Notes

High-valent Ruthenium Oxo Complexes of NNN'N'-Tetramethyl-3,6-dimethyl-3,6-diazaoctane-1,8-diamine (L'). X-Ray Crystal Structure Determination of cis-[Ru"'(L') $\left.\mathrm{Cl}_{2}\right] \mathrm{ClO}_{4}{ }^{\dagger}$

Chi-Ming Che, * Wai-Tong Tang, and Michael Hon-Wah Lam
Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong
Thomas C. W. Mak*
Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong

Abstract

The reaction of $\mathrm{K}_{2}\left[\mathrm{RuCl}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ with $N N N^{\prime} N^{\prime}$-tetramethyl-3,6-dimethyl-3,6-diazaoctane-1,8diamine (L^{1}) in ethanol yielded cis- $\left[\mathrm{Ru}^{\prime \prime \prime}\left(\mathrm{L}^{1}\right) \mathrm{Cl}_{2}\right]^{+}$, which was isolated as the ClO_{4}^{-}salt. The optical spectrum of cis- $\left[\mathrm{Ru}^{\prime \prime \prime}\left(\mathrm{L}^{1}\right) \mathrm{Cl}_{2}\right] \mathrm{ClO}_{4}$ in acetonitrile displays one intense band at 375 nm attributed to a $p_{\pi}(\mathrm{Cl}) \longrightarrow d_{\pi}^{*}(\mathrm{Ru})$ transition. cis $-\left[R u^{\prime \prime \prime}\left(\mathrm{L}^{1}\right) \mathrm{Cl}_{2}\right] \mathrm{ClO}_{4}$ has been characterized by X-ray crystallography: space group $P 2_{1} / c, a=11.716(5), b=13.089(4), c=12.981$ (5) A, $\beta=94.28(2)^{\circ}, Z=4$, and $R=0.076$ for 1913 observed Mo- K_{α} data. The co-ordination geometry around the metal ion is distorted octahedral with cis arrangement of the two chloride ligands. The average $\mathrm{Ru}-\mathrm{N}$ and $\mathrm{Ru}-\mathrm{Cl}$ bond distances are 2.17 (1) and $2.345(4) \AA$, respectively. Treatment of cis- $\left[\mathrm{Ru}^{\prime \prime \prime}\left(\mathrm{L}^{1}\right) \mathrm{Cl}_{2}\right] \mathrm{ClO}_{4}$ with silver(1) p-toluenesulphonate in hot water and then $\mathrm{H}_{2} \mathrm{O}_{2}$ gave $\left[\mathrm{Ru}^{V^{\prime}}\left(\mathrm{L}^{1}\right)(\mathrm{O})_{2}\right]^{2+}$ isolated as the ClO_{4}^{-}salt. $\left[\mathrm{Ru}^{V^{\prime}}\left(\mathrm{L}^{1}\right)(\mathrm{O})_{2}\right]\left[\mathrm{ClO}_{4}\right]_{2}$ is diamagnetic (μ eff. $=0$) and has an intense i.r. band at ca. $850 \mathrm{~cm}^{-1}$ attributed to $v_{\text {asym }}(R u=0)$ stretching. The $E_{\frac{1}{2}}$ value of the $\left[\mathrm{Ru}^{\vee \prime}\left(\mathrm{L}^{1}\right)(\mathrm{O})_{2}\right]^{2+} /\left[\mathrm{Ru}^{\prime V}\left(\mathrm{~L}^{1}\right)(\mathrm{O})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ couple in $0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ is 0.79 V vs. a saturated calomel electrode. The reaction of $\left[\mathrm{Ru}^{\vee 1}\left(\mathrm{~L}^{1}\right)(\mathrm{O})_{2}\right]\left[\mathrm{ClO}_{4}\right]_{2}$ with styrene produced benzaldehyde.

Relatively few studies have been reported on the chemistry of d^{2} cis-dioxo-ruthenium(VI) and -osmium(VI) complexes despite the fact that they are potentially strong oxidants. ${ }^{1-5}$ Meyer and co-workers ${ }^{2}$ recently claimed the electrochemical generation of cis $-\left[\mathrm{Ru}^{\mathrm{VI}}(\text { bipy })_{2}(\mathrm{O})_{2}\right]^{2+}$ (bipy $=2,2^{\prime}$-bipyridyl) from cis-[$\mathrm{Ru}^{\mathrm{II}}$ (bipy) $\left.2_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$; however, the identification of the $\mathrm{Ru}{ }^{\mathrm{vI} / \mathrm{V}}$ couple is ambiguous owing to the complexity of Ru-bipy electrochemistry. [However, well defined $\mathrm{Ru}^{\mathrm{vI} / \mathrm{v}}, \mathrm{Ru}^{\mathrm{V} / \mathrm{V}}$, and $\mathrm{Ru}^{\mathrm{IV} / \mathrm{III}}$ couples have been observed using edge-plane pyrolytic graphite electrodes. ${ }^{6}$] Recently we have shown that stable highvalent $\mathrm{Ru}=\mathrm{O}$ complexes can be obtained by employing quadridentate tertiary amine ligands. ${ }^{7}$ The ligand $N N N^{\prime} N^{\prime}$ -tetramethyl-3,6-dimethyl-3,6-diazaoctane-1,8-diamine (L^{1}), which would give too small a central cavity if the four N lone pairs were arranged about it equatorially, is expected to coordinate ruthenium in a cis fashion. ${ }^{8}$ We describe here the chemistry, structure, and spectroscopic properties of cis$\left[\mathrm{Ru}\left(\mathrm{L}^{1}\right) \mathrm{Cl}_{2}\right] \mathrm{ClO}_{4}$ and its high-valent oxo derivative.

