Ligand Additivity in the Oxidation Potentials of Bidentate Mixed-ligand Ruthenium(II) Complexes

Masa-aki Haga*

Department of Chemistry, Faculty of Education, Mie University, 1515 Kamihama, Tsu, Mie 514, Japan Takeko Matsumura-Inoue Department of Chemistry, Nara University of Education, Takabatake, Nara, Japan Kunio Shimizu and Gen P. Satô Department of Chemistry, Faculty of Science and Technology, Sophia University, Kioicho 7-1, Chiyodaku, Tokyo 102, Japan

Reversible oxidation half-wave potentials $E_{\frac{1}{2}}^r$ have been found to be additive according to the number of ligands x by analysing the potential map of $[Ru(bipy)_{3^-x}L_x]^{n^+}$ complexes (bipy = 2,2'-bipyridine; L = polypyridine or β -diketone). The slope of plots of $E_{\frac{1}{2}}^r$ vs. x depends on the kind of ligand L and affords a measure of the π -donor/ π -acceptor ability of the bidentate ligands. Ligand parameters, P_1 , for various bidentate ligands, are proposed.

Reversible half-wave potentials have been used to estimate the valence electronic energy levels for a number of organic compounds.¹ In recent years, various attempts have been made to evaluate the valence electronic energy of metal complexes from electrochemical data. For instance, the correlation between optical and electrochemical properties of 2,2'-bipyridine (bipy) complexes of ruthenium(II) has been examined in order to estimate the energy of metal-to-ligand charge transfer (m.l.c.t.) absorption and emission processes from the electrochemical potentials.² This relation has been found to provide a convenient method for determining the absolute position of the energy levels of ruthenium(II) complexes. Furthermore, a linear correlation between oxidation potentials and the valence electronic energies in both gas and solid phases has been reported.³

For the purpose of analysing the electronic effect of ligands on the valence electronic energies quantitatively, Chatt *et al.*⁴ defined a ligand parameter, P_L , calculated from the potential difference between [Cr(CO)₅L] and [Cr(CO)₆]. Bursten ⁵ proposed a simple additivity relationship for predicting the oxidation potentials in d^6 [ML_xL'_{6-x}]ⁿ⁺ (M = Cr⁰ or Mn^I, L, L' = CO or CNR) systems. These ligand parameters for unidentate ligands have been extended to bidentate systems, and P_L for bipy has been determined as $P_{bipy} = -1.14$ V from the redox potentials for [Ru(bipy)₂L(L')] complexes.⁶

We have previously reported the syntheses and electrochemistry of a series of ruthenium complexes containing both bipy and β -diketone as ligands.⁷ Here, we report the ligand additivity in the reversible oxidation half-wave potentials of these ruthenium complexes and propose a ligand parameter for bidentate ones such as polypyridines and β -diketones.

Experimental

The mixed-ligand bipy– β -diketone ruthenium complexes were prepared from [Ru(bipy)₂Cl₂] and [Ru(bipy)Cl₄] as reported previously.⁷ All the potentials are referred to the saturated calomel electrode (s.c.e.) and calibrated by using ferrocene– ferrocenium as an internal reference.⁸

Results and Discussion

Each of the $[Ru(bipy)_{3-x}L_x]^{n+}$ complexes showed a reversible one-electron oxidation process over a wide range of potential

Table 1. Electrochemical data for the complexes $[Ru(bipy)_{3-x}L_x]^{n+}$ in MeCN at 25 °C

$E_{\frac{1}{2}}(\mathbf{R}\mathbf{u}^{\mathbf{III}}-\mathbf{R}\mathbf{u}^{\mathbf{II}})/\mathbf{V}$ vs. s.c.e.					
L	x = 0	1	2	3	$E_{\frac{1}{2}}^{r}$
L1	+1.26		-0.28	- 1.07	a
L ²		+ 0.59	-0.08	-0.77	7, a
L⁴		+0.70		-0.65	7, a
L ³		+0.67		-0.52	7, a
L⁵			+0.31	- 0.09	a
L6		+0.90		+0.10	7, a
L7		+0.93		+0.14	7, c
L ⁸		+1.12		+0.80	d
L9		+1.22	+1.21	+1.17	е
L ¹⁰		+1.40	+ 1.55	+ 1.69	2c
L^{11}		+ 1.49	+1.72	+1.98	2c
L ¹²		+1.60	+1.88	+2.10	f
L ¹³		+ 1.60	+ 1.89	+ 2.23	- Ĵ

