Synthesis and Reactivity of Trinuclear Complexes of Platinum containing the Single Bridging Ligand $\mathrm{SC}_{4} \mathrm{H}_{8}$. Molecular Structure of $\left[\mathrm{NBu}_{4}\right]_{2}\left[\right.$ trans $-\mathrm{PtCl}_{2}-$ $\left.\left\{\left(\mu-\mathrm{SC}_{4} \mathrm{H}_{8}\right) \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right\}_{2}\right]^{*}$

Rafael Usón, Juan Forniés, Milagros Tomás, and Irene Ara
Departamento de Química Inorgánica, Instituto de Ciencia de Materiales de Aragón, Universidad. de Zaragoza-C.S.I.C. 50009 Zaragoza, Spain

Abstract

Trinuclear complexes of the type $\left[\mathrm{NBu}_{4}\right]_{2}\left[\right.$ trans $\left.-\mathrm{PtX}_{2}\left\{\left(\mu-\mathrm{SC}_{4} \mathrm{H}_{8}\right) \mathrm{Pt}^{(}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right\}_{2}\right](\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$, or $\mathrm{C}_{6} \mathrm{~F}_{5} ; \mathrm{SC}_{4} \mathrm{H}_{8}=$ tetrahydrothiophene) (1)-(4) have been prepared from trans- $\left[\mathrm{PtX}_{2}\left(\mathrm{SC}_{4} \mathrm{H}_{8}\right)_{2}\right]$ and $\mathrm{NBu}_{4}\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{OCMe}_{2}\right)\right]$ (molar ratio 1:2). The $\mathrm{SC}_{4} \mathrm{H}_{8}$ ligands act as the single bridge between the central platinum atom and the two terminal ones. Attempts to prepare similar trinuclear complexes with singly bridging halide ligands failed since the reaction between trans- $\left[\mathrm{PtCl} 2(\mathrm{py})_{2}\right]$ ($p y=$ pyridine) and $\mathrm{NBu}_{4}\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{OCMe}_{2}\right)\right]$ (molar ratio 1:2) does not take place, while trans$\left[\mathrm{Ptl}_{2}(\mathrm{py})_{2}\right]$ or $\left[\mathrm{PtBr}_{2}(\mathrm{cod})\right]$ (cod = cyclo-octa-1,5-diene), under similar conditions, yield cis$\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{py})_{2}\right]$ and $\left[\mathrm{NBu}_{4}\right]_{2}\left[\mathrm{Pt}_{2}(\mu-\mathrm{I})_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ or $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\operatorname{cod})\right]$ and $\left[\mathrm{NBu}_{4}\right]_{2}\left[\mathrm{Pt}_{2}(\mu-\mathrm{Br})_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ respectively. The trinuclear derivatives (1) and (3) react with neutral ligands L to give different mononuclear complexes, depending on the ligand L : when $L=P \mathrm{Ph}_{3}, \mathrm{NBu}_{4}\left[\operatorname{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{SC}_{4} \mathrm{H}_{8}\right)\right]$ and cis- $\left[\mathrm{PtX}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$; when $\mathrm{L}=\mathrm{CO}, \mathrm{NBu}_{4}\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(\mathrm{CO})\right]$ and trans $-\left[\mathrm{PtCl}_{2}\left(\mathrm{SC}_{4} \mathrm{H}_{8}\right)_{2}\right]$. The molecular X-ray diffraction study. The compound forms triclinic crystals in the space group $P \overline{1}$, with $Z=1$ and unit-cell dimensions $a=12.463(3), b=12.487(3), c=15.137(3) \AA, \alpha=85.68(15), \beta=66.04$ (2), and $\gamma=87.04(1)^{\circ}$. The structure was refined to $R=0.048$ and $R^{\prime}=0.048$. The central platinum atom in the trinuclear anion [trans $\left.-\mathrm{PtCl}_{2}\left\{\left(\mu-\mathrm{SC}_{4} \mathrm{H}_{8}\right) \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right\}_{2}\right]^{2-}$ lies on a crystallographic centre of symmetry and is bonded to two Cl atoms and two S atoms (from two $\mathrm{SC}_{4} \mathrm{H}_{8}$ ligands), the latter acting as bridging ligands between the central and the terminal Pt atoms.

Platinum complexes containing weakly co-ordinating ligands are of interest ${ }^{1}$ both as regards the homogeneous activation of organic substrates and as useful intermediates for the synthesis of unusual types of compounds which are inaccessible from other more conventional starting compounds; for instance, we have recently reported the synthesis of neutral cis- $\left[\mathrm{M}\left(\mathrm{C}_{6} \mathrm{X}_{5}\right)_{2}\left(\mathrm{OC}_{4} \mathrm{H}_{8}\right)_{2}\right] \quad(\mathrm{M}=\mathrm{Pd}$ or $\mathrm{Pt} ; \mathrm{X}=\mathrm{F}$ or $\mathrm{Cl} ; \mathrm{OC}_{4} \mathrm{H}_{8}=$ tetrahydrofuran) containing two weakly bonded molecules of $\mathrm{OC}_{4} \mathrm{H}_{8}$ which can readily be displaced by carbon monoxide, diphenylacetylene, and cis-dihalogeno complexes to give the unusual complexes cis- $\left[\mathrm{M}\left(\mathrm{C}_{6} \mathrm{X}_{5}\right)_{2}\right.$ $\left.(\mathrm{CO})_{2}\right],{ }^{2,3}$ cis- $\left[\mathrm{M}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{PhC} \equiv \mathrm{CPh})_{2}\right],{ }^{4}$ tetrameric $\left[\left(\mathrm{C}_{6} \mathrm{X}_{5}\right)_{2^{-}}\right.$ $\left.\mathrm{M}\left(\mu-\mathrm{X}^{\prime}\right) \mathrm{M}^{\prime}(\operatorname{cod})\left(\mu-\mathrm{X}^{\prime}\right) \mathrm{M}\left(\mathrm{C}_{6} \mathrm{X}_{5}\right)_{2}\left(\mu-\mathrm{X}^{\prime}\right) \mathrm{M}^{\prime}(\operatorname{cod})\left(\mu-\mathrm{X}^{\prime}\right)\right],{ }^{5} \quad$ and trimeric $\left[\mathrm{NBu}_{4}\right]_{2}\left[\left(\mathrm{C}_{6} \mathrm{X}_{5}\right)_{2} \mathrm{M}\left(\mu-\mathrm{X}^{\prime}\right)_{2} \mathrm{M}^{\prime}\left(\mu-\mathrm{X}^{\prime}\right)_{2} \mathrm{M}\left(\mathrm{C}_{6} \mathrm{X}_{5}\right)_{2}\right](\mathrm{M}$, $\mathrm{M}^{\prime}=\mathrm{Pd}$ or $\mathrm{Pt} ; \mathrm{X}=\mathrm{F}$ or $\mathrm{Cl} ; \mathrm{X}^{\prime}=\mathrm{Cl}, \mathrm{Br}$, or $\mathrm{I} ; \operatorname{cod}=$ cyclo-octa-1,5-diene). ${ }^{6}$

Another promising precursor would be the complex $\mathrm{NBu}_{4}-$ $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{OCMe}_{2}\right)\right]$ and more so since OCMe_{2} is a weaker donor than $\mathrm{OC}_{4} \mathrm{H}_{8}$ and could therefore be more readily displaced. The synthesis of this complex can be accomplished by chloride abstraction from $\left[\mathrm{NBu}_{4}\right]_{2}\left[\mathrm{PtCl}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]$ with AgClO_{4} (1:1) in acetone solution.

