Radiotracers in Fluorine Chemistry. Part 12.¹ Reactions between Caesium Fluoride and Arsenic Pentafluoride, Boron Trifluoride, Sulphur Tetrafluoride, Carbonyl Fluoride, and Carbon Dioxide Under Heterogeneous Conditions at Room Temperature. Radiotracer Studies using Fluorine-18, Sulphur-35, and Carbon-14[†]

Kim W. Dixon and John M. Winfield*

Department of Chemistry, University of Glasgow, Glasgow G12 8QQ

Activation of CsF by thermal decomposition of its 1 : 1 adducts with hexafluoroacetone or carbonyl fluoride results in significantly greater activity with respect to its reactions with AsF₅, BF₃, and SF₄ under heterogeneous conditions at room temperature, and enables reactions involving carbonyl fluoride and carbon dioxide to be studied. The results of radiotracer experiments employing ¹⁸F and ³⁵S or ¹⁴C are consistent with the occurrence of weakly adsorbed SF₄ or F₂CO at the surface of activated CsF in addition to permanently retained species SF₅⁻ and F₃CO⁻. Carbon dioxide interacts weakly with activated CsF. Room-temperature ¹⁸F exchange occurs between ¹⁸F-labelled F₂CO and activated CsF. It is not observable in the other systems but does occur at 373 K. It is suggested that the CsF activation process results in a pore structure for the solid and that this is responsible for its increased reactivity.

The activation of alkali-metal fluorides by formation of Lewis acid-base complexes and their subsequent decomposition is commonly used to increase reactivity. For example it is desirable to treat sodium or potassium fluoride with anhydrous hydrogen fluoride or uranium hexafluoride followed by thermal decomposition of the adducts formed prior to their use as Lewis bases towards molybdenum, tungsten, or uranium hexafluoride,² and caesium and potassium fluorides are activated by the formation and subsequent thermal decomposition of their hexafluoroacetone adducts prior to their use in nitrosyl fluoride synthesis.³ Similar considerations apply to the use of CsF as a heterogeneous catalyst. We have shown that CsF activated by the $(CF_3)_2CO$ route is superior to thermally activated material as a catalyst for chlorofluorination of sulphur tetrafluoride.⁴ One effect of activation is to produce materials of greatly increased surface areas.5

Despite its importance, a systematic quantitative comparison between activated and untreated CsF has not been reported previously. This is the subject of the present work in which fluorine-18 (β^+ decay, $t_{\frac{1}{2}} = 110$ min) together with the $\beta^$ emitters carbon-14 and sulphur-35 as appropriate have been used to study Lewis acid-base reactions involving CsF under heterogeneous conditions at room temperature. The use of ¹⁸F-labelled Lewis acids enables reaction stoicheiometries to be determined, for example the formation of the compound Na₂UF₈ from the heterogeneous reaction between NaF and UF₆ has been demonstrated.⁶ The combination of fluorine-18 and carbon-14 or sulphur-35 experiments enables inferences to be drawn about the nature of the surface species formed.

Results and Discussion

Activation of Caesium Fluoride.—The reaction of caesium fluoride with hexafluoroacetone in the presence of acetonitrile leads to caesium heptafluoroisopropoxide.⁷ Its thermal decomposition in a Monel metal vessel at 398 K for 16 h *in vacuo* gave an off-white solid that had the appearance of talc. The B.E.T. (Brunauer, Emmett, and Teller) areas using krypton-85 as adsorbate,^{5,8} of samples from five different preparations were in the range 3.01–2.09 m² g⁻¹ (95% confidence limits) compared with those of untreated CsF which were in the range 0.31–0.19 m² g⁻¹. Decomposition of Cs[OCF(CF₃)₂] under the conditions used here was expected to be complete,⁷ however the i.r. spectrum and analysis of the solid produced indicated some retention of the [(CF₃)₂CFO]⁻ anion, the composition being 99.5 CsF, 0.5 Cs[OCF(CF₃)₂].

Thermal decomposition of caesium trifluoromethoxide⁹ at 393 K for 3 h *in vacuo* gave CsF of similar appearance to that described above whose B.E.T. area was in the range 2.27-1.77 m² g⁻¹. The [CF₃O]⁻ anion was not detected in this material.

The B.E.T. data are based on a more extensive study than our previous values for CsF.⁵ The values are larger than those obtained previously since in the present work, following usual practice,¹⁰ the saturation vapour pressure of supercooled Kr at 77 K was used rather than that of solid Kr. Both studies indicate a ten-fold increase in B.E.T. area however when CsF is activated via the (CF₃)₂CO reaction. The increase is too large to be due simply to a reduction in the particle size of CsF. It could be argued that the small quantity of the [(CF₃)₂CFO]⁻ anion retained after thermal decomposition of Cs[OCF(CF₃)₂] creates disorder in the CsF lattice leading to higher B.E.T. areas, however the B.E.T. area of CsF obtained from decomposition of Cs[OCF₃] is almost as high, and this explanation seems unlikely.

