.15 
3.0 0.53 
1.1 3.95 

2.6 x 10, 10.2 
1.6 x 103 30.0 
6.7 x 103 127 
6.9 x 105 1.1 x 103 

" See for example listing in ref. 17 (Table 6) and refs. therein. The rate 
constant for [Co(NH,),FI2+ was determined in this work, and for 
[CO(NH,),(O,CCH,)]~+ is reported in ref. 21. See for example listing 
in ref. 17 (Table 6), and refs. therein. The rate constant for 
[Co(NH,),FI2+ is from ref. 18, and for [CO(NH,),(O,CCH,)]~' is as 
reported in ref. 8. 

Stability to ClO,- .-The slow conversion of Mo4S4,+ (0.25 
mM) to M0,S,5+ in 2 M HCIO, was monitored at 645 nm. 
From the initial slopes method a rate constant of 1.5 x s-' 
(t+ ca. 12 h) was obtained. For a reaction in 1 M HCIO, with 1 
M LiClO, the rate constant was 1.0 x lop5 s-' (tt ca. 19 h), 
indicating some scatter in data or [H+] dependence of the 
reaction. A well defined isosbestic at 366 nm was noted. 
Solutions in 2 M Hpts showed no similar decay. 

Kinetic Srudies.-The ionic strength was adjusted to 2.0 M 
(LiClO,), and the formation of Mo,S,'+ was monitored at 645 
nm. Absorbance changes were in all cases consistent with 1: 1 
oxidation of MOqS44+ to Mo4S4, +, equation (2). 

Reactions with complexes [Co(NH,),X]"+ as oxidant were 
studied by conventional spectrophotometry, X = CH,CO, - 

(n  = 2), H,O (n = 3), F -  (n = 2), or C1- (n  = 2), and by the 
stopped-flow method, X = Br- or I -  (n  = 2) and with [Co- 
(bipy),13+. The slopes of first-order plots of absorbance ( A )  
changes ln(A, - A , )  against time, linear to at least three half- 
lives, gave first-order rate constants /cobs. at 25.0 * 0.1 "C. 

Errors were obtained by unweighted least-squares pro- 
cedures. 

Results 
First-order rate constants kobs., Table 2, give linear dependences 
on [oxidant], equation (3), as illustrated in Figure 3. Values 

kobs. = ~[CO"'] (3) 

of k are independent of [H'] in the range 1.0-1.8 M. Second- 
order rate constants are linked in Table 3, alongside previously 
determined rate constants with [ R u ( N H ~ ) ~ ] ~  + and [V- 
(HZO),]*' as reductants. No rate constant was available for the 
[Ru(NH3),I2 + reduction of [CO(NH,),F]~'. Two runs with 
[Ru(NH,),~+] = 1.0 mM, [Co(NH,),F2+] = 10.0 mM, 
[HCl] = 0.010 M, I = 0.10 M (NaCl), monitored at 51 1 nm by 
conventional spectrophotometry gave k = 1.1 _+ 0.1 M-' s-', 
Table 3. 

Discussion 
Rate constants for outer-sphere reductants give linear log-log 
correlations, and provide a powerful means of distinguishing 
inner- and outer-sphere reactions. 7-22 The slopes of such plots 

2o t 

2.0 4.0 
[ C O * ~ ' ]  / mM 

Figure 3. The dependence of first-order rate constants, kobs, (25 "C), on 

[CO(NH,),F]~' (B); [H'] = l . k l . 8  M ,  I = 2.0 M (LiC104) 
oxidant: [CO(NH~)~(O,CCH~)I~+  (el, [Co(NH,),(H20)l3+ (A), 

4t 
0 

3 

2 

0 

-2 t 
I I I I I 

-2 0 2 4 
'og,,k, 

Figure 4. Rate constants (25 "C) for the [MO,S,(H,O)~,]~+ ( k M o )  and 
[V(H2O),l2 + (k , )  reductions of Co"' complexes (full formulae as listed 
in Tables 1-3). In two cases (0) the [V(H,O),]" reaction is known 
to be inner sphere, and these two points do not conform to the linear 
correlation 

are often close to 1.0,l8-,' but do Here rate constants 
for five Co"' oxidants with M o , S ~ ~ +  and [V(H,o),]2' as 
reductants conform to equation (4), with slope close to 1.0, 

logl0k,, = (0.97 & O.lO)l0g1okv - (0.03 _+ 0.18) (4) 

Figure 4. This is consistent with the reactions being of the outer- 
sphere category. The [V(H,0),l2 + reductions of 
[Co(NH,),FI2 + and [CO(NH,),(O,CCH,)]~ -+ are known to 
be inner sphere, and are not included in the correlation.' 8 , 8  The 
corresponding graph incorporating data for the exclusively 
outer-sphere reductant [RU(NH~>,]~  + is shown in Figure 5. 
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0 
-O,CCH, 

