Notes

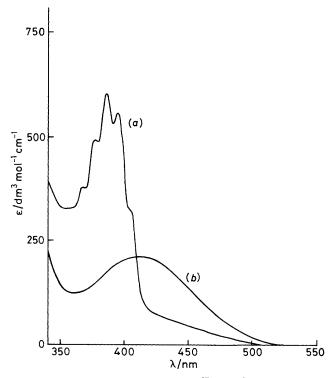
Oxo Transfer Reactions. Mechanistic Studies on the Oxidation of Triphenylphosphine by *trans*- $[Ru^{VI}L(O)_2]^{2+}$ (L = 1,4,8,11-tetramethyl-1,4,8,11-tetra-azacyclotetradecane)[†]

Chi-Ming Che* and Kwok-Yin Wong

Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong

The mechanism for the oxidation of PPh₃ to O=PPh₃ by *trans*- $[Ru^{\vee 1}L(O)_2]^{2+}$ (L = 1,4,8,11tetramethyl-1,4,8,11-tetra-azacyclotetradecane) in CH₃CN was studied from 280 to 299 K. The rate law for the reaction is d $[Ru^{\vee 1}]/dt = k_2[PPh_3][Ru^{\vee 1}]$. At 299 K, k_2 is $(1.28 \pm 0.1) \times 10^2$ dm³ mol⁻¹ s⁻¹. The ΔH^{\pm} and ΔS^{\pm} values are (8.7 ± 0.8) kcal mol⁻¹ and -20 ± 2 cal K⁻¹ mol⁻¹ respectively. A direct comparison between the reactivities of *trans*- $[Ru^{\vee 1}L(O)_2]^{2+}$ and $[Ru^{\vee}(bipy)_2(py)(O)]^{2+}$ (bipy = 2,2'- bipyridine; py = pyridine) towards the oxidation of PPh₃ shows the ruthenium(iv) complex to react 1 000 times faster.

Oxo complexes of ruthenium-(vi), -(v), and -(iv) have received much attention in recent years because of their remarkable abilities as stoichieometric and catalytic oxidants.¹⁻⁶ Among the various oxoruthenium species, the ruthenium (IV) complex $[Ru(bipy)_2(py)(O)]^{2+}$ (bipy = 2,2'-bipyridine; py = pyridine) has been extensively studied by Meyer and co-workers.² Oxidation by this complex can proceed through a variety of pathways including O-atom transfer, H-atom and hydride abstraction. In contrast, although a number of trans-dioxoruthenium(VI) species have been synthesized 1c,d,3b,d,4,6 and shown to be good oxidants for quite some time, relatively few mechanistic details are known. We have thus initiated a programme to study the reactions of *trans*-dioxoruthenium(VI) complexes with various inorganic and organic substrates in order to elucidate the mechanistic pathways occurring under given conditions, and the factors governing these.


Herein we report the results of a kinetic study on the oxidation of PPh₃ to $O=PPh_3$ by *trans*-[Ru^{VI}L(O)₂]²⁺ (L = 1,4,8,11-tetramethyl-1,4,8,11-tetra-azacyclotetradecane).

The goal of this work is to obtain detailed kinetic, thermodynamic, and mechanistic information about the oxygen-atom transfer reactions of Ru^{Vl} . The above system is particularly attractive because the redox and structural properties of the RuL oxo complexes have been well characterized.^{1c} An analogous mechanistic study on the oxidation of PPh₃ by $[Ru^{IV}(bipy)_2(py)(O)]^{2+}$ was reported by Meyer and coworkers⁷ a few years ago.