Decomposition reactions in which one solid is converted into a second with evolution of gas are known to result in the development of a pore system with an associated increase in surface area.¹⁰ Good B.E.T. data were obtained and it is considered that the most likely explanation is that CsF produced from decompositions of perfluorinated alkoxides has a meso- or macro-porous structure.¹¹ If micropores were present, apparent B.E.T. areas would be much higher and satisfactory isotherms would not be expected.¹²

Reactions of Caesium Fluoride with ¹⁸F-Labelled Arsenic Pentafluoride or Boron Trifluoride.—Admission of ¹⁸F-labelled arsenic pentafluoride or boron trifluoride to solid CsF samples, either untreated, or activated by the $(CF_3)_2CO$ route, at room temperature led to a rapid growth of ¹⁸F activity in the solid over the first 10—40 min of reaction and a constant count rate

[†] Non-S.I. unit employed: Torr \approx 133 Pa.

	¹⁸ F Specific count rate of the volatile fluoride/count min ⁻¹ mmol ⁻¹		¹⁸ F Count rate of	Untake of volatile	
Pretreatment of CsF	Before reaction	After reaction	solid/count min ⁻¹	fluoride/mmol ^a	
(<i>i</i>) CsF (3.29 \pm 0.06 mmol) + AsF ₄ ¹⁸	${}^{3}F (1.0 \pm 0.01 \text{ mmol})^{b}$				
(CF ₃) ₂ CO–MeCN	13 567 ± 116	13 567 ± 116	$11\ 538\ \pm\ 107$	0.85 ± 0.01	
	7 755 ± 88	7 751 ± 88	6747 ± 82	0.87 ± 0.01	
	10647 ± 103	10647 ± 103	8 837 <u>+</u> 94	0.83 ± 0.01	
	4236 ± 65	4235 ± 65	3722 ± 61	0.88 ± 0.01	
None	8 932 <u>+</u> 95	8 930 ± 95	4 377 ± 66	0.49 ± 0.01	
	10647 ± 103	10647 ± 103	5 324 <u>+</u> 73	0.50 ± 0.01	
	11 398 ± 107	$11\ 398\ \pm\ 107$	5 910 ± 77	0.52 ± 0.01	
	$4\ 236\ \pm\ 65$	4235 ± 65	2033 ± 45	0.48 ± 0.01	
(<i>ii</i>) CsF (3.29 \pm 0.06 mmol) + BF ₂ ¹⁸ F (1.0 \pm 0.01 mmol) ^b					
(CF ₁) ₂ CO-MeCN	15003+123	$65 + 8^{\circ}$	14 995 + 120	1.00 + 0.01	
\$ 572	12118 ± 110	$51 \pm 7^{\circ}$	12056 ± 110	1.00 ± 0.01	
	6870 ± 83	$43 \pm 7^{\circ}$	6869 ± 83	1.00 ± 0.01	
	16781 ± 130	$81 \pm 9^{\circ}$	16750 ± 130	1.00 ± 0.01	
None	$14\ 326\ \pm\ 120$	14362 ± 120	1275 ± 36	0.09 ± 0.01	
	9 513 ± 97	9 511 ± 97	894 ± 30	0.09 ± 0.01	
	12118 ± 110	12 115 ± 110	1030 ± 32	0.085 ± 0.01	
	$5 316 \pm 73$	$5 313 \pm 73$	457 ± 21	0.09 ± 0.01	
(<i>iii</i>) CsF (3.29 \pm 0.06 mmol) + SF ₃ ¹⁸ F (1.0 \pm 0.01 mmol) ^b					
(CF ₃) ₂ CO–MeCN	5270 ± 73	5 270 ± 73	1560 ± 40	0.30 ± 0.01	
S. 2	4117 ± 64	4109+64	1276 + 36	0.31 + 0.01	
	1967 ± 44	1961 ± 44	560 + 24	0.29 + 0.01	
	2516 ± 50	2514 ± 50	729 ± 27	0.29 ± 0.01	
None	4217 ± 65	4215 ± 65	181 ± 13	0.04 ± 0.01	
	3557 ± 60	3558 ± 60	142 ± 12	0.04 ± 0.01	
	2516 ± 50	2509 ± 50	97 ± 10	0.04 ± 0.01	
	2 733 ± 52	2 731 ± 52	127 ± 11	0.05 ± 0.01	

Table 1. Reactions between caesium fluoride and ¹⁸F-labelled arsenic pentafluoride, boron trifluoride, or sulphur tetrafluoride at room temperature

" Determined from the count rate of the solid and the specific count rate of the volatile fluoride. ^b Initial pressure 300 \pm 2 Torr. ^c Count rate (count min⁻¹) of total BF₃ in the gas phase after reaction.

