Tri- and Tetra-nuclear Homo- or Hetero-metallic Palladium(II) and Platinum(II) Complexes with Double Halide Bridges. Molecular Structure of $\left[\mathrm{NBu}_{4}\right]_{2}\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}(\mu-\mathrm{Cl})_{2} \mathrm{Pt}(\mu-\mathrm{Cl})_{2} \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right]^{*}$

Rafael Usón, Juan Forniés, Milagros Tomás, Babil Menjón, and Javier Carnicer
Departamento de Química Inorgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de
Zaragoza-C.S.I.C., 50009 Zaragoza, Spain
Alan J. Welch
Department of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ

Abstract

By treating cis $-\left[M\left(\mathrm{C}_{6} \mathrm{X}_{5}\right)_{2}(\text { thf })_{2}\right](\mathrm{M}=\mathrm{Pd}$ or $\mathrm{Pt}, \mathrm{X}=\mathrm{F}$ or Cl , thf $=$ tetrahydrofuran $)$ with $\left[\mathrm{M}^{\prime} \mathrm{X}_{4}^{\prime}\right]^{2-}$ or $\left[\mathrm{M}_{2}^{\prime}\left(\mu-\mathrm{X}^{\prime}\right)_{2} \mathrm{X}_{4}^{\prime}\right]^{2-}\left(\mathrm{M}^{\prime}=\mathrm{Pd}\right.$ or $\mathrm{Pt} ; \mathrm{X}^{\prime}=\mathrm{Cl}$ or Br$)$ in a $2: 1$ ratio tri- or tetra-nuclear, homo- or heterometallic complexes of the types $\left[\mathrm{NBu}_{4}\right]_{2}\left[\left(\mathrm{C}_{6} \mathrm{X}_{5}\right)_{2} \mathrm{M}\left(\mu-\mathrm{X}^{\prime}\right)_{2} \mathrm{M}^{\prime}\left(\mu-\mathrm{X}^{\prime}\right)_{2} \mathrm{M}\left(\mathrm{C}_{6} \mathrm{X}_{5}\right)_{2}\right]$ or $\left[\mathrm{NBu}_{4}\right]_{2}\left[\left(\mathrm{C}_{6} \mathrm{X}_{5}\right)_{2} \mathrm{M}\left(\mu-\mathrm{X}^{\prime}\right)_{2} \mathrm{M}^{\prime}\left(\mu-\mathrm{X}^{\prime}\right)_{2} \mathrm{M}^{\prime}\left(\mu-\mathrm{X}^{\prime}\right)_{2} \mathrm{M}\left(\mathrm{C}_{6} \mathrm{X}_{5}\right)_{2}\right]$ can be obtained. The molecular structure of the trinuclear anion with $M=M^{\prime}=P t, X=F, X^{\prime}=C I$ has been established by single-crystal X-ray crystallography. The anion is centrosymmetric, showing a square-planar PtCl_{4} central unit embraced by two $\operatorname{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}$ terminal moieties bonded to the central platinum atom through double chloride bridges.

With the exception of the fluorides, the crystal chemistry of palladium(II) and platinum(II) halide complexes is dominated by square-planar co-ordination, ${ }^{1}$ as observed not only in mononuclear derivatives (e.g. $\left[\mathrm{MX}_{2} \mathrm{~L}_{2}\right]$ or $\left[\mathrm{MX}_{4}\right]^{2-}$), but also in the simple halides MX_{2}, for which two different structures are known, one based on the cluster $\mathrm{M}_{6} \mathrm{Cl}_{12}$ and the second polymeric in nature. Oligomeric species ranging between these two limits of nuclearity are mostly represented by binuclear derivatives containing the halide doubly bridged moiety $>\mathrm{M}(\mu-\mathrm{X})_{2} \mathrm{M}<.^{1-4} \quad$ Palladium(II) or platinum(II) halide complexes of higher nuclearity are scarcely represented, e.g. ones containing a tetranuclear eight-membered ring $\left[\mathrm{M}_{\left(\mathrm{C}_{6} \mathrm{X}_{5}\right)_{2}\left(\mu-\mathrm{X}^{\prime}\right) \mathrm{M}^{\prime}\left(\eta^{4}-1,5-\mathrm{C}_{8} \mathrm{H}_{12}\right)\left(\mu-\mathrm{X}^{\prime}\right) \mathrm{M}\left(\mathrm{C}_{6} \mathrm{X}_{5}\right)_{2}\left(\mu-\mathrm{X}^{\prime}\right) \mathrm{M}^{\prime}-}^{\text {- }}\right.$ $\left.\left(\eta^{4}-1,5-\mathrm{C}_{8} \mathrm{H}_{12}\right)\left(\mu-\mathrm{X}^{\prime}\right)\right]^{5}$ or the trinuclear halide-bridged complexes which have been suggested to be formed in cyclization and oligomerization reactions of alkynes on palladium or platinum centres. ${ }^{6}$ To the best of our knowledge though, only the trinuclear complex containing terminal allyl groups, $\left[\mathrm{Pd}_{3}\left(\eta^{3}-\mathrm{C}_{4} \mathrm{H}_{7}\right)_{2} \mathrm{Cl}_{4}\right]$ has been structurally characterized. ${ }^{7}$