Experimental

Triphenylphosphine was recrystallized three times from absolute ethanol and dried in vacuum overnight. Infrared analysis showed that it was free from triphenylphosphine oxide $[v(P=O) \approx 1.195 \text{ cm}^{-1}]$. Acetonitrile (Mallinkrodt, ChromAR) was distilled over KMnO₄ and CaH₄. The complex *trans*-[Ru^{VI}L(O)₂][PF₆]₂ was prepared as described previously.^{1c}

Kinetics.—The kinetics of oxidation of PPh₃ by *trans*- $[Ru^{VI}L(O)_2]^{2+}$ was studied in acetonitrile by stopped-flow spectrophotometry. A HI-TECH stopped flow spectrophotometer equipped with an Aminco DASAR (data acquisition, storage, and retrieval) system directly linked to an Apple II

Figure. U.v.-visible spectra of *trans*- $[Ru^{VI}L(O)_2]^{2+}$ in acetonitrile before (a) and after addition of PPh₃ (b)

microcomputer was used. Second-order rate constants and activation parameters were obtained by least-squares calculations.

Results

The Figure shows the u.v.-visible spectral changes when excess of PPh_3 is added to an acetonitrile solution of *trans*-

 $[\]dagger$ Non-S.I. unit employed: cal = 4.184 J.

T/K	10 ³ [PPh ₃]/ mol dm ⁻³	$k_{ m obs.}/ m s^{-1}$	$k_{obs} [PPh_3]^{-1}/dm^3 mol^{-1} s^{-1}$
280.0	10	0.43	43.0
200.0	20	0.79	39.5
	30	1.20	40.0
	40	1.72	43.0
	50	2.20	44.0
284.0	10	0.50	50.0
	20	1.00	50.0
	30	1.60	53.3
	40	2.20	55.0
	50	2.76	55.2
292.7	10	0.88	88.0
	20	1.60	80.0
	30	2.42	80.7
	40	3.40	85.0
	50	4.22	84.4
299.0	10	1.23	123.0
	20	2.45	122.5
	30	3.83	127.6
	40	5.30	132.5

Table. Kinetic data for the oxidation of PPh₃ by *trans*- $[Ru^{VI}L(O)_2]^{2+}$ (1.0 × 10⁻³ mol dm⁻³) in CH₃CN *

* Each rate constant is the average of four or more experimental determinations under the same reaction conditions.

 $[Ru^{VI}L(O)_2]^{2^+}$ at room temperature. The vibronic structured absorption band of the ruthenium(VI) complex at 388 nm disappears with concomitant formation of a peak at 420 nm. The resulting species had been isolated and structurally characterized by X-ray crystallography as *trans*- $[Ru^{IV}L(O)-(CH_3CN)]^{2^+}$.^{1a} By spectrophotometric analysis at 420 nm, the yield for the conversion of *trans*- $[Ru^{VI}L(O)_2]^{2^+}$ into *trans*- $[Ru^{IV}L(O)(CH_3CN)]^{2^+} = 190 \text{ dm}^3 \text{ mol}^{-1} \text{ cm}^{-1} (\lambda = 420)\}$.^{1c} The ruthenium(IV) product showed no reactivity toward PPh₃. As PPh₃ is a well-known oxygen-atom acceptor, the overall reaction is as in equation (1) with the O=PPh₃ product

$$trans-[Ru^{VI}L(O)_2]^{2+} + PPh_3 \xrightarrow{CH_3CN} trans-[Ru^{IV}L(O)(CH_3CN)]^{2+} + O=PPh_3 \quad (1)$$

identified by i.r. spectroscopy (1 195 cm⁻¹).

The kinetics of the PPh₃ oxidation [equation (1)] was monitored at 390 and 420 nm by stopped-flow spectrophotometry under pseudo-first order conditions {[Ru^{VI}] = 10^{-3} , [PPh₃] = $(1-5) \times 10^{-2}$ mol dm⁻³}. Only a one-step reaction was observed; on mixing the absorbance at 390 nm rapidly decayed to a constant value that remained unchanged even over extended periods. The reaction has been found to obey the rate law: rate = k_{obs} [Ru^{V1}] where $k_{obs.} = k_2$ [PPh₃]. The bimolecular rate constant k_2 was invariant in the presence of added electrolyte, such as 0.01 mol dm⁻³ [NBuⁿ₄][PF₆]. The kinetic data are presented in the Table. At 26 °C, the second order rate constant k_2 is $(1.28 \pm 0.1) \times 10^2$ dm³ mol⁻¹ s⁻¹. Activation parameters ΔH^{\ddagger} and ΔS^{\ddagger} obtained over a temperature range 280—299 K are 8.7 \pm 0.8 kcal mol⁻¹ and -20 ± 2 cal K⁻¹ mol⁻¹ respectively.