Experimental

$\mathrm{K}_{2}\left[\mathrm{RuCl}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ is purchased from Johnson Matthey. All reagents and solvents used were of analytical grade. Acetonitrile was twice redistilled over CaH_{2} before use.

Preparation of Ligand L^{1}.-A mixture of triethylenetetramine (5 g), formic acid ($25 \mathrm{~cm}^{3}, 98-100 \%$), and formaldehyde ($25 \mathrm{~cm}^{3}, 37-41 \%$) was refluxed at $90^{\circ} \mathrm{C}$ with stirring for 24 h .

[^0]The solution was then cooled in an ice-bath. A saturated solution of sodium hydroxide was added with stirring until the solution became alkaline (pH 12). This was then extracted with chloroform; the organic extract was collected and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic solvent was rotatory evaporated to give a thick oil, which was purified by distillation at reduced pressure ($c a .80^{\circ} \mathrm{C}$ at 0.1 mmHg). Yield $c a .70 \%$ (Found: C, 62.3; H, 13.2; N, 24.1. Calc. for $\mathrm{C}_{12} \mathrm{H}_{30} \mathrm{~N}_{4}$: C, 62.6; $\mathrm{H}, 13.0 ; \mathrm{N}, 24.3 \%$). ${ }^{1} \mathrm{H}$ N.m.r. $\left(\mathrm{CDCl}_{3}\right) ; \delta 2.6-2.4(\mathrm{~m}, 12 \mathrm{H})$, 2.26, $2.23(\mathrm{~d}, 18 \mathrm{H})$. I.r.: no $v(\mathrm{~N}-\mathrm{H})$ stretch observed in the $3000-3500 \mathrm{~cm}^{-1}$ region. Mass spectrum: $m / z 230[M]^{+}$.
cis- $\left[\mathrm{Ru}^{\text {III }}\left(\mathrm{L}^{1}\right) \mathrm{Cl}_{2}\right] \mathrm{ClO}_{4}$.一An ethanolic solution of $\mathrm{L}^{1}(0.5 \mathrm{~g}$ in $230 \mathrm{~cm}^{3}$) was added dropwise to an ethanolic suspension of $\mathrm{K}_{2}\left[\mathrm{RuCl}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(0.5 \mathrm{~g}\right.$ in $\left.200 \mathrm{~cm}^{3}\right)$ under conditions of reflux and vigorous stirring. The addition process took 3-4 h for completion and the solution mixture was further refluxed for 24 h. After completion, a few drops of concentrated HCl were added and the solution filtered hot; it was then rotatory evaporated to dryness. The yellowish brown residue was dissolved in $2 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HCl}$, and excess NaClO_{4} was added. Yellow cis- $\left[\mathrm{Ru}^{\mathrm{III}}\left(\mathrm{L}^{1}\right) \mathrm{Cl}_{2}\right] \mathrm{ClO}_{4}$ precipitated on cooling to $c a$. $10^{\circ} \mathrm{C}$. The crude product could be recrystallized from 1 mol $\mathrm{dm}^{-3} \mathrm{HCl}$ or $\mathrm{MeCN}-\mathrm{Et}_{2} \mathrm{O}$. Yield $30-40 \%$ (Found: $\mathrm{C}, 28.7 ; \mathrm{H}$, 6.1; $\mathrm{Cl}, 21.0$; N, 11.2. Calc. for $\mathrm{C}_{12} \mathrm{H}_{30} \mathrm{Cl}_{3} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Ru}: \mathrm{C}, 28.7$; H , $6.0 ; \mathrm{Cl}, 21.2 ; \mathrm{N}, 11.2 \%)$. U.v.--visible spectrum $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$: $\lambda_{\text {max }}$ $375 \mathrm{~nm}\left(\varepsilon_{\text {max. }} 2040 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right), 275(2870)$.
$\left[\mathrm{Ru}^{\mathrm{VI}}\left(\mathrm{L}^{1}\right)(\mathrm{O})_{2}\right]\left[\mathrm{ClO}_{4}\right]_{2}$.-cis- $\left[\mathrm{Ru}^{\mathrm{III}}\left(\mathrm{L}^{1}\right) \mathrm{Cl}_{2}\right] \mathrm{ClO}_{4}(0.5 \mathrm{~g})$ and excess silver(I) p-toluenesulphonate were digested in water (25 cm^{3}) at $80-90^{\circ} \mathrm{C}$ for 30 min until all the AgCl had precipitated. The hot solution was filtered to remove this insoluble precipitate, and $\mathrm{H}_{2} \mathrm{O}_{2}\left(30 \%, 2-3 \mathrm{~cm}^{3}\right)$ was added dropwise with the solution maintained at $\mathrm{ca} .50^{\circ} \mathrm{C}$. After effervescence had ceased, excess NaClO_{4} was added. On standing, green crystals of $\left[\mathrm{Ru}^{\mathrm{Vl}}\left(\mathrm{L}^{1}\right)(\mathrm{O})_{2}\right]\left[\mathrm{ClO}_{4}\right]_{2}$ were deposited. Yield $c a$.
60%. The crude product could be recrystallized from 0.1 mol $\mathrm{dm}^{-3} \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ or $0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HClO}_{4}$ (Found: $\mathrm{C}, 29.0 ; \mathrm{H}, 6.2$; $\mathrm{Cl}, 14.2$; $\mathrm{N}, 11.3$. Calc. for $\mathrm{C}_{12} \mathrm{H}_{30} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{Ru}: \mathrm{C}, 28.9 ; \mathrm{H}, 6.0$; $\mathrm{Cl}, 14.3 ; \mathrm{N}, 11.2 \%$). U.v. in $0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}: \lambda_{\text {max. }} 304$ ($\varepsilon_{\text {max. }} 1420 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$), 277 (5710). I.r. (Nujol mull): $v_{\text {asym }}(\mathrm{Ru}=\mathrm{O}) 850 \mathrm{~cm}^{-1} . \mu_{\text {eff. }}=0$ (Gouy method, crystalline sample).

