High-valent Ruthenium Oxo Complexes of NNN'N'-Tetramethyl-3,6-dimethyl-3,6-diazaoctane-1,8-diamine (L¹). X-Ray Crystal Structure Determination of *cis*-[Ru^w(L¹)Cl₂]ClO₄[†]

Chi-Ming Che,* Wai-Tong Tang, and Michael Hon-Wah Lam Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong Thomas C. W. Mak* Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong

The reaction of $K_2[RuCl_5(H_2O)]$ with *NNN'N'* -tetramethyl-3,6-dimethyl-3,6-diazaoctane-1,8-diamine (L¹) in ethanol yielded *cis*-[Ru¹¹¹(L¹)Cl₂]⁺, which was isolated as the ClO₄⁻ salt. The optical spectrum of *cis*-[Ru¹¹¹(L¹)Cl₂]ClO₄ in acetonitrile displays one intense band at 375 nm attributed to a $p_{\pi}(Cl) \longrightarrow d_{\pi}^{*}(Ru)$ transition. *cis*-[Ru¹¹¹(L¹)Cl₂]ClO₄ has been characterized by X-ray crystallography: space group $P2_1/c$, a = 11.716(5), b = 13.089(4), c = 12.981(5) Å, $\beta = 94.28(2)^\circ$, Z = 4, and R = 0.076 for 1 913 observed Mo- K_{α} data. The co-ordination geometry around the metal ion is distorted octahedral with *cis* arrangement of the two chloride ligands. The average Ru–N and Ru–Cl bond distances are 2.17(1) and 2.345(4) Å, respectively. Treatment of *cis*-[Ru¹¹¹(L¹)Cl₂]ClO₄ with silver(1) *p*-toluenesulphonate in hot water and then H₂O₂ gave [Ru^{V11}(L¹)(O)₂]²⁺ isolated as the ClO₄⁻ salt. [Ru^{V11}(L¹)(O)₂][ClO₄]₂ is diamagnetic ($\mu_{eff.} = 0$) and has an intense i.r. band at *ca*. 850 cm⁻¹ attributed to $v_{asym}(Ru=0)$ stretching. The $E_{\frac{1}{2}}$ value of the [Ru^{V11}(L¹)(O)₂]²⁺/[Ru^{IV1}(L¹)(O)(H₂O)]²⁺ couple in 0.1 mol dm⁻³ CF₃CO₂H is 0.79 V vs. a saturated calomel electrode. The reaction of [Ru^{V11}(L¹)(O)₂][ClO₄]₂ with styrene produced benzaldehyde.

Relatively few studies have been reported on the chemistry of d^2 cis-dioxo-ruthenium(VI) and -osmium(VI) complexes despite the fact that they are potentially strong oxidants.¹⁻⁵ Meyer and co-workers² recently claimed the electrochemical generation of $cis-[Ru^{VI}(bipy)_2(O)_2]^{2+}$ (bipy = 2,2'-bipyridyl) from $cis-[Ru^{II} (bipy)_2(H_2O)_2]^{2+}$; however, the identification of the Ru^{VI/V} couple is ambiguous owing to the complexity of Ru-bipy electrochemistry. [However, well defined Ru^{VUV} , $Ru^{V/IV}$, and Ru^{IV/III} couples have been observed using edge-plane pyrolytic graphite electrodes.⁶] Recently we have shown that stable highvalent Ru=O complexes can be obtained by employing quadridentate tertiary amine ligands.⁷ The ligand NNN'N'tetramethyl-3,6-dimethyl-3,6-diazaoctane-1,8-diamine $(L^{1}).$ which would give too small a central cavity if the four N lone pairs were arranged about it equatorially, is expected to coordinate ruthenium in a cis fashion.8 We describe here the chemistry, structure, and spectroscopic properties of cis- $[Ru(L^1)Cl_2]ClO_4$ and its high-valent oxo derivative.