Here we report a general and straightforward method for the synthesis of a variety of homo- or hetero-metallic palladium(II) trinuclear, $\mathrm{Q}_{2}\left[\left(\mathrm{C}_{6} \mathrm{X}_{5}\right)_{2} \mathrm{M}\left(\mu-\mathrm{X}^{\prime}\right)_{2} \mathrm{M}^{\prime}\left(\mu-\mathrm{X}^{\prime}\right)_{2} \mathrm{M}\left(\mathrm{C}_{6} \mathrm{X}_{5}\right)_{2}\right]$, or tetranuclear, $\mathrm{Q}_{2}\left[\left(\mathrm{C}_{6} \mathrm{X}_{5}\right)_{2} \mathrm{M}\left(\mu-\mathrm{X}^{\prime}\right)_{2} \mathrm{M}^{\prime}\left(\mu-\mathrm{X}^{\prime}\right)_{2} \mathrm{M}^{\prime}\left(\mu-\mathrm{X}^{\prime}\right)_{2} \mathrm{M}\left(\mathrm{C}_{6} \mathrm{X}_{5}\right)_{2}\right]$, complexes, where the metal centres are doubly bridged by halide anions. This method is based on the ability of the complex anions $\left[\mathrm{M}^{\prime} \mathrm{X}^{\prime}{ }_{4}\right]^{2-}$ or $\left[\mathrm{M}^{\prime}{ }_{2} \mathrm{X}^{\prime}{ }_{6}\right]^{2-}$ to act as chelating ligands displacing the labile tetrahydrofuran (thf) ligands in cis- $\left[\mathrm{M}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}(\mathrm{thf})_{2}\right]$.

Results and Discussion

We have recently ${ }^{8}$ synthesized the complexes cis- $\left[\mathrm{M}\left(\mathrm{C}_{6} \mathrm{X}_{5}\right)_{2}{ }^{-}\right.$ $\left.(\text { thf })_{2}\right](\mathrm{M}=\mathrm{Pd}$ or $\mathrm{Pt} ; \mathrm{X}=\mathrm{F}$ or Cl$)$ which are white stable solids. Since the thf ligands are weakly co-ordinating, they can readily be displaced under mild conditions, for instance by CO or acetylenes, to give cis- $\left[\mathrm{M}\left(\mathrm{C}_{6} \mathrm{X}_{5}\right)_{2}(\mathrm{CO})_{2}\right]^{8.9}$ or cis$\left[\mathrm{M}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{PhC} \equiv \mathrm{CPh})_{2}\right]^{10}$ respectively. Even the halide ions in $\left[\mathrm{M}^{\prime} \mathrm{X}^{\prime}{ }_{2}(\operatorname{cod})\right]\left(\mathrm{M}^{\prime}=\mathrm{Pd}\right.$ or $\mathrm{Pt} ;$ cod $=$ cyclo-octa-1,5-diene $)$ can displace the thf ligands to give asymmetric homo- or heteronuclear neutral complexes $\left[\left\{\left(\mathrm{C}_{6} \mathrm{X}_{5}\right)_{2} \mathrm{M}\left(\mu-\mathrm{X}^{\prime}\right)_{2} \mathrm{M}^{\prime}(\operatorname{cod})\right\}_{n}\right]\left(\mathrm{X}^{\prime}\right.$ $=\mathrm{Cl}, \mathrm{Br}$, or $\mathrm{I} ; \mathrm{M}=\mathrm{Pd}^{\mathrm{II}}$ or $\left.\mathrm{Pt}^{\mathrm{l}}\right)$ which are binuclear $(n=1)$
doubly halide-brid'ged in solution or tetranuclear $(n=2)$ singly halide-bridged in the solid state. ${ }^{5}$

A general method for the deliberate synthesis of tri- or tetranuclear derivatives has been developed by appropriate choice of reagents: thus, by treating cis- $\left[\mathrm{M}\left(\mathrm{C}_{6} \mathrm{X}_{5}\right)_{2}(\mathrm{thf})_{2}\right]$ with salts (2:1), either $\left[\mathrm{M}^{\prime} \mathrm{X}_{4}^{\prime}\right]^{2-}$ or $\left[\mathrm{M}^{\prime}{ }_{2}\left(\mu-\mathrm{X}^{\prime}\right)_{2} \mathrm{X}^{\prime}{ }_{4}\right]^{2-}$, tri- or tetranuclear anionic derivatives, are obtained. Remarkably no rearrangement reactions have been observed.
(a) Synthesis of the Trinuclear Complexes.-The reactions take place as represented in equation (1) $\left[\mathrm{Q}=\mathrm{NEt}_{4} ; \mathrm{M}=\right.$

$$
\begin{align*}
& \mathrm{Q}_{2}\left[\mathrm{M}^{\prime} \mathrm{X}_{4}^{\prime}\right]+2 \text { cis- }\left[\mathrm{M}\left(\mathrm{C}_{6} \mathrm{X}_{5}\right)_{2}(\mathrm{thf})_{2}\right] \longrightarrow \\
& \mathrm{Q}_{2}\left[\left(\mathrm{C}_{6} \mathrm{X}_{5}\right)_{2} \mathrm{M}\left(\mu-\mathrm{X}^{\prime}\right)_{2} \mathrm{M}^{\prime}\left(\mu-\mathrm{X}^{\prime}\right)_{2} \mathrm{M}\left(\mathrm{C}_{6} \mathrm{X}_{5}\right)_{2}\right]+4 \text { thf } \tag{1}
\end{align*}
$$