Physical Measurements.-Proton n.m.r. spectra were run on a JEOL model (90 MHz) FX90Q spectrometer. U.v.-visible spectra were measured with a Beckman Acta CIII spectrophotometer. I.r. spectra were obtained as Nujol mulls on a Perkin-Elmer 577 spectrophotometer ($4000-200 \mathrm{~cm}^{-1}$).

Cyclic voltammetric measurements were performed using a PAR universal programmer (model 175), potentiostat (model 173), and digital coulometer (model 179). Formal potentials were taken from the mean value of the cathodic and anodic peak potentials at $25^{\circ} \mathrm{C}$ at a scan rate of 100 mV s - . Pyrolytic graphite was used as the working electrode. All measurements were made against $\mathrm{Ag}-\mathrm{AgNO}_{3}\left(0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right.$ in $\mathrm{CH}_{3} \mathrm{CN}$) or saturated calomel electrode (s.c.e.).

X-Ray Structural Studies.-Crystal data. $\mathrm{C}_{12} \mathrm{H}_{30} \mathrm{Cl}_{3} \mathrm{~N}_{4} \mathrm{O}_{4}$ $\mathrm{Ru}, M=501.82$, monoclinic, space group $P 2_{1} / c, a=11.716(5)$, $b=13.089(4), c=12.981(5) \AA, \beta=94.28(2)^{\circ}, U=1985(1)$ $\AA^{3}, D_{\mathrm{m}}=1.675, D_{\mathrm{c}}(Z=4)=1.679 \mathrm{~g} \mathrm{~cm}^{-3}$, Mo- K_{α} (graphitemonochromatized) radiation, $\lambda=0.71069 \AA, \mu=12.05 \mathrm{~cm}^{-1}$, $T=295 \mathrm{~K}$, crystal size $0.26 \times 0.22 \times 0.22 \mathrm{~mm}$, empirical absorption correction ($\mu r=0.14$, transmission factors 0.642 0.715), 2154 unique reflections ($2 \theta_{\text {max. }}=46^{\circ}$), 1913 observed $\left[\left|F_{\mathrm{o}}\right|>3 \sigma\left(\left|F_{\mathrm{o}}\right|\right)\right], R=0.076, R^{\prime}=0.100, S=2.802$ for 235 variables with $w=\left[\sigma^{2}\left(\left|F_{\mathrm{o}}\right|\right)+0.0006\left|F_{\mathrm{o}}\right|^{2}\right]^{-1}$. The structure was solved by the heavy-atom method and refined using the SHELXTL ${ }^{9}$ system on a Data General Nova $3 / 12$ minicomputer. All non-H atoms were varied anisotropically. The methylene H atoms were allowed to ride on their respective parent C atoms and the methyl groups were treated as rigid groups ($\mathrm{C}-\mathrm{H}$ bond fixed at $0.96 \AA$; isotropic thermal parameters assigned to H atoms).

The final atomic co-ordinates are given in Table 1, and bond distances and angles in Table 2. Additional material available from the Cambridge Crystallographic Data Centre comprises H -atom co-ordinates and thermal parameters.