Figure 1. Solid fluorine-18 count rate vs. time for (a) $AsF_4^{18}F(1.0 \text{ mmol}) + activated CsF(3.29 \text{ mmol}) and (b) BF_2^{18}F(1.0 \text{ mmol}) + activated CsF(3.29 \text{ mmol}) and (b) BF_2^{18}F(1.0 \text{ mmol}) + activated CsF(3.29 \text{ mmol}) and (c) BF_2^{18}F(1.0 \text{ mmol}) + activated CsF(3.29 \text{ mmol}) and (c) BF_2^{18}F(1.0 \text{ mmol}) + activated CsF(3.29 \text{ mmol}) and (c) BF_2^{18}F(1.0 \text{ mmol}) + activated CsF(3.29 \text{ mmol}) and (c) BF_2^{18}F(1.0 \text{ mmol}) + activated CsF(3.29 \text{ mmol}) and (c) BF_2^{18}F(1.0 \text{ mmol}) + activated CsF(3.29 \text{ mmol}) and (c) BF_2^{18}F(1.0 \text{ mmol}) + activated CsF(3.29 \text{ mmol}) and (c) BF_2^{18}F(1.0 \text{ mmol}) + activated CsF(3.29 \text{ mmol}) and (c) BF_2^{18}F(1.0 \text{ mmol}) + activated CsF(3.29 \text{ mmol}) and (c) BF_2^{18}F(1.0 \text{ mmol}) + activated CsF(1.0 \text{ mmol}$

Table 2. Fluorine-18 exchange between ¹⁸F-labelled boron trifluoride and lithium or caesium tetrafluoroborate in the presence of acetonitrile after 1 h at room temperature

	¹⁸ F Count ra count	te of $BF_2^{18}F/$ min ⁻¹		¹⁸ F Count rate of	Fraction ¹⁸ F
BF ₃ /mmol	Initial	After 1 h	ABF ₄ /mmol	ABF ₄ /count min ⁻¹	exchanged"
2.70 2.00	15966 ± 126 17 261 ±131	6856 ± 83 14215 ± 119	2.65 ^b 1.95 ^c	$9\ 003\ \pm\ 95$ $2\ 926\ \pm\ 54$	1.02 0.30

^{*a*} Defined by $A_1(A_1 + A_2)^{-1}/[4m_1(4m_1 + 3m_2)^{-1}]$ where A_1 and A_2 /count min⁻¹ are ¹⁸F count rates of m_1 mmol ABF₄ and m_2 mmol BF₃ after reaction. ^{*b*} LiBF₄. ^{*c*} CsBF₄.

Figure 2. Relationship between uptake of SF_4 by activated CsF and the initial pressure of SF_4 ; I, manometric measurement; ¹/₂, ¹⁸F measurement

from the solid thereafter. The behaviour observed is illustrated by $AsF_4^{18}F$ and $BF_2^{18}F$ versus activated CsF, Figure 1. There was no observable ${}^{18}F$ exchange between $AsF_4^{18}F$ and CsF although exchange did occur at 398 K, hence ${}^{18}F$ count rates of the solids after removal of $AsF_4^{18}F$ are a direct measure of the uptake of AsF_5 by CsF, Table 1. The uptake of ${}^{18}F$ is irreversible at room temperature as neither prolonged pumping nor admission of inactive AsF_5 had any effect on the count rates.

The reactions between activated CsF and AsF₄¹⁸F were very exothermic and the average uptake of AsF₅ determined was $0.26 \pm 0.02 \text{ mmol} (\text{mmol} \text{ CsF})^{-1}$. Treatment of activated CsF with an equal quantity of inactive AsF₅ prior to admission of AsF₅¹⁸F resulted in similar behaviour to that shown in Figure 1(*a*) but a smaller uptake of AsF₅, $0.24 \pm 0.02 \text{ mmol} (\text{mmol} \text{ CsF})^{-1}$. The uptakes of AsF₅ by untreated CsF were even smaller, Table 1, the average value being $0.15 \pm 0.02 \text{ mmol} (\text{mmol} \text{ CsF})^{-1}$, and the admission of AsF₅ prior to AsF₄¹⁸F resulted in no observable interaction. In all cases the AsF₆⁻ anion was detected by i.r. spectroscopy in the solids after reaction but there was no evidence for the [(CF₃)₂CFO]⁻ anion nor for [As₂F₁₁]⁻.

