Synthesis of Heterobimetallic Complexes containing Cobalt-Platinum or Rhodium-Platinum Dative Bonds. Molecular Structure of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2} \mathrm{Rh} \rightarrow \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CO})\right] \dagger$

Rafael Usón, Juan Forniés, Pablo Espinet, Consuelo Fortuño, and Milagros Tomas
Departamento de Química Inorgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-C.S.I.C. 50009 Zaragoza, Spain Alan J. Welch
Department of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ

Abstract

The complexes $\left[\left(\eta^{5}-C_{5} R_{5}\right)(C O) L M \rightarrow P t\left(C_{6} F_{5}\right)_{2}(C O)\right](R=H$ or $M e ; M=C o$ or $R h ; L=C O$ or PPh_{3}) have been obtained by reacting the bases [M(75-C5R $\left.\left.\mathrm{R}_{5}\right)(\mathrm{CO}) \mathrm{L}\right]$ with cis- $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CO})(\mathrm{thf})\right]$ (thf = tetrahydrofuran). Their structures are discussed on the basis of ${ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}$, and ${ }^{31} \mathrm{P}$ n.m.r. and i.r. data. The molecular structure of the complex $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2} \mathrm{Rh} \rightarrow \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CO})\right]$ has been determined by an X-ray diffraction study: orthorhombic, space group $P 2,2,2$, with $a=7.6321$ (10), $b=16.4151(17), c=16.5200(43) \AA, Z=4 ; R=0.027, R^{\prime}=0.028$ for 3676 reflections with $I \geqslant 3 \sigma(I)$ having $2<2 \theta<60^{\circ}$. The structure shows that the basic $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2} \mathrm{Rh}$ group is coordinated to the $\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CO})$ moiety forming a binuclear complex with an unbridged $\mathrm{Rh}-\mathrm{Pt}$ bond of length 2.750 (1) \AA. Platinum is in an almost square-planar environment with the $C_{6} F_{5}$ groups mutually cis. The ${ }^{19} \mathrm{~F}$ n.m.r. spectra of the complexes reveal fluxional behaviour leading to equivalence of the two $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups. The reaction of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{R}_{5}\right)(\mathrm{CO})_{2} R h \rightarrow \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CO})\right](\mathrm{R}=\mathrm{H}$ or Me) with PPh_{3} yields $\left[\mathrm{Rh}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{R}_{5}\right)(\mathrm{CO})_{2}\right]$ and cis- $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right]$; reacting $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2}-\right.$ $\left.\mathrm{Rh} \rightarrow \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CO})\right]$ with bis(diphenylphosphino) methane (dppm) gives [$\left.\mathrm{Rh}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2}\right]$ and $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{dppm})\right]$.

Heterobimetallic complexes containing an asymmetric metalmetal bond have received considerable recent attention. ${ }^{1}$ A very useful method of synthesising such compounds is the use of transition-metal complexes displaying basic properties which can act as a ligand towards other metal centres, thereby forming compounds with donor-aceptor metal-metal bonds. We have recently described the synthesis of polynuclear $\mathrm{Pt}-\mathrm{Ag}$ complexes of this type, ${ }^{2-5}$ formed by reaction of anionic platinum pentafluorophenyl derivatives with AgClO_{4} or $\mathrm{Ag}\left(\mathrm{OClO}_{3}\right) \mathrm{L}$, $\mathrm{L}=\mathrm{PPh}_{3}, \mathrm{PPh}_{2} \mathrm{Me}$, or PEt_{3}, and most of these compounds contain unsupported $\mathrm{Pt}-\mathrm{Ag}$ bonds. We now report a different route to unsupported $\mathbf{M}-\mathrm{M}^{\prime}$ bonds.

Half-sandwich 18 -electron complexes [$M\left(\eta^{5}-\mathrm{C}_{5} \mathbf{R}_{5}\right) \mathrm{L}_{2}$] $(\mathbf{R}=$ H or $\mathrm{Me} ; \mathrm{M}=\mathrm{Co}$ or $\mathrm{Rh} ; \mathrm{L}=\mathrm{CO}$ or $\mathrm{PR}_{3}^{\prime} ; \mathrm{R}^{\prime}=\mathrm{Ph}, \mathrm{Et}$, or Me) have previously been used as ligands towards other metal compounds to produce species with asymmetric metal-metal bonds. ${ }^{6-16}$ This paper describes the reactions of $\left[\mathrm{M}\left(\eta^{5}-\right.\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{R}_{5}\right) \mathrm{L}_{2}\right](\mathrm{M}=\mathrm{Co}$ or Rh$)$ with cis- $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CO})(\mathrm{thf})\right]^{17}$ (thf $=$ tetrahydrofuran) where the basic nature of the metal centre M produces displacement of the weakly co-ordinated thf ligand and yields the heterobimetallic complexes of the type $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{R}_{5}\right) \mathrm{L}_{2} \mathrm{M} \rightarrow \operatorname{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CO})\right]$, containing metalmetal bonds unsupported by any bridging ligands. The structure of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2} \mathrm{Rh} \rightarrow \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CO})\right]$ has been established by single-crystal X-ray diffraction.