Table 1. Atomic co-ordinates ($\times 10^{5}$ for $\mathrm{Ru} ; \times 10^{4}$ for other atoms) for cis- $\left[\mathrm{Ru}\left(\mathrm{L}^{1}\right) \mathrm{Cl}_{2}\right] \mathrm{ClO}_{4}$

Atom	x	y	z	Atom	x	y	z
Ru	$24196(9)$	4 678(8)	30989(8)	C(1)	2046 (20)	165(16)	$5437(14)$
$\mathrm{Cl}(1)$	811(4)	1386 (3)	3 544(4)	C(2)	$3199(15)$	- $1095(14)$	$4764(12)$
$\mathrm{Cl}(2)$	3 807(4)	$1398(3)$	4 101(4)	C(3)	$1203(16)$	-1 062(13)	4 296(13)
$\mathrm{Cl}(3)$	2 657(3)	$5862(3)$	$3597(3)$	C(4)	$1211(19)$	-1 544(18)	$3163(17)$
$\mathrm{O}(1)$	2755 (15)	$4788(10)$	3 582(12)	C(5)	198(15)	-548(15)	$1993(17)$
$\mathrm{O}(2)$	2 639(18)	6 184(13)	2546 (12)	C(6)	2011(16)	-1 264(13)	1610 (16)
$\mathrm{O}(3)$	1670 (11)	$6151(10)$	$4000(11)$	C(7)	$3289(13)$	- 1329 (12)	1960 (15)
$\mathrm{O}(4)$	3 584(12)	$6311(10)$	4 135(13)	C(8)	4 836(14)	-450(14)	2 807(17)
$\mathrm{N}(1)$	$2252(11)$	-463(9)	4 501(8)	C(9)	$3859(19)$	316(21)	$1232(18)$
$\mathrm{N}(2)$	1383 (11)	-703(10)	2 346(10)	C(10)	3 706(19)	1430 (15)	$1500(26)$
N(3)	$3703(11)$	-393(11)	2331 (11)	C(11)	2 554(18)	2 638(11)	2 184(17)
N(4)	2 584(12)	$1567(11)$	$1890(12)$	C(12)	1630 (20)	1475 (16)	990(15)

Table 2. Bond lengths (\AA) and angles $\left(^{\circ}\right)$ in cis- $\left[\mathrm{Ru}\left(\mathrm{L}^{1}\right) \mathrm{Cl}_{2}\right] \mathrm{ClO}_{4}$
(a) Cation