The behaviour of $BF_2^{18}F$ towards untreated CsF, Table 1, was analogous to that of $AsF_4^{18}F$ but uptakes were very small; the average value was 0.03 ± 0.01 mmol (mmol CsF)⁻¹. Using identical reaction conditions complete reaction was observed, however, if CsF was activated by $(CF_3)_2CO$ or F_2CO treatments, Table 1. These reaction stoicheiometries were therefore determined manometrically and the BF₃ uptakes were $0.99 \pm$ 0.1 and 0.95 ± 0.1 mmol (mmol CsF)⁻¹ respectively for CsF activated via (CF₃)₂CO and via F₂CO. The uptake by CsF that

Figure 3. Variation of sulphur-35 surface count rate at activated CsF with the initial pressure of SF_4

had been calcined at 423 K in vacuo was 0.33 ± 0.1 mmol (mmol CsF)⁻¹ and this material is significantly less reactive than CsF activated by chemical means.

In all cases the only species detected by i.r. spectroscopy after reaction was the BF_4^- anion. There was no detectable ${}^{18}F$ exchange between $BF_2{}^{18}F$ and $CsBF_4$ or between ${}^{18}F$ -labelled $CsBF_4$ and BF_3 under heterogeneous conditions at room temperature. Exchange was observed at 373 K and also at room temperature, Table 2, in the presence of acetonitrile a solvent in which $CsBF_4$ is soluble to some extent. Complete ${}^{18}F$ exchange was observed between $BF_2{}^{18}F$ and $LiBF_4$ under homogeneous conditions in MeCN and this is consistent with a previous ${}^{19}F$ n.m.r. observation of rapid exchange of fluorine among boron atoms in a MeCN solution of $AgBF_4$.¹³

Reactions of Caesium Fluoride with ¹⁸F- or ³⁵S-Labelled Sulphur Tetrafluoride .--- A brief account of some of these results has been given in a preliminary communication.¹⁴ The increases in ¹⁸F activity with time observed in the solid when ¹⁸F-labelled sulphur tetrafluoride was admitted to either untreated CsF or to CsF activated via $(CF_3)_2CO$ were similar in form to that in Figure 1(b). There was no observable 18 F exchange in either case and the uptakes of SF₄ determined from such experiments are given in Table 1. The average SF₄ uptake for activated CsF was 0.09 ± 0.01 mmol (mmol CsF)⁻¹ and that for untreated CsF was 0.01 \pm 0.005 mmol (mmol CsF)⁻¹, a similar ratio to that of the surface areas of the solids. A series of experiments using initial pressures of SF₃¹⁸F in the range 50-300 Torr and experiments in which SF₄ uptakes were determined manometrically indicated that uptake by activated CsF was independent of the initial pressure in the range 100-300 Torr, Figure 2. The SF₅⁻ anion was detected by i.r. spectroscopy after these reactions but there was no evidence for $[(CF_3)_2 CFO]^-$.

Table 3. Reaction between activated caesium fluoride $(3.29 \pm 0.06 \text{ mmol})$ and ¹⁸F-labelled carbonyl fluoride (0.94 \pm 0.01 mmol) at room temperature^{*a*}

¹⁸ F Specific c $F_2CO/count r$	count rate of nin ⁻¹ mmol ⁻¹	Fraction of ¹⁸ F activity	Estimated ^b	
Before reaction	After 120 min	exchanged	$F_2CO/mmol$	
7139 ± 85	5927 ± 76	0.27	0.19	
7 139 ± 85	5919 ± 76	0.27	0.20	
5130 + 71	4370 + 66	0.27	0.20	

"Reaction time 120 min, CsF activated by $(CF_3)_2CO-MeCN$ treatment, initial pressure 300 \pm 2 Torr. ^b After making allowance for ¹⁸F activity in CsF due to exchange.

Figure 4. Solid fluorine-18 count rate vs. time for ¹⁸FFCO (0.94 mmol) + activated CsF (3.29 mmol)

The interaction of [35 S]sulphur tetrafluoride with activated CsF was studied at 21 initial pressures between 2 and 308 Torr. The 35 S count from the surface increased rapidly during the first 10 min thereafter remaining constant and saturation coverage was achieved at pressures above 10 Torr, Figure 3. Removal of gaseous 35 SF₄ led to the loss of 85% of the 35 S surface activity. This could be restored to 90% of its original value by adding a further 35 SF₄ aliquot. The overall uptake of SF₄ by surface and bulk CsF as determined from the decrease in the gas-phase 35 SF₄ count was $0.10 \pm 0.02 \text{ mmol} (\text{mmol CsF})^{-1}$ which is in good agreement with the uptake determined from the 18 F experiments.