Experimental

 $K_2[RuCl_5(H_2O)]$ is purchased from Johnson Matthey. All reagents and solvents used were of analytical grade. Acetonitrile was twice redistilled over CaH₂ before use.

Preparation of Ligand L¹.—A mixture of triethylenetetramine (5 g), formic acid (25 cm³, 98—100%), and formaldehyde (25 cm³, 37—41%) was refluxed at 90 °C with stirring for 24 h.

Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., Issue 1, 1988, p. xvii—xx.

Non-S.I. unit employed: mmHg \approx 133 Pa.

The solution was then cooled in an ice-bath. A saturated solution of sodium hydroxide was added with stirring until the solution became alkaline (pH 12). This was then extracted with chloroform; the organic extract was collected and dried over anhydrous Na₂SO₄. The organic solvent was rotatory evaporated to give a thick oil, which was purified by distillation at reduced pressure (*ca.* 80 °C at 0.1 mmHg). Yield *ca.* 70% (Found: C, 62.3; H, 13.2; N, 24.1. Calc. for C₁₂H₃₀N₄: C, 62.6; H, 13.0; N, 24.3%). ¹H N.m.r. (CDCl₃); δ 2.6–2.4 (m, 12 H), 2.26, 2.23 (d, 18 H). I.r.: no v(N-H) stretch observed in the 3 000–3 500 cm⁻¹ region. Mass spectrum: *m*/*z* 230 [*M*]⁺.

cis-[Ru^{III}(L¹)Cl₂]ClO₄.—An ethanolic solution of L¹ (0.5 g in 230 cm³) was added dropwise to an ethanolic suspension of K₂[RuCl₅(H₂O)] (0.5 g in 200 cm³) under conditions of reflux and vigorous stirring. The addition process took 3—4 h for completion and the solution mixture was further refluxed for 24 h. After completion, a few drops of concentrated HCl were added and the solution filtered hot; it was then rotatory evaporated to dryness. The yellowish brown residue was dissolved in 2 mol dm⁻³ HCl, and excess NaClO₄ was added. Yellow cis-[Ru^{III}(L¹)Cl₂]ClO₄ precipitated on cooling to ca. 10 °C. The crude product could be recrystallized from 1 mol dm⁻³ HCl or MeCN–Et₂O. Yield 30–40% (Found: C, 28.7; H, 6.1; Cl, 21.0; N, 11.2. Calc. for C₁₂H₃₀Cl₃N₄O₄Ru: C, 28.7; H, 6.0; Cl, 21.2; N, 11.2%). U.v.–visible spectrum (CH₃CN): λ_{max} . 375 nm (ε_{max} . 2 040 dm³ mol⁻¹ cm⁻¹), 275 (2 870).

 $[Ru^{VI}(L^1)(O)_2][CIO_4]_2$.—*cis*- $[Ru^{III}(L^1)CI_2]CIO_4$ (0.5 g) and excess silver(1) *p*-toluenesulphonate were digested in water (25 cm³) at 80—90 °C for 30 min until all the AgCl had precipitated. The hot solution was filtered to remove this insoluble precipitate, and H₂O₂ (30%, 2—3 cm³) was added dropwise with the solution maintained at *ca*. 50 °C. After effervescence had ceased, excess NaClO₄ was added. On standing, green crystals of $[Ru^{VI}(L^1)(O)_2][CIO_4]_2$ were deposited. Yield *ca*.

[†] Dichloro(*NNN'N'*-tetramethyl-3,6-diazaoctane-1,8-diamine)ruthenium(III) perchlorate.

60%. The crude product could be recrystallized from 0.1 mol dm⁻³ CF₃CO₂H or 0.1 mol dm⁻³ HClO₄ (Found: C, 29.0; H, 6.2; Cl, 14.2; N, 11.3. Calc. for C₁₂H₃₀Cl₂N₄O₆Ru: C, 28.9; H, 6.0; Cl, 14.3; N, 11.2%). U.v. in 0.1 mol dm⁻³ CF₃CO₂H: λ_{max}. 304 (ε_{max}. 1 420 dm³ mol⁻¹ cm⁻¹), 277 (5 710). I.r. (Nujol mull): v_{asym}(Ru=O) 850 cm⁻¹. μ_{eff.} = 0 (Gouy method, crystalline sample).