Discussion

The oxidation of PPh₃ to O=PPh₃ by ruthenium- and osmium-oxo complexes has been reported in several instances.^{1a,6-9} For example, the reaction between $[Os(oep)-(O)_2](H_2oep = octaethylporphyrin)$ and PPh₃ was found to give $[Os(oep)(OPPh_3)_2]$.⁸ Meyer and co-workers ⁷ studied the

mechanism of the PPh₃ oxidation by $[Ru^{IV}(bipy)_2(py)(O)]^{2+}$ in acetonitrile and concluded that the reaction involved concerted oxygen-atom transfer, as represented in equations (2)—(4).

$$M=O + PPh_3 \Longrightarrow [M=O \cdots PPh_3]$$
(2)

$$[M=O \cdots PPh_3] \longrightarrow M-OPPh_3 \qquad (3)$$

$$M-OPPh_3 + CH_3CN \longrightarrow M-N \equiv C-CH_3 + OPPh_3$$
 (4)

In this work, the outer-sphere one-electron oxidation of PPh₃ by *trans*-[Ru^{V1}L(O)₂]²⁺ is not feasible because the E_{\pm} value of the *trans*-[Ru^{V1}L(O)₂]^{2+/+} couple occurs at 0.32 V vs. saturated calomel electrode (s.c.e.),^{1c} which is substantially lower than that for the PPh₃^{+/0} couple (>1.32 V vs. s.c.e.).⁷ The large negative ΔS^{\pm} of -20 ± 2 cal K⁻¹ mol⁻¹, which is virtually identical to the value for the corresponding oxidation by [Ru^{IV}(bipy)₂(py)O]²⁺ (-19 ± 3 cal K⁻¹ mol⁻¹),⁷ suggests that both *trans*-[Ru^{V1}L-(O)₂]²⁺ and [Ru^{IV}(bipy)₂(py)(O)]²⁺ react by the same pathway. However, unlike the latter system,⁷ only a one-step reaction was found in the present case, suggesting that the initial product *trans*-[Ru^{IV}L(O)(OPPh₃)]²⁺, once formed, undergoes very rapid solvolysis to give *trans*-[Ru^{IV}L(O)(CH₃CN)]²⁺. The lability of the ligand *trans* to the oxo group is consistent with the bond length found in the related complexes *trans*-[Ru^{IV}L(O)(X)]ⁿ⁺ (X = CH₃CN, n = 2; X = Cl, NCO, n = 1).^{1c}

A direct comparison between the reactivities of trans- $[Ru^{VI}L(O)_2]^{2+}$ and $[Ru^{IV}(bipy)_2(py)(O)]^{2+}$ toward oxidation of PPh₃ reveals that the latter complex is about 10³ times more reactive than the former (Ru^{IV} 1.75 \times 10⁵, Ru^{VI} 1.28 \times 10² dm³ mol⁻¹ s⁻¹ at 26 °C). More importantly, this 10³-fold difference in rate constants is primarily due to the difference in ΔH^{\ddagger} (ΔH^{\ddagger} : Ru^{VI}, 8.7; Ru^{IV}, 4.7 kcal mol⁻¹).⁷ Meyer and co-workers⁷ suggested that ΔH^{\ddagger} is composed of two terms, ΔH_{A} for a preequilibrium association of the reactants [equation (2)] and $\Delta H_{\mathbf{k}}^{\ddagger}$ for the redox step [equation (3)]. Since ΔH_A is usually very small (about 0.5 kcal mol⁻¹), the major contribution to ΔH^{\ddagger} comes from ΔH_{R}^{\ddagger} . The much higher ΔH_{R}^{\ddagger} for trans-[Ru^{VI}L- $(O)_2]^{2+}$ than for $[Ru^{IV}(bipy)_2(py)(O)]^{2+}$ can be attributed to the stronger Ru=O bond and the lower redox potential of the former system. Although the X-ray crystal structure of $[Ru^{IV}(bipy)_2(py)(O)]^{2+}$ is unknown, its Ru=O bond length is expected to be similar to that for trans-[$Ru^{IV}(py)_4(O)Cl$]^{+,10} which is ≈ 0.16 Å longer than the Ru=O bond in trans- $[Ru^{VI}L(O)_2]^{2+}$. On the other hand, $[Ru^{IV}(bipy)_2(py)(O)]^{2+}$ is also a stronger oxidant than trans-[Ru^{VI}L(O)₂]²⁺ (0.99¹¹ versus 0.66V^{1c} vs. s.c.e. at pH 1.0). In the redox step represented by equation (3), if the activation barrier mostly comes from the charge-transfer from PPh₃ to the metal centre, a stronger oxidant would lead to a faster rate.