Reactions of Activated Caesium Fluoride with ¹⁸F- or ¹⁴C-Labelled Carbonyl Fluoride and with ¹⁴C-Labelled Carbon Dioxide.—Determination of the ¹⁸F growth curve for the reaction of activated CsF with ¹⁸F-labelled carbonyl fluoride at room temperature, Figure 4, indicated that the ¹⁸F activity in the solid increased rapidly over the first 30 min of reaction and that it increased more slowly thereafter. Specific ¹⁸F count rates of ¹⁸FFCO before and after reaction were significantly different, Table 3, as a result of ¹⁸F exchange. The count rates from the

Figure 5. Relationship between the uptake of F_2CO by activated CsF (2.0 mmol) and the initial pressure of F_2CO ; I, manometric measurement; $\frac{1}{5}$ ¹⁴C measurement

solid after removal of gas were too large to be accounted for solely by exchange, suggesting that uptake of ¹⁸FFCO had occurred. This was confirmed by mass-balance determinations. Uptakes of F_2CO , Table 3, were estimated from the ¹⁸F measurements after making allowance for the ¹⁸F activity in the solid arising from exchange. The average uptake was 0.06 mmol (mmol CsF)⁻¹. The [F₃CO]⁻ anion was detected by i.r. spectroscopy of the solid after reaction but there was no evidence for [(CF₃)₂CFO]⁻.

A small carbon-14 surface count rate was detected immediately on admission of [14C]carbonyl fluoride to activated CsF. This was constant with time and independent of the initial pressure over the range 20—308 Torr. Removal of F₂¹⁴CO by pumping resulted in a barely detectable count rate indicating that >95% of the surface ^{14}C activity had been removed. Uptake of F₂CO by the bulk solid was determined both from decreases in gas-phase ¹⁴C count rates of F₂¹⁴CO and manometrically, agreement between the two sets of measurements being very good. The pressure-dependent behaviour is shown in Figure 5. Approximately 46-50% of the gas taken up by activated CsF could be removed by re-evacuation of the vessel. For example the decrease in F₂CO pressure at an initial pressure of 304 Torr was equivalent to an F₂CO uptake of 0.25 mmol (mmol CsF)⁻¹ but that determined gravimetrically was 0.12 mmol (mmol CsF)⁻¹ which is closer to the value estimated from ¹⁸F measurements.

The behaviour of $[^{14}C]$ carbon dioxide towards activated CsF was similar to that of $F_2^{14}CO$. Admission of $^{14}CO_2$ led to a ^{14}C surface count rate that was independent of time and initial pressure over the range 25—300 Torr. Approximately 17% of the surface ^{14}C activity remained on removal of gaseous material. The maximum CO₂ uptake by the bulk solid was 0.03 ± 0.02 mmol (mmol CsF)⁻¹ at an initial pressure of 300 Torr. This is far smaller than that obtained for F_2CO under similar conditions and when the solid was examined by i.r. spectroscopy after reaction only the [(CF₃)₂CFO⁻] anion was detected.

Comparisons among the Reactions.—The formation of the anions BF_4^- , AsF_6^- , SF_5^- , and $[F_3CO]^-$ from reactions

between activated CsF and the appropriate Lewis acid fluoride is not surprising since their caesium salts are well known and for example their vibrational spectra are well documented.^{9,15-17} The combination of ³⁵S or ¹⁴C experiments with those using ¹⁸F has enabled direct evidence to be obtained for weakly bound SF₄ and F₂CO as species that are distinct from the anions and has clarified earlier work in which only ¹⁸F was used.¹⁸

Weakly adsorbed SF_4 is the major species at the surface of activated CsF consistent with a previous suggestion⁴ that it rather than the SF_5^- anion is involved in the CsF-catalysed reaction of SF_4 with ClF. The SF_5^- anion is a minor surface species but is present in the bulk. The overall reaction can therefore be represented by equation (1). The SF_5^- anion has

$$CsF(s) + SF_4(g) \Longrightarrow CsF \cdot SF_4(ad) \longrightarrow Cs^+ SF_5^-(s)$$
 (1)

 C_{4v} symmetry ¹⁷ and is apparently co-ordinatively saturated. It is likely that weakly adsorbed SF₄ also contains co-ordinatively saturated S^{IV} and the lack of facile ¹⁸F exchange indicates that the four S-F bonds are not equivalent to that between S^{IV} and a surface F⁻ anion. In contrast ¹⁸F exchange is observed at room temperature between SF₃¹⁸F and Lewis acids such as BF₃¹⁹ or AlF₃.¹

The behaviour of F_2CO towards activated CsF indicates that both surface and bulk interactions are important although weakly adsorbed F_2CO is essentially the only surface species. A possible model for the latter is provided from a matrix i.r. spectroscopic study of the reaction of CsF with formaldehyde.²⁰ Complete transfer of F⁻ anion does not occur but rather a weak interaction between F⁻ and the carbon atom of H₂CO as a result of which v(CO) is shifted by 50–60 cm⁻¹ compared with a shift in v(CO) of 400 cm⁻¹ when [F₃CO]⁻ is formed from F₂CO. An analogous weak interaction between F₂CO and surface F⁻ anion would not obviously lead to ¹⁸F exchange and it is suggested that in this case the observed exchange is the result of the reversible reactions (2).