Attempts to isolate the complex by vacuum evaporation of the acetone solutions failed, since the co-ordinated acetone is given off and the binuclear $\mathrm{C}_{6} \mathrm{~F}_{5}$-bridged complex $\left[\mathrm{NBu}_{4}\right]_{2}\left[\mathrm{Pt}_{2}-\right.$ $\left.\left(\mu-\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ is obtained. This complex has been described elsewhere. ${ }^{7}$ Notwithstanding, the acetone solutions behave as if they contain $\mathrm{NBu}_{4}\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{OCMe}_{2}\right)\right]$ and we

[^0]have used them to prepare trinuclear platinum complexes of stoicheiometry $\left[\mathrm{NBu}_{4}\right]_{2}\left[\right.$ trans $\left.-\mathrm{PtX} \mathbf{X}_{2}\left\{\left(\mu-\mathrm{SC}_{4} \mathrm{H}_{8}\right) \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right\}_{2}\right]$ ($\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$, I , or $\mathrm{C}_{6} \mathrm{~F}_{5}$) containing two single-bridging $\mathrm{SC}_{4} \mathrm{H}_{8}$ ligands. The molecular structure of one of these complexes ($\mathrm{X}=$ Cl) has been established by single-crystal X-ray studies and the reactivity of the complexes has been studied.

Results and Discussion

(a) Preparation of Acetone Solutions of $\mathrm{NBu}_{4}\left[\mathrm{Pt}_{\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}-1}\right.$ $\left.\left(\mathrm{OCMe}_{2}\right)\right]$.-The 1:1 reaction between $\left[\mathrm{NBu}_{4}\right]_{2}\left[\mathrm{PtCl}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]$ and AgClO_{4} in acetone results in the precipitation of AgCl . Upon partial evaporation and addition of n-hexane the colourless solution, which presumably contains $\mathrm{NBu}_{4}\left[\mathrm{Pt}\left(\mathrm{C}_{6}-\right.\right.$ $\left.\left.\mathrm{F}_{5}\right)_{3}\left(\mathrm{OCMe}_{2}\right)\right]$, renders only oily residues and if the solution is evaporated to dryness a yellow solid, identified as $\left[\mathrm{NBu}_{4}\right]_{2}-$ $\left[\mathrm{Pt}_{2}\left(\mu-\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ is obtained ${ }^{7}(80 \%$ yield $)$. The bridging system (two $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups) persists in the yellow dichloromethane solution but is lost in the colourless acetone solution. Equation (1) summarizes the above observations.

Therefore, for our purposes we have used the colourless acetone solution, after filtering off the silver chloride precipitate. The solution also contains $\mathrm{NBu}_{4} \mathrm{ClO}_{4}$ which does not interfere in the subsequent reactions.
 $\left.\left(\mathrm{SC}_{4} \mathrm{H}_{8}\right)_{2}\right](\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$, or I$)$.-In the trans - $\left[\mathrm{PtX}_{2}\left(\mathrm{SC}_{4} \mathrm{H}_{8}\right)_{2}\right]$

Table 1. Analytical results, melting points, and yields

	Complex	C	H	N	X	M.p. $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { Yield } \\ (\%) \end{gathered}$
(1)	$\left[\mathrm{NBu}_{4}\right]_{2}\left[\right.$ trans $\left.-\mathrm{PtCl}_{2}\left\{\left(\mu-\mathrm{SC}_{4} \mathrm{H}_{8}\right) \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right\}\right]$	$\begin{gathered} 39.10 \\ (39.35) \end{gathered}$	$\begin{gathered} 3.80 \\ (3.80) \end{gathered}$	$\begin{gathered} 1.10 \\ (1.20) \end{gathered}$	$\begin{gathered} 3.65 \\ (3.05) \end{gathered}$	158	93
(2)	$\left[\mathrm{NBu}_{4}\right]_{2}\left[\right.$ trans $\left.-\mathrm{PtBr}_{2}\left\{\left(\mu-\mathrm{SC}_{4} \mathrm{H}_{8}\right) \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right\}\right]$	$\begin{gathered} 37.55 \\ (37.90) \end{gathered}$	$\begin{gathered} 3.65 \\ (3.65) \end{gathered}$	$\begin{gathered} 1.05 \\ (1.15) \end{gathered}$	$\begin{gathered} 6.30 \\ (6.65) \end{gathered}$	143	71
(3)	$\left[\mathrm{NBu}_{4}\right]_{2}\left[\right.$ trans $\left.-\mathrm{PtI}_{2}\left\{\left(\mu-\mathrm{SC}_{4} \mathrm{H}_{8}\right) \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right\}\right]$	$\begin{gathered} 36.80 \\ (36.45) \end{gathered}$	$\begin{gathered} 3.55 \\ (3.50) \end{gathered}$	$\begin{gathered} 1.15 \\ (1.10) \end{gathered}$	-	135	75
(4)	$\left[\mathrm{NBu}_{4}\right]_{2}\left[\right.$ trans $\left.-\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\left(\mu-\mathrm{SC}_{4} \mathrm{H}_{8}\right) \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right\}\right]$	$\begin{gathered} 40.70 \\ (40.90) \end{gathered}$	$\begin{gathered} 3.50 \\ (3.40) \end{gathered}$	$\begin{gathered} 0.85 \\ (1.10) \end{gathered}$	-	165	87

* Calculated values in parentheses.

Figure. ORTEP drawing of the anion [trans- $\left.\mathrm{PtCl}_{2}\left\{\left(\mu-\mathrm{SC}_{4} \mathrm{H}_{8}\right) \mathrm{Pt}_{\mathrm{t}}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right\}_{2}\right]^{2-}$. All non-metallic atoms are represented by arbitrarily small circles for clarity
complexes we have two pairs of potentially bridging ligands, i.e. the halide ions and the neutral $\mathrm{SC}_{4} \mathrm{H}_{8}$ ligands. Whilst halidebridged complexes are numerous, $\mathrm{SC}_{4} \mathrm{H}_{8}$-bridged complexes are scarce and none has hitherto been reported for platinum. Moreover, most of the reported complexes $\left[\mathrm{Fe}_{3}(\mathrm{CO})_{8}\right.$ $\left.\left(\mathrm{SC}_{4} \mathrm{H}_{8}\right)_{2}\right],{ }^{8} \quad\left[\mathrm{Ta}_{2} \mathrm{Cl}_{6}\left(\mathrm{SC}_{4} \mathrm{H}_{8}\right)_{3}\right),{ }^{9} \quad\left[\mathrm{Ta}_{2} \mathrm{Br}_{6}\left(\mathrm{SC}_{4} \mathrm{H}_{8}\right)_{3}\right],{ }^{10}$ and $\left[\mathrm{Mn}_{2}(\mathrm{CO})_{8}\left(\mathrm{SC}_{4} \mathrm{H}_{8}\right)\right]^{11}$ also have other bridging ligands and/or metal-metal bonds and only the silver complex $\left[\mathrm{Ag}\left(\mathrm{SC}_{4} \mathrm{H}_{8}\right)_{2}\right] \mathrm{BF}_{4}{ }^{12}$ contains chains of silver atoms singly bridged by $\mathrm{SC}_{4} \mathrm{H}_{8}$ along with another $\mathrm{SC}_{4} \mathrm{H}_{8}$ molecule linked to each silver atom as a terminal ligand.

When acetone solutions of $\mathrm{NBu}_{4}\left[\mathrm{Pt}_{\mathrm{C}}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{OCMe}_{2}\right)\right]$ and trans- $\left[\mathrm{PtX}_{2}\left(\mathrm{SC}_{4} \mathrm{H}_{8}\right)_{2}\right]$ (molar ratio 2:1) are evaporated to dryness the trinuclear derivatives $\left[\mathrm{NBu}_{4}\right]_{2}\left[\right.$ trans $-\mathrm{PtX}_{2}\{(\mu-$ $\left.\left.\mathrm{SC}_{4} \mathrm{H}_{8}\right) \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right\}_{2}$] are obtained [equation (2)]. If the

$$
\begin{align*}
& \text { trans- }\left[\mathrm{PtX}_{2}\left(\mathrm{SC}_{4} \mathrm{H}_{8}\right)_{2}\right]+ \\
& 2 \mathrm{NBu}_{4}\left[\mathrm{Pt}_{6}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{OCMe}_{2}\right)\right] \\
& {\left[\mathrm{NBu}_{4}\right]_{2}\left[\text { trans }-\mathrm{PtX}_{2}\left\{\left(\mu-\mathrm{SC}_{4} \mathrm{H}_{8}\right) \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right\}_{2}\right]} \\
& \tag{2}\\
& +2 \mathrm{OCMe}_{2}
\end{align*}
$$

$$
\mathrm{X}=\mathrm{Cl}(\mathbf{1}), \mathrm{Br}(\mathbf{2}), \text { or } \mathrm{I}(\mathbf{3})
$$