$\mathrm{Ru}-\mathrm{Cl}(1)$	2.343(4)	$\mathrm{Ru}-\mathrm{Cl}(2)$	2.346 (4)	N(2)-C(5)	1.44(2)	$\mathrm{N}(2)-\mathrm{C}(6)$	1.45 (2)
$\mathrm{Ru}-\mathrm{N}(1)$	2.21(1)	$\mathrm{Ru}-\mathrm{N}(2)$	2.15 (1)	$\mathrm{N}(3)-\mathrm{C}(7)$	1.39(2)	$\mathrm{N}(3)-\mathrm{C}(8)$	1.42 (2)
$\mathrm{Ru}-\mathrm{N}(3)$	2.18(1)	Ru-N(4)	2.15 (1)	N(3)-C(9)	1.72(3)	$\mathrm{N}(4)-\mathrm{C}(10)$	1.45 (3)
$\mathrm{N}(1)-\mathrm{C}(1)$	1.50(2)	$\mathrm{N}(1)-\mathrm{C}(2)$	1.41(2)	$\mathrm{N}(4)-\mathrm{C}(11)$	1.45(2)	$\mathrm{N}(4)-\mathrm{C}(12)$	1.56 (2)
$\mathrm{N}(1)-\mathrm{C}(3)$	1.47(2)	$\mathrm{N}(2)-\mathrm{C}(4)$	1.56(3)	$\mathrm{C}(3)-\mathrm{C}(4)$	1.61(3)	$\mathrm{C}(6)-\mathrm{C}(7)$	1.53(2)
				$\mathrm{C}(9)-\mathrm{C}(10)$	1.51(2)		
$\mathrm{Cl}(1)-\mathrm{Ru}-\mathrm{Cl}(2)$	97.7(2)	$\mathrm{Cl}(1)-\mathrm{Ru}-\mathrm{N}(1)$	87.6(4)	$\mathrm{Ru}-\mathrm{N}(2)-\mathrm{C}(5)$	123(1)	$\mathrm{C}(4)-\mathrm{N}(2)-\mathrm{C}(5)$	98(1)
$\mathrm{Cl}(2)-\mathrm{Ru}-\mathrm{N}(1)$	86.0(3)	$\mathrm{Cl}(1)-\mathrm{Ru}-\mathrm{N}(2)$	92.3(4)	Ru-N(2)-C(6)	111(1)	$\mathrm{C}(4)-\mathrm{N}(2)-\mathrm{C}(6)$	101(1)
$\mathrm{Cl}(2)-\mathrm{Ru}-\mathrm{N}(2)$	165.6(4)	$\mathrm{N}(1)-\mathrm{Ru}-\mathrm{N}(2)$	84.2(5)	$\mathrm{C}(5)-\mathrm{N}(2)-\mathrm{C}(6)$	123(1)	$\mathrm{Ru}-\mathrm{N}(3)-\mathrm{C}(7)$	112(1)
$\mathrm{Cl}(1)-\mathrm{Ru}-\mathrm{N}(3)$	166.6(4)	$\mathrm{Cl}(2)-\mathrm{Ru}-\mathrm{N}(3)$	92.8(4)	Ru-N(3)-C(8)	119(1)	$\mathrm{C}(7)-\mathrm{N}(3)-\mathrm{C}(8)$	113(1)
$\mathrm{N}(1)-\mathrm{Ru}-\mathrm{N}(3)$	101.5(4)	$\mathrm{N}(2)-\mathrm{Ru}-\mathrm{N}(3)$	79.0(5)	$\mathrm{Ru}-\mathrm{N}(3)-\mathrm{C}(9)$	103(1)	$\mathrm{C}(7)-\mathrm{N}(3)-\mathrm{C}(9)$	104(1)
$\mathrm{Cl}(1)-\mathrm{Ru}-\mathrm{N}(4)$	87.4(4)	$\mathrm{Cl}(2)-\mathrm{Ru}-\mathrm{N}(4)$	87.8(4)	$\mathrm{C}(8)-\mathrm{N}(3)-\mathrm{C}(9)$	104(1)	Ru-N(4)-C(10)	108(1)
$\mathrm{N}(1)-\mathrm{Ru}-\mathrm{N}(4)$	171.4(5)	$\mathrm{N}(2)-\mathrm{Ru}-\mathrm{N}(4)$	103.0(5)	Ru-N(4)-C(11)	117(1)	$\mathrm{C}(10)-\mathrm{N}(4)-\mathrm{C}(11)$	105(1)
$\mathrm{N}(3)-\mathrm{Ru}-\mathrm{N}(4)$	84.8(5)	$\mathrm{Ru}-\mathrm{N}(1)-\mathrm{C}(1)$	113(1)	$\mathrm{Ru}-\mathrm{N}(4)-\mathrm{C}(12)$	113(1)	$\mathrm{C}(10)-\mathrm{N}(4)-\mathrm{C}(12)$	110(2)
$\mathrm{Ru}-\mathrm{N}(1)-\mathrm{C}(2)$	114(1)	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(2)$	107(1)	$\mathrm{C}(11)-\mathrm{N}(4)-\mathrm{C}(12)$	104(1)	$\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	109(1)
$\mathrm{Ru}-\mathrm{N}(1)-\mathrm{C}(3)$	106(1)	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(3)$	105(1)	$\mathrm{N}(2)-\mathrm{C}(4)-\mathrm{C}(3)$	110(2)	$\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{C}(7)$	111(1)
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(3)$	112(1)	$\mathrm{Ru}-\mathrm{N}(2)-\mathrm{C}(4)$	107(1)	$\begin{aligned} & N(3)-C(7)-C(6) \\ & N(4)-C(10)-C(9) \end{aligned}$	$\begin{aligned} & 111(1) \\ & 109(2) \end{aligned}$	$\mathrm{N}(3)-\mathrm{C}(9)-\mathrm{C}(10)$	108(2)
(b) Anion							
$\mathrm{Cl}(1)-\mathrm{O}(1)$	1.41(1)	$\mathrm{Cl}(3)-\mathrm{O}(2)$	1.43(2)	$\mathrm{O}(1)-\mathrm{Cl}(3)-\mathrm{O}(2)$	106(1)	$\mathrm{O}(1)-\mathrm{Cl}(3)-\mathrm{O}(3)$	111(1)
$\mathrm{Cl}(3)-\mathrm{O}(3)$	1.36(1)	$\mathrm{Cl}(3)-\mathrm{O}(4)$	1.39(1)	$\mathrm{O}(1)-\mathrm{Cl}(3)-\mathrm{O}(4)$	112(1)	$\mathrm{O}(2)-\mathrm{Cl}(3)-\mathrm{O}(3)$	110(1)
				$\mathrm{O}(2)-\mathrm{Cl}(3)-\mathrm{O}(4)$	108(1)	$\mathrm{O}(3)-\mathrm{Cl}(3)-\mathrm{O}(4)$	110(1)

Figure 1. U.v.-visible spectrum of cis- $\left[\mathrm{Ru}^{\mathrm{III}}\left(\mathrm{L}^{1}\right) \mathrm{Cl}_{2}\right] \mathrm{ClO}_{4}$ in acetonitrile

Figure 2. Perspective view of the cis- $\left[\mathrm{Ru}\left(\mathrm{L}^{1}\right) \mathrm{Cl}_{2}\right]^{+}$cation (35% probability ellipsoids), which has approximate $C_{2 v}$ molecular symmetry