Results and Discussion

Syntheses.-The reaction between cis- $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CO})(\mathrm{thf})\right]$ and $\left[\mathrm{M}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{R}_{5}\right) \mathrm{LL}{ }^{\prime}\right]$ (molar ratio 1:1) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room

[^0]temperature yields the binuclear heterometallic complexes (1)(5), equation (1) $\left[\mathrm{M}=\mathrm{Co}, \mathrm{R}=\mathrm{H}, \mathrm{L}=\mathrm{L}^{\prime}=\mathrm{CO}\right.$ (1); $\mathrm{L}=$ $\mathrm{CO}, \mathrm{L}^{\prime}=\mathrm{PPh}_{3}(2) ; \mathrm{M}=\mathrm{Rh}, \mathrm{R}=\mathrm{H}, \mathrm{L}=\mathrm{L}^{\prime}=\mathrm{CO}(3) ; \mathrm{L}=$ $\mathrm{CO}, \mathrm{L}^{\prime}=\mathrm{PPh}_{3}$ (4); $\left.\mathrm{R}=\mathrm{Me}, \mathrm{L}=\mathrm{L}^{\prime}=\mathrm{CO}(5)\right]$.
\[

$$
\begin{array}{r}
{\left[\mathrm{M}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{R}_{5}\right) \mathrm{LL}^{\prime}\right]+\text { cis }-\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CO})(\text { thf })\right]} \\
{\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{R}_{5}\right) \mathrm{LL}{ }^{\prime} \mathrm{M} \rightarrow \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CO})\right]+\mathrm{thf}} \tag{1}
\end{array}
$$
\]

Thus, the formally five-co-ordinated 18 -electron complexes $\left[\mathrm{M}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{R}_{5}\right) \mathrm{LL}^{\prime}\right](\mathrm{M}=\mathrm{Co}$ or Rh$)$, acting as a ligand, cause displacement of the weakly co-ordinated thf of cis- $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}-\right.$ (CO)(thf)] giving rise to complexes with a donor-acceptor M Pt bond in which the M centre is formally six-co-ordinated and the Pt centre is four-co-ordinated.

The reactions must be carried out in a non-donor solvent $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ since otherwise the basic nature of the solvent precludes formation of the binuclear complexes. In fact the i.r. spectrum $\left[\mathrm{v}(\mathrm{CO})\right.$ region] of a thf solution containing $\left[\mathrm{Rh}\left(\eta^{5}-\right.\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2}\right]$ and $\operatorname{cis}-\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CO})(\mathrm{thf})\right]$ shows only absorptions due to $v(\mathrm{CO})$ in the starting materials and none due to the binuclear derivative (3). However if this solution is evaporated to dryness, complex (3) is obtained.

Complexes (1)-(5) can be isolated by partial evaporation of the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions and addition of n -hexane. Complexes (1) and (2) are stable in the solid state but decompose in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution at room temperature. Complexes (3)-(5) are more stable and do not decompose in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions at room temperature over a few days. Analytical and other data are collected in Table 1. Molecular weight determinations in CHCl_{3} confirm the binuclear nature of these complexes. The i.r. spectra of complexes (1)-(5) in the $v(\mathrm{CO})$ region (see Table 2) show only absorptions due to terminal carbonyl groups thus indicating that the $\mathrm{M}-\mathrm{Pt}$ bonds are unsupported by CO bridges.

Infrared Spectra.- (i) $\mathrm{v}(\mathrm{CO})$ Region. Complexes (1)-(5) show two or three absorptions (see Table 2) due to $\mathrm{v}(\mathrm{CO})$ in the

Table 1. Analytical results (calculated values in parentheses) and other characteristic data

Complex	C	H	M^{a}	Colour	Yield (\%)
(1) $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2} \mathrm{Co} \rightarrow \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CO})\right]$	$\begin{gathered} 33.30 \\ (32.60) \end{gathered}$	$\begin{gathered} 1.00 \\ (0.70) \end{gathered}$	b	Orange-brown	35
(2) $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right) \mathrm{Co} \rightarrow \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CO})\right]$	$\begin{gathered} 45.00 \\ (45.75) \end{gathered}$	$\begin{gathered} 2.10 \\ (2.05) \end{gathered}$	$\begin{gathered} 1055 \\ (971) \end{gathered}$	Garnet	54
(3) $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2} \mathrm{Rh} \rightarrow \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CO})\right]$	$\begin{gathered} 30.25 \\ (30.75) \end{gathered}$	$\begin{gathered} 0.70 \\ (0.65) \end{gathered}$	$\begin{gathered} 782 \\ (781) \end{gathered}$	Yellow	65
(4) $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right) \mathrm{Rh} \rightarrow \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CO})\right]$	$\begin{gathered} 43.60 \\ (43.75) \end{gathered}$	$\begin{gathered} 2.10 \\ (2.00) \end{gathered}$	$\begin{gathered} 1079 \\ (1015) \end{gathered}$	Orange	78
(5) $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)(\mathrm{CO})_{2} \mathrm{Rh} \rightarrow \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CO})\right]$	$\begin{gathered} 35.00 \\ (35.25) \end{gathered}$	$\begin{gathered} 1.75 \\ (1.75) \end{gathered}$	$\begin{gathered} 890 \\ (851) \end{gathered}$	Green	79

${ }^{a}$ In CHCl_{3} solution. ${ }^{b}$ Decomposition of complex (1) in CHCl_{3} precludes molecular weight determination.