reaction is carried out in a 1:1 molar ratio the same trinuclear complexes are obtained, albeit mixed with unreacted trans$\left[\mathrm{PtX}_{2}\left(\mathrm{SC}_{4} \mathrm{H}_{8}\right)_{2}\right]$. On the other hand trans- $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}-\right.$ $\left.\left(\mathrm{SC}_{4} \mathrm{H}_{8}\right)_{2}\right]$ reacts with $\mathrm{NBu}_{4}\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{OCMe}_{2}\right)\right]$ yielding the
trinuclear $\left[\mathrm{NBu}_{4}\right]_{2}\left[\right.$ trans $\left.-\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\left(\mu-\mathrm{SC}_{4} \mathrm{H}_{8}\right) \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right\}_{2}\right]$ (4). Analytical data and melting points for complexes (1)-(4) are collected in Table 1. Acetone solutions of these complexes are highly conducting but their ${ }^{1} \mathrm{H}$ n.m.r. spectra in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$, for the $\mathrm{SC}_{4} \mathrm{H}_{8}$ signals, coincide with the spectra of trans[$\mathrm{PtX}_{2}\left(\mathrm{SC}_{4} \mathrm{H}_{8}\right)_{2}$] indicating the existence of an equilibrium (2) which is totally displaced to the left in the presence of the solvent. Thus the latter must be totally eliminated (evaporating to dryness) in order to displace the equilibrium to the right.
(c) Structure of $\left[\mathrm{NBu}_{4}\right]_{2}\left[\right.$ trans $\left.-\mathrm{PtCl}_{2}\left\{\left(\mathrm{SC}_{4} \mathrm{H}_{8}\right) \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right\}_{2}\right]$ (1).-To establish the structure of complex (1) by X-ray diffraction, single crystals were grown (at $-25^{\circ} \mathrm{C}$) by slow diffusion (ca. 2 weeks) of n-hexane into a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of the complex. Table 2 lists atomic co-ordinates. The compound consists of discrete trinuclear anions and $\mathrm{NBu}_{4}{ }^{+}$cations in a 1:2 ratio.

The structure of the $\left[\text { trans }-\mathrm{PtCl}_{2}\left\{\left(\mu-\mathrm{SC}_{4} \mathrm{H}_{8}\right) \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right\}_{2}\right]^{2-}$ anion is showed in the Figure. Selected bond distances and angles are collected in Table 3. The central platinum atoms sits on a crystallographic centre of symmetry.

The central platinum atom $[\mathrm{Pt}(1)]$ is bonded to two terminal chlorine atoms and two bridging $\mathrm{SC}_{4} \mathrm{H}_{8}$ ligands in a trans-square-planar environment as in the starting material trans[$\mathrm{PtCl}_{2}\left(\mathrm{SC}_{4} \mathrm{H}_{8}\right)_{2}$]. The $\mathrm{Pt}(1)-\mathrm{Cl}$ distance is $2.285(5) \AA$ and $\mathrm{Pt}(1)-\mathrm{S}$ is $2.295(5) \AA$. The $\mathrm{Pt}(1)-\mathrm{Cl}$ distances are in the usual

Table 2. Fractional atomic co-ordinates $\left(\times 10^{4}\right)$ and estimated standard deviations for $\left[\mathrm{NBu}_{4}\right]_{2}\left[\operatorname{trans}-\mathrm{PtCl}_{2}\left\{\left(\mu-\mathrm{SC}_{4} \mathrm{H}_{8}\right) \mathrm{Pt}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right\}_{2}\right]$

Atom	x	y	z	Atom	x	y	z
$\mathrm{Pt}(1)$	0(0)	$10000(0)$	0(0)	C(10)	1896 (12)	7 277(10)	290(8)
$\mathrm{Pt}(2)$	-82(1)	7 920(1)	2 124(1)	C(11)	-439(10)	6406 (8)	2 719(8)
S	222(4)	9 643(4)	$1427(3)$	C(12)	- $1612(10)$	6 108(8)	3 122(8)
$\mathrm{Cl}(1)$	1960 (4)	10 232(6)	-905(4)	C(13)	-1915(10)	5 079(8)	3 555(8)
F(1)	- 1141 (10)	$6795(11)$	794(9)	C(14)	- 1044 (10)	4 347(8)	3 585(8)
$\mathrm{F}(2)$	-80(12)	5866(11)	-928(9)	C(15)	129(10)	4 645(8)	3 182(8)
F(3)	2310 (15)	$5832(13)$	- 1864 (9)	C(16)	432(10)	5 674(8)	2749 (8)
F(4)	3611 (12)	$6703(13)$	- $1058(11)$	C(17)	-653(10)	8 421(9)	3 538(7)
$F(5)$	2 593(9)	7 665(11)	626(9)	C(18)	- $1817(10)$	8 743(9)	4 058(7)
F(6)	-2 467(8)	$6700(9)$	$3111(9)$	C(19)	-2 183(10)	9 023(9)	$5013(7)$
F (7)	-3 018(9)	4 733(10)	3 961(10)	C(20)	- 1386 (10)	8 981(9)	5 449(7)
F(8)	- $1341(12)$	3 347(9)	4 014(12)	C(21)	-222(10)	8 659(9)	4 928(7)
F(9)	929(12)	3 918(11)	3 206(14)	C(22)	145(10)	8 379(9)	3 973(7)
$\mathrm{F}(10)$	1541 (9)	5 919(9)	2371 (10)	C(23)	4 166(16)	$8308(16)$	2330 (13)
F(11)	-2 640(8)	$8852(9)$	3 681(8)	C(24)	4 934(20)	9 278(19)	2 067(16)
F(12)	- 3 280(10)	$9365(11)$	5 527(9)	C(25)	4364 (24)	10 166(24)	1 633(20)
F(13)	-1718(12)	9 253(11)	$6375(8)$	C(26)	5 014(32)	11 166(32)	$1408(26)$
F(14)	525(12)	8619 (11)	5341 (9)	C(27)	$5873(16)$	6 931(16)	$1801(14)$
F(15)	$1215(9)$	8087(10)	3 499(9)	C(28)	5 626(22)	$6613(21)$	897(18)
N	4 705(12)	7 282(11)	2 658(10)	C(29)	$6733(22)$	6230 (21)	163(19)
C(1)	1620 (17)	$10113(16)$	$1353(16)$	C(30)	6 606(24)	5911 (23)	-739(20)
C(2)	1366 (35)	11 341(24)	1488 (22)	C(31)	$5076(15)$	7495 (14)	3 493(12)
C(3)	105(47)	11 551(32)	2 107(34)	C(32)	$4035(16)$	7829 (15)	4 422(14)
C(4)	-683(26)	10 708(17)	2 211(16)	C(33)	4 542(22)	7 995(21)	5 174(19)
C(5)	674(12)	7 279(10)	764(8)	C(34)	3 568(22)	8303 (20)	6 174(18)
C(6)	8(12)	6 804(10)	355(8)	C(35)	$3736(17)$	$6417(16)$	2 972(14)
C(7)	564(12)	$6328(10)$	-529(8)	C(36)	$4154(21)$	5 353(20)	3 329(17)
C(8)	$1786(12)$	6 326(10)	-1003(8)	C(37)	3063 (28)	4 643(28)	3 588(23)
C(9)	2 452(12)	6 800(10)	-594(8)	C(38)	3436 (34)	3 571(35)	3841 (30)

Table 3. Bond distances (\AA) and angles $\left({ }^{\circ}\right)$ and their estimated standard deviations for $\left[\mathrm{NBu}_{4}\right]_{2}\left[\operatorname{trans}-\mathrm{PtCl}_{2}\left\{\left(\mu-\mathrm{SC}_{4} \mathrm{H}_{8}\right) \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right\}_{2}\right]$