$\mathrm{M}^{\prime}=\mathrm{Pd} ; \mathrm{X}=\mathrm{F}, \mathrm{X}^{\prime}=\mathrm{Cl}(\mathbf{1}) ; \mathrm{X}=\mathrm{Cl}, \mathrm{X}^{\prime}=\mathrm{Cl}(\mathbf{3}) ; \mathrm{M}=\mathrm{Pt}$, $\mathrm{M}^{\prime}=\mathrm{Pd} ; \mathrm{X}=\mathrm{F}, \mathrm{X}^{\prime}=\mathrm{Cl}$ (4); $\mathrm{X}=\mathrm{Cl}, \mathrm{X}^{\prime}=\mathrm{Cl}$ (5); $\mathrm{Q}=$ $\mathrm{NBu}_{4} ; \mathrm{M}=\mathrm{M}^{\prime}=\mathrm{Pt}, \mathrm{X}=\mathrm{F}, \mathrm{X}^{\prime}=\mathrm{Cl}(\mathbf{2}) ; \mathrm{M}=\mathrm{Pd}, \mathrm{M}^{\prime}=\mathrm{Pt}$, $\left.\mathrm{X}=\mathrm{F}, \mathrm{X}^{\prime}=\mathrm{Cl}(6)\right]$. The salt $\left[\mathrm{NEt}_{4}\right]_{2}\left[\mathrm{PdCl}_{4}\right]$ is used as the palladium reagent, $\mathrm{K}_{2}\left[\mathrm{PtCl}_{4}\right]$ is the platinum precursor [complexes (2) and (6)], and $\mathrm{NBu}_{4} \mathrm{ClO}_{4}$ is added to the reaction mixture to facilitate the isolation of the trinuclear complexes. Complex (5) precipitates during the reaction, whereas the isolation of the other compounds requires evaporation to dryness and some working up (see Experimental section). As may be seen from equation (1), suitable choice of M and M^{\prime} allows the syntheses of homo- or hetero-metallic derivatives.

Table 1 collects analytical (C, H, and N), conductivity, and relevant i.r. data for these complexes. They behave as $2: 1$ electrolytes in acetone solutions ($c \approx 5 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$). ${ }^{11}$ Two i.r. absorptions due to the X -sensitive modes of the $\mathrm{C}_{6} \mathrm{X}_{5}$ groups or to $v(M-C)\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)$ indicate that the cis geometry is retained after reaction. ${ }^{12}$
(b) Structure of $\left[\mathrm{NBu}_{4}\right]_{2}\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}(\mu-\mathrm{Cl})_{2} \mathrm{Pt}(\mu-\mathrm{Cl})_{2} \mathrm{Pt}-\right.$ $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}$] (2).-The structure of complex (2) has been

[^0]Table 1. Analytical results, conductivity, and relevant i.r. data $\left(\mathrm{cm}^{-1}\right)$ for the complexes

Complex ${ }^{\text {a }}$	$\overbrace{\text { Analysis }{ }^{\text {b }} \text { \% }}^{\text {A }}$			$\begin{gathered} \Lambda_{\mathrm{M}} / \\ \text { ohm }^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1} \end{gathered}$	I.r.			
	C	H	N		X-sensitive	$v(\mathrm{M}-\mathrm{C})$	$v(\mathrm{M}-\mathrm{X})$	
(1) $\mathrm{Q}_{2}\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pd}(\mu-\mathrm{Cl})_{2} \mathrm{Pd}(\mu-\mathrm{Cl})_{2} \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right]$	$\begin{gathered} 34.1 \\ (34.6) \end{gathered}$	$\begin{gathered} 3.0 \\ (2.9) \end{gathered}$	$\begin{gathered} 2.1 \\ (2.0) \end{gathered}$		177	798, 782	-	$\begin{aligned} & 328 \mathrm{vs}, 267 \mathrm{~s}, 255(\mathrm{sh}), \\ & 245(\mathrm{sh}) \end{aligned}$
(2) $\mathrm{Q}^{\prime}{ }_{2}\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}(\mu-\mathrm{Cl})_{2} \mathrm{Pt}(\mu-\mathrm{Cl})_{2} \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right]$	$\begin{gathered} 35.6 \\ (35.8) \end{gathered}$	$\begin{gathered} 3.6 \\ (3.8) \end{gathered}$	$\begin{gathered} 1.5 \\ (1.5) \end{gathered}$	198	812,800	-	330 vs , 270m	
(3) $\mathrm{Q}_{2}\left[\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{2} \mathrm{Pd}(\mu-\mathrm{Cl})_{2} \mathrm{Pd}(\mu-\mathrm{Cl})_{2} \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{2}\right]$	$\begin{gathered} 27.7 \\ (27.9) \end{gathered}$	$\begin{gathered} 2.4 \\ (2.3) \end{gathered}$	$\begin{gathered} 1.7 \\ (1.6) \end{gathered}$	209	845, 840	625,615	$330 \mathrm{~m}, \mathrm{br}, 260 \mathrm{~m}, \mathrm{br}$	
(4) $\mathrm{Q}_{2}\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}(\mu-\mathrm{Cl})_{2} \mathrm{Pd}(\mu-\mathrm{Cl})_{2} \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right]$	$\begin{gathered} 30.2 \\ (30.6) \end{gathered}$	$\begin{gathered} 2.6 \\ (2.5) \end{gathered}$	$\begin{gathered} 1.6 \\ (1.8) \end{gathered}$	193	815, 805	-	335vs, 268s, 240w	
(5) $\mathrm{Q}_{2}\left[\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{2} \mathrm{Pt}(\mu-\mathrm{Cl})_{2} \mathrm{Pd}(\mu-\mathrm{Cl})_{2} \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{2}\right]$	$\begin{gathered} 25.6 \\ (25.3) \end{gathered}$	$\begin{gathered} 2.1 \\ (2.1) \end{gathered}$	$\begin{gathered} 1.5 \\ (1.5) \end{gathered}$	c	845, 840	630,620	338vs, 260w, 240w	
(6) $\mathrm{Q}^{\prime}{ }_{2}\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pd}(\mu-\mathrm{Cl})_{2} \mathrm{Pt}(\mu-\mathrm{Cl})_{2} \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right]$	$\begin{gathered} 39.7 \\ (39.5) \end{gathered}$	$\begin{gathered} 4.2 \\ (4.2) \end{gathered}$	$\begin{gathered} 1.9 \\ (1.6) \end{gathered}$	168	798, 785	-	$\begin{aligned} & 330 \mathrm{vs}, 270 \mathrm{~m} \\ & 265(\mathrm{sh}), 245(\mathrm{sh}) \end{aligned}$	
(7) $\mathrm{Q}^{\prime}{ }_{2}\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}(\mu-\mathrm{Br})_{2} \mathrm{Pd}(\mu-\mathrm{Br})_{2} \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right]$	$\begin{gathered} 34.2 \\ (34.2) \end{gathered}$	$\begin{gathered} 3.6 \\ (3.6) \end{gathered}$	$\begin{gathered} 1.8 \\ (1.4) \end{gathered}$	d	812, 800	-	262w, 255w ${ }^{\text {e }}$	
(8) $\mathrm{Q}^{\prime}{ }_{2}\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}(\mu-\mathrm{Br})_{2} \mathrm{Pt}(\mu-\mathrm{Br})_{2} \mathrm{Pt}(\mu-\mathrm{Br})_{2} \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right]$	$\begin{gathered} 27.3 \\ (27.9) \end{gathered}$	$\begin{gathered} 3.4 \\ (3.0) \end{gathered}$	$\begin{gathered} 1.3 \\ (1.2) \end{gathered}$	d	810,798	-	260w, $250 \mathrm{w}^{\text {e }}$	
(9) $\mathrm{Q}^{\prime}{ }_{2}\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}(\mu-\mathrm{Br})_{2} \mathrm{Pd}(\mu-\mathrm{Br})_{2} \mathrm{Pd}(\mu-\mathrm{Br})_{2} \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right]$	$\begin{gathered} 30.3 \\ (30.1) \end{gathered}$	$\begin{gathered} 3.1 \\ (3.2) \end{gathered}$	$\begin{gathered} 1.4 \\ (1.2) \end{gathered}$	d	810, 798	-	260w, $252 \mathrm{w}^{\text {e }}$	
(10) $\mathrm{Q}^{\prime}{ }_{2}\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pd}(\mu-\mathrm{Br})_{2} \mathrm{Pt}(\mu-\mathrm{Br})_{2} \mathrm{Pt}(\mu-\mathrm{Br})_{2} \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right]$	$\begin{gathered} 29.5 \\ (30.1) \end{gathered}$	$\begin{gathered} 3.7 \\ (3.2) \end{gathered}$	$\begin{gathered} 1.6 \\ (1.3) \end{gathered}$	d	798,785	-	$260 \mathrm{w}^{e}$	