Physical Measurements.—Proton n.m.r. spectra were run on a JEOL model (90 MHz) FX90Q spectrometer. U.v.-visible spectra were measured with a Beckman Acta CIII spectrophotometer. I.r. spectra were obtained as Nujol mulls on a Perkin-Elmer 577 spectrophotometer (4 000–200 cm⁻¹).

Cyclic voltammetric measurements were performed using a PAR universal programmer (model 175), potentiostat (model 173), and digital coulometer (model 179). Formal potentials were taken from the mean value of the cathodic and anodic peak potentials at 25 °C at a scan rate of 100 mV s⁻¹. Pyrolytic graphite was used as the working electrode. All measurements were made against Ag–AgNO₃ (0.1 mol dm⁻³ in CH₃CN) or saturated calomel electrode (s.c.e.).

X-Ray Structural Studies.—Crystal data. C₁₂H₃₀Cl₃N₄O₄-Ru, M = 501.82, monoclinic, space group $P2_1/c$, a = 11.716(5), b = 13.089(4), c = 12.981(5) Å, $\beta = 94.28(2)^{\circ}, U = 1.985(1)$ Å³, $D_{\rm m} = 1.675$, $D_{\rm c} (Z = 4) = 1.679$ g cm⁻³, Mo- K_{α} (graphitemonochromatized) radiation, $\lambda = 0.710.69$ Å, $\mu = 12.05$ cm⁻¹, T = 295 K, crystal size $0.26 \times 0.22 \times 0.22$ mm, empirical absorption correction ($\mu r = 0.14$, transmission factors 0.642-0.715), 2 154 unique reflections ($2\theta_{max} = 46^{\circ}$), 1 913 observed $[|F_{o}| > 3\sigma(|F_{o}|)], R = 0.076, R' = 0.100, S = 2.802$ for 235 variables with $w = [\sigma^2(|F_0|) + 0.0006|F_0|^2]^{-1}$. The structure was solved by the heavy-atom method and refined using the SHELXTL⁹ system on a Data General Nova 3/12 minicomputer. All non-H atoms were varied anisotropically. The methylene H atoms were allowed to ride on their respective parent C atoms and the methyl groups were treated as rigid groups (C-H bond fixed at 0.96 Å; isotropic thermal parameters assigned to H atoms).

The final atomic co-ordinates are given in Table 1, and bond distances and angles in Table 2. Additional material available from the Cambridge Crystallographic Data Centre comprises H-atom co-ordinates and thermal parameters.

Table 1. Atomic co-ordinates ($\times 10^5$ for Ru; $\times 10^4$ for other atoms) for cis-[Ru(L¹)Cl₂]ClO₄

Atom	x	У	Ζ	Atom	x	у	Ζ
Ru	24 196(9)	4 678(8)	30 989(8)	C(1)	2 046(20)	165(16)	5 437(14)
Cl(1)	811(4)	1 386(3)	3 544(4)	C(2)	3 199(15)	-1095(14)	4 764(12)
Cl(2)	3 807(4)	1 398(3)	4 101(4)	C(3)	1 203(16)	-1.062(13)	4 296(13)
Cl(3)	2 657(3)	5 862(3)	3 597(3)	C(4)	1 211(19)	-1544(18)	3 163(17)
O (1)	2 755(15)	4 788(10)	3 582(12)	C(5)	198(15)	-548(15)	1 993(17)
O(2)	2 639(18)	6 184(13)	2 546(12)	C(6)	2 011(16)	-1 264(13)	1 610(16)
O(3)	1 670(11)	6 151(10)	4 000(11)	C(7)	3 289(13)	-1329(12)	1 960(15)
O(4)	3 584(12)	6 311(10)	4 135(13)	C(8)	4 836(14)	-450(14)	2 807(17)
N(1)	2 252(11)	-463(9)	4 501(8)	C(9)	3 859(19)	316(21)	1 232(18)
N(2)	1 383(11)	- 703(10)	2 346(10)	C(10)	3 706(19)	1 430(15)	1 500(26)
N(3)	3 703(11)	-393(11)	2 331(11)	C(11)	2 554(18)	2 638(11)	2 184(17)
N(4)	2 584(12)	1 567(11)	1 890(12)	C(12)	1 630(20)	1 475(16)	990(15)