$S-P t(1)$	2.295(5)	$\mathrm{C}(22)-\mathrm{F}(15)$	1.280(14)	$\mathrm{Cl}(1)-\mathrm{Pt}(1)$	2.285(5)	$\mathrm{C}(23)-\mathrm{N}$	1.558(22)
$\mathrm{S}-\mathrm{Pt}(2)$	2.303(4)	$\mathrm{C}(27)-\mathrm{N}$	1.574(21)	$\mathrm{C}(5)-\mathrm{Pt}(2)$	2.089(10)	$\mathrm{C}(31)-\mathrm{N}$	1.555(20)
$\mathrm{C}(11)-\mathrm{Pt}(2)$	2.023(9)	$\mathrm{C}(35)-\mathrm{N}$	1.562(23)	$\mathrm{C}(17)-\mathrm{Pt}(2)$	2.097(9)	$\mathrm{C}(2)-\mathrm{C}(1)$	1.562(36)
$\mathrm{C}(1)-\mathrm{S}$	1.825(17)	$\mathrm{C}(3)-\mathrm{C}(2)$	$1.488(46)$	C(4)-S	1.856(21)	$\mathrm{C}(4)-\mathrm{C}(3)$	1.433(48)
C(6)-F(1)	1.312(17)	$\mathrm{C}(24)-\mathrm{C}(23)$	1.509(28)	$\mathrm{C}(7)-\mathrm{F}(2)$	1.354(18)	$\mathrm{C}(25)-\mathrm{C}(24)$	1.535(32)
$\mathrm{C}(8)-\mathrm{F}(3)$	1.377(15)	$\mathrm{C}(26)-\mathrm{C}(25)$	1.465(41)	C(9)-F(4)	1.329(18)	$\mathrm{C}(28)-\mathrm{C}(27)$	1.600(28)
$\mathrm{C}(10)-\mathrm{F}(5)$	1.300 (18)	$\mathrm{C}(29)-\mathrm{C}(28)$	1.461 (30)	$\mathrm{C}(12)-\mathrm{F}(6)$	1.270(14)	$\mathrm{C}(30)-\mathrm{C}(29)$	1.519(32)
$\mathrm{C}(13)-\mathrm{F}(7)$	1.338(15)	$\mathrm{C}(32)-\mathrm{C}(31)$	1.545(23)	$\mathrm{C}(14)-\mathrm{F}(8)$	1.359(13)	$\mathrm{C}(33)-\mathrm{C}(32)$	1.540(29)
$\mathrm{C}(15)-\mathrm{F}(9)$	1.322(16)	C(34)-C(33)	1.567(31)	C(16)-F(10)	1.306(15)	$\mathrm{C}(36)-\mathrm{C}(35)$	1.542(28)
$\mathrm{C}(18)-\mathrm{F}(11)$	1.358(15)	$\mathrm{C}(37)-\mathrm{C}(36)$	$1.558(36)$	$\mathrm{C}(19)-\mathrm{F}(12)$	1.334(15)	$\mathrm{C}(38)-\mathrm{C}(37)$	1.468(44)
$\mathrm{C}(20)-\mathrm{F}(13)$	1.357(13)			C(21)-F(14)	1.313(16)		
$\mathrm{Cl}(1)-\mathrm{Pt}(1)-\mathrm{S}$	94.2(2)	$\mathrm{C}(16)-\mathrm{C}(11)-\mathrm{Pt}(2)$	122.7(3)	$\mathrm{C}(5)-\mathrm{Pt}(2)-\mathrm{S}$	91.1(4)	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{F}(6)$	114.8(6)
$\mathrm{C}(11)-\mathrm{Pt}(2)-\mathrm{S}$	176.5(3)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{F}(6)$	125.1(6)	$\mathrm{C}(11)-\mathrm{Pt}(2)-\mathrm{C}(5)$	88.3(5)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{F}(7)$	123.7(7)
$\mathrm{C}(17)-\mathrm{Pt}(2)-\mathrm{S}$	93.8(3)	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{F}(7)$	116.3(7)	$\mathrm{C}(17)-\mathrm{Pt}(2)-\mathrm{C}(5)$	171.4(5)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{F}(9)$	118.0(7)
$\mathrm{C}(17)-\mathrm{Pt}(2)-\mathrm{C}(11)$	87.2(4)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{F}(8)$	120.0(7)	$\mathrm{Pt}(2)-\mathrm{S}-\mathrm{Pt}(1)$	118.4(2)	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{F}(10)$	118.2(7)
$\mathrm{C}(1)-\mathrm{S}-\mathrm{Pt}(1)$	111.9(7)	$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{F}(9)$	122.0(7)	$\mathrm{C}(1)-\mathrm{S}-\mathrm{Pt}(2)$	109.7(6)	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{Pt}(2)$	121.3(3)
$\mathrm{C}(4)-\mathrm{S}-\mathrm{Pt}(1)$	103.9(8)	$\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{F}(10)$	121.8(7)	$\mathrm{C}(4)-\mathrm{S}-\mathrm{Pt}(2)$	115.4(7)	$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{F}(11)$	115.9(5)
$\mathrm{C}(4)-\mathrm{S}-\mathrm{C}(1)$	95.1(13)	$\mathrm{C}(22)-\mathrm{C}(17)-\mathrm{Pt}(2)$	118.6(3)	$\mathrm{C}(27)-\mathrm{N}-\mathrm{C}(23)$	109.8(13)	$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{F}(12)$	121.9(7)
$\mathrm{C}(31)-\mathrm{N}-\mathrm{C}(23)$	111.9(13)	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{F}(11)$	124.1(5)	$\mathrm{C}(31)-\mathrm{N}-\mathrm{C}(27)$	105.1(12)	$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{F}(13)$	118.8(8)
$\mathrm{C}(35)-\mathrm{N}-\mathrm{C}(23)$	105.5(13)	$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{F}(12)$	118.1(7)	$\mathrm{C}(35)-\mathrm{N}-\mathrm{C}(27)$	112.7(13)	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{F}(15)$	119.7(7)
$\mathrm{C}(35)-\mathrm{N}-\mathrm{C}(31)$	112.0(13)	$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{F}(13)$	121.2(8)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{S}$	102.3(17)	$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{N}$	114.1(16)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	110.8(26)	$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{F}(14)$	120.2(7)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	116.2(29)	$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{C}(24)$	111.5(26)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{S}$	106.1(24)	$\mathrm{C}(17)-\mathrm{C}(22)-\mathrm{F}(15)$	120.3(7)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{Pt}(2)$	122.4(4)	$\mathrm{C}(29)-\mathrm{C}(28)-\mathrm{C}(27)$	108.0(20)
$\mathrm{C}(10)-\mathrm{C}(5)-\mathrm{Pt}(2)$	117.5(4)	$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{C}(23)$	107.6(19)	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{F}(1)$	119.3(7)	$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{N}$	113.2(13)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{F}(1)$	120.7(7)	$\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{N}$	111.3(15)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{F}(2)$	120.2(7)	$\mathrm{C}(34)-\mathrm{C}(33)-\mathrm{C}(32)$	112.4(20)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{F}(2)$	119.8(7)	$\mathrm{C}(30)-\mathrm{C}(29)-\mathrm{C}(28)$	112.7(22)	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{F}(3)$	121.4(10)	$\mathrm{C}(37)-\mathrm{C}(36)-\mathrm{C}(35)$	101.1(21)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{F}(3)$	118.6(10)	$\mathrm{C}(33)-\mathrm{C}(32)-\mathrm{C}(31)$	106.8(16)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{F}(4)$	116.3(9)	$\mathrm{C}(38)-\mathrm{C}(37)-\mathrm{C}(36)$	104.6(28)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{F}(4)$	123.6(9)	$\mathrm{C}(36)-\mathrm{C}(35)-\mathrm{N}$	110.9(16)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{F}(5)$	115.4(6)		
$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{F}(5)$	124.6(6)			$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{Pt}(2)$	117.3(3)		

range for $\mathrm{Pt}^{\mathrm{II}}-\mathrm{Cl}$ (terminal). ${ }^{13} \mathrm{The} \mathrm{Cl}-\mathrm{Pt}(1)-\mathrm{S}$ angle is $94.2(2)^{\circ}$. The terminal $\operatorname{Pt}(2)$ and $\operatorname{Pt}\left(2^{\prime}\right)$ are located in identical squareplanar environments formed by three $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups and a $\mathrm{SC}_{4} \mathrm{H}_{8}$ bridging ligand. The $\mathrm{Pt}-\mathrm{C}$ distances of the $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups in mutually trans position are identical within the experimental
error $[2.089(10)$ and $2.097(9) \AA$], while the $\mathrm{Pt}-\mathrm{C}$ distance corresponding to the $\mathrm{C}_{6} \mathrm{~F}_{5}$ trans to the $\mathrm{SC}_{4} \mathrm{H}_{8}$ is shorter [2.023(9) \AA]. Angles between $\mathrm{Pt}(2)$-cis ligand bonds are in the range 87.2(4)-93.8(3) and the angles $\mathrm{C}(11)-\mathrm{Pt}(2)-\mathrm{S}$ and $\mathrm{C}(17)-\mathrm{Pt}(2)-\mathrm{C}(5)$ are $176.5(3)$ and $171.4(5)^{\circ}$ respectively. Atom