Table 2. Relevant i.r. absorptions

solid state. In some cases [complexes (2) and (5)] the number of observed $v(\mathrm{CO})$ absorptions is higher than expected but the i.r. spectra of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions show the expected number of absorptions.
Although an unequivocal assignment of $v(\mathrm{CO})$ absorptions cannot be made, a decrease of $v(\mathrm{CO})$ for the carbonyl group bonded to platinum and an increase of $v(\mathrm{CO})$ for those bonded to M is observed, thus indicating that the formation of the binuclear complexes produces an increase and a decrease of the electronic density around the platinum and the M centres respectively. ${ }^{18}$
(ii) Absorptions due to the $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups. All the i.r. spectra show bands characteristic of the $\mathrm{C}_{6} \mathrm{~F}_{5}$ group near 1500,1050 , 950 , and $800 \mathrm{~cm}^{-1}$, the last one assigned to an X-sensitive mode, and are of structural interest. ${ }^{19,20}$ The absorptions due to the i.r.-active vibrations for the X-sensitive modes for complexes (1)-(5) are collected in Table 2. Two absorptions of the same intensity are observed in all cases which indicates ${ }^{21}$ that, as for the starting platinum complex, the $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups are mutually cis. The molecular structure of complex (3) (which is discussed below) confirms this point.
N.M.R. Spectra.-Proton, ${ }^{19} \mathrm{~F}$, and ${ }^{31} \mathrm{P}$ n.m.r. spectra for complexes (1)-(5) were recorded in CDCl_{3}, and the chemical shifts and coupling constants are collected in Table 3.

Complexes (3) and (4) show signals due to $\mathrm{C}_{5} \mathrm{H}_{5}$ as a doublet because of the coupling $\mathrm{Rh}-\mathrm{H}$. The ${ }^{2} J(\mathrm{Rh}-\mathrm{H})$ values are similar to those found for the starting Rh complexes. ${ }^{22}$ For complex (4) no coupling with the P nucleus is observed. Complex (5) shows a singlet due to the methyl groups of $\mathrm{C}_{5} \mathrm{Me}_{5}$, i.e. no coupling with rhodium is observed; however in this case platinum satellites [${ }^{4} J(\mathrm{Pt}-\mathrm{H}) 4.92 \mathrm{~Hz}$] are observed. Phosphorus-31 n.m.r. spectra of complexes (2) and (4) in CDCl_{3} show a broad singlet $[(2)]$ and a doublet [(4)] as expected (see Table 3).

The ${ }^{19} \mathrm{~F}$ n.m.r. spectra of complexes (2)-(5) show three multiplet signals ($2: 1: 2$ ratio) which can be assigned to the two
ortho-fluorines (isochronous), to the para-fluorine, and to the two meta-fluorines (isochronous); ${ }^{3} J\left(\mathrm{Pt}-\mathrm{F}_{o}\right)$ and ${ }^{5} J\left(\mathrm{Pt}-\mathrm{F}_{p}\right)$ are observed in all cases. This indicates that in CDCl_{3} both $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups are equivalent. Since i.r. and crystallographic data indicate that both $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups are mutually cis and so inequivalent, a fluxional process must be operating in solution in order to make both $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups equivalent. It must be noted that, since $\mathrm{Pt}-\mathrm{F}$ couplings are observed in all cases and that for complex (5) H-Pt coupling is observed, the $\mathrm{Pt}-\mathrm{C}_{6} \mathrm{~F}_{5}$ and $\mathrm{M}-\mathrm{Pt}$ bonds must be preserved throughout this fluxional process. All these facts can adequately be explained if the process takes place according to the Scheme. The activation energy of this process must be very low since for complex (3) no changes in the n.m.r. spectra are observed at $-40^{\circ} \mathrm{C}$.

The ${ }^{13} \mathrm{C}$ n.m.r. spectrum of complex (3) (the more soluble and stable in CDCl_{3} solution) was recorded at room temperature with two different instruments (Varian XL-200 and Bruker AC300). Neither the signals due to $\mathrm{C}_{6} \mathrm{~F}_{5}$ nor to CO merge from the baseline and only the cyclopentadienyl signals [92.13 p.p.m., d, $\left.J\left({ }^{103} \mathrm{Rh}-{ }^{13} \mathrm{C}\right)=3.6 \mathrm{~Hz}\right]$ can be observed. The i.r. spectra of the solids show intense $v(\mathrm{CO})$ bands in the CO (terminal) region, but dichloromethane solutions of complexes (2), (3), and (5) additionally show weak absorptions in the CO (bridge) region [at $1857(2), 1843(3)$, or $1865(5) \mathrm{cm}^{-1}$ respectively], which support the proposed mechanism.

Reaction with L.--The reactions of heterobimetallic complexes containing donor-acceptor metal-metal bonds with neutral ligands L usually produce fission of the $M-M^{\prime}$ bond. ${ }^{15,16,23,24}$ Complexes (3) and (5) react in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with PPh_{3} (molar ratio 1:1) at room temperature yielding [$\mathrm{Rh}\left(\eta^{5}\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{R}_{5}\right)(\mathrm{CO})_{2}\right][\mathrm{R}=\mathrm{H}(3)$ or $\mathrm{Me}(5)]$ and $\operatorname{cis}-\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2^{-}}\right.$ (CO) $\left.\left(\mathrm{PPh}_{3}\right)\right] .{ }^{21}$ The reaction of complex (3) with bis(diphenylphosphino)methane (dppm) yields $\left[\mathrm{Rh}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2}\right]$ and cis- $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{dppm})\right] .{ }^{25}$ This indicates a higher nucleophilic character of these phosphines compared to the metallic bases $\left[\mathrm{Rh}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{R}_{5}\right)(\mathrm{CO})_{2}\right]$.

