Stability Constants and Rate Coefficients for Decarboxylation of Oxalacetic Acid and some Metal Oxalacetates

Cecil B. Monk

Edward Davies Chemical Laboratories, Aberystwyth, Dyfed SY23 1NE

Data collected at constant ionic strengths, from e.m.f. measurements of a glass electrode–calomel electrode cell, u.v. spectrophotometry, and a pressure-sensitive transducer, DVM, micro-computer system, have been used to calculate the stability constants of oxalacetic acid and some metal oxalacetates ML (L = oxalacetate, M = Cu¹¹, Ni¹¹, Zn¹¹, Co¹¹, or Mn¹¹) and the rate coefficients for decarboxylation of the species H₂L, HL, L, and ML. The stability constants of the ML species fit the Irving–Williams order (Zn < Cu > Ni > Co > Mn) but the order of the rate coefficients is Zn < Cu > Ni \approx Co > Mn, and while the stability constant order is Ni > Zn the rate coefficient order is Ni \approx Zn.

Among the numerous studies 1-7 of metal-catalysed rates of decarboxylation of oxalacetate, that of Gelles and Salama^{3,4} for the series Cu^{II} to Zn^{II} seems to be the most systematic search made so far to see if there is a relationship between the catalytic effects and the stability constants. They calculated the stability constants from pH measurements of a glass electrode solution calomel electrode cell and the rates of decarboxylation from timed manometric measurements of a sealed gasevolution apparatus. Attempts were made to get a quantitative estimate of the relationship but several factors limited the precision to which this could be done. Rather long extrapolations of the pH measurements to zero time were needed to correct for drifts due to decarboxylation. The kinetic calculations were based on manually timed readings of a mercury manometer and the stability constants were calculated from data at low varying ionic strengths (I) (ca. 0.01 to ca. 0.03 mol dm⁻³) and 25 °C whereas the kinetic work was done at $I = 0.1 \text{ mol dm}^{-3}$ and 36.9 °C. A general form of activity coefficient expression was used to calculate the data at a common value of I but such adjustments are considerable and approximate.

The present attempt to get more precise information relies on current experimental methods, namely digital voltmeter readings at short time intervals, u.v. kinetics spectrophotometry, and timed computer-controlled readings of a pressure-sensitive transducer. The media were set at constant and common ionic strengths by incorporation of NaClO₄.

The basic equations involved are (1)-(4) where β_{MHL} re-

$$\beta_{011} = [HL]/[H][L]$$
 (1)

$$\beta_{021} = [H_2 L] / [H]^2 [L]$$
 (2)

$$\beta_{101} = [ML]/[M][L]$$
 (3)

$$k_{\text{obs.}}c_1 = k_0[\text{H}_2\text{L}] + k_1[\text{HL}] + k_2[\text{L}] + k_{\text{ML}}[\text{ML}]$$
 (4)

presents the stability constant, M the metal(II) ion, c_1 is the total oxalacetate concentration, H_2L , HL, L, and ML are oxalacetate species, H is the H⁺ ion, k_{obs} , the experimental rate coefficient while k_0 , k_1 , k_2 , and k_{ML} are those of the various species subject to decarboxylation. The evidence examined here and that of others^{6,7} suggests that the rate contributions and concentrations of species such as MHL, ML_2 , and M_2L are small or negligible.

Table 1. Data for determinations of β_{011} and β_{021} values for oxalacetic acid at $I = 0.5 \text{ mol dm}^{-3}$

Temp./°C	$10^{2}c_{1}$	$10^{3}c_{2}$	$10^{4}c_{3}$	10 ⁴ [H]	\bar{n}_{11}
25	1.468	0	5.107	73.27	1.536
	1.448	6.58	5.040	36.30	1.330
	1.402	22.29	4.879	1.369	0.435
	1.764	0	5.107	81.70	1.566
	1 730	9.80	5.007	30.68	1.285
	1 697	19.23	4.910	6.247	0.859
	1.665	28.30	4.818	0.829	0.324
	1.597	0	5.107	76.30	1.554
	1 566	9.80	5.007	25.79	1.241
	1 535	19.23	4.910	4.179	0.753
	1.500	25 32	0.952	4.848	0.356
	1.010	20.02	01702	1010	0.000
30	0.759	9.80	7.300	34.77	1.287
	1.726	19.23	7.160	7.566	0.884
	2.037	16.13	7.210	20.65	1.142
	2.011	22.29	7.120	7.721	0.888
	1.986	16.13	7.210	19.41	1.126
	1.961	22.29	7.120	7.014	0.864
	2.067	0	14.90	102.30	1.577
	2.026	9.80	14.61	46.53	1.359
	1.987	19.23	14.33	13.85	1.035
	1.950	28.30	14.06	2.779	0.607
	1.914	37.04	13.80	0.255	0.136
	1.630	6.58	7.35	47.47	1.350
	1.609	12.99	7.26	19.56	1.116
	1.588	19.23	7.16	5.656	0.799
	1.568	25.32	7.02	1.411	0.421
	2.294	0	14.90	107.20	1.598
	2.263	6.58	14.70	68.92	1.470
	2.124	37.04	13.80	0.976	0.317
37	2 007	0	5 083	03 53	1 559
51	1.882	31 11	A 766	1 183	0.367
	1.857	0	5.082	87.90	1 554
	1.057	31 1 1	1766	0.617	0.238
	1.742	0	5.082	70.04	1 /08
	1.253	16.05	1010	1179	0.725
	1.233	10.05	5.069	4.170	1 560
	1.902	21.02	3.008	0.042	0.224
	1.840	51.05	4./J4 5.000	0.743	1 524
	1.000	0	5.080	03.00	1.524
	1.000	0	3.080	84.34	1.323
	1.382	25.19	4.824	1.331	0.430
	1.494	0	5.080	/9.59	1.500
	1.4/4	0.33	5.013	41.11	1.511
	1.428	22.18	4.854	1.632	0.469