Table 4. Some relevant i.r. absorptions (cm^{-1})

Complex $(1)^{b}$	X-sensitive	
(2)	$802 \mathrm{~s}, 788 \mathrm{~m}, 774 \mathrm{~s}$	958 vs
(3)	$803 \mathrm{~s}, 790 \mathrm{~m}, 773 \mathrm{~s}$	958 vs
(4)	$803 \mathrm{~s}, 790 \mathrm{~m}, 773 \mathrm{~s}$	957 vs
(4)	$804 \mathrm{~s}, 776 \mathrm{~s}, 771 \mathrm{~s}$	959 vs

Others	$\mathrm{SC}_{4} \mathrm{H}_{8}$	NBu_{4}
$1634 \mathrm{w}, 1607 \mathrm{w}, 1495 \mathrm{vs}$,	$1278 \mathrm{w}, 1255 \mathrm{vw}$,	885 m
$1056 \mathrm{vs}, 1044 \mathrm{~s}$	$1247 \mathrm{w}, 517 \mathrm{w}$	
$1634 \mathrm{w}, 1606 \mathrm{w}, 1495 \mathrm{vs}$,	$1277 \mathrm{w}, 1255 \mathrm{vw}$,	885 m
$1056 \mathrm{vs}, 1045 \mathrm{~s}$	$1247 \mathrm{w}, 516 \mathrm{w}$	
$1634 \mathrm{w}, 1606 \mathrm{w}, 1495 \mathrm{vs}$,	$1277 \mathrm{w}, 1255 \mathrm{vw}$,	884 m
$1055 \mathrm{vs}, 1044 \mathrm{~s}$	$1247 \mathrm{w}, 517 \mathrm{w}$	
$1633 \mathrm{~m}, 1605 \mathrm{~m}, 1498 \mathrm{vs}$,	$1271 \mathrm{~m}, 1259 \mathrm{w}$,	884 m
1055 vs	$1255 \mathrm{~m}, 512 \mathrm{w}$	

${ }^{a}$ E. Maslowsky, jun., 'Vibrational Spectra of Organometallic Compounds,' Wiley, New York, 1977, p. 437 and refs. therein. ${ }^{b} v(\mathrm{Pt}-\mathrm{Cl}) 345 \mathrm{w} \mathrm{cm}^{-1} ; c f$. $346 \mathrm{~cm}^{-1}$ for trans- $\left[\mathrm{PtCl}_{2}\left(\mathrm{SC}_{4} \mathrm{H}_{8}\right)_{2}\right]$.
$\mathrm{Pt}(1)$ is linked to $\mathrm{Pt}(2)$ and $\mathrm{Pt}\left(2^{\prime}\right)$ by two single bridging $\mathrm{SC}_{4} \mathrm{H}_{8}$ ligands. The angle $\mathrm{Pt}(2)-\mathrm{S}-\mathrm{Pt}(1)$ is $118.4(2)^{\circ}$ similar to the $\mathrm{Ag}-\mathrm{S}-\mathrm{Ag}$ angle $\left[126.59(7)^{\circ}\right]$ found in $\left[\mathrm{Ag}\left(\mathrm{SC}_{4} \mathrm{H}_{8}\right)_{2}\right] \mathrm{BF}_{4} .{ }^{12}$ Smaller M-S-M angles have been found in other complexes containing bridging $\mathrm{SC}_{4} \mathrm{H}_{8}$ or SR_{2} groups, e.g. $\left[\mathrm{Ta}_{2} \mathrm{Cl}_{6}\right.$ $\left.\left(\mathrm{SMe}_{2}\right)_{3}\right][68.9(2)],{ }^{9}\left[\mathrm{Pt}_{2} \mathrm{Br}_{4}\left(\mathrm{SEt}_{2}\right)_{2}\right]$ [98.1(5)], ${ }^{14}$ and $\left[\mathrm{Fe}_{3}{ }^{-}\right.$ $\left.(\mathrm{CO})_{8}\left(\mathrm{SC}_{4} \mathrm{H}_{8}\right)_{2}\right](73.8)^{8}$ although in these complexes there are metal-metal bonds and/or other bridging ligands.
The co-ordination planes around $\mathrm{Pt}(2)$ and $\mathrm{Pt}(1)$ form an angle of $93.05(25)^{\circ}$.
The $\mathrm{Pt}-\mathrm{S}$ distances are the same within the experimental error [$\mathrm{Pt}(1)-\mathrm{S} 2.295(5), \mathrm{Pt}(2)-\mathrm{S} 2.303(4) \AA$] and slightly longer than analogous distances found in $\left[\left\{\mathrm{PtBr}_{2}\left(\mu-\mathrm{SEt}_{2}\right)\right\}_{2}\right][2.21(1)$ and $2.25(1) \AA] . .^{14}$ It should be noted that these Pt -S bridging distances are slightly shorter than the $\mathrm{Pt}-\mathrm{S}$ terminal one found in $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{SC}_{4} \mathrm{H}_{8}\right) \mathrm{PtAg}\left(\mathrm{PPh}_{3}\right)\right][\mathrm{Pt}-\mathrm{S} 2.328(3) \AA]^{15}$ which can be considered unusual (for instance the reverse is the case with bridging and terminal halide ligands) but not unique, since shorter bridging than terminal $\mathrm{M}-\mathrm{S}$ distances have also been reported in other cases: $\left[\left\{\mathrm{PtBr}_{2}\left(\mu-\mathrm{SEt}_{2}\right)\right\}_{2}\right]$, and $[\mathrm{Pd}(\mu-\mathrm{Br})$ $\left.\mathrm{Br}\left(\mathrm{SMe}_{2}\right)\right]_{2},{ }^{14} \quad\left[\mathrm{Ta}_{2} \mathrm{Cl}_{6}\left(\mathrm{SC}_{4} \mathrm{H}_{8}\right)_{3}\right]$ and $\left[\mathrm{Ta}_{2} \mathrm{Cl}_{6}\left(\mathrm{SMe}_{2}\right)_{3}\right],{ }^{9}$ $\left[\mathrm{Ta}_{2} \mathrm{Br}_{6}\left(\mathrm{SC}_{4} \mathrm{H}_{8}\right)_{3}\right],{ }^{10}\left[\mathrm{Mn}_{2}(\mathrm{CO})_{9}\left(\mathrm{SC}_{4} \mathrm{H}_{8}\right)\right]$, and $\left[\mathrm{Mn}_{2}(\mathrm{CO})_{8^{-}}\right.$ $\left.\left(\mathrm{SC}_{4} \mathrm{H}_{8}\right)\right] .{ }^{11}$
(d) I.r. and N.M.R. Spectra.-Table 4 collects some relevant i.r. absorptions. Although complex (4) should present four absorptions due to the X-sensitive modes of the $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups [three for $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups bonded to the terminal platinum atoms and one for the $\mathrm{C}_{6} \mathrm{~F}_{5}$ (trans) bonded to the central platinum atom], only three strong absorptions are observed in our i.r. spectrum. Probably one of the absorptions due to the $\mathrm{C}_{6} \mathrm{~F}_{5}$ bonded to the terminal platinum atoms which appear for complexes (1)-(3) as a medium-intensity band at $788-790 \mathrm{~cm}^{-1}$ is overlapped with that due to the $\mathrm{C}_{6} \mathrm{~F}_{5}$ group bonded to the central platinum atom. The three absorptions of (4) are strong, while complexes (1)-(3) show two strong and one medium absorption in this region. In the region $1300-1250 \mathrm{~cm}^{-1}$ absorptions due to the $\mathrm{SC}_{4} \mathrm{H}_{8}$ are present. The mononuclear derivatives trans[$\mathrm{PtX} \mathbf{2}_{2}\left(\mathrm{SC}_{4} \mathrm{H}_{8}\right)_{2}$] show in this region a very similar pattern of two strong and very close absorptions, located at 1269 and $1253 \mathrm{~cm}^{-1}$, while the trinuclear complexes also show two absorptions although more separated and of medium intensity (see Table 4). These data suggest that complexes (1)-(4) have the same structure with bridging $\mathrm{SC}_{4} \mathrm{H}_{8}$ ligands. Their very low solubility in CDCl_{3} prevents ${ }^{1} \mathrm{H}$ n.m.r. studies in this solvent. The ${ }^{19} \mathrm{~F}$ n.m.r. spectrum of (4) in $\mathrm{CDCl}_{3}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ shows a very complicated pattern due to the presence in the complex of many inequivalent $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups; since no signals appear in the region corresponding to bridging $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups, ${ }^{7}$ the complex only contains terminal ones.
(e) Reactivity of the Trinuclear Complexes (1)-(3).-If a
weak donor such as acetone causes splitting of the bridge system in the trinuclear complexes, it is expected that stronger ligands will also destroy the polynuclear structure. This expectation was fulfilled in all the cases studied, but two extreme behaviours have been observed: (i) splitting of the Pt (central) $-\mathrm{SC}_{4} \mathrm{H}_{8}$ bonds with simultaneous isomerisation and, (ii) splitting of the $\mathrm{Pt}($ terminal $)-\mathrm{SC}_{4} \mathrm{H}_{8}$ bonds. The former behaviour is illustrated by the reaction (3) $\left(\mathrm{X}=\mathrm{Cl}\right.$ or I) with PPh_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the latter by the reaction (4) with CO . As may be seen, PPh_{3} acts upon the