$$CsF(s) + F_2CO(g) \rightleftharpoons CsF \cdot F_2CO(ad) \rightleftharpoons Cs^+[OCF_3^-](s)$$
 (2)

The X-ray crystal structure of $[(Me_2N)_3S][OCF_3]$ indicates that all F atoms are equivalent but that the C-F bonds are weaker than expected. This has been rationalised on the basis of negative fluorine hyperconjugation.²¹

The carbon-14 experiments provide direct evidence for an interaction between CO_2 and the surface of activated CsF but the extent of any reaction that occurs, for example formation of the fluoroformate anion, is too small for product identification. The observed behaviour is consistent with previous lack of success in preparing caesium fluoroformate from reactions between CsF and CO_2 under various conditions,²² although the i.r. spectrum of the matrix-isolated ion pair Cs⁺FCO₂⁻ has been reported.²³

The order of reactivity of the Lewis acids used towards untreated CsF as measured by the extent to which permanently retained species are formed is $AsF_5 \gg BF_3 > SF_4$, Table 1, which is the same order as their fluoride-ion affinities.^{24,25} The order towards CsF that has been produced by thermal decomposition of Cs[OCF(CF_3)_2] is BF_3 > AsF_5 > SF_4 \approx F_2CO > CO_2. The fluoride affinities of SF₄ and F₂CO are similar and are more exothermic than that of CO₂,²⁵ but the reversal found for BF₃ and AsF₅ cannot be accounted for on a purely thermodynamic basis.

The observed order can be rationalized on the basis of fluoride-ion affinities and molecular sizes of the Lewis acids if it is assumed that activated CsF has a porous structure. The rate of reaction will depend on the degree to which the reaction occurs within the internal pore structure, the two limiting situations being that reaction occurs equally throughout the pore structure and that reaction is limited to the outside surface of individual particles.²⁶ In the reactions studied here differences in reaction rates will arise from differences in the molecular volumes of the Lewis acids since the CsF samples were all prepared in the same way. Arsenic pentafluoride is the strongest Lewis acid of those used but it is a relatively large molecule and reaction will be largely limited to the outside surface of CsF particles. This and the sintering that occurs during reaction are responsible for the AsF₅ uptakes being relatively small. The BF₃ molecule is smaller and can be accommodated in a wider range of pores. This and its relatively large fluoride-ion affinity result in the reaction being quantitative. Carbonyl fluoride is smaller than SF₄ and this accounts for the greater degree of reversible uptake experienced with F₂CO as compared with SF₄. Carbon dioxide should be accommodated most easily in the CsF pore structure and the very small uptakes found must be due to the very small fluoride-ion affinity of CO₂.

Experimental

All operations were carried out in Pyrex vacuum systems equipped with Monel metal pressure vessels (Hoke), an *in situ* Geiger Müller counting vessel, double-limb Pyrex counting vessels (for fluorine-18 measurements) or a constant-volume manometer. Involatile, inactive solids were transferred in a nitrogen-atmosphere glove-box (water < 10 p.p.m.). The procedures used for fluorine-18 and sulphur-35 measurements have been described previously,^{1.27} and carbon-14 experiments were made using identical techniques. B.E.T. areas were determined using krypton-85 as adsorbate,^{5.8} calculations being performed using a computer program that included linear regression analysis.

Activation of Caesium Fluoride.—Caesium heptafluoroisopropoxide⁷ was prepared from ground caesium fluoride (26 mmol, **BDH** Optran grade), hexafluoroacetone (30 mmol, Fluorochem), and acetonitrile (5 cm³, Rathburn HPLC Grade S purified as previously described²⁸) by shaking the mixture in a stainless-steel pressure vessel (Hoke) at room temperature for 12 h. It was identified by its i.r. spectrum⁷ and analysis (Found: C, 11.2; F, 41.5. C₃CsF₇O required C, 11.3; F, 41.8%). The solid was heated under static then dynamic vacuum at 398 K for 16 h to give an off-white solid that resembled talc in appearance. Its i.r. spectrum contained weak bands due to the [(CF₃)₂CFO]⁻ anion (Found: C, 0.3; F, 12.4%. Molar ratio C: F = 1:27).