^a S. Patterson and R. H. Holm, *Inorg. Chem.*, 1972, 11, 2285; Y. Takeuchi, A. Endo, K. Shimizu, and G. P. Sato, *J. Electroanal. Chem.*, 1985, 185, ^b This value in water vs. normal hydrogen electrode was corrected to MeCN vs. s.c.e. by subtracting 0.07 V. ^c T. J. Meyer and H. Taube, *Inorg. Chem.*, 1968, 7, 2369. ^d M. Haga, *Inorg. Chim. Acta*, 1983, 75, 29; 77, 139. ^e P. J. Steel, F. Lahousse, D. Lerner, and C. Marzin, *Inorg. Chem.*, 1983, 22, 1488. ^f S. Goswami, R. Mukherjee, and A. Chakravorty, *Inorg. Chem.*, 1983, 22, 2825.

(+2.2 to -1.1 V), which corresponds to removal of an electron from the highest occupied molecular orbital (h.o.m.o.) of ruthenium(II) to form the d^5 low-spin ruthenium(III) state. These oxidation potentials vary with the ligand L and its number x as listed in Table 1. Plots of E_4^{-r} vs. x give straight lines, which intersect at the E_4^{-r} value for $[\text{Ru}(\text{bipy})_3]^{2+}$, as shown in the Figure. The slopes of these lines, dE_4^{-r}/dx , depend on the ligand L and increase in the order of $L^1 < L^2 < L^4 < L^3 < L^5 < L^6 < L^7 < L^8 < L^9 < L^{10} < L^{11} < L^{12} < L^{13}$. The complex $[\text{Ru}(\text{bipy})_3]^{2+}$ and its derivatives have a filled d_{π} symmetry orbital as the h.o.m.o. and an empty π^*_L orbital as the lowest occupied molecular orbital (l.u.m.o.). As the reversible oxidation half-wave potentials E_4^{-r} are considered to be a measure of the energy level of the h.o.m.o., the linear plots indicate that this energy level is raised or lowered by the

Figure. Plots of the oxidation potentials $E_{\frac{1}{2}}$ vs. the number of ligands x for $[\operatorname{Ru}(\operatorname{bipy})_{3-x}L_x]^{n+}$ complexes. Ligands: $(+) L^1$; $(\blacktriangle) L^2$; $(\textcircled{O}) L^3$; $(\textcircled{O}) L^5$; $(\textcircled{O}) L^6$; $(\bigtriangleup) L^8$; $(\textcircled{O}) L^9$; $(\boxdot) L^{10}$; $(\times) L^{11}$; $(\bigcirc) L^{13}$

stepwise substitution of bipy with another ligand L. The extent of stabilization of the h.o.m.o. level is determined by whether the ligand acts as an electron donor or acceptor; in the case of a π -acceptor ligand, the h.o.m.o. energy is lowered and thus the oxidation potential shifts in the anodic direction with increasing number of ligands. Thus, the values of the slopes in Table 2 can be considered to be a electrochemical series of ligands, and afford a measure of π -donor/ π -acceptor ability of the bidentate ligands; a ligand with a negative slope has a stronger π -donor property compared to bipy, while a ligand with a positive slope has a stronger π -acceptor property.

Chatt *et al.*⁴ proposed the ligand parameter P_L , defined by equation (1); P_L can be related to the value $(dE_4^r/dx)_L$ for

$$P_{\rm L} = E_{\frac{1}{2}}[{\rm Cr}({\rm CO})_{5}{\rm L}] - E_{\frac{1}{2}}[{\rm Cr}({\rm CO})_{6}]$$
(1)

Table 2. The slope $(dE_{\frac{1}{2}}^{r}/dx)_{L}$ for a series of bidentate ligands in $[Ru(bipy)_{3-x}L_{x}]^{n+}$ and ligand parameter P_{L}