${ }^{a} \mathrm{Q}=\mathrm{NEt}_{4}, \mathrm{Q}^{\prime}=\mathrm{NBu}_{4} \cdot{ }^{b}$ Calculated values in parentheses. ${ }^{\text {c }}$ Not soluble enough in acetone. ${ }^{d}$ Decomposition takes place. ${ }^{e}$ The absorptions due to $v(M-\mathrm{Br})$ might appear below the limit of our apparatus $\left(200 \mathrm{~cm}^{-1}\right)$.

Figure. The geometry of the anion $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}(\mu-\mathrm{Cl})_{2} \mathrm{Pt}(\mu-\mathrm{Cl})_{2} \mathrm{Pt}-\right.$ $\left.\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right]^{2-}$ in complex (2)

Table 2. Selected bond distances (\AA) and interbond angles $\left({ }^{\circ}\right)$ in $\left[\mathrm{NBu}_{4}\right]_{2}\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}(\mu-\mathrm{Cl})_{2} \mathrm{Pt}(\mu-\mathrm{Cl})_{2} \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right]$ (2)

$\mathrm{Pt}(1)-\mathrm{Cl}(1)$	$2.326(3)$	$\mathrm{Pt}(2)-\mathrm{Cl}(2)$	$2.430(2)$
$\mathrm{Pt}(1)-\mathrm{Cl}(2)$	$2.313(2)$	$\mathrm{Pt}(2)-\mathrm{C}(1)$	$2.017(5)$
$\mathrm{Pt}(2)-\mathrm{Cl}(1)$	$2.441(2)$	$\mathrm{Pt}(2)-\mathrm{C}(7)$	$2.017(5)$
$\mathrm{Cl}(1)-\mathrm{Pt}(1)-\mathrm{Cl}(2)$	$87.86(8)$	$\mathrm{Cl}(2)-\mathrm{Pt}(2)-\mathrm{C}(1)$	$94.53(16)$
$\mathrm{Cl}\left(1^{\prime}\right)-\mathrm{Pt}(1)-\mathrm{Cl}(2)$	$92.14(8)$	$\mathrm{Cl}(2)-\mathrm{Pt}(2)-\mathrm{C}(7)$	$174.03(16)$
$\mathrm{Cl}(1)-\mathrm{Pt}(2)-\mathrm{Cl}(2)$	$82.73(8)$	$\mathrm{C}(1)-\mathrm{Pt}(2)-\mathrm{C}(7)$	$88.53(21)$
$\mathrm{Cl}(1)-\mathrm{Pt}(2)-\mathrm{C}(1)$	$174.93(15)$	$\mathrm{Pt}(1)-\mathrm{Cl}(1)-\mathrm{Pt}(2)$	$94.23(8)$
$\mathrm{Cl}(1)-\mathrm{Pt}(2)-\mathrm{C}(7)$	$94.59(16)$	$\mathrm{Pt}(1)-\mathrm{Cl}(2)-\mathrm{Pt}(2)$	$94.86(8)$

established by single-crystal X-ray crystallography. Single crystals were grown from dichloromethane-hexane at room temperature.

A plan view of the anion, together with the atomic numbering
scheme adopted, is presented in the Figure and selected bond distances and angles are listed in Table 2. Table 3 lists the co-ordinates of refined atoms.