Carbonyl fluoride was prepared by a modified literature method ²⁹ from carbonyl chloride (30.4 mmol, Matheson Inc.), thermally activated NaF (360 mmol), and MeCN (30 cm³) at 293 K for 36 h in a stainless-steel pressure vessel (Hoke, 300 cm³). Fractionation of the volatile material gave F_2CO (28.8 mmol) identified by its i.r. spectrum.³⁰ Caesium trifluoromethoxide⁹ was prepared from F_2CO (15 mmol), ground CsF (13 mmol), and MeCN (5 cm³) as described above and was identified by its i.r. spectrum.⁹ Thermal decomposition of Cs[OCF₃] under vacuum at 393 K for 3 h gave CsF of similar appearance to that obtained from Cs[OCF(CF₃)₂] decomposition but bands due to the [CF₃O]⁻ anion were not observed.

Preparation of Labelled Compounds.—Fluorine-18 was prepared in the Scottish Universities Research Reactor, East Kilbride using the sequence ⁶Li(n, α)³H, ¹⁶O(³H,n)¹⁸F and Li₂CO₃ (2 g) as target.³¹ Irradiation conditions were 3 × 10¹² n cm⁻² s⁻¹ for 30 min. The Li ¹⁸F produced was converted into H¹⁸F by distillation with 50% H₂SO₄, the distillate being trapped in aqueous CsOH at 273 K. The solution was neutralized with aqueous HF and evaporated to give finely divided solid Cs¹⁸F (40—65 μ Ci). This was dried in a Monel metal vessel (95 cm³) at 393 K *in vacuo* for 0.5 h. After cooling, (CF₃)₂CO (10 mmol) was added and the mixture allowed to react at room temperature for 0.5 h. After removal of unchanged (CF₃)₂CO, the vessel was heated *in vacuo* at 393 K for 0.5 h to decompose the adduct. Treatment of Cs¹⁸F in this way resulted in a significantly greater degree of ¹⁸F incorporation during subsequent labelling reactions.

Arsenic pentafluoride (Ozark-Mahoning) and boron trifluoride (Matheson) were purified by low-temperature trap-totrap distillation over thermally activated NaF before use. These fluorides and F_2CO were labelled by exchange with Cs¹⁸F in a Monel metal vessel (95 cm³), optimum conditions being 1 h, initial pressure 1 000 Torr at 398 K (for AsF₅) or at 373 K (for BF₃ and F₂CO). The fluorides were counted as solutions of their adducts in MeCN (for BF₃ and AsF₅) or at 77 K. In each case linear relationships between the count rates and quantity of sample were obtained and the radiochemical purity was established by the γ -ray spectrum and ¹⁸F half-life determination.

The exchange reaction between BF₃ and Cs¹⁸F (6 mmol) resulted in significant retention (*ca*. 6 mmol) of BF₃ as the BF₄⁻ anion. Similar observations were made with AsF₅ or F₂CO although formation of AsF₆⁻ or [F₃CO]⁻ was less marked. The behaviour observed was consistent with a two-stage process involving the formation of a complex fluoro-anion followed by ¹⁸F exchange between the anion and the volatile fluoride.

¹⁸F Labelled sulphur tetrafluoride prepared by ¹⁸F exchange with Cs¹⁸F had a relatively low specific count rate and it was therefore prepared from inactive SF₄ (Matheson Inc.) and BF₂¹⁸F via the adduct [SF₃][BF₄],³² formation of which was responsible for complete ¹⁸F exchange between BF₂¹⁸F and SF₄ at room temperature.¹⁹ ¹⁸F-Labelled SF₄ was liberated from the adduct at 193 K by adding a measured quantity of dried diethyl ether and SF₃¹⁸F was counted as a solution of its adduct in dried pyridine.

³⁵S-Labelled \overline{SF}_4 was prepared as previously described,³³ and was diluted with inactive \overline{SF}_4 to give a working specific count rate of 258 \pm 3 count s⁻¹ mmol⁻¹ in the *in situ* Geiger Müller counting vessel. ¹⁴C-Labelled F₂CO was prepared as described above from Cl₂¹⁴CO (1 mCi, Amersham International) diluted with inactive Cl₂CO (80 mmol). Its specific count rate was 135 \pm 2 count s⁻¹ mmol⁻¹. ¹⁴C-Labelled carbondioxide was prepared from Ba¹⁴CO₃ (1 mCi, Amersham International) and dilute acid. It was dried by three treatments with P₂O₅ for several hours and diluted with dried, inactive CO₂ to give a working count rate of 2150 \pm 5 count s⁻¹ mmol⁻¹. For all ³⁵S- and ¹⁴C-labelled gases linear relationships of count rate *vs.* pressure were obtained.

Acknowledgements

We thank Mr. R. R. Spence for technical assistance and Dr. J. E. Whitley and his colleagues at the Scottish Universities Research Reactor Centre, East Kilbride for reactor facilities.