$$
\begin{align*}
& {\left[\mathrm{NBu}_{4}\right]_{2}\left[\mathrm{PtX}_{2}\left\{\left(\mu-\mathrm{SC}_{4} \mathrm{H}_{8}\right) \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right\}_{2}\right]+2 \mathrm{PPH}_{3} \longrightarrow} \\
& \quad \text { cis- }\left[\mathrm{PtX}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]+2 \mathrm{NBu}_{4}\left[\mathrm{Pt}_{6}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{SC}_{4} \mathrm{H}_{8}\right)\right] \tag{3}
\end{align*}
$$

$\left[\mathrm{NBu}_{4}\right]_{2}\left[\mathrm{PtCl}_{2}\left\{\left(\mu-\mathrm{SC}_{4} \mathrm{H}_{8}\right) \mathrm{Pt}_{(}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right\}_{2}\right]+2 \mathrm{CO} \longrightarrow$

$$
\begin{equation*}
\text { trans }-\left[\mathrm{PtCl}_{2}\left(\mathrm{SC}_{4} \mathrm{H}_{8}\right)_{2}\right]+2 \mathrm{NBu}_{4}\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(\mathrm{CO})\right] \tag{4}
\end{equation*}
$$

central platinum atom which is the less electron-rich metal centre, since it is bonded to only two anionic σ-donor ligands whilst CO attacks the terminal platinum atoms, which being bonded to three anionic σ-donor ligands are electron-richer metal centres. Probably the poorer σ-donor and the better π acceptor abilities of the CO ligand are responsible for its different behaviour. The carbonyl and phosphine complexes have previously been described. ${ }^{7,16}$
(f) Attempts to prepare Halide-bridged Trinuclear Com-plexes.- We have discussed above (b) that the reaction between $\mathrm{NBu}_{4}\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{OCMe}_{2}\right)\right]$ and trans- $\left[\mathrm{PtX}_{2}\left(\mathrm{SC}_{4} \mathrm{H}_{8}\right)_{2}\right]$, containing two pairs of potentially bridging ligands, could give S bridged or X-bridged polynuclear derivatives. Since the former, and rarer, possibility has been demonstrated, it was tempting to see whether the second one could be verified by using a similar reagent containing neutral ligands with donor atoms unable to act as a bridge, e.g. trans- $\left[\mathrm{PtX}_{2}(\mathrm{py})_{2}\right]$ ($\mathrm{py}=$ pyridine) or [$\left.\mathrm{PtBr}_{2}(\mathrm{cod})\right]$ thereby forcing the halide ligands to act as a bridging ligand. Surprisingly, under similar conditions (stirring, for 1 h , room temperature) as above [equation (2)] no reaction occurred between $\mathrm{NBu}_{4}\left[\mathrm{Pt}_{\left.\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{OCMe}_{2}\right)\right] \text { and trans- }}^{\text {- }}\right.$ $\left[\mathrm{PtCl}_{2}(\mathrm{py})_{2}\right]$ and upon evaporation of the solutions unreacted starting materials were recovered. By substituting trans- $\left[\mathrm{PtI}_{2}-\right.$ (py) ${ }_{2}$] for the dichloro derivative reaction (5) takes place but the

$$
\begin{align*}
& \left.2 \mathrm{NBu}_{4}\left[\mathrm{Pt}_{\mathrm{Pt}}^{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{OCMe}_{2}\right)\right]+ \text { trans }-\left[\mathrm{PtI}_{2}(\mathrm{py})_{2}\right] \\
& \quad \text { cis- }\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{py})_{2}\right]+\left[\mathrm{NBu}_{4}\right]_{2}\left[\mathrm{Pt}_{2}\left(\mu-\mathrm{I}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]\right. \tag{5}
\end{align*}
$$

isolated products are the result of ligand rearrangement. An analogous rearrangement has been observed in the reaction between $\mathrm{NBu}_{4}\left[\mathrm{Pt}_{\left.\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{OCMe}_{2}\right)\right] \text { and }\left[\mathrm{PtBr}_{2}(\text { cod })\right] \text { which }}\right.$ yields $\left[\mathrm{NBu}_{4}\right]_{2}\left[\mathrm{Pt}_{2}(\mu-\mathrm{Br})_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ and $\left[\mathrm{Pt}_{\left.\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{cod})\right] .}\right.$