Table 2. Bond lengths (Å) and angles (°) in cis-[Ru(L¹)Cl₂]ClO₄

(a) Cation N(2)-C(5)1.44(2)N(2)-C(6)1.45(2) Ru-Cl(1)2.343(4)Ru-Cl(2)2.346(4)Ru-N(1)2.21(1)Ru-N(2)2.15(1) N(3)-C(7) 1.39(2) N(3)-C(8)1.42(2) 1.72(3) 1.45(3) N(3)-C(9) N(4)-C(10)Ru-N(4)2.15(1) Ru-N(3)2.18(1)N(1)-C(1)1.50(2) N(1)-C(2) 1.41(2)N(4)-C(11) 1.45(2) N(4)-C(12)1.56(2)N(2)-C(4)1.56(3) C(3)-C(4)1.61(3) C(6)--C(7) 1.53(2) N(1)-C(3) 1.47(2)C(9)-C(10) 1.51(2) Ru-N(2)-C(5)C(4)-N(2)-C(5)98(1) Cl(1)-Ru-Cl(2)97.7(2) Cl(1)-Ru-N(1)87.6(4) 123(1) C(4)-N(2)-C(6)101(1)Cl(1)-Ru-N(2)92.3(4) Ru-N(2)-C(6) 111(1)Cl(2)-Ru-N(1)86.0(3) N(1)-Ru-N(2)84.2(5) C(5)-N(2)-C(6) 123(1) Ru-N(3)-C(7)112(1) Cl(2)-Ru-N(2)165.6(4) Cl(1)-Ru-N(3) Cl(2)-Ru-N(3)92.8(4) Ru-N(3)-C(8)119(1) C(7)-N(3)-C(8)113(1)166.6(4) C(7)-N(3)-C(9)104(1)N(1)-Ru-N(3)101.5(4) N(2)-Ru-N(3)79.0(5) Ru-N(3)-C(9)103(1)Cl(2)-Ru-N(4)Ru-N(4)-C(10)108(1) Cl(1)-Ru-N(4)87.8(4) C(8)-N(3)-C(9)104(1)87.4(4) 105(1) Ru-N(4)-C(11)117(1) C(10)-N(4)-C(11)N(1) - Ru - N(4)171.4(5) N(2)-Ru-N(4)103.0(5)Ru-N(4)-C(12)113(1) C(10)-N(4)-C(12)110(2)N(3) - Ru - N(4)84.8(5) Ru - N(1) - C(1)113(1)104(1)N(1)-C(3)-C(4)109(1) 107(1)C(11)-N(4)-C(12)Ru - N(1) - C(2)114(1) C(1)-N(1)-C(2)Ru - N(1) - C(3)C(1)-N(1)-C(3) 105(1) N(2)-C(4)-C(3)110(2)N(2)-C(6)-C(7)111(1)106(1)107(1) N(3)-C(7)-C(6)111(1)N(3)-C(9)-C(10) 108(2) Ru-N(2)-C(4)C(2)-N(1)-C(3)112(1)N(4)-C(10)-C(9)109(2) (b) Anion O(1)-Cl(3)-O(3) Cl(1) - O(1)1.41(1)Cl(3)-O(2)1.43(2)O(1)-Cl(3)-O(2)106(1)111(1) O(2)--Cl(3)-O(3) 110(1) 1.39(1) O(1)-Cl(3)-O(4) 112(1)Cl(3)-O(3) 1.36(1) Cl(3)-O(4) O(2)-Cl(3)-O(4) 108(1)O(3)-Cl(3)-O(4) 110(1)