Molecular Structure of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2} \mathrm{Rh} \rightarrow \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2^{-}}\right.$ (CO)] (3).--The structure of complex (3) has been established by X-ray diffraction studies (see Experimental section). Single crystals were grown by slow diffusion (ca. 2 weeks) of n -hexane into a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of the complex at $-25^{\circ} \mathrm{C}$. The molecular structure is shown in the Figure. Selected bond distances and angles are collected in Table 4. As can be seen, the 18 -electron complex $\left[\mathrm{Rh}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2}\right]$ acts as a donor ligand toward the platinum atom of the $\operatorname{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CO})$ moiety, forming an unsupported $\mathrm{Rh}-\mathrm{Pt}$ bond of length $2.750(1) \AA$. The $\mathrm{Pt}-\mathrm{Rh}$ distances in the cluster compounds $\left[\mathrm{PtRh}_{2}(\mu-\mathrm{CO})_{2}-\right.$ $\left.(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right],{ }^{11}\left[\mathrm{PtRh}_{2}(\mu-\mathrm{H})(\mu-\mathrm{CO})_{2}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)-\right.$ $\left.\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2}\right] \mathrm{BF}_{4},{ }^{26}$ and $\left[\mathrm{PtRh}_{4}(\mu-\mathrm{CO})_{4}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{4}\right]^{27}$ are in the range $2.616(2)-2.805(2) \AA$.

Table 3. Hydrogen-1, ${ }^{19} \mathrm{~F}$, and ${ }^{31} \mathrm{P}$ n.m.r. data for complexes (2)-(5)*

Complex	$\delta(\mathrm{H})$	${ }^{2} J(\mathrm{Rh}-\mathrm{H})$	${ }^{4} J(\mathrm{Pt}-\mathrm{H})$	$\delta(\mathrm{P})$	${ }^{1} J(\mathrm{Rh}-\mathrm{P})$	$\delta\left(\mathrm{F}_{o}\right)$	$\delta\left(\mathrm{F}_{p}\right)$	$\delta\left(\mathrm{F}_{\mathrm{m}}\right)$	${ }^{3} J\left(\mathrm{Pt}-\mathrm{F}_{o}\right)$	${ }^{5} J\left(\mathrm{Pt}-\mathrm{F}_{p}\right)$
(2)	5.24 (s)			53.62 (s)		-119.3	-161.8	-164.6	340.9	39.9
(3)	5.92 (d)	0.60				-119.2	-160.1	-163.8	388.6	39.9
(4)	5.62 (d)	0.85		40.99 (d)	156.5	-118.9	-162.0	-164.8	358.8	40.1
(5)	2.09 (s)		4.92			-117.8	-160.0	-164.3	366.2	40.1

* The rapid decomposition of complex (1) in solution precludes an n.m.r. study.

Scheme. $\mathrm{R}=\mathrm{H}$ or $\mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{C}_{6} \mathrm{~F}_{5}$

Figure. Molecular structure of $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2} \mathrm{Rh} \rightarrow \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CO})\right]$ (3) showing the atom labelling scheme

Platinum is in an approximately square-planar environment, the $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups are mutually cis. Angles between Pt and cisligand bonds are in the range $87.4-93.6^{\circ}$. The $\mathrm{Pt}-\mathrm{C}$ pentafluorophenyl [Pt-C(1) 2.062(7), $\mathrm{Pt}-\mathrm{C}(7)$ 2.025(7)] and carbonyl [$\mathrm{Pt}-\mathrm{C}(13) 1.860(9)]$ distances are similar to those found for cis$\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\mathrm{SC}(\mathrm{S}) \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}(\mathrm{CO})\right] .{ }^{28}$ The $\mathrm{Pt}-\mathrm{C}(1)$ distance $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right.$ group trans to CO) is slightly longer than $\mathrm{Pt}-\mathrm{C}(7)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right.$ trans to Rh). If the cyclopentadienyl group is considered to occupy three co-ordination sites, the rhodium(1) centre has a roughly octahedral environment, and the $\mathrm{C}(14)-\mathrm{Rh}-\mathrm{Pt}$, $\mathrm{C}(15)-\mathrm{Rh}-\mathrm{Pt}, \mathrm{C}(14)-\mathrm{Rh}-\mathrm{C}(15)$ angles are in the range $82.0-$ 91.9°. The average of the $\mathrm{Rh}-\mathrm{C}$ (cyclopentadienyl) distances is $2.25(7) \AA$, similar to that found in other cyclopentadienyl rhodium complexes; ${ }^{28}$ the separation of the rhodium atom from the $\mathrm{C}_{5} \mathrm{H}_{5}$ plane is $1.9002(9) \AA{ }^{29}$ The distances between the C atoms of the carbonyl groups bonded to the rhodium atom and the platinum atom are $3.112(10)$ and $3.237(10) \AA$, which indicates no interaction between these carbonyl groups and the platinum centre. ${ }^{15}$

Experimental

Carbon and H analyses, i.r. spectra, ${ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}$, and ${ }^{31} \mathrm{P}$ n.m.r. spectra, and molecular weight determinations were performed
as described elsewhere. ${ }^{25}$ Standard methods were used to prepare the following complexes: $\left[\mathrm{Co}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2}\right]{ }^{30}[\mathrm{Co}-$ $\left.\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right],{ }^{22,31}\left[\mathrm{Rh}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right],{ }^{22.31}$ $\left[\mathrm{Rh}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)(\mathrm{CO})_{2}\right],{ }^{32}$ and $\left[\mathrm{Rh}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2}\right] .^{33-35} \mathrm{cis}$ $\left[\operatorname{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CO})(\mathrm{thf})\right]^{17}$ was prepared by reacting equimolecular amounts of cis- $\left[\mathrm{Pt}_{\left.\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{thf})_{2}\right]^{21} \text { and cis- }}^{\text {and }}\right.$ $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CO})_{2}\right]^{21}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature for 30 min. The solution was evaporated to dryness and the residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}$ and crystallized by addition of n-hexane. All the reactions were carried out under N_{2}. Hexane and dichloromethane were distilled, under N_{2}, from sodium or $\mathrm{P}_{2} \mathrm{O}_{5}$ respectively.
$\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2} \mathrm{Co} \rightarrow \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CO})\right](1)$ - To a red solution of $\left[\mathrm{Co}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2}\right](20.4 \mu \mathrm{l}, 0.158 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(15 \mathrm{~cm}^{3}\right),\left[\mathrm{Pt}_{(}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CO})(\mathrm{thf})\right](0.100 \mathrm{~g}, 0.158 \mathrm{mmol})$ was added and the mixture stirred at room temperature for 30 min . The solution was evaporated almost to dryness and the oily residue was stirred with n -hexane $\left(10 \mathrm{~cm}^{3}\right)$. The resulting solid was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane.