Experimental

The C, H, and N analyses were carried out with a Perkin-Elmer 240-B micronanalyzer. Chlorine and bromine analyses were made as described by White, ${ }^{17}$ a few milligrams of sucrose being added to facilitate combustion. ${ }^{18}$ I.r. spectra were recorded on a Perkin-Elmer 599 spectrophotometer (Nujol mulls between polyethylene plates). Molar conductivities were determined in $5 \times 10^{-4} \mathrm{~mol} \mathrm{dm}{ }^{-3}$ acetone solutions. Proton n.m.r. spectra were recorded on a Varian XL 200 spectrometer $(200 \mathrm{MHz}$ for $\left.{ }^{1} \mathrm{H}\right)$ in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$ or $\mathrm{CDCl}_{3}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Literature methods were used to prepare trans- $\left[\mathrm{PtCl}_{2}\left(\mathrm{SC}_{4}-\right.\right.$ $\left.\left.\mathrm{H}_{8}\right)_{2}\right],{ }^{16}$ trans $-\left[\mathrm{PtCl}_{2}(\mathrm{py})_{2}\right],{ }^{19}$ and $\left[\mathrm{NBu}_{4}\right]_{2}\left[\mathrm{PtCl}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right] .{ }^{20}$
trans- $\left[\mathrm{PtI}_{2}\left(\mathrm{SC}_{4} \mathrm{H}_{8}\right)_{2}\right]$--To a suspension of $\mathrm{PtI}_{2}{ }^{21}(0.2 \mathrm{~g}$, $4.45 \times 10^{-4} \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(25 \mathrm{~cm}^{3}\right), \mathrm{SC}_{4} \mathrm{H}_{8}(78.55 \mu \mathrm{l}$, $8.9 \times 10^{-4} \mathrm{~mol}$) was added and the mixture was stirred at room temperature for 24 h . After filtration, the resulting solution was evaporated to dryness and the orange residue was washed with n-hexane. Yield 95%.
trans- $\left[\mathrm{PtI}_{2}(\mathrm{py})_{2}\right]$.- $\mathrm{To}_{\mathrm{PtI}}^{2}\left(0.3 \mathrm{~g}, 6.7 \times 10^{-4} \mathrm{~mol}\right)$ suspended, in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(30 \mathrm{~cm}^{3}\right)$, py $\left(106 \mu \mathrm{l}, 13.36 \times 10^{-4} \mathrm{~mol}\right)$ was added and the mixture was stirred at room temperature for 5 h . After filtration, the resulting yellow-orange solution was evaporated to dryness and the residue was treated with $\operatorname{Pr}{ }^{\text {i }} \mathrm{OH}\left(10 \mathrm{~cm}^{3}\right)$ yielding a yellow solid, which consisted of a mixture of cis- and trans- $\left[\mathrm{PtI}_{2}(\mathrm{py})_{2}\right]$. This was dissolved in acetone $\left(c a .3 \mathrm{~cm}^{3}\right)$ and water ($c a .30 \mathrm{~cm}^{3}$) and py $\left(0.5 \mathrm{~cm}^{3}\right)$ were added. After refluxing for 3 h , the yellow precipitate formed, $\operatorname{trans}-\left[\mathrm{PtI}_{2}(\mathrm{py})_{2}\right]$, was filtered off and washed with $\mathrm{Pr}^{\mathrm{i} O H}$. Yield 72%.
trans- $\left[\mathrm{PtBr}_{2}\left(\mathrm{SC}_{4} \mathrm{H}_{8}\right)_{2}\right]$.--To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(25 \mathrm{~cm}^{3}\right)$ solution of trans- $\left[\mathrm{PtI}_{2}\left(\mathrm{SC}_{4} \mathrm{H}_{8}\right)_{2}\right]\left(0.5 \mathrm{~g}, 7.99 \times 10^{-4} \mathrm{~mol}\right), \mathrm{AgBr}(0.30 \mathrm{~g}$, $1.59 \times 10^{-3} \mathrm{~mol}$) was added and the mixture, protected from the light, was stirred at room temperature for 48 h . After filtration, the solution obtained was evaporated to dryness and the residue was washed with $\mathrm{Pr}^{\mathrm{i}} \mathrm{OH}$, yielding a yellow solid. Yield 93%.
$\left[\mathrm{NBu}_{4}\right]_{2}\left[\right.$ trans $\left.-\mathrm{PtX}_{2}\left\{\left(\mu-\mathrm{SC}_{4} \mathrm{H}_{8}\right) \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right\}_{2}\right] \quad[\mathrm{X}=\mathrm{Cl}(\mathbf{1})$, $\mathrm{Br}(\mathbf{2}), \mathrm{I}(\mathbf{3})$, or $\mathrm{C}_{6} \mathrm{~F}_{5}$ (4)].-A typical preparation was as follows.

To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-acetone ($6: 1$) ($35 \mathrm{~cm}^{3}$) solution of $\left[\mathrm{NBu}_{4}\right]_{2}\left[\mathrm{PtCl}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]\left(0.5 \mathrm{~g}, 4.11 \times 10^{-4} \mathrm{~mol}\right), \mathrm{AgClO}_{4}$ $\left(0.0852 \mathrm{~g}, 4.11 \times 10^{-4} \mathrm{~mol}\right)$ was added and the mixture, protected from the light, was stirred for 30 min . To the resulting colourless solution, after filtration of the AgCl formed, trans$\left[\mathrm{PtCl}_{2}\left(\mathrm{SC}_{4} \mathrm{H}_{8}\right)_{2}\right]\left(0.0908 \mathrm{~g}, 2.05 \times 10^{-4} \mathrm{~mol}\right)$ was added, the solution was stirred at room temperature for 1 h and then evaporated to dryness. The residue was washed with isopropyl alcohol yielding a pale yellow solid which was filtered off and washed with n-hexane.

Complexes (2)-(4) were prepared similarly, using the same amounts of $\left[\mathrm{NBu}_{4}\right]_{2}\left[\mathrm{PtCl}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]$ and AgClO_{4} as for (1), and trans- $\left[\mathrm{PtBr}_{2}\left(\mathrm{SC}_{4} \mathrm{H}_{8}\right)_{2}\right]\left(0.1089 \mathrm{~g}, 2.05 \times 10^{-4} \mathrm{~mol}\right)$ for (2), trans- $\left[\mathrm{PtI}_{2}\left(\mathrm{SC}_{4} \mathrm{H}_{8}\right)_{2}\right]\left(0.1281 \mathrm{~g}, 2.05 \times 10^{-4} \mathrm{~mol}\right)$ for (3), and trans- $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left(\mathrm{SC}_{4} \mathrm{H}_{8}\right)_{2}\right]\left(0.145 \mathrm{~g}, 2.05 \times 10^{-4} \mathrm{~mol}\right)$ for (4). Yields are reported in Table 1.

Reaction of $\left[\mathrm{NBu}_{4}\right]_{2}\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{OCMe}_{2}\right)\right]$ with trans- $\left[\mathrm{PtX}_{2}-\right.$ (py) ${ }_{2}$ ($\mathrm{X}=\mathrm{Cl}$ or I) or $\left[\mathrm{PtBr}_{2}(\operatorname{cod})\right]$.-To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-acetone (2:1) solution (30 cm^{3}) of $\mathrm{NBu}_{4}\left[\mathrm{Pt}_{\left.\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{OCMe}_{2}\right)\right]}\right.$ (0.2055 mmol), trans $-\left[\mathrm{PtCl}_{2}(\mathrm{py})_{2}\right](0.0436 \mathrm{~g}, 0.1028 \mathrm{mmol})$ was added and the mixture was stirred for 1 h . The resulting solution was evaporated to dryness and the pale yellow residue washed with isopropyl alcohol. By washing this residue with diethyl ether, a white residue, identified as a mixture of trans[$\left.\mathrm{PtCl}_{2}(\mathrm{py})_{2}\right]$ and $\mathrm{NBu}_{4} \mathrm{ClO}_{4}$, and a yellow solution were obtained. When the yellow solution was evaporated to dryness
and treated with $\operatorname{Pr}^{\mathrm{i} O H}$-hexane, $\left[\mathrm{NBu}_{4}\right]_{2}\left[\mathrm{Pt}_{2}\left(\mu-\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}-\right.$ $\left.\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]^{7}$ (yield 58%) was obtained.
The reaction between $\mathrm{NBu}_{4}\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{OCMe}_{2}\right)\right]$ and trans$\left[\mathrm{PtI}_{2}(\mathrm{py})_{2}\right]$ under similar conditions renders a mixture of trans$\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{py})_{2}\right]^{22}$ and $\left[\mathrm{NBu}_{4}\right]_{2}\left[\mathrm{Pt}_{2}(\mu-\mathrm{I})_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]^{16}$ which was separated with MeOH in which the neutral complex is insoluble and the anionic one is soluble.
The complex $\mathrm{NBu}_{4}\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{OCMe}_{2}\right)\right]$ reacted with [$\mathrm{PtBr}_{2}($ cod $\left.)\right]$ under similar conditions yielding a mixture of $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\operatorname{cod})\right]$ and $\mathrm{NBu}_{4}\left[\mathrm{Pt}_{2}(\mu-\mathrm{Br})_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]^{16}$ which was separated with MeOH .

Reaction of $\left[\mathrm{NBu}_{4}\right]_{2}\left[\right.$ trans $\left.-\mathrm{PtX}_{2}\left\{\left(\mu-\mathrm{SC}_{4} \mathrm{H}_{8}\right) \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right\}_{2}\right]$ ($\mathrm{X}=\mathrm{Cl}$ or I) with PPh_{3}.- $\mathrm{To} \mathrm{a} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of complex (1) $\left(0.15 \mathrm{~g}, 6.46 \times 10^{-5} \mathrm{~mol}\right), \mathrm{PPh}_{3}\left(0.034 \mathrm{~g}, 1.129 \times 10^{-4} \mathrm{~mol}\right)$ was added; the solution was stirred at room temperature for 1 h and then evaporated to dryness. The residue was treated with $\mathrm{Et}_{2} \mathrm{O}$ $\left(15 \mathrm{~cm}^{3}\right)$ and the resulting white solid was treated with MeOH $\left(10 \mathrm{~cm}^{3}\right)$ to give a white residue of cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ (identified by C and H analyses and its i.r. spectrum) and a colourless solution. From the solution $\mathrm{NBu}_{4}\left[\mathrm{Pt}_{\mathrm{P}}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{SC}_{4} \mathrm{H}_{8}\right)\right]^{16}$ was obtained by evaporating almost to dryness.