Acknowledgements

We acknowledge financial supports from the Department of Chemistry, University of Hong Kong.

References

- (a) C. M. Che, K. Y. Wong, and T. C. W. Mak, J. Chem. Soc., Chem. Commun., 1985, 546; (b) ibid., p. 988; (c) C. M. Che, T. F. Lai, and K. Y. Wong, Inorg. Chem., 1987, 22, 2289; (d) C. M. Che, K. Y. Wong, W. H. Leung, and C. K. Poon, ibid 1986, 25, 345.
- W. K. Seok, J. C. Dobson, and T. J. Meyer, *Inorg. Chem.*, 1988, 27, 5; 1986, 25, 1415; R. A. Binstead and T. J. Meyer, *J. Am. Chem. Soc.*, 1987, 109, 3287; J. Gilbert, L. Roecker, and T. J. Meyer, *Inorg. Chem.*, 1987, 26, 1126; L. Roecker and T. J. Meyer, *J. Am. Chem. Soc.*, 1987, 109, 746.
- 3 (a) A. M. El-Hendawy, W. P. Griffith, B. Piggott, and D. J. Williams, J. Chem. Soc., Dalton Trans., 1983, 1983; (b) G. Green, W. P. Griffith, D. M. Hollinshead, S. V. Ley, and M. Schröder, J. Chem. Soc., Perkin

Trans. 1, 1984, 681; (c) W. P. Griffith, S. V. Ley, and A. D. White, *J. Chem. Soc., Chem. Commun.*, 1987, 1625; (d) A. M. El-Hendawy, W. P. Griffith, B. Piggott, and D. J. Williams, *J. Chem. Soc., Dalton Trans.*, 1988, 1983.

- 4 J. T. Groves and R. Quinn, J. Am. Chem. Soc., 1985, 107, 5790, Inorg. Chem., 1984, 23, 3844.
- 5 M. E. Marmion and K. J. Takeuchi, J. Am. Chem. Soc., 1988, 110, 1472; 1986. 108, 510.
- 6 T. C. Lau and J. K. Kochi, J. Chem. Soc., Chem. Commun., 1987, 179.
- 7 B. A. Moyer, B. K. Spe, and T. J. Meyer, Inorg. Chem., 1981, 20, 1475.
- 8 C. M. Che, W. C. Chung, T. F. Lai, W. P. Schaefer, and H. B. Gray, Inorg. Chem., 1987, 26, 3907.
- 9 F. C. Anson, J. A. Christie, T. J. Collins, R. J. Coots, T. J. Furutaini, S. L. Gipson, J. T. Keech, T. E. Krafft, B. D. Santarsiers, and G. H. Spies, J. Am. Chem. Soc., 1984, 106, 4460.
- 10 Y. Yukawa, K. Aoyagi, M. Kurihara, K. Shirai, K. Shimizu, M. Mukaida, T. Takeuchi, and H. KaKihana, *Chem. Lett.*, 1985, 283.
- 11 B. A. Moyer and T. J. Meyer, Inorg. Chem., 1981, 20, 436.

Received 1st November 1988: Paper 8/04353A