Complexes (2), (4), and (5) were prepared in a similar way. Complex (2): $\left[\mathrm{Co}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right], 0.0684 \mathrm{~g}(0.165$ $\mathrm{mmol}) ;$ cis- $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CO})(\mathrm{thf})\right], \quad 0.104 \mathrm{~g}(0.165 \mathrm{mmol})$. Complex (4): $\left[\mathrm{Rh}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right], 0.052 \mathrm{~g}(0.113 \mathrm{mmol})$; cis- $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CO})(\mathrm{thf})\right], 0.0714 \mathrm{~g}(0.113 \mathrm{mmol})$. Complex (5): $\left[\mathrm{Rh}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)(\mathrm{CO})_{2}\right], 0.077 \mathrm{~g}(0.262 \mathrm{mmol}) ; c i s-\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}-\right.$ (CO)(thf)], $0.1647 \mathrm{~g}(0.262 \mathrm{mmol})$. Complexes (2), (4), and (5) were not recrystallized. Complex (5) was heated at $58^{\circ} \mathrm{C}$ under vacuum for 16 h to remove $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.
$\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2} \mathrm{Rh} \rightarrow \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CO})\right]$ (3).-To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution $\left(25 \mathrm{~cm}^{3}\right)$ of $\left[\left\{\mathrm{Rh}(\mu-\mathrm{Cl})(\mathrm{CO})_{2}\right\}_{2}\right]^{36}(0.050 \mathrm{~g}, 0.119$ $\mathrm{mmol})$, was added $\mathrm{Tl}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)(0.0693 \mathrm{~g}, 0.257 \mathrm{mmol})$ and the mixture stirred at room temperature for 90 min . The TlCl was filtered off, cis $-\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CO})(\mathrm{thf})\right]$ was added to the resulting solution and the mixture stirred at room temperature for 30 min . The solution was evaporated almost to dryness and the residue was stirred with n -hexane $\left(10 \mathrm{~cm}^{3}\right)$ to render a solid.

X-Ray Structure Determination of Complex (3).-Crystal data. $\mathrm{C}_{20} \mathrm{H}_{5} \mathrm{~F}_{10} \mathrm{O}_{3} \mathrm{PtRh}, M=782$, orthorhombic, space group $P 2_{1} 2_{1} 2_{1}, a=7.6321(10), b=16.4151(17), c=16.5200(43)$ $\AA, U=2069 \AA^{3}$ (refined from 25 reflections, $14<\theta<15^{\circ}$), Mo- K_{α} radiation $(\lambda=0.71069 \AA), Z=4, D_{\mathrm{c}}=2.51 \mathrm{~g} \mathrm{~cm}^{-3}$. Crystal dimensions $0.3 \times 0.35 \times 0.45 \mathrm{~mm}, \mu=73.4 \mathrm{~cm}^{-1}$, $F(000)=1448$.

Data collection and processing. Enraf-Nonius CAD4 dif-

Table 4. Bond distances (\AA) and angles $\left({ }^{\circ}\right)$ in compound (3)