Results and Discussion

As with the macrocyclic tertiary amines, the ligand L^{1} was obtained by N -methylation of triethylenetetramine with HCHO-HCOOH. ${ }^{10}$ Previous studies showed that an extensive series of trans- $\left[\mathrm{Ru}^{\mathrm{III}}(\mathrm{L}) \mathrm{Cl}_{2}\right]^{+}$complexes $(\mathrm{L}=$ two bidentate amines or one quadridentate amine) could be obtained by the reaction of $\mathrm{K}_{2}\left[\mathrm{RuCl}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ with L in refluxing ethanol. ${ }^{11,12}$ In the present case with L^{1} only the cis isomer was obtained, as the central cavity resulting from an equatorial arrangement of the four N lone pairs would be too small to accommodate the $\mathrm{Ru}^{\text {III }}$ atom. Figure 1 shows the optical spectrum of cis$\left[\mathrm{Ru}^{111}\left(\mathrm{~L}^{1}\right) \mathrm{Cl}_{2}\right] \mathrm{ClO}_{4}$ in acetonitrile, an intriguing feature being the occurrence of one intense band at 375 nm corresponding to a $p_{\pi}(\mathrm{Cl}) \longrightarrow d_{\pi}^{*}(\mathrm{Ru})$ ligand-to-metal charge-transfer (l.m.c.t.) transition. ${ }^{12,13}$ Verdonck and Vanquickenborne ${ }^{14}$ have suggested that the cis and trans isomers of $\left[\mathrm{Ru}(\mathrm{L}) \mathrm{Cl}_{2}\right]^{-}$ may be distinguished by their optical spectra: the trans complexes are characterized by one intense $p_{\pi}(\mathrm{Cl}) \longrightarrow$ $d_{\pi}^{*}(\mathrm{Ru})$ absorption band, whereas two equal intensity 1.m.c.t. absorptions are expected for the cis isomers. Apart from the weak shoulder at 450 nm , Figure 1 resembles the optical spectrum of trans- $\left[\mathrm{Ru}^{\text {III }}\left(\mathrm{L}^{2}\right) \mathrm{Cl}_{2}\right]^{+} \quad\left(\mathrm{L}^{2}=1,4,8,11-\right.$ tetramethyl-1,4,8,11-tetra-azacyclotetradecane) ${ }^{11 \mathrm{c}}$ rather than that of cis- $\left[\mathrm{Ru}^{\text {III }}\left(\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)_{2} \mathrm{Cl}_{2}\right]^{+15}$ or cis- $\left[\mathrm{Ru}^{\mathrm{III}}\right.$ $\left.\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+} .{ }^{16}$
The X-ray structure of the $c i s$ - $\left[\mathrm{Ru}^{\text {III }}\left(\mathrm{L}^{1}\right) \mathrm{Cl}_{2}\right]^{+}$cation (Figure 2) features the first example of a dichloro(tertiary tetra-

Figure 3. I.r. spectra of (a) $\left[\mathrm{Ru}^{\mathrm{IV}}\left(\mathrm{L}^{1}\right)(\mathrm{O})_{2}\right]\left[\mathrm{ClO}_{4}\right]_{2}$ and (b) cis$\left[\mathrm{Ru}^{\mathrm{III}}\left(\mathrm{L}^{1}\right) \mathrm{Cl}_{2}\right] \mathrm{ClO}_{4}$ in the $1000-750 \mathrm{~cm}^{-1}$ region

Figure 4. Cyclic voltammogram of $\left[\mathrm{Ru}^{\mathrm{vl}}\left(\mathrm{L}^{1}\right)(\mathrm{O})_{2}\right]\left[\mathrm{ClO}_{4}\right]_{2}$ in $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ with pyrolytic graphite (basal plane) as the working electrode; see equations (1)-(3). Scan rate, $50 \mathrm{mV} \mathrm{s}{ }^{-1}$
amine)ruthenium(iII) complex in the cis configuration. The co-ordination geometry about the metal ion is distorted octahedral with two chloride ligands cis to each other. Because of the steric interaction of the $\mathrm{N}-\mathrm{CH}_{3}$ groups, the $\mathrm{N}(1)-\mathrm{Ru}-\mathrm{N}(4), \mathrm{Cl}(2)-\mathrm{Ru}-\mathrm{N}(2)$, and $\mathrm{Cl}(1)-\mathrm{Ru}-\mathrm{N}(3)$ axes are bent, the corresponding angles being 171.4(5), 165.6(4), and $166.6(4)^{\circ}$ respectively. The average $\mathrm{Ru}-\mathrm{N}$ and $\mathrm{Ru}-\mathrm{Cl}$ bond distances of 2.17(1) and 2.345(4) \AA, respectively, are comparable to those found in cis- and trans- $\left[\mathrm{Ru}\left(\mathrm{L}^{3}\right) \mathrm{Cl}_{2}\right]^{+}\left(\mathrm{L}^{3}=1,4,8,11-\right.$ tetra-azacyclotetradecane) ${ }^{12.17}$ and other ruthenium-amine systems. ${ }^{7.18}$

