Catalytic Oxidation of Water mediated by Rhenium Oxides[†]

América Fariña, Sergio Hernández, and Enrique Román* Faculty of Chemistry, Catholic University, P.O. Box 6177, Santiago, Chile

Rhenium oxides (Re_2O_3 , ReO_2 , and ReO_2 -TiO₂) show efficient catalytic activity in reaction (i)

$$4D^{+} + 2H_{2}O \longrightarrow 4D + 4H^{+} + O_{2}$$
 (i)

where $D^+ = Ce^{4+}$ or $[Ru(bipy)_3]^{3+}(bipy = 2,2'-bipyridine)$. The pseudo-first-order rate constant, k_0 , for this reaction, when $D = Ce^{4+}$, ranges from 0.4 to 0.09 min⁻¹ for different $[Ce^{4+}]$: catalyst weight ratios, at 25 °C in 1 N H₂SO₄. These rates are higher than the reported rates for reaction (i) when RuO₂ powder is used as a catalyst.

Dispersions of noble-metal oxides such as PtO_2 , IrO_2 , and RuO_2 in aqueous acid solutions¹ have recently been shown to be capable of mediating oxygen evolution from water *via* equation (1). The symbol D^+ -D stands for a redox pair whose

$$4D^+ + 2H_2O \longrightarrow 4D + 4H^+ + O_2 \qquad (1)$$

standard potential is more positive than E° (O₂-2H₂O). These redox catalysts are important since they may be used in artificial light–energy conversion processes.² In the search for catalytic materials that are suitable for mediating reaction (1) we have discovered that rhenium oxides have highly desirable properties.

As an electrode material Re distinguishes itself by a low over voltage for H₂ evolution from aqueous acid solutions ³ of ca. -0.3 V vs. s.c.e. (saturated calomel electrode). To the best of our knowledge the rhenium oxides' over potential for O₂ evolution has not been reported until now. In the acidic domain of the potentials relevant to O₂ production, rhenium oxides display high stability.⁴ Rhenium oxides in water form macrodispersions which can be readily brought into contact with their aqueous environment. This work provides the first evidence for rhenium oxides as efficient catalysts for water oxidation, using Ce⁴⁺ and [Ru(bipy)₃]³⁺ (bipy = 2,2'-bipyridine) as sacrificial donors. Rhenium species have been extensively used in hydrocarbon conversion catalysis ⁵ but not in thermal oxidation reactions involving electron transfer.

Results and Discussion

Figure 1 shows the u.v. spectrum for the disappearance of Ce^{4+} ions, in a 2.6 × 10⁻³ mol dm⁻³ solution of $Ce(SO_4)_2 \cdot 2H_2O$ in 1 N H₂SO₄ when 15 mg of ReO₂ are present, as a function of time. Within a time interval of 5 min, the Ce⁴⁺ absorption has disappeared and is replaced by the Ce³⁺ spectrum. Analysis of the gas evolved during the stirring process showed that O₂ is produced from the Ce⁴⁺ reaction with water.

Figure 2 shows the decrease in Ce⁴⁺ concentration, and the resulting formation of O₂, as a function of time. The rate decreases as the conversion to Ce³⁺ proceeds, the rate law being pseudo-first order with respect to Ce⁴⁺ concentration. If one takes the concentration ratio Ce⁴⁺: O₂ for each of the experimental points presented on Figure 2 a value of *ca.* 4 is found. The slight O₂ deficiency found after 10 min can be attributed to chemisorption of O₂ on ReO₂, or the corrosion of the catalyst [as will be discussed later in equation (4)]. Taking this into account, it is concluded that the oxidation of water is quantitative in the presence of the redox catalyst. It is inferred that O₂ formation from water takes place when ReO₂ is present through reaction (2).

Figure 1. (1), Spectrum of a 2.56×10^{-3} mol dm⁻³ Ce(SO₄)₂·2H₂O solution in 1 N H₂SO₄. Rhenium dioxide (15 mg) in 25 cm³ of stirred solution at 25 °C. Curves (2), (3), and (4) are after 1, 2, and 5 min respectively

$$4 \text{ Ce}^{4+} + 2 \text{ H}_2 \text{O} \xrightarrow{\text{ReO}_2} 4 \text{ Ce}^{3+} + 4 \text{ H}^+ + \text{O}_2$$
 (2)

The role of ReO_2 is similar to that previously reported ¹⁻³ for RuO_2 . It would then act as a defect electron storage system, *i.e.* a hole-conducting band is formed in the solid.