$\mathrm{Rh}-\mathrm{Pt}$	2.750(1)	$\mathrm{C}(1)-\mathrm{Pt}$	2.062(7)	$\mathrm{C}(10)-\mathrm{F}(8)$	1.325(8)	$\mathrm{C}(11)-\mathrm{F}(9)$	1.342(10)
$\mathrm{C}(7)-\mathrm{Pt}$	2.025(7)	$\mathrm{C}(13)-\mathrm{Pt}$	1.860 (9)	$\mathrm{C}(12)-\mathrm{F}(10)$	1.349 (9)	$\mathrm{C}(13)-\mathrm{O}(1)$	$1.162(10)$
$\mathrm{C}(14)-\mathrm{Rh}$	1.889(10)	$\mathrm{C}(15)-\mathrm{Rh}$	1.867(10)	$\mathrm{C}(14)-\mathrm{O}(2)$	$1.096(11)$	$\mathrm{C}(15)-\mathrm{O}(3)$	1.147(11)
C(16)-Rh	2.254(6)	$\mathrm{C}(17)-\mathrm{Rh}$	2.236(7)	$\mathrm{C}(2)-\mathrm{C}(1)$	1.390 (10)	$\mathrm{C}(6)-\mathrm{C}(1)$	1.364(10)
C18)-Rh	2.240(7)	$\mathrm{C}(19)-\mathrm{Rh}$	2.261(7)	$\mathrm{C}(3)-\mathrm{C}(2)$	$1.354(12)$	$\mathrm{C}(4)-\mathrm{C}(3)$	$1.346(15)$
$\mathrm{C}(20)-\mathrm{Rh}$	2.269 (7)	$\mathrm{C}(2)-\mathrm{F}(1)$	1.358(9)	$\mathrm{C}(5)-\mathrm{C}(4)$	$1.406(15)$	$\mathrm{C}(6)-\mathrm{C}(5)$	$1.369(12)$
$\mathrm{C}(3)-\mathrm{F}(2)$	$1.324(11)$	$\mathrm{C}(4)-\mathrm{F}(3)$	1.351(10)	$\mathrm{C}(8)-\mathrm{C}(7)$	1.359(9)	$\mathrm{C}(12)-\mathrm{C}(7)$	1.401(10)
C(5)-F(4)	$1.362(10)$	$\mathrm{C}(6)-\mathrm{F}(5)$	$1.358(9)$	$\mathrm{C}(9)-\mathrm{C}(8)$	$1.407(11)$	$\mathrm{C}(10)-\mathrm{C}(9)$	$1.355(13)$
$C(8)-F(6)$	1.345(9)	$\mathrm{C}(9)-\mathrm{F}(7)$	1.353(10)	$\mathrm{C}(11)-\mathrm{C}(10)$	$1.380(12)$	$\mathrm{C}(12)-\mathrm{C}(11)$	$1.368(11)$
$\mathrm{C}(1)-\mathrm{Pt}-\mathrm{Rh}$	93.6(2)	$\mathrm{C}(7)-\mathrm{Pt}-\mathrm{Rh}$	171.8(2)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{F}(3)$	118.5(1)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	119.3(8)
$\mathrm{C}(7)-\mathrm{Pt}-\mathrm{Cl}$	87.4(3)	$\mathrm{C}(13)-\mathrm{Pt}-\mathrm{Rh}$	87.7(2)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{F}(4)$	118.5(8)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{F}(4)$	122.7(9)
$\mathrm{C}(13)-\mathrm{Pt}-\mathrm{Cl}$	177.0(3)	$\mathrm{C}(13)-\mathrm{Pt}-\mathrm{C}(7)$	91.7(3)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	118.6(8)	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{F}(5)$	121.0(7)
$\mathrm{C}(14)-\mathrm{Rh}-\mathrm{Pt}$	82.0(3)	$\mathrm{C}(15)-\mathrm{Rh}-\mathrm{Pt}$	86.8(3)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{F}(5)$	115.3(7)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	123.5(8)
$\mathrm{C}(15)-\mathrm{Rh}-\mathrm{C}(14)$	91.9(4)	$\mathrm{C}(16)-\mathrm{Rh}-\mathrm{Pt}$	103.6(2)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{Pt}$	120.8(5)	$\mathrm{C}(12)-\mathrm{C}(7)-\mathrm{Pt}$	123.5(5)
$\mathrm{C}(16)-\mathrm{Rh}-\mathrm{C}(14)$	165.5(3)	$\mathrm{C}(16)-\mathrm{Rh}-\mathrm{C}(15)$	101.7(4)	$\mathrm{C}(12)-\mathrm{C}(7)-\mathrm{C}(8)$	115.6(6)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{F}(6)$	119.9(7)
$\mathrm{C}(17)-\mathrm{Rh}-\mathrm{Pt}$	80.9(2)	$\mathrm{C}(17)-\mathrm{Rh}-\mathrm{C}(14)$	134.0(3)	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{F}(6)$	117.6(7)	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	122.5(8)
$\mathrm{C}(17)-\mathrm{Rh}-\mathrm{C}(15)$	129.3(4)	$\mathrm{C}(17)-\mathrm{Rh}-\mathrm{C}(16)$	36.9(1)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{F}(7)$	120.2(9)	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{F}(7)$	119.8(7)
$\mathrm{C}(18)-\mathrm{Rh}-\mathrm{P}_{1}$	97.7(2)	$\mathrm{C}(18)-\mathrm{Rh}-\mathrm{C}(14)$	104.8(3)	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	119.9(7)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{F}(8)$	121.2(8)
$\mathrm{C}(18)-\mathrm{Rh}-\mathrm{C}(15)$	163.2(4)	$\mathrm{C}(18)-\mathrm{Rh}-\mathrm{C}(16)$	61.5(2)	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{F}(8)$	119.5(8)	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	119.3(7)
$\mathrm{C}(18)-\mathrm{Rh}-\mathrm{C}(17)$	37.0(1)	$\mathrm{C}(19)-\mathrm{Rh}-\mathrm{Pt}$	134.5(2)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{F}(9)$	119.2(7)	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{F}(9)$	121.1(8)
$\mathrm{C}(19)-\mathrm{Rh}-\mathrm{C}(14)$	105.3(3)	$\mathrm{C}(19)-\mathrm{Rh}-\mathrm{C}(15)$	136.4(3)	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	$119.7(7)$	$\mathrm{C}(7)-\mathrm{C}(12)-\mathrm{F}(10)$	119.6(6)
$\mathrm{C}(19)-\mathrm{Rh}-\mathrm{C}(16)$	61.2(2)	$\mathrm{C}(19)-\mathrm{Rh}-\mathrm{C}(17)$	61.5(2)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{F}(10)$	117.5(7)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(7)$	122.9(7)
$\mathrm{C}(19)-\mathrm{Rh}-\mathrm{C}(18)$	36.8(1)	$\mathrm{C}(20)-\mathrm{Rh}-\mathrm{Pt}$	139.5(2)	$\mathrm{O}(1)-\mathrm{C}(13)-\mathrm{Pt}$	175.4(8)	$\mathrm{O}(2)-\mathrm{C}(14)-\mathrm{Rh}$	177.6(10)
$\mathrm{C}(20)-\mathrm{Rh}-\mathrm{C}(14)$	134.6(3)	$\mathrm{C}(20)-\mathrm{Rh}-\mathrm{C}(15)$	105.2(4)	$\mathrm{O}(3)-\mathrm{C}(15)-\mathrm{Rh}$	176.0(10)	$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{Rh}$	70.9(2)
$\mathrm{C}(20)-\mathrm{Rh}-\mathrm{C}(16)$	36.6(1)	$\mathrm{C}(20)-\mathrm{Rh}-\mathrm{C}(17)$	61.3(2)	$\mathrm{C}(20)-\mathrm{C}(16)-\mathrm{Rh}$	72.3(2)	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{Rh}$	72.3(2)
$\mathrm{C}(20)-\mathrm{Rh}-\mathrm{C}(18)$	61.3(2)	$\mathrm{C}(20)-\mathrm{Rh}-\mathrm{C}(19)$	36.5(1)	$\mathrm{H}(16)-\mathrm{C}(16)-\mathrm{Rh}$	122.5(2)	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{Rh}$	71.3(1)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{Pt}$	124.3(5)	$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{Pt}$	121.0(5)	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{Rh}$	71.7(2)	$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{Rh}$	70.8(2)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)$	114.7(7)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{F}(1)$	119.2(7)	$\mathrm{H}(17)-\mathrm{C}(17)-\mathrm{Rh}$	121.8(2)	$\mathrm{C}(16)-\mathrm{C}(20)-\mathrm{Rh}$	71.1(2)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{F}(1)$	116.7(7)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	124.0(8)	$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{Rh}$	72.4(2)	$\mathrm{H}(18)-\mathrm{C}(18)-\mathrm{Rh}$	122.0(2)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{F}(2)$	121.4(9)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{F}(2)$	118.7(9)	$\mathrm{H}(19)-\mathrm{C}(19)-\mathrm{Rh}$	122.8(2)	$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{Rh}$	72.1(1)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	119.6(9)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{F}(3)$	122.1(1)	$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{Rh}$	71.4(1)	$\mathrm{H}(20)-\mathrm{C}(20)-\mathrm{Rh}$	123.1(2)