When $\left[\mathrm{NBu}_{4}\right]_{2}\left[\right.$ trans $\left.-\mathrm{PtI}_{2}\left\{\left(\mu-\mathrm{SC}_{4} \mathrm{H}_{8}\right) \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right\}_{2}\right] \quad$ (3) $)^{16}$ was used, under similar conditions, cis- $\left[\mathrm{PtI}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and $\mathrm{NBu}_{4}\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{SC}_{4} \mathrm{H}_{8}\right)\right]$ were obtained.

Reaction of $\left[\mathrm{NBu}_{4}\right]_{2}\left[\right.$ trans- $\left.\mathrm{PtCl}_{2}\left\{\left(\mu-\mathrm{SC}_{4} \mathrm{H}_{8}\right) \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right\}_{2}\right]$ with CO .-Through a $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(25 \mathrm{~cm}^{3}\right)$ solution of complex (1) $(0.15 \mathrm{~g}), \mathrm{CO}$ was bubbled for 15 min and the resulting solution was evaporated to dryness. The residue was treated with diethyl ether, yielding a pale yellow solid identified as trans- $\left[\mathrm{PtCl}_{2}-\right.$ $\left.\left(\mathrm{SC}_{4} \mathrm{H}_{8}\right)_{2}\right]$. The ether solution was evaporated to dryness and the resulting solid was treated with MeOH . The insoluble residue was identified as trans- $\left[\mathrm{PtCl}_{2}\left(\mathrm{SC}_{4} \mathrm{H}_{8}\right)_{2}\right]$ and the MeOH
 (CO) $]^{7}$ (yield 72%).

X-Ray Structure Analysis.-Crystal data. $\mathrm{C}_{76} \mathrm{H}_{88} \mathrm{Cl}_{2} \mathrm{~F}_{30^{-}}$ $\mathrm{N}_{2} \mathrm{Pt}_{3} \mathrm{~S}_{2}, M=2$ 319.8, triclinic, $a=12.463(3), b=12.487(3)$, $c=15.137(3) \AA, \alpha=85.68(15), \beta=66.04(2), \gamma=87.04(1)^{\circ}$, $U=2146 \AA^{3}$ (by refinement of 2θ values for 70 reflections including Friedel pairs, in the range 25-36), space group $P \overline{1}$, $Z=1, \quad D_{\mathrm{c}}=1.79 \mathrm{~g} \mathrm{~cm}^{-3}, \quad F(000)=1112$, size $0.25 \times$ $0.04 \times 0.3 \mathrm{~mm}, \mu\left(\mathrm{Mo}-K_{\alpha}\right)=48.7 \mathrm{~cm}^{-1}$.

Data collection and processing. Siemens/Stoe AED2 fourcircle diffractometer, monochromated Mo- K_{α} radiation ($\lambda=$ $0.71069 \AA$), scan range $4 \leqslant 2 \theta \leqslant 45^{\circ}$. Index range: two sets ($\pm h, \pm k,+l ; \pm h, \pm k,-l)$, total number of reflections 11210 , unique reflections 5315,3069 with $F_{0} \geqslant 5 \sigma\left(F_{0}\right)$ used for all calculations. Scan method $\omega-2 \theta$. Room temperature. Three check reflections were measured every 45 min . They showed an average loss of intensity of 19% during the data collection. An interpolative decay correction was applied. Absorption correction (6ψ scans, with transmission factors $0.249-0.565$).

Structure analysis and refinement. Heavy-atom method. Refinement on F to $R 0.048, R^{\prime} 0.048$. All atoms of the anionic part of the compound were treated as anisotropic, the remaining atoms as isotropic. Phenyl rings were regarded as idealised rigid groups with $\mathrm{C}-\mathrm{C} 1.395 \AA$. Weighting scheme $w=K /\left[\sigma^{2}\left(F_{0}\right)+\right.$ $\left.g F_{0}{ }^{2}\right]$ with $K=1.1996$ and $g=0.0017$. Maximum shift/error 0.011 ; highest peak in difference map 0.8 e $\AA^{-3} ; 399$ parameters. Program system SHELX 76. ${ }^{23}$
Additional material available from the Cambridge Crystallographic Data Centre comprises thermal parameters.

Acknowledgements

We thank the Dirección General de Investigación Científica y Técnica for financial support (project PB85-0128) and for a research grant (to I. A.).

References

1 J. A. Davies and F. R. Hartley, Chem. Rev., 1981, 81, 79.
2 R. Usón, J. Forniés, M. Tomás, and B. Menjón, Organometallics, 1985, 4, 1912.
3 R. Usón, J. Forniés, M. Tomás, and B. Menjón, Organometallics, 1986, 5, 1581.
4 R. Usón, J. Forniés, M. Tomás, B. Menjón, and A. J. Welch, J. Organomet. Chem., 1986, 304, C24.
5 R. Usón, J. Forniés, M. Tomás, B. Menjón, and A. J. Welch, Organometallics, 1988, 7, 1318.
6 R. Usón, J. Forniés, M. Tomás, B. Menjón, J. Carnicer, and A. J. Welch, unpublished work.
7 R. Usón, J. Forniés, M. Tomás, J. M. Casas, F. A. Cotton, L. R. Falvello, and R. Llusar, Organometallics, 1988, 7, 2279; R. Usón, J. Forniés, M. Tomás, J. M. Casas, and R. Navarro, J. Chem. Soc., Dalton Trans., 1989, 169.
8 F. A. Cotton and J. M. Troup, J. Am. Chem. Soc., 1974, 96, 5070.
9 F. A. Cotton and R. C. Najjar, Inorg. Chem., 1981, 20, 2716.
10 J. L. Templeton, W. C. Dorman, J. C. Clardy, and R. E. McCarley, Inorg. Chem., 1978, 17, 1263.
11 E. Guggolz, E. Layer, F. Oberdorfer, and M. Ziegler, Z. Naturforsch., Teil B, 1985, 40, 77.
12 B. Norén and Å. Oskarsson, Acta Chem. Scand., Ser. A, 1984, 38, 479.

13 F. R. Hartley, 'The Chemistry of Platinum and Palladium,' Applied Science, London, 1973, p. 490 and refs. therein.
14 D. L. Sales, J. Stokes, and P. Woodward, J. Chem. Soc. A, 1968, 1852.

15 F. A. Cotton, L. R. Falvello, R. Usón, J. Forniés, M. Tomás, J. M. Casas, and I. Ara, Inorg. Chem., 1987, 26, 1366.
16 R. Usón, J. Forniés, F. Martinez, and M. Tomás, J. Chem. Soc., Dalton Trans., 1980, 888.
17 D. C. White, Mikrochim. Acta, 1961, 449.
18 R. Bock, 'Aufschlussmethoden der anorganischen und organischen Chemie,' Verlag Chemie, Weinheim, 1972, p. 110.
19 G. B. Kauffman, Inorg. Synth., 1963, 7, 249.
20 R. Usón, J. Forniés, M. Tomás, and R. Fandos, J. Organomet. Chem., 1984, 263, 253.
21 G. R. Argue and J. J. Banewicz, J. Inorg. Nucl. Chem., 1963, 25, 923.
22 R. Usón, J. Forniés, J. Gimeno, P. Espinet, and R. Navarro, J. Organomet Chem., 1974, 81, 115.
23 G. M. Sheldrick, SHELX 76 Program for Crystal Structure Determination, University of Cambridge, Cambridge, 1976.

[^0]: * Bis(tetrabutylammonium) trans-2,2-dichloro-1,1,1,3,3,3-hexakis-(pentafluorophenyl)-1,2;2,3-bis(μ-tetrahydrothiophene- S)-triplatinate.
 Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1989, Issue 1, pp. xiii-xx.