When transferring electrons from the catalyst to Ce^{4+} , an anodic potential would be imposed on the ReO_2 microelectrodes, inducing water oxidation. The standard free energy available to drive reaction (2) is -200 mV vs. n.h.e. (normal hydrogen electrode).⁴ It can readily be seen that the process under observation is catalytic, since reuse of the catalyst led to O_2 evolution during the second cycle. However, the efficiency of the second cycle is diminished, in regard to the previous discussion, with respect to loss of activity of the oxide particle's surface.

A detailed quantitative study of the kinetics of water oxidation as a function of the catalyst employed, *i.e.* ReO₂, ReO₃, and Re₂O₃, and the Ce⁴⁺: rhenium oxide ratio has been carried out. The results are shown in the Table, *i.e.* k_0 (min⁻¹) the rate of oxidation of water by Ce⁴⁺ under the experimental

[†] Non-S.I. unit employed: 1 Torr \approx 133 Pa.

Figure 2. Rate of oxygen evolution when 2.56×10^{-3} mol dm⁻³ Ce(SO₄)₂·2H₂O is stirred in 1 N H₂SO₄ (25 cm³) and 15 mg ReO₂ added at 20 °C

conditions used. Pseudo-first-order rates were obtained with respect to Ce⁴⁺ concentration for almost all the reaction times measured. Values of k_0 were determined during the first 8 min of reaction, corresponding to 80 to 90% of the overall reaction. In this time range the relation log $[Ce^{4+}]_0/[Ce^{4+}]_0 - [Ce^{4+}]_r$ versus time (min) is perfectly linear, as observed in all cases where the value of k_0 was determined. Moreover, at the end of the reaction an important slope change is observed, giving indirect evidence for a change in the surface layers of the catalyst particle. Therefore, the k_0 values determined are only comparable in a determined range of the reaction co-ordinates (80-90% of the overall reaction, *i.e.* 8-9 min). Nevertheless, it can be stated that ReO₂ is the more efficient catalyst among all the rhenium oxides used in reaction (2).

On the other hand, for high $[Ce^{4+}]$: catalyst weight ratios, changes in the observed rates indicate the possibility of rhenium oxide corrosion. It is known ^{4.5} that $[ReO_4]^-$ is formed by OH^{*} or O₂ action on Re_xO_n (x = 1, n = 2; x = 1, n = 3; x = 2, n = 3) in acidic media in a reaction of the type given by equation (3), where A = (O₂ or OH^{*}). ReO₂ would then

$$2 H_2O + ReO_2(s) + 3 A \longrightarrow$$

$$[ReO_4]^- + 3 A^- + 4 H^+ \quad (3)$$

be generated on the surface of rhenium oxides in the course of the reaction.⁶ At smaller Ce⁴⁺: Re_xO_n ratios a lower reaction rate is observed, reflected in the lower k_0 values reported in the Table. The experimental observations could be understood, noting that in equation (2) the redox potential of the Ce⁴⁺ ions at 25 °C is given by expression (4), while the standard electrode

$$E(n.h.e.) = 1.44 + 0.059 \log [Ce^{4+}]/[Ce^{3+}]$$
 (4)

potential of the H_2O-O_2 and $ReO_2-[ReO_4]^-$ couples have values between 1.23 and 1.44 V.⁴ Therefore, the electrochemical potential of the powder particle intervening in the catalysis will depend on the rates of oxidation of Re_xO_n and water and reduction of Ce^{4+} . These values have limits falling between the potential of the $Ce^{4+}-Ce^{3+}$ redox couple and 1.23 V. Therefore, the higher the initial Ce^{4+} concentration and the smaller the amount of Re_xO_n catalyst used, the more positive will be the potential for the Re_xO_n particle [equation (4)]. In this case, the corrosion given by $ReO_2-[ReO_4]^-$ will be more likely.