Table 5. Fractional atomic co-ordinates $\left(\times 10^{4}\right)$ with standard deviations for (3)

Atom	x	y	z
Pt	4149 (1)	8 629(1)	$2928(1)$
Rh	$2729(1)$	$9914(1)$	$2085(1)$
F(1)	797(6)	7 756(3)	2070 (3)
F(2)	578(8)	$6796(4)$	779(4)
F(3)	3 481(10)	6 298(4)	-15(4)
F(4)	$6674(9)$	$6792(4)$	494(4)
F(5)	$6968(6)$	7 785(4)	$1781(3)$
F (6)	1926 (6)	7 236(3)	3700 (3)
F(7)	2742 (9)	$6023(4)$	$4748(4)$
F (8)	6 131(9)	$5795(3)$	$5192(3)$
F(9)	$8673(7)$	6760 (3)	4 604(3)
$\mathrm{F}(10)$	$7879(6)$	7 992(3)	3600 (3)
$\mathrm{O}(1)$	4 844(12)	$9768(4)$	4327 (5)
O(2)	6 158(10)	10 689(5)	2486 (5)
$\mathrm{O}(3)$	$4174(17)$	9 165(5)	560(5)
C(1)	$3892(9)$	$7830(4)$	$1972(4)$
C(2)	2 299(10)	7 535(5)	$1688(5)$
C(3)	$2135(13)$	7 020(6)	$1053(6)$
C(4)	3 574(16)	$6782(5)$	645(6)
C(5)	5 234(13)	$7031(6)$	919(5)
C(6)	$5328(10)$	7 541(5)	1573 (5)
C(7)	4847 (9)	7 660(4)	$3615(4)$
C(8)	$3617(10)$	$7137(4)$	3 906(5)
C(9)	$4025(14)$	6 509(4)	4 453(5)
C(10)	5 708(13)	6 387(5)	4 684(4)
C(11)	$7004(11)$	$6889(5)$	4383 (5)
C(12)	$6570(10)$	$7509(4)$	3867 (5)
C(13)	4 509(10)	9 344(5)	3 785(5)
C(14)	$4893(12)$	10 402(6)	$2356(6)$
C(15)	3 676(14)	9441 (5)	$1155(6)$
C(16)	-123(8)	$9577(4)$	1971 (4)
C(17)	370(8)	9 545(4)	$2799(4)$
C(18)	865(8)	10342 (4)	3 042(4)
C(19)	678(8)	$10867(4)$	$2364(4)$
C(20)	67(8)	10 394(4)	$1702(4)$

fractometer, monochromated Mo- K_{α} radiation, 5595 data measured $\left(2 \theta_{\max }=60^{\circ}\right) ; 3676$ with $F>6 \sigma(F)$ used for all calculations; empirical absorption correction applied. ${ }^{37}$

Structure analysis and refinement. Metal atoms located by analysis of Patterson synthesis. All other non-H atoms by iterative full-matrix least-squares refinement and ΔF syntheses. Refinement on F to $R=0.027, R^{\prime}=0.028$ [non-H atoms anisotropic, cyclopentadienyl ring as rigid group, and H atoms incorporated using riding model with $\mathrm{C}-\mathrm{H} 0.96 \AA$]. Group U values for H atoms $\left(0.10 \AA^{2}\right)$; weighting scheme, $w^{-1}=\sigma^{2}(F)+$ $0.0005 F^{2} ; 308$ parameters. The enantiomorph was chosen on the basis of a lower weighted R factor. All calculations were performed by using the SHELX 76 package. ${ }^{38}$ Final atomic coordinates are given in Table 5.

Additional material available from the Cambridge Crystallographic Data Centre comprises H -atom co-ordinates and thermal parameters.