The co-ordinated chlorides in $c i s-\left[\mathrm{Ru}\left(\mathrm{L}^{1}\right) \mathrm{Cl}_{2}\right]^{+}$were removed by heating the metal complex with silver(I) p toluenesulphonate in water at $\mathrm{ca} .80^{\circ} \mathrm{C}$. The resulting aqua complex, $\left[\mathrm{Ru}\left(\mathrm{L}^{1}\right)(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$, could be oxidized by $\mathrm{H}_{2} \mathrm{O}_{2}$ to a green substance analysed as $\left[\mathrm{Ru}\left(\mathrm{L}^{1}\right)(\mathrm{O})_{2}\right]\left[\mathrm{ClO}_{4}\right]_{2}$. It is diamagnetic, as expected for a d^{2} dioxo metal complex, and has a single intense i.r. band at $850 \mathrm{~cm}^{-1}$ [Figure 3(a)], typical of $v_{\text {asym }}(\mathrm{Ru}=\mathrm{O})$ stretching in a trans-dioxo(tetra-amine)ruthenium(vI) system..$^{7 d, 19,20} \mathrm{~A}$ cis-dioxo metal complex would be expected to have two i.r.-active $\mathrm{M}=\mathrm{O}$ stretches. ${ }^{1 b, 3}$ In the $1000-900 \mathrm{~cm}^{-1}$ region which corresponds to the ligand stretching modes, the i.r. spectra of cis- $\left[\mathrm{Ru}^{\mathrm{III}}\left(\mathrm{L}^{1}\right) \mathrm{Cl}_{2}\right] \mathrm{ClO}_{4}$ [Figure $3(b)]$ and $\left[\mathrm{Ru}^{\mathrm{vl}}\left(\mathrm{L}^{1}\right)(\mathrm{O})_{2}\right]\left[\mathrm{ClO}_{4}\right]_{2}$ are similar but not superimposable. The geometry of $\left[\mathrm{Ru}^{\mathrm{VI}}\left(\mathrm{L}^{1}\right)(\mathrm{O})_{2}\right]\left[\mathrm{ClO}_{4}\right]_{2}$ is
also inferred from its electrochemistry. We ${ }^{6}$ and Meyer and coworkers ${ }^{2.3}$ have observed four well defined couples corresponding to $\mathrm{Ru}^{\mathrm{VI} / \mathrm{V}}, \mathrm{Ru}^{\mathrm{V} / \mathrm{IV}}, \mathrm{Ru}^{\mathrm{IV} / \mathrm{III}}$, and $\mathrm{Ru}^{\mathrm{III} / \mathrm{II}}$ in the cyclic voltammograms of cis-dioxo-ruthenium(V) complexes such as cis- $\left.\left[\mathrm{Ru}^{\mathrm{VI}} \text { (bipy }\right)_{2}(\mathrm{O})_{2}\right]^{2+}$ at $\mathrm{pH} 1-4$. For the trans-dioxoruthenium(VI) system, only three well defined couples, $\mathrm{Ru}^{\mathrm{VII} / \mathrm{V}}$, $\mathrm{Ru}^{\mathrm{IV} / \mathrm{III}}$, and $\mathrm{Ru}^{\mathrm{III} / \mathrm{II}}$ were found ($\mathrm{pH} 1-6$) ${ }^{7 d .19}$ Figure 4 shows the cyclic voltammogram of $\left[\mathrm{Ru}^{\mathrm{VI}}\left(\mathrm{L}^{1}\right)(\mathrm{O})_{2}\right]\left[\mathrm{ClO}_{4}\right]_{2}$ in 0.1 mol $\mathrm{dm}^{-3} \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ with pyrolytic graphite (basal plane) as the working electrode; its shape is similar to those of trans$\left[\mathrm{Ru}^{\mathrm{VI}}(\text { bipy })_{2}(\mathrm{O})_{2}\right]^{2+}$ and trans- $\left[\mathrm{Ru}^{\mathrm{VI}}\left(\mathrm{L}^{2}\right)(\mathrm{O})_{2}\right]^{2+}$, with three well defined couples at potentials of $0.79,0.60$, and 0.25 V vs. s.c.e corresponding to the electrode reactions (1)-(3). However,

$$
\begin{gather*}
{\left[\mathrm{Ru}^{\mathrm{VI}}\left(\mathrm{~L}^{1}\right)(\mathrm{O})_{2}\right]^{2+}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \xrightarrow{\left[\mathrm{Ru}^{\mathrm{Iv}}\left(\mathrm{~L}^{1}\right)(\mathrm{O})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}}} \\
{\left[\mathrm{Ru}^{\mathrm{IV}}\left(\mathrm{~L}^{1}\right)(\mathrm{O})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}+\mathrm{H}^{+}+\mathrm{e}^{-} \longrightarrow} \tag{1}\\
{\left[\mathrm{Ru}^{\mathrm{III}}\left(\mathrm{~L}^{1}\right)(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}} \\
{\left[\mathrm{Ru}^{\mathrm{III}}\left(\mathrm{~L}^{1}\right)(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}+\mathrm{H}^{+}+\mathrm{e}^{-} \longrightarrow} \tag{2}\\
{\left[\mathrm{Ru}^{\mathrm{II}}\left(\mathrm{~L}^{1}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}}
\end{gather*}
$$

the $\left[\mathrm{Ru}^{\mathrm{VI}}\left(\mathrm{L}^{1}\right)(\mathrm{O})_{2}\right]^{2+}$ complex was found to be unstable in solution at $\mathrm{pH}>3$, rendering the study of its electrochemistry difficult.