In agreement with these observations, it has been found

Table. Rate constants and dioxygen yields for the oxidation of water by Ce^{4+} in the presence of different concentrations of rhenium oxide catalysts

Rhenium(IV) dioxide catalyst, ReO₂

10 ³ [Ce ⁴]			
(mol dm ⁻³)	ReO_2^a (mg)	$k_0 \; (\min^{-1})$	O ₂ Yield [*]
2.56	6.00	0.134	60
2.56	8.00	0.142	70
2.56	10.00	0.315	75
2.56	15.00	0.391	70
Rhenium(vı) tr	ioxide catalyst, Re	eO ₃	
2.42	6.00	0.082	20
2.42	8.00	0.088	22
2.42	10.00	0.091	22
2.42	15.00	0.134	30
Dirhenium(111)	trioxide catalyst, I	Re_2O_3	
2.57	6.00	0.087	20
2.57	8.00	0.132	32
2.57	15.00	0.230	58

^{*a*} Milligrams of the rhenium oxide in 25 cm³ of $1 \times H_2SO_4$. The particle dimensions could be determined only by sieving analysis (ASTM norms) resulting in an average particle diameter of 160 µm. This does not mean a regular size distribution, not even after the vigorous magnetic stirring during the reaction. ^{*b*} Generated amount of dioxygen expressed as % yield expected from the stoicheiometry of equation (1) and based on the initial concentrations (mol dm⁻³) of Ce⁴⁺. It is assumed that this reaction proceeds to completion.

(Table) that O₂ yields are lowest for high Ce⁴⁺: Re_xO_n ratios where corrosion of the particles occurs at the expense of water oxidation. Corrosion levels were assessed by analysing a stirred Ce⁴⁺: ReO₂ solution (ratio = 0.83; Table) and measuring the [ReO₄]⁻-furil dioxime peak.⁷ Under the same experimental conditions described in Figure 2, using 600 mg l⁻¹ of ReO₂ (600 p.p.m.) the analysis revealed the existence of a complex with a peak at $\lambda = 531$ nm ($\varepsilon = 41300$ dm³ mol⁻¹ cm⁻¹). This complex of [ReO₄]⁻-furil dioxime revealed about 0.6—1.2 p.p.m. of Re, indicating corrosion of up to 2% of the catalyst used. Similar results were observed by Mills⁸ when RuO₂ dispersions were used in sacrificial water oxidation. Subsequently a ReO₂-TiO₂ catalyst was used and a much lower level of corrosion was observed, in agreement with previous work using RuO₂-TiO₂⁹ to catalyse reaction (2).

Further studies showed that the reduction of tris(2,2'-bipyridine)ruthenium(III) by water, according to equation (5)

$$4[\operatorname{Ru}(\operatorname{bipy})_{3}]^{3+} + 2 \operatorname{H}_{2}O \xrightarrow{\operatorname{ReO}_{2}} 4[\operatorname{Ru}(\operatorname{bipy})_{3}]^{2+} + 4 \operatorname{H}^{+} + O_{2} \quad (5)$$

(-200 mV vs. n.h.e.) is possible at pH 4.2. Concentrations of $4.85 \times 10^{-3} \text{ mol } \text{dm}^{-3} [\text{Ru}(\text{bipy})_3]^{3+}$ were used and spectral changes, as a function of time, were followed spectrophotometrically. In a catalyst-free solution, $[\text{Ru}(\text{bipy})_3]^{3+}$ is stable for at least 1 h, which is necessary for completion of reaction (5). Our results show that reaction (5) is less efficient than reaction (2) when catalysing water oxidations. On the other hand, all the results were obtained in the absence of light. Application of the experimental results in the classical photogeneration of dioxygen from water² by the photogenerated $[\text{Ru}(\text{bipy})_3^{3+}]^*$ chromophore are under investigation. This could take the rhenium oxide study into the field of the photocatalytic system of solar energy conversion.

In conclusion, our results show that rhenium oxides efficiently catalyse water oxidation *via* sacrifical systems. The multiple valence states $(+1 \text{ to } +7)^{4.5}$ available in Re seem to provide variable electronic densities which are beneficial in electron transfer processes.^{4,5}

Experimental

Catalyst Preparation and Characterisation.—Rhenium dioxide was prepared by the following methods. (a) Thermal decomposition of $K_2[ReCl_6]$ or $K_2[ReBr_6]$ in 2 mol dm⁻³ HCl solution, leading to an amorphous black powder, insoluble in water. (b) Thermal decomposition of $[NH_4][ReO_4]$ at 300 °C and 10⁻² Torr. (c) ReO₂ dispersed on TiO₂ Degussa P-25 has been prepared by a method already applied in RuO₂-TiO₂ catalyst preparation. In this way, ammonium rhenate, $[NH_4][ReO_4]$ (60 mg), was hydrolysed in water (100 cm³) at pH 4.5 and 25 °C for 8 d. Subsequent drying was carried out using a Rotavapor at 45 °C and then at 230 °C for 1 h at 10⁻³ Torr.