Acknowledgements

We thank the Comision Asesora de Investigación Científica y Técnica (Spain) for financial support and the Scientific Office of N.A.T.O. for a travel grant.

References

1 G. L. Geoffroy and D. A. Roberts, in 'Comprehensive Organometallic Chemistry,' eds. E. W. Abel, F. G. A. Stone, and G. Wilkinson, Pergamon Press, Oxford, 1982, vol. 6, p. 763.
2 R. Usón, J. Forniés, M. Tomás, F. A. Cotton, and L. R. Falvello, J. Am. Chem. Soc., 1984, 106, 2482.
3 R. Usón, J. Forniés, M. Tomás, J. M. Casas, F. A. Cotton, and L. R. Falvello, J. Am. Chem. Soc., 1985, 107, 2556.
4 R. Usón, J. Forniés, B. Menjón, F. A. Cotton, L. R. Falvello, and M. Tomás, Inorg. Chem., 1985, 24, 4651.
5 F. A. Cotton, L. R. Falvello, R. Usón, J. Forniés, M. Tomás, J. M. Casas, and I. Ara, Inorg. Chem., 1987, 26, 1366.
6 K. Dey and H. Werner, Chem. Ber., 1979, 112, 823.

7 H. Werner, R. Feser, and H. Würzburg, Chem. Ber., 1979, 112, 834.
8 I. W. Nowell and D. R. Russell, J. Chem. Soc., Dalton Trans., 1972, 2393.

9 K. Dey and H. Werner, J. Organomet. Chem., 1977, 137, C28.
10 N. G. Connelly, A. R. Lucy, J. D. Payne, A. M. R. Galas, and W. E. Geiger. J. Chem. Soc., Dalton Trans., 1983, 1879.
11 M. Green, R. N. Mills, G. N. Pain, F. G. A. Stone, and P. Woodward, J. Chem. Soc., Dalton Trans., 1982, 1309.

12 H. Werner and B. Juthani, J. Organomet. Chem., 1981, $209,211$.
13 M. L. Aldridge, M. Green, J. A. K. Howard, G. N. Pain, S. J. Porter, F. G. A. Stone, and P. Woodward, J. Chem. Soc., Dalton Trans., 1982, 1333.

14 R. D. Barr, M. Green, K. Marsden, F. G. A. Stone, and P. Woodward, J. Chem. Soc., Dalton Trans., 1983, 507.
15 F. W. B. Einstein, R. K. Pomeroy, P. Rushman, and A. C. Willis, Organometallics, 1985, 4, 250.
16 A. A. Del Paggio, E. L. Muetterties, D. M. Heinekey, V. W. Day, and C. S. Day, Organometallics, 1986, 5, 575.

17 R. Usón, J. Forniés, M. Tomás, and B. Menjón, unpublished work.
18 F. A. Cotton and G. Wilkinson, 'Advanced Inorganic Chemistry,' 4 th edn., Wiley, New York, 1984, p. 84.
19 E. Maslowsky, jun., 'Vibrational Spectra of Organometallic Compounds,' Wiley, New York, 1977, p. 437.
20 R. Usón, J. Forniés, F. Martinez, and M. Tomás, J. Chem. Soc., Dalton Trans., 1980, 888.
21 R. Usón, J. Forniés, M. Tomás, and B. Menjón, Organometallics, 1986, 5, 1581.
22 H. G. Schuster-Woldan and F. Basolo, J. Am. Chem. Soc., 1966, 88, 1657.

23 H. Werner, Chem. Ber., 1979, 112, 823.
24 R. Leonard and H. Werner, Angew. Chem., Int. Ed. Engl., 1977, 16, 649.
25 R. Usón, J. Forniés, P. Espinet, R. Navarro, and C. Fortuño, J. Chem. Soc., Dalton Trans., 1987, 2077.
26 M. Green, R. N. Mills, G. N. Pain, F. G. A. Stone, and P. Woodward, J. Chem. Soc., Dalton Trans., 1982, 1321.

27 M. Green, J. A. K. Howard, G. N. Pain, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1982, 1327.
28 R. Usón, J. Forniés, M. A. Usón, J. F. Yagüe, P. G. Jones, and K. Meyer-Bäse, J. Chem. Soc., Dalton Trans., 1986, 947.
29 S. Lo Schiavo, G. Bruno, F. Nicoló, P. Piraino, and F. Faraone, Organometallics, 1985, 4, 2091.
30 M. D. Rausch and R. A. Genetti, J. Org. Chem., 1970, 35, 3888.
31 A. J. Davis and W. A. Graham, Inorg. Chem., 1970, 9, 2658.
32 J. W. Kang and P. M. Maitlis, J. Organomet. Chem., 1971, 26, 393.
33 R. B. King, Inorg. Chem., 1966, 5, 82.
34 E. O. Fisher and K. Bittler, Z. Naturforsch., Teil B., 1961, 16, 225.
35 S. A. Gardner, P. S. Andrews, and M. D. Rausch, Inorg. Chem., 1973, 12, 2396.
36 W. Hieberg and H. Lagally, Z. Anorg. Allg. Chem., 1943, 96, 251.
37 N. Walker and D. Stuart, Acta Crystallogr., 1983, 39, 158.
38 G. M. Sheldrick, SHELX 76, program for crystal structure determination, University of Cambridge, 1976.

[^0]: \dagger 1,2,2-Tricarbonyl-2-(η^{5}-cyclopentadienyl)-1,1-bis(pentafluorophenyl)platinumrhodium ($\mathrm{Pt} t-\mathrm{Rh}$).

 Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1988, Issue 1, pp. xvii-xx.