The atom $\operatorname{Pt}(1)$ lies at the centre of symmetry of the anion, bonded to four chlorine atoms. The bond distances $\mathrm{Pt}(1)-\mathrm{Cl}(1)$ and $\mathrm{Pt}(1)-\mathrm{Cl}(2)$ are 2.326(3) and 2.313(2) \AA respectively, in the same range as those found in $\mathrm{K}_{2}\left[\mathrm{PtCl}_{4}\right] .{ }^{13}$ Angles around $\mathrm{Pt}(1)$ are $\mathrm{Cl}(1)-\mathrm{Pt}(1)-\mathrm{Cl}(2) 87.86(8)^{\circ}$ and $\mathrm{Cl}(1)-\mathrm{Pt}(1)-\mathrm{Cl}\left(2^{\prime}\right)$ $92.14(8)^{\circ}$. Atoms $\operatorname{Pt}(2)$ and $\operatorname{Pt}\left(2^{\prime}\right)$ are in approximately cis-square-planar environments, formed by one carbon atom of each $\mathrm{C}_{6} \mathrm{~F}_{5}$ group and two bridging chlorine atoms. The $\mathrm{Pt}(2)-\mathrm{Cl}(1)$ and $\mathrm{Pt}(2)-\mathrm{Cl}(2)$ distances are respectively $2.441(2)$ and $2.430(2) \AA$, longer than $\mathrm{Pt}(1)-\mathrm{Cl}(1)$ and $\mathrm{Pt}(1)-\mathrm{Cl}(2)$, thus implying that the $\mathrm{Pt}(1)-\mathrm{Cl}$ bonds are stronger. A similar feature has been observed in $\mathrm{Pd}_{3}\left(\eta^{3}-\mathrm{C}_{4} \mathrm{H}_{7}\right)_{2} \mathrm{Cl}_{4},{ }^{7}$ a trinuclear palladium compound with double chloride bridges where the outer $\mathrm{Pd}-\mathrm{Cl}$ distances are $0.11 \AA$ longer than the inner ones. The $\mathrm{Pt}(2)-\mathrm{Cl}$ distances are also longer than the corresponding ones in the binuclear pentafluorophenyl derivative $\left[\mathrm{NBu}_{4}\right]_{2}-$ $\left[\mathrm{Pt}_{2}(\mu-\mathrm{Cl})_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]^{14} \quad\left[\mathrm{Pt}(1)-\mathrm{Cl}(1) \quad 2.394(3), \quad \mathrm{Pt}(1)-\mathrm{Cl}\left(1^{\prime}\right)\right.$ $2.387(3) \AA]$. The $\mathrm{Pt}(2)-\mathrm{C}(1)$ and $\mathrm{Pt}(2)-\mathrm{C}(7)$ distances are $2.017(5) \AA$, slightly longer than those in $\left[\mathrm{NBu}_{4}\right]_{2}\left[\mathrm{Pt}_{2}(\mu-\right.$ $\left.\mathrm{Cl})_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right][1.977(10)$ and $1.991(10) \AA]$. Angles around $\mathrm{Pt}(2)$ are in the range $82.73(8)-94.59(16)^{\circ}$. The angles $\mathrm{Pt}(2)-\mathrm{Cl}(1)-\mathrm{Pt}(1)$ and $\mathrm{Pt}(2)-\mathrm{Cl}(2)-\mathrm{Pt}(1)$ are $94.23(8)$ and $94.86(8)^{\circ}$, respectively. The distances between the central $\operatorname{Pt}(1)$ and the two $\operatorname{Pt}(2)$ atoms are $3.494 \AA$, excluding any direct $\mathrm{Pt}(1)-\mathrm{Pt}(2)$ bonding interaction.

Since $\mathrm{Pt}(1)$ lies on an inversion centre, the central PtCl_{4} moiety is square planar. The $\mathrm{Pt}(2), \mathrm{Cl}(1), \mathrm{Cl}(2), \mathrm{C}(1), \mathrm{C}(7)$ unit is essentially planar as well and makes a dihedral angle $\left(6^{\circ}\right)$ with the PtCl_{4} central plane.
(c) Synthesis of Tetranuclear Complexes.-The low-temperature $\left(-30,-60^{\circ} \mathrm{C}\right)(2: 1)$ reaction between cis- $\left[\mathrm{M}\left(\mathrm{C}_{6} \mathrm{X}_{5}\right)_{2}-\right.$ $\left.(\text { thf })_{2}\right]$ and $\left[\mathrm{NBu}_{4}\right]_{2}\left[\mathrm{M}_{2}^{\prime}\left(\mu-\mathrm{Br}_{2} \mathrm{Br}_{4}\right]\right.$ in dichloromethane solution affords tetranuclear homo- or hetero-metallic com-

Table 3. Fractional atomic co-ordinates for non-hydrogen atoms in $\left.\left[\mathrm{NBu}_{4}\right]_{2}\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}(\mu-\mathrm{Cl})_{2} \mathrm{Pt}(\mu-\mathrm{Cl})_{2} \mathrm{Pt}_{(\mathrm{C}}^{6} \mathrm{~F}_{5}\right)_{2}\right]$