Rhenium trioxide was prepared either by: (a), thermal decomposition of $[NH_4][ReO_4]$ at 500 °C in a current of argon or (b), heating a 1:1 molar mixture of Re_2O_7 and ReO_2 . Both preparations lead to an amorphous red powder. Rhenium dioxide as well as ReO_3 powders were polycrystalline and did not present a defined X-ray diffraction pattern. Thermogravimetric analysis showed some superficial water loss up to 200 °C of the order of 10–20% by weight. The initial particle dimensions of all the rhenium oxide powders were determined by sieve analysis resulting in 160 µm in diameter (ASTM norms), before running the catalysis experiments. This was done after drying the sample at 120 °C under an argon atmosphere over 4 d.

Apparatus and Materials.—The oxygen evolved was measured via a Beckman membrane oxygen electrode. Constant stirring (300 revolutions min⁻¹) and temperatures of 25 °C were maintained throughout. Spectral changes observed in reaction (2) were followed by means of a Perkin-Elmer Lambda 3 spectrophotometer using 0.1-cm cells. Cerium(IV) sulphate (AnalaR) was used in all cases. In typical runs using $[Ru(bipy)_3]^{3+}$, 25 cm³ of a 2.45 × 10⁻⁴ mol dm⁻³ solution were thoroughly degassed and different quantities of rhenium oxides added. The colour changes observed in the solution were followed by registering, spectrophotometrically the increase of the $[Ru(bipy)_3]^{2+}$ 450-nm peak as a function of time.

Acknowledgements

Financial support for this work by the Dirección de Investigación Universidad Católica Project of the Catholic University of Chile is acknowledged. We are also grateful to the Molymet Co. Chile, for the gift of ammonium perrhenate used in this work.

References

- 1 J. Kiwi and M. Grätzel, Angew. Chem., Int. Ed. Engl., 1978, 17, 860; Chimia, 1979, 33, 289.
- 2 J. Kiwi, K. Kalyanasundaram, and M. Grätzel, *Struct. Bonding* (*Berlin*), 1982, **49**, 37; M. Grätzel, 'Energy Resources Through Photochemistry and Catalysis,' Academic Press, New York, 1983.
- 3 P. Lu and S. Srinivasan, 'Extended Abstracts of 149th Meeting of the Electrochemical Society,' 1976, vol. 76, p. 821; M. Miles, E. Klaus, B. Gumm, J. Locker, and W. Serafin, *Electrochim. Acta*, 1978, 23, 521.
- 4 M. Pourbaix, 'Atlas d'Equilibres Electrochimiques,' Gauthier-Villar, Paris, 1963.
- 5 Yu. Ermakov, B. Kuznetsov, and N. Startev, *Kinet. Katal.*, 1977, **18**, 808; V. Shum, J. Butt, and W. Sachtler, *J. Catal.*, 1985, **96**, 371; L. Falicov and G. Somorgai, *Proc. Natl. Acad. Sci.*, USA, 1985, **82**, 2207.
- Kaesche, 'Die Korrosion der Metalle,' Springer, Heidelberg, 1966;
 L. Shreir, 'Corrosion,' Butterworths, London, 1977.
- 7 I. Kolthoff, E. Sandell, E. Meehan, and S. Bruckenstein, 'Quantitative Chemical Analysis,' Macmillan, London, 1969.
- 8 A. Mills, J. Chem. Soc., Dalton Trans., 1982, 1213.
- 9 C. Blondeel, A. Harriman, G. Porter, D. Urwin, and J. Kiwi, J. Phys. Chem., 1983, 87, 2629; D. Thewissen, M. Eeuwhorst-Reinten, K. Timmer, A. Tinnemans, and A. Mackor, Rec. R. Netherlands Chem. Soc., 1982, 101, 79.

Received 5th January 1988; Paper 8/00154E