0 
ol 
0 
d 

4 1 -  

-2 t 
Figure 5. Rate constants (25 "C) for the [Mo,S,(H,O),,]~+(~,,) and 
[RU(NH,),]~~(~,,)  reductions of Co"' complexes (full formulae as 
listed in Tables 1-3). In the case of [CO(NH~)~(O,CCH,) ]~+ (0) 
the k,, value can be designated as inner sphere 

The line drawn can be expressed by equation (5) .  A feature of 

log,&,, = (0.59 5 O.O7)IOg1,,k,, - (0.47 0.22) (5) 

this plot is the rate constant for the MOqS4,+ reduction of 
[CO(NH,),(O,CCH,)]~ +, which is displaced from the line and 
is ca. lo2 too large to be outer sphere. This reaction can 
therefore be assigned as inner sphere. Also the point for 
[Co(NH,),FI2 + (although included in the correlation) is such 
as to leave open the possibility that the reduction with Mo,S,,+ 
may be in part inner sphere. 

Preliminary stopped-flow studies on the equilibration of 
NCS- (10 mM) with Mo,S,~+ (0.22 mM) in 2.0 M HClO, gave 
absorbance changes indicating sequential changes (200 s time 
base), which did not allow rate constants to be determined. At 
this time therefore it is not possible to say whether the rate 
constant for the inner-sphere [Co(NH,),FI2 + oxidation of 
MOqS44+ is electron transfer or substitution-controlled. The 
value obtained could represent a lower limit for the latter 
process. This category of reaction is well known in the case of 

Because of the ion-exchange chromatographic purification 
procedure, in which M04S,4+ had to be eluted from Dowex 
 column^,^ stock solutions were at relatively high [H+], and this 
limited the range of [H+] in kinetic runs. However from studies 
at [H+] in the range 1.0-1.8 M, the [Co(NH,),(H20)l3 
oxidation of M0,S,4+ gave no sign of any [H+]-' dependence 
consistent with significant [Co(NH,),(OH)I2+ participation. 
Likewise the fact that in all cases investigated no [H+] 
dependence is observed argues against involvement of a 
conjugate-base form of Mo4S4,+. Previously, in studies on 
MOqS45+, it has been demonstrated that the pKa is >2, and a 
larger pKa would normally be expected for the lower charged 
Mo,S,~+ ion. 

In the case of the [Co(NH,),X]"+ (n  = 2 or 3) oxidants 
no reduction potentials or self-exchange rate constants are 
known. With [Co(bipy),13 + however, the reduction potential 
for the [C~(b ipy) , ]~+ '~+  couple is 370 mV,23 and from Marcus 
correlation the self-exchange rate constant has been calculated 

[V(H20)6]2+.' 8'22 

as 20 M-' s-' ( I  = 0.10 M).24 It is possible therefore knowing 
the rate constant for the Mo4S4,+ reduction of [Co(bipy),13+ 
(460 M-' s-'), as well as the reduction potential for the 
MO,S,' +/,+ couple (210 mV), to calculate the MOqS45+'4+ self- 
exchange rate constant.25 With no work terms included this is 
21 M-' s-'. Such a value is ofinterest compared to the value (760 
M-' s-l) calculated from the rate constant for the one- 
equivalent outer-sphere [v(H20),l2 + ( - 260 mv) reduction of 
MO$45+ (2.5 x lo4 M-' s- ' ) .~  The latter was obtained using 
the experimentally determined rate constant for the 

Clearly, in view of the different charge combinations (2 + /3 + 
and 4 + / 5 +  reactions are involved) work terms are not 
expected to cancel out, and some spread in calculated self- 
exchange rate constants is expected. A self-exchange rate 
constant in the range 21-760 M-' s-l for a 4+/5+reaction 
indicates a quite favourable electron-transfer process. The one- 
electron oxidation of Mo,S,,+ can be summarised as an 
Mo"'(d3) to MoIV(d2) conversion, albeit in a delocalised 
cuboidal cluster arrangement. This self-exchange process is to 
be compared therefore with that of V"(d3) and V"'(d2), which 
has a much smaller rate constant (0.01 M-' s-').26 There are 
no corresponding values for mononuclear Mo ions to include in 
this comparison. These observations are of interest in the 
context of one-electron redox interconversions of cuboidal 
Fe,S, clusters in the ferredoxin~,~' for which no self-exchange 
rate constant has been determined. The charge is less in the 
ferredoxin case, being moderated by the co-ordination of four 
cysteinyl thiolates. 

[v(H20)6]2' exchange with [v(H2o)6I3+ (0.01 M-' S-1).26 
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