Atom	x	y	z	Atom	x	y	z
$\mathrm{Pt}(1)$	0.00000	0.00000	0.00000	C(9)	-0.4441	0.5590	-0.2946
$\mathrm{Pt}(2)$	-0.083 38(4)	0.23089 (2)	-0.201 59(2)	C(10)	-0.5079	0.5187	-0.3443
$\mathrm{Cl}(1)$	$-0.20608(23)$	0.143 31(16)	$-0.06663(13)$	C(11)	-0.4481	0.3956	-0.3528
$\mathrm{Cl}(2)$	$0.12617(25)$	$0.06733(19)$	-0.133 32(14)	C(12)	-0.3245	0.3129	-0.3116
F(1)	0.0581 (5)	0.3807 (4)	-0.175 1(3)	N	0.126 9(7)	$0.1865(5)$	0.178 5(4)
F(2)	$0.2005(5)$	0.482 4(4)	-0.306 4(3)	C(13)	$0.0612(9)$	0.104 6(6)	0.227 6(5)
F(3)	0.242 2(5)	0.466 4(4)	-0.505 9(3)	C(14)	-0.035 1(9)	0.138 2(7)	0.326 9(6)
F(4)	0.139 9(5)	0.344 7(4)	-0.572 4(3)	C(15)	-0.105 8(10)	0.057 0(8)	0.361 3(6)
F(5)	$-0.0017(6)$	0.239 5(4)	-0.444 6(3)	C(16)	$-0.2060(10)$	0.0858 (8)	$0.4601(6)$
F(6)	-0.265 8(6)	$0.5231(4)$	-0.211 4(4)	C(17)	0.2149 (9)	0.1903 (7)	0.2469 9(6)
F(7)	-0.507 7(7)	0.677 0(4)	-0.290 0(5)	C(18)	0.342 6(9)	0.072 0(7)	0.2718 8(6)
F(8)	-0.625 8(6)	$0.5955(5)$	-0.385 4(5)	C(19)	0.427 4(12)	0.0811 (9)	0.338 9(8)
F(9)	-0.505 4(6)	0.353 9(5)	-0.400 9(4)	C(20)	0.556 4(12)	$-0.0419(12)$	0.362 3(8)
F(10)	$-0.2708(5)$	0.1990 (4)	-0.319 6(3)	C(21)	0.215 2(8)	0.139 2(6)	0.079 2(5)
C(1)	0.025 4(5)	$0.3050(4)$	$-0.3037(3)$	C(22)	0.2938 (11)	$0.2068(8)$	$0.0200(6)$
C(2)	0.0791	0.3676	-0.2700	C(23)	0.374 1(9)	$0.1565(7)$	$-0.0766(6)$
C(3)	0.1530	0.4214	-0.3388	C(24)	$0.4458(10)$	0.2250 (8)	-0.145 2(7)
C(4)	0.1733	0.4128	-0.4412	C(25)	0.0078 (10)	0.3146 (7)	$0.1565(6)$
C(5)	0.1197	0.3502	-0.4749	C(26)	-0.102 1(11)	0.3238 (8)	$0.0989(6)$
C(6)	0.0457	0.2963	-0.4061	C(27)	0.213 7(15)	-0.455 2(8)	$-0.0735(10)$
C(7)	-0.260 7(5)	0.353 2(4)	-0.261 8(4)	C(28)	0.333 4(13)	-0.464 9(10)	-0.033 6(8)
C (8)	-0.3205	0.4763	-0.2533				

plexes, according to equation (2) $\left[\mathrm{M}=\mathrm{M}^{\prime}=\mathrm{Pt}(\mathbf{8}) ; \mathrm{M}=\mathrm{Pt}\right.$,

$$
\begin{align*}
& {\left[\mathrm{NBu}_{4}\right]_{2}\left[\mathrm{M}_{2}^{\prime}(\mu-\mathrm{Br})_{2} \mathrm{Br}_{4}\right]+2 \text { cis- }\left[\mathrm{M}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{thf})_{2}\right] \longrightarrow} \\
& {\left[\mathrm{NBu}_{4}\right]_{2}\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{M}(\mu-\mathrm{Br})_{2} \mathrm{M}^{\prime}(\mu-\mathrm{Br})_{2} \mathrm{M}^{\prime}(\mu-\mathrm{Br})_{2} \mathrm{M}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right]} \tag{2}
\end{align*}
$$

$\left.\mathbf{M}^{\prime}=\operatorname{Pd}(\mathbf{9}) ; \mathbf{M}=\operatorname{Pd}, \mathrm{M}^{\prime}=\mathrm{Pt}(\mathbf{1 0})\right]$. Complexes (8)-(10) can be isolated by evaporating the solutions to dryness and subsequent washing of the red-brown solids with $\mathrm{Pr}^{\mathbf{i}} \mathrm{OH}$.
At room temperature, dichloromethane solutions of the complexes are not stable and slowly decompose, yielding dark brown precipitates which do not contain $\mathrm{C}_{6} \mathrm{~F}_{5}$ or NBu_{4} (i.r. spectra) and are assumed to be $\mathrm{M}^{\prime} \mathrm{Br}_{2}$. When a dichloromethane solution of complex (9) was allowed to stand until complete decomposition, $\quad\left[\mathrm{NBu}_{4}\right]_{2}\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}(\mu-\mathrm{Br})_{2} \mathrm{Pd}(\mu-\mathrm{Br})_{2} \mathrm{Pt}-\right.$ $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}$] (7) $(75 \%$ yield) was isolated from the filtrate.

Experimental

Infrared spectra, C, H, and N analyses, and conductance measurements were performed as described elsewhere. ${ }^{5}$ The complexes $\quad\left[\mathrm{NEt}_{4}\right]_{2}\left[\mathrm{PdCl}_{4}\right],{ }^{15} \quad \mathrm{~K}_{2}\left[\mathrm{PtCl}_{4}\right],{ }^{15} \quad\left[\mathrm{NBu}_{4}\right]_{2}-$ $\left[\mathrm{Pd}_{2} \mathrm{Br}_{6}\right],{ }^{15} \quad\left[\mathrm{NBu}_{4}\right]_{2}\left[\mathrm{Pt}_{2} \mathrm{Br}_{6}\right],{ }^{15}$ cis- $\left[\mathrm{M}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{thf})_{2}\right]$, and cis- $\left[\mathrm{M}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{2}(\mathrm{thf})_{2}\right]^{8}(\mathrm{M}=\mathrm{Pd}$ or Pt$)$ were prepared as reported in the literature.