Figure 1. U.v.-visible spectrum of cis-[Ru^{III}(L¹)Cl₂]ClO₄ in acctonitrile

Figure 2. Perspective view of the cis-[Ru(L¹)Cl₂]⁺ cation (35% probability ellipsoids), which has approximate $C_{2\nu}$ molecular symmetry

Results and Discussion

As with the macrocyclic tertiary amines, the ligand L^1 was obtained by N-methylation of triethylenetetramine with HCHO-HCOOH.¹⁰ Previous studies showed that an extensive series of *trans*-[Ru^{III}(L)Cl₂]⁺ complexes (L = two bidentate amines or one quadridentate amine) could be obtained by the reaction of K₂[RuCl₅(H₂O)] with L in refluxing ethanol.^{11,12} In the present case with L^1 only the *cis* isomer was obtained, as the central cavity resulting from an equatorial arrangement of the four N lone pairs would be too small to accommodate the Ru^{III} atom. Figure 1 shows the optical spectrum of cis- $[Ru^{III}(L^1)Cl_2]ClO_4$ in acetonitrile, an intriguing feature being the occurrence of one intense band at 375 nm corresponding to a $p_{\pi}(Cl) \longrightarrow d_{\pi}^{*}(Ru)$ ligand-to-metal charge-transfer (l.m.c.t.) transition.^{12,13} Verdonck and Vanquickenborne¹⁴ have suggested that the cis and trans isomers of [Ru(L)Cl₂]⁻ may be distinguished by their optical spectra: the trans complexes are characterized by one intense $p_{\pi}(Cl) \longrightarrow$ $d_{\star}^{*}(\mathbf{R}\mathbf{u})$ absorption band, whereas two equal intensity l.m.c.t. absorptions are expected for the cis isomers. Apart from the weak shoulder at 450 nm, Figure 1 resembles the optical spectrum of *trans*- $[Ru^{III}(L^2)Cl_2]^+$ (L² = 1,4,8,11tetramethyl-1.4,8,11-tetra-azacyclotetradecane)^{11c} rather than that of cis-[Ru^{III}(H₂NCH₂CH₂NH₂)₂Cl₂]⁺¹⁵ or cis-[Ru^{III}- $(NH_3)_4Cl_2$ ⁺.¹⁶

The X-ray structure of the cis-[Ru^{III}(L¹)Cl₂]⁺ cation (Figure 2) features the first example of a dichloro(tertiary tetra-

Figure 3. I.r. spectra of (a) $[Ru^{IV}(L^1)(O)_2][CIO_4]_2$ and (b) cis- $[Ru^{III}(L^1)Cl_2]CIO_4$ in the 1 000–750 cm⁻¹ region

Figure 4. Cyclic voltammogram of $[Ru^{VI}(L^1)(O)_2][CIO_4]_2$ in 0.1 mol dm⁻³ CF₃CO₂H with pyrolytic graphite (basal plane) as the working electrode; see equations (1)--(3). Scan rate, 50 mV s⁻¹

amine)ruthenium(III) complex in the *cis* configuration. The co-ordination geometry about the metal ion is distorted octahedral with two chloride ligands *cis* to each other. Because of the steric interaction of the N–CH₃ groups. the N(1)–Ru–N(4), Cl(2)–Ru–N(2), and Cl(1)–Ru–N(3) axes are bent, the corresponding angles being 171.4(5), 165.6(4), and 166.6(4)° respectively. The average Ru–N and Ru–Cl bond distances of 2.17(1) and 2.345(4) Å, respectively, are comparable to those found in *cis*- and *trans*-[Ru(L³)Cl₂]⁺ (L³ = 1,4,8,11-tetra-azacyclotetradecane)^{12.17} and other ruthenium–amine systems.^{7.18}