The electrochemical results together with the i.r. spectral data suggest that $\left[\mathrm{Ru}^{\mathrm{VI}}\left(\mathrm{L}^{1}\right)(\mathrm{O})_{2}\right]\left[\mathrm{ClO}_{4}\right]_{2}$ is likely to have a trans configuration. Importantly, it is a more powerful oxidant than trans- $\left[\mathrm{Ru}^{\mathrm{V1}}\left(\mathrm{~L}^{2}\right)(\mathrm{O})_{2}\right]\left[\mathrm{ClO}_{4}\right]_{2}$; the formal potential of the $\mathrm{Ru}^{\mathrm{VI/LV}}$ couple for the former system is 130 mV higher than that for the latter $(0.66 \mathrm{~V} \text { vs. s.c.e. at } \mathrm{pH} 1)^{7 d}$ This could be ascribed to the straining effect of the ligand L^{1} caused by forcing the four nitrogen atoms to lie in the equatorial plane. Whereas trans$\left[\mathrm{Ru}^{\mathrm{vi}}\left(\mathrm{L}^{2}\right)(\mathrm{O})_{2}\right]\left[\mathrm{ClO}_{4}\right]_{2}$ is inert towards styrene, ${ }^{21}$ stirring $\left[\mathrm{Ru}^{\mathrm{VI}}\left(\mathrm{L}^{1}\right)(\mathrm{O})_{2}\right]\left[\mathrm{ClO}_{4}\right]_{2}$ with styrene for 12 h at room temperature produced benzaldehyde (identified by gas chromatography) with a 40% yield (based on the amount of metal complex used).

Acknowledgements

Support from the Committee of Research and Conference Grants from the University of Hong Kong (to C-M. C., W-T. T.,
and H-W. L.) is acknowledged. H-W. L. acknowledges receipt of a Croucher Foundation Studentship.

References

1 (a) W. P. Griffith and R. Rossetti, J. Chem. Soc., Dalton Trans., 1972, 1449; (b) T. Behling, M. V. Capparelli, A. C. Shapski, and G. Wilkinson, Polyhedron, 1982, 1, 840.
2 K. J. Takeuchi, G. J. Samuel, S. W. Gersten, J. A. Gilbert, and T. J. Meyer, Inorg. Chem., 1983, 22, 1407.
3 J. C. Dobson, K. J. Takeuchi, D. W. Pipes, D. A. Geselowitz, and T. J. Meyer, Inorg. Chem., 1986, 25, 2357.
4 D. W. Pipes and T. J. Meyer, Inorg. Chem., 1986, 25, 4042.
5 C. M. Che and V. W. H. Yam, J. Am. Chem. Soc., 1987, 109, 1262.
6 C. M. Che, unpublished work.
7 (a) C. M. Che and K. Y. Wong, J. Chem. Soc., Chem. Commun., 1986, 229; (b) C. M. Che, K. Y. Wong, and T. C. W. Mak, ibid., 1985, 988; (c) p. 986; (d) Inorg. Chem., 1985, 24, 1797.

8 See, for example, J. P. Collman, and P. W. Schneider, Inorg. Chem., 1966, 5, 1380.
9 G. M. Sheldrick, in ‘Computational Crystallography,’ ed. D. Sayre, Oxford University Press, New York, 1982, p. 506.
10 See , for example, N. W. Alcock, L. H. Curzon, P. Moore, and C. Pierpoint, J. Chem. Soc., Dalton Trans., 1984, 605; E. K. Barefield and F. Wagner, Inorg. Chem., 1973, 12, 2435.

11 (a) C. K. Poon and C. M. Che, Inorg. Chem., 1981, 20, 1640; (b) J. Chem. Soc., Dalton Trans., 1981, 495; (c) C. M. Che, S. S. Kwong, C. K. Poon, Inorg. Chem., 1985, 24, 1601; (d) 1986, 25, 1809.

12 D. D. Walker and H. Taube, Inorg. Chem., 1981, 20, 2828.
13 See for example, C. K. Poon, T. C. Lau, and C. M. Che, Inorg. Chem., 1983, 22, 3892.
14 E. Verdonck and L. G. Vanquickenborne, Inorg. Chem., 1974, 13, 762.
15 J. A. Broomhead and L. A. P. Kane Maguire, J. Chem. Soc. A, 1967, 546.

16 A. D. Allen and J. R. Stevens, Can. J. Chem., 1973, 51, 92.
17 C. M. Che, S. S. Kwong, C. K. Poon, T. F. Lai, and T. C. W. Mak, Inorg. Chem., 1985, 24, 1359.
18 A. J. Blake, T. I. Hyde, R. S. E. Smith, and M. Schröder, J. Chem. Soc., Chem. Commun., 1986, 334.
19 C. M. Che, K. Y. Wong, W. H. Leung, and C. K. Poon, Inorg. Chem., 1986, 25, 345.
20 W. P. Griffith and D. Paulson, J. Chem. Soc., Dalton Trans., 1973, 1315.

21 C. M. Che, T. F. Lai, and K. Y. Wong, Inorg. Chem., 1987, 26, 2289.

Received 1st June 1987; Paper 7/961

[^0]: \dagger Dichloro($N N N^{\prime} N^{\prime}$-tetramethyl-3,6-dimethyl-3,6-diazaoctane-1,8diamine)ruthenium(III) perchlorate.
 Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans.. Issue 1, 1988, p. xvii-xx.
 Non-S.I. unit emploved: $\mathrm{mmHg} \approx 133 \mathrm{~Pa}$.