Preparations-Complexes (1), (3), (4), and (5). A typical preparation [complex (1)] was as follows. To a suspension of $\left[\mathrm{NEt}_{4}\right]_{2}\left[\mathrm{PdCl}_{4}\right](0.065 \mathrm{~g}, 0.13 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$ was added cis- $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{thf})_{2}\right](0.15 \mathrm{~g}, 0.26 \mathrm{mmol})$ and the mixture was stirred at room temperature for 10 min . The orange solution obtained was evaporated to dryness and the residue washed with $\mathrm{Et}_{2} \mathrm{O}$ and n-hexane. A pale brown solid (1) $(0.1 \mathrm{~g}$, 73% yield) was obtained. For complexes (3)--(5) the following reaction conditions were used: (3), $\left[\mathrm{NEt}_{4}\right]_{2}\left[\mathrm{PdCl}_{4}\right](0.034 \mathrm{~g}$, $0.067 \mathrm{mmol})$, cis- $\left.\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{2} \text { (thf }\right)_{2}\right](0.1 \mathrm{~g}, 0.13 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(20 \mathrm{~cm}^{3}\right)$, stirring at room temperature for $10 \mathrm{~min}, 90 \%$ yield; (4) $\left[\mathrm{NEt}_{4}\right]_{2}\left[\mathrm{PdCl}_{4}\right](0.1 \mathrm{~g}, 0.19 \mathrm{mmol})$, cis- $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{thf})_{2}\right]$ $(0.26 \mathrm{~g}, 0.39 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$, stirring at $-20^{\circ} \mathrm{C}$ for $20 \mathrm{~min}, 60 \%$ yield; (5), $\left[\mathrm{NEt}_{4}\right]_{2}\left[\mathrm{PdCl}_{4}\right](0.045 \mathrm{~g}, 0.09 \mathrm{mmol})$,
cis- $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)_{2}(\mathrm{thf})_{2}\right](0.15 \mathrm{~g}, 0.18 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$; precipitation in 89% yield.

Complex (2). To a suspension of $\mathrm{K}_{2}\left[\mathrm{PtCl}_{4}\right](0.046 \mathrm{~g}, 0.11$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$ were added cis- $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{thf})_{2}\right]$ $(0.15 \mathrm{~g}, 0.22 \mathrm{mmol})$ and $\mathrm{NBu}_{4} \mathrm{ClO}_{4}(0.085 \mathrm{~g}, 0.25 \mathrm{mmol})$ and the mixture was stirred at room temperature for 4 h . The resulting solution was evaporated to dryness and the residue treated with $\mathrm{Et}_{2} \mathrm{O}\left(15 \mathrm{~cm}^{3}\right)$. After further evaporation to dryness the residue ($0.1 \mathrm{~g}, 48 \%$ yield; pale brown) was washed with n-hexane.

Complex (6). To a suspension of $\mathrm{K}_{2}\left[\mathrm{PtCl}_{4}\right](0.053 \mathrm{~g}, 0.13$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$ were added cis $-\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{thf})_{2}\right]$ $(0.15 \mathrm{~g}, 0.26 \mathrm{mmol})$ and $\mathrm{NBu}_{4} \mathrm{ClO}_{4}(0.098 \mathrm{~g}, 0.29 \mathrm{mmol})$ and the mixture was stirred at room temperature for 2 h . The white solid (mainly KClO_{4}) was eliminated by filtration; the resulting orange solution was evaporated to dryness and the residue was washed with water, then dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$. This dichloromethane solution was dried with MgSO_{4} and, after filtration, the filtrate was evaporated to dryness and the residue was washed with n-hexane ($0.15 \mathrm{~g}, 70 \%$ yield, orange).

Complex (8). To a solution of $\left[\mathrm{NBu}_{4}\right]_{2}\left[\mathrm{Pt}_{2} \mathrm{Br}_{6}\right](0.2 \mathrm{~g}, 0.15$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ was added $c i s-\left[\operatorname{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{thf})_{2}\right]$ $(0.2 \mathrm{~g}, 0.3 \mathrm{mmol})$. After stirring for 10 min at $-60^{\circ} \mathrm{C}$ the red solution was evaporated to dryness at room temperature. The residue was dried under vacuum and the solid was washed with $\mathrm{Pr}^{\mathrm{i} O H}$ (brown, $0.23 \mathrm{~g}, 65 \%$ yield).

Complex ($\mathbf{1 0}$) was obtained ($0.2 \mathrm{~g}, 53 \%$ yield) in a similar way by using $\left[\mathrm{NBu}_{4}\right]_{2}\left[\mathrm{Pt}_{2} \mathrm{Br}_{6}\right](0.23 \mathrm{~g}, 0.17 \mathrm{mmol})$ and cis$\left[\operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{thf})_{2}\right](0.2 \mathrm{~g}, 0.34 \mathrm{mmol})$. Complex (9) was obtained from $\left[\mathrm{NBu}_{4}\right]_{2}\left[\mathrm{Pd}_{2} \mathrm{Br}_{6}\right](0.175 \mathrm{~g}, 0.15 \mathrm{mmol})$ and cis$\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{thf})_{2}\right](0.2 \mathrm{~g}, 0.3 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-30^{\circ} \mathrm{C}$. The red residue was washed three times with n -hexane $(0.3 \mathrm{~g}, 90 \%$ yield).