The co-ordinated chlorides in cis-[Ru(L¹)Cl₂]⁺ were removed by heating the metal complex with silver(1) *p*toluenesulphonate in water at *ca*. 80 °C. The resulting aqua complex, [Ru(L¹)(OH)(H₂O)]²⁺, could be oxidized by H₂O₂ to a green substance analysed as [Ru(L¹)(O)₂][ClO₄]₂. It is diamagnetic, as expected for a d^2 dioxo metal complex, and has a single intense i.r. band at 850 cm⁻¹ [Figure 3(*a*)], typical of v_{asym}(Ru=O) stretching in a *trans*-dioxo(tetra-amine)ruthenium(v1) system.^{74,19,20} A *cis*-dioxo metal complex would be expected to have two i.r.-active M=O stretches.^{1b,3} In the 1 000–900 cm⁻¹ region which corresponds to the ligand stretching modes, the i.r. spectra of *cis*-[Ru^{III}(L¹)Cl₂]ClO₄ [Figure 3(*b*)] and [Ru^{VI}(L¹)(O)₂][ClO₄]₂ are similar but not superimposable. The geometry of [Ru^{VI}(L¹)(O)₂][ClO₄]₂ is also inferred from its electrochemistry. We⁶ and Meyer and coworkers^{2.3} have observed four well defined couples corresponding to Ru^{VI/V}, Ru^{V/IV}, Ru^{IV/III}, and Ru^{III/II} in the cyclic voltammograms of *cis*-dioxo-ruthenium(v1) complexes such as *cis*-[Ru^{VI}(bipy)₂(O)₂]²⁺ at pH 1—4. For the *trans*-dioxoruthenium(v1) system, only three well defined couples, Ru^{VI/IV}, Ru^{IV/III}, and Ru^{III/II} were found (pH 1—6).^{74.19} Figure 4 shows the cyclic voltammogram of [Ru^{VI}(L¹)(O)₂][ClO₄]₂ in 0.1 mol dm⁻³ CF₃CO₂H with pyrolytic graphite (basal plane) as the working electrode; its shape is similar to those of *trans*-[Ru^{VI}(bipy)₂(O)₂]²⁺ and *trans*-[Ru^{VI}(L²)(O)₂]²⁺, with three well defined couples at potentials of 0.79, 0.60, and 0.25 V vs. s.c.e corresponding to the electrode reactions (1)—(3). However,

$$[Ru^{VI}(L^{1})(O)_{2}]^{2^{+}} + 2H^{+} + 2e^{-} \longrightarrow [Ru^{IV}(L^{1})(O)(H_{2}O)]^{2^{+}}$$
(1)

$$[Ru^{IV}(L^{1})(O)(H_{2}O)]^{2+} + H^{+} + e^{-} \longrightarrow [Ru^{III}(L^{1})(OH)(H_{2}O)]^{2+}$$
(2)

$$[Ru^{III}(L^{1})(OH)(H_{2}O)]^{2^{+}} + H^{+} + e^{-} \longrightarrow [Ru^{II}(L^{1})(H_{2}O)_{2}]^{2^{+}} (3)$$

the $[Ru^{Vl}(L^1)(O)_2]^{2+}$ complex was found to be unstable in solution at pH > 3, rendering the study of its electrochemistry difficult.

The electrochemical results together with the i.r. spectral data suggest that $[Ru^{VI}(L^1)(O)_2][CIO_4]_2$ is likely to have a *trans* configuration. Importantly, it is a more powerful oxidant than *trans*- $[Ru^{VI}(L^2)(O)_2][CIO_4]_2$; the formal potential of the Ru^{VIIV} couple for the former system is 130 mV higher than that for the latter (0.66 V vs. s.c.e. at pH 1).^{7d} This could be ascribed to the straining effect of the ligand L¹ caused by forcing the four nitrogen atoms to lie in the equatorial plane. Whereas *trans*- $[Ru^{VI}(L^2)(O)_2][CIO_4]_2$ is inert towards styrene,²¹ stirring $[Ru^{VI}(L^1)(O)_2][CIO_4]_2$ with styrene for 12 h at room temperature produced benzaldehyde (identified by gas chromatography) with a 40% yield (based on the amount of metal complex used).