References

- 1 Part 11, K. W. Dixon, M. F. Ghorab, and J. M. Winfield, J. Fluorine Chem., 1987, **37**, 357.
- 2 S. Katz, *Inorg. Chem.*, 1964, **3**, 1598; 1966, **5**, 666; J. G. Malm, H. Selig, and S. Siegel, *ibid.*, p. 130.
- 3 C. T. Ratcliffe and J. M. Shreeve, Inorg. Synth., 1968, 11, 194.
- 4 G. A. Kolta, G. Webb, and J. M. Winfield, *Appl. Catal.*, 1982, **2**, 257. 5 G. A. Kolta, G. Webb, and J. M. Winfield, *J. Fluorine Chem.*, 1979,
- 14, 331.
 6 I. Sheft, H. H. Hyman, R. M. Adams, and J. J. Katz, J. Am. Chem. Soc., 1961, 83, 291.
- 7 M. E. Redwood and C. J. Willis, Can. J. Chem., 1967, 45, 389.
- 8 D. W. Aylmore and W. B. Jepson, J. Sci. Instrum., 1961, 38, 156.
- 9 M. E. Redwood and C. J. Willis, *Can. J. Chem.*, 1965, **43**, 1893; K. O. Christie, E. C. Curtis, and C. J. Schack, *Spectrochim. Acta, Part A*, 1975, **31**, 1035.
- 10 S. J. Gregg and K. S. W. Sing, 'Adsorption, Surface Area and Porosity,' 2nd edn., Academic Press, London, 1982.
- 11 M. M. Dubinau, Chem. Rev., 1960, 60, 235.
- 12 S. J. Gregg and J. F. Langford, Trans. Faraday Soc., 1969, 65, 1394.
- 13 R. J. Gillespie, J. S. Hartman, and M. Parekh, Can. J. Chem., 1968, 46, 1601.
- 14 K. W. Dixon and J. M. Winfield, J. Fluorine Chem., 1985, 29, 355.
- 15 G. M. Begun and A. C. Rutenberg, Inorg. Chem., 1967, 6, 2212.
- 16 N. N. Greenwood, J. Chem. Soc., 1959, 3811.
- 17 K. O. Christie, E. C. Curtis, C. J. Schack, and D. Pilipovich, *Inorg. Chem.*, 1972, 11, 1679.
- 18 C. J. W. Fraser, D. W. A. Sharp, G. Webb, and J. M. Winfield, J. Chem. Soc., Dalton Trans., 1972, 2226; C. J. W. Fraser, D. W. A. Sharp, R. A. Sule, G. Webb, and J. M. Winfield, J. Chem. Res., (S) 1978, 2; (M) 1978, 0311.
- 19 M. Azeem, M. Brownstein, and R. J. Gillespie, Can. J. Chem., 1969, 47, 4159.
- 20 S. B. H. Bach and B. S. Ault, Inorg. Chem., 1984, 23, 4394.
- 21 W. B. Farnham, B. E. Smart, W. J. Middleton, J. C. Calabrese, and D. A. Dixon, J. Am. Chem. Soc., 1985, 107, 4565 and refs. therein.
- 22 L. Lawlor and J. Passmore, *Inorg. Chem.*, 1979, **18**, 2923.
- 23 B. S. Ault, Inorg. Chem., 1982, 21, 756.
- 24 T. E. Mallouk, G. L. Rosenthal, G. Müller, R. Brusasco, and N. Bartlett, *Inorg. Chem.*, 1984, 23, 3167.
- 25 J. W. Larson and T. B. McMahon, J. Am. Chem. Soc., 1985, 107, 766; Inorg. Chem., 1987, 26, 4018.
- 26 See, for example, R. H. Borgwardt and R. D. Harvey, *Environ. Sci.* Technol., 1972, 6, 350.
- 27 D. K. Sanyal and J. M. Winfield, J. Fluorine Chem., 1984, 24, 75.
- 28 J. M. Winfield, J. Fluorine Chem., 1984, 25, 91.
- 29 F. S. Fawcett, C. W. Tullock, and D. D. Coffman, J. Am. Chem. Soc., 1962, 84, 4275.
- 30 P. D. Mallinson, D. C. McKean, J. H. Holloway, and I. A. Oxton, Spectrochim. Acta, Part A, 1975, 31, 143.
- 31 J. E. Whitley, Scottish Research Reactor Centre Report No. 26/68, East Kilbride, 1968.
- 32 D. D. Gibler, C. J. Adams, M. Fischer, A. Zalkin, and N. Bartlett, *Inorg. Chem.*, 1972, 11, 2325.
- 33 G. A. Kolta, G. Webb, and J. M. Winfield, J. Fluorine Chem., 1981– 1982, 19, 89.

Received 8th April 1988; Paper 8/01385C