Attempts to recrystallize complexes (8)-(10) from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ $\mathrm{Et}_{2} \mathrm{O}$ or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane resulted in decomposition and precipitation of dark brown solids which do not contain (i.r. spectra) $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups (probably MBr_{2}). In the case of complex (9), after filtering off the brown solid the trinuclear complex (7) was obtained ($0.22 \mathrm{~g}, 75 \%$ yield) from the filtrate.

X-Ray Crystal Structure of Complex (2)--Crystal data ($T=185 \mathrm{~K}$). $\mathrm{C}_{56} \mathrm{H}_{72} \mathrm{Cl}_{4} \mathrm{~F}_{20} \mathrm{~N}_{2} \mathrm{Pt}_{3}, M=1880$, triclinic, space
group $P \overline{1}, a=10.936(5), b=12.792(11), c=13.744(6) \AA, \alpha=$ 77.61(6), $\beta=76.84(3), \gamma=60.37(6)^{\circ}, U=1615 \AA^{3}$ (refined from 25 centred reflections, $14<\theta<15^{\circ}$), Mo- K_{α} radiation ($\lambda=0.71069 \AA$), $Z=1, D_{\mathrm{c}}=1.9325 \mathrm{~g} \mathrm{~cm}^{-3}$, pale yellow, airstable. Crystal dimensions $0.2 \times 0.3 \times 0.3 \mathrm{~mm}, \mu=68 \mathrm{~cm}^{-1}$, $F(000)=904$.

Data collection and processing. CAD4 diffractometer with low-temperature device, $\omega-20$ scans, scan width $0.8+0.35$ $\tan \theta, 5934$ data measured $\left(\theta_{\text {max. }} 25^{\circ}, h-13\right.$ to $13, k-15$ to 15 , $l 0$ to 16), giving 3800 with $F \geqslant 5 \sigma(F)$ for structure solution and refinement. No significant movement or decay over $106 X$-ray hours.
Structure solution and refinement. Platinum co-ordinates from Patterson synthesis, all other non-H atoms from ΔF maps. Post-isotropic convergence empirical absorption correction. ${ }^{16}$ Weighting scheme $w^{-1}=\sigma^{2}(F)+0.000038 F^{2}$. All non-H atoms refined with anisotropic thermal parameters. The C_{6} rings were idealized as regular, planar hexagons. Hydrogen atoms of the Bu groups were placed in idealized positions, with an overall isotropic thermal parameter, $0.078(11) \AA^{2}$. At convergence $R=0.0364, R^{\prime}=0.0471$. The computer program SHELX $76{ }^{17}$ was used for all crystallographic work.

Additional material available from the Cambridge Crystallographic Data Centre comprises H -atom co-ordinates, thermal parameters, and remaining bond lengths and angles.

Acknowledgements

We thank the Dirección General de Investigación Científica y Técnica (Spain) for financial support (project PB85-0128) and N.A.T.O. for the generous provision of a travel grant.

References

1 A. F. Wells, 'Structural Inorganic Chemistry,' 5th edn., Clarendon Press, Oxford, 1984, p. 414; F. R. Hartley, 'The Chemistry of

Platinum and Palladium,' Applied Science Publishers, London, 1973, ch. 9.
2 P. M. Maitlis, P. Espinet, and M. J. H. Russell, 'Comprehensive Organometallic Chemistry,' eds. G. Wilkinson, F. G. A. Stone, and E. Abel, Pergamon Press, New York, 1982, p. 306 and refs. therein.
3 R. Usón, J. Forniés, F. Martínez, and M. Tomás, J. Chem. Soc. Dalton Trans., 1980, 888.
4 R. Usón, J. Forniés, F. Martínez, M. Tomás, and I. Reoyo, Organometallics, 1983, 2, 1386.
5 R. Usón, J. Forniés, M. Tomás, B. Menjón, and A. J. Welch, Organometallics, 1988, 7, 1318.
6 R. Hüttel and H. J. Neugebauer, Tetrahedron Lett., 1964, 47, 3541; F. Canziani and M. C. Malatesta, J. Organomet. Chem., 1975, 90, 235; E. A. Kelley and P. M. Maitlis, J. Chem. Soc., Dalton Trans., 1979, 167.

7 P. M. Bailey, E. A. Kelley, and P. M. Maitlis, J. Organomet. Chem., 1978, 144, C52.
8 R. Usón, J. Forniés, M. Tomás, and B. Menjón, Organometallics, 1985, 4, 1912.
9 R. Usón, J. Forniés, M. Tomás, and B. Menjón, Organometallics, 1986, 5, 1581.
10 R. Usón, J. Forniés, M. Tomás, B. Menjón, and A. J. Welch, J. Organomet. Chem., 1986, 304, C24.

11 W. J. Geary, Coord. Chem. Rev., 1971, 7, 81.
12 E. Maslowsky, jun., 'Vibrational Spectra of Organometallic Compounds,' Wiley, New York, 1977, 437; J. Casabó, J. M. Coronas, and J. Sales, Inorg. Chim. Acta, 1974, 11, 5.
13 R. G. Dickinson, J. Am. Chem. Soc., 1922, 44, 2404.
14 R. Usón, J. Forniés, M. Tomás, J. M. Casas, F. A. Cotton, and L. R. Falvello, Inorg. Chem., 1987, 26, 3482.
15 Ref. $1 b$, p. 230 and refs. therein.
16 N. G. Walker and D. Stuart, Acta Crystallogr., Śect. A, 1983, 39, 158.

17 G. M. Sheldrick, University of Cambridge, 1976.

[^0]: * Bis(tetrabutylammonium) 1,2;1,2;2,3;2,3-tetra- μ-chloro-1,1,3,3-tetrakis(pentafluorophenyl)triplatinate(II).
 Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans, 1990, Issue 1, pp. xix-xxii.