Acknowledgements

Support from the Committee of Research and Conference Grants from the University of Hong Kong (to C-M. C., W-T. T.,

and H-W. L.) is acknowledged. H-W. L. acknowledges receipt of a Croucher Foundation Studentship.

References

- 1 (a) W. P. Griffith and R. Rossetti, J. Chem. Soc., Dalton Trans., 1972, 1449; (b) T. Behling, M. V. Capparelli, A. C. Shapski, and G. Wilkinson, Polyhedron, 1982, 1, 840.
- 2 K. J. Takeuchi, G. J. Samuel, S. W. Gersten, J. A. Gilbert, and T. J. Meyer, *Inorg. Chem.*, 1983, **22**, 1407.
- 3 J. C. Dobson, K. J. Takeuchi, D. W. Pipes, D. A. Geselowitz, and T. J. Meyer, *Inorg. Chem.*, 1986, 25, 2357.
- 4 D. W. Pipes and T. J. Meyer, Inorg. Chem., 1986, 25, 4042.
- 5 C. M. Che and V. W. H. Yam, *J. Am. Chem. Soc.*, 1987, **109**, 1262. 6 C. M. Che, unpublished work.
- 7 (a) C. M. Che and K. Y. Wong, J. Chem. Soc., Chem. Commun., 1986, 229; (b) C. M. Che, K. Y. Wong, and T. C. W. Mak, *ibid.*, 1985, 988; (c) p. 986; (d) Inorg. Chem., 1985, 24, 1797.
- 8 See, for example, J. P. Collman, and P. W. Schneider, *Inorg. Chem.*, 1966, **5**, 1380.
- 9 G. M. Sheldrick, in 'Computational Crystallography,' ed. D. Sayre, Oxford University Press, New York, 1982, p. 506.
- 10 See, for example, N. W. Alcock, L. H. Curzon, P. Moore, and C. Pierpoint, J. Chem. Soc., Dalton Trans., 1984, 605; E. K. Barefield and F. Wagner, Inorg. Chem., 1973, 12, 2435.
- 11 (a) C. K. Poon and C. M. Che, *Inorg. Chem.*, 1981, **20**, 1640; (b) J. Chem. Soc., Dalton Trans., 1981, 495; (c) C. M. Che, S. S. Kwong, C. K. Poon, *Inorg. Chem.*, 1985, **24**, 1601; (d) 1986, **25**, 1809.
- 12 D. D. Walker and H. Taube, Inorg. Chem., 1981, 20, 2828.
- 13 See for example, C. K. Poon, T. C. Lau, and C. M. Che, *Inorg. Chem.*, 1983, **22**, 3892.
- 14 E. Verdonck and L. G. Vanquickenborne, Inorg. Chem., 1974, 13, 762.
- 15 J. A. Broomhead and L. A. P. Kane Maguire, J. Chem. Soc. A, 1967, 546.
- 16 A. D. Allen and J. R. Stevens, Can. J. Chem., 1973, 51, 92.
- 17 C. M. Che, S. S. Kwong, C. K. Poon, T. F. Lai, and T. C. W. Mak, *Inorg. Chem.*, 1985, **24**, 1359.
- 18 A. J. Blake, T. I. Hyde, R. S. E. Smith, and M. Schröder, J. Chem. Soc., Chem. Commun., 1986, 334.
- 19 C. M. Che, K. Y. Wong, W. H. Leung, and C. K. Poon, *Inorg. Chem.*, 1986, 25, 345.
- 20 W. P. Griffith and D. Paulson, J. Chem. Soc., Dalton Trans., 1973, 1315.
- 21 C. M. Che, T. F. Lai, and K. Y. Wong, Inorg. Chem., 1987, 26, 2289.

Received 1st June 1987; Paper 7/961