L	$(\mathrm{d}E_{\frac{1}{2}}^{\mathrm{r}}/\mathrm{d}x)_{\mathrm{L}}^{\mathrm{a}}/\mathrm{V}$	$P_{\rm L}^{\ b}/{ m V}$
L1	-0.78	-1.92
L ²	-0.68	-1.82
L⁴	-0.64	-1.78
L ³	-0.59	-1.73
L ⁵	- 0.45	-1.59
L6	-0.39	-1.53
L ⁷	0.38	-1.52 (-1.57)
L ⁸	-0.15	-1.29
L9	-0.03	-1.17
bipy	0	-1.14
L ¹⁰	+0.14	-1.00
L^{11}	+0.24	-0.90
L^{12}	+0.28	-0.86 (-0.76)
L ¹³	+0.32	-0.82

^{*a*} Obtained from the plots of the oxidation potentials $E_{\frac{1}{2}}^{r} vs.$ the number of ligands x. ^{*b*} Calculated from the equation $P_{L} = (dE_{\frac{1}{2}}^{r}/dx)_{L} - 1.14 \text{ V}.$ ^{*c*} The values in parentheses are quoted from ref. 6.

 $[M(CO)_{6-x}L_x]^{n+.4}$ Here we can extend these ligand parameters to the bidentate ligands by using the ligand additivity in the reversible oxidation half-wave potentials for $[Ru(bipy)_{3-x}L_x]^{n+.}$ The parameters P_L derived from the value of the slope, $(dE_{\frac{1}{2}}r/dx)_L$, are summarized in Table 2, in which the P_L value for bipy is taken as -1.14 V. Our P_L values for L^{12} and L^7 are in fair agreement with those obtained by Datta⁶ (Table 2).

In conclusion, we report here the additivity in the oxidation potentials based on the potential map of $[Ru(bipy)_{3-x}L_x]^{n+}$, and propose ligand parameters P_L for bidentate ligands. Both the potential map and the ligand parameter are very useful for prediction of the properties of metal complexes and for the design of new ones.

References

- 1 H. Miyazaki, T. Kubota, and M. Yamakawa, Bull. Chem. Soc. Jpn., 1972, 45, 780; R. O. Loutfy and R. O. Loutfy, Can. J. Chem., 1976, 54, 1454.
- 2 (a) Y. Ohsawa, K. W. Hanck, and M. K. DeArmond, J. Electroanal.

Chem., 1984, 175, 229; (b) E. S. Dodsworth and A. B. P. Lever, Chem. Phys. Lett., 1985, 119, 61; (c) D. P. Rillema, G. Allen, T. J. Meyer, and D. Conrad, Inorg. Chem., 1983, 22, 1617; (d) F. Barigelletti, A. Juris, V. Balzani, P. Belser, and A. von Zelewsky, *ibid.*, 1987, 26, 4115.

- 3 T. Matsumura-Inoue, I. Ikemoto, and Y. Umezawa, J. Electroanal. Chem., 1986, 209, 135; S. F. Nelsen, Acc. Chem. Res., 1981, 14, 131; S. Fukuzumi, C. L. Wong, and J. K. Kochi, J. Am. Chem. Soc., 1980, 102, 2928; Y. Satsu, A. Endo, K. Shimizu, G. P. Sato, K. Ono, I. Watanabe, and S. Ikeda, Chem. Lett., 1986, 585.
- 4 J. Chatt, C. T. Kan, G. J. Leigh, C. J. Pickett, and D. R. Stanley, J. Chem. Soc., Dalton Trans., 1980, 2032.
- 5 B. E. Bursten, J. Am. Chem. Soc., 1982, 104, 1299.
- 6 D. Datta, J. Chem. Soc., Dalton Trans., 1986, 1907.
- 7 T. Matsumura-Inoue, H. Tomono, and T. Tominaga-Morimoto, J. Electroanal. Chem., 1979, 95, 109; M. Haga, H. Kanai, and T. Tanaka, Bull. Fac. Educ. Mie Univ., 1983, 34, 59.
- 8 R. R. Gagne, C. A. Koval, and G. C. Linsensky, *Inorg. Chem.*, 1980, 19, 2854.

Received 29th March 1988; Paper 8/01299G