			mol dm ⁻³				
M ¹¹	$(10^{3}c_{1})$	$10^{3}c_{2}$	10 ⁴ c ₃	$10^{3}c_{4}$	10⁴[H]	ñ	β101
Cu	16.08 <i>ª</i>	0	9.88	4.60	137.1	0.3493	6 660
	13.68 ^{<i>a</i>}	0	5.67	8.91	102.0	0.2441	6 660
	17.04 <i>ª</i>	0	8.38	10.06	120.0	0.3119	6 200
	23.76 ^b	0	13.97	9.28	156.6	0.3512	5 570
	9.62°	0	8.38	10.06	101.55	0.3451	16 900
	8.43 °	0	14.90	8.43	82.78	0.4194	16 000
	14.27 ^d	0	27.94	10.06	132.2	0.3253	9 550
Zn	16.33 <i>ª</i>	20.00	6.23	3.07	5.43	0.2825	101
	18.54 ª	12.82	4.91	2.91	24.78	0.0894	106
	16 73 ª	18.63	5.55	3.23	7.37	0.2148	96
	19.49 ^{<i>b</i>}	21.60	6.99	3.08	8.63	0.2308	94
	12.44 ^c	15.82	2.83	1.98	7.20	0.3032	252
	22.26 °	24.54	2.74	3.06	10.18	0.3436	238
	16.05 ^d	18.63	5.55	3.23	6.99	0.3216	169
	18.09 ^{<i>d</i>}	21.88	5.69	1.95	5.49	0.3997	167
Ni	18.55 <i>ª</i>	20.00	6.23	3.54	9.17	0.2991	157
	11.43 <i>ª</i>	13.51	6.31	3.59	6.77	0.2485	156
	16.50 ^a	18.87	5.62	4.95	7.94	0.2894	156
	17.04 <i>^b</i>	18.99	7.07	3.32	8.98	0.2852	149
	24.59°	30.86	2.75	3.24	6.01	0.5788	352
	19.99°	21.88	2.84	4.92	12.77	0.3533	367
Co	16.82 <i>ª</i>	15.92	4.88	2.92	12.12	0.1134	67.2
	21.46 <i>ª</i>	25.00	4.79	2.86	6.14	0.2341	65.0
	16.39 <i>ª</i>	18.63	5.55	8.23	7.81	0.1472	65.3
	14.27 <i>^b</i>	15.82	7.07	5.03	8.89	0.1388	70.7
	15.48°	21.55	2.73	8.16	5.56	0.2893	168
	23.61 °	30.68	2.74	4.88	5.25	0.4142	169
Mn	16.55 ª	19.74	6.15	8.78	5.70	0.0563	16.2
	17.67 <i>ª</i>	21.43	5.34	12.14	5.44	0.0636	16.9
	15.89 <i>ª</i>	15.15	4.64	13.99	11.90	0.0275	15.8
	18.44 <i>^b</i>	20.96	6.69	6.16	7.32	0.0474	13.7
	21.44 °	23.81	2.66	6.13	9.13	0.0950	43.5
	23.70°	29.41	2.63	6.05	5.52	0.1543	43.2
$^{a}I = 0.5 \text{ mol dm}^{-3}, 25 \circ C$	$C. {}^{b}I = 0.5 \text{ mol}$	dm ⁻³ , 30 °C. <i>° 1</i>	r = 0.1 mol dm	$^{-3}$, 25 °C. ^{<i>d</i>} I =	0.2 mol dm ⁻³ , 2	5 °C.	

Table 2. Stability constant determinations for metal oxalacetates from e.m.f. values

Results and Discussion

The values of β_{011} and β_{021} were calculated from the e.m.f.s *E* of the cell glass electrode | oxalacetic acid(c_1), NaOH(c_2), HCl(c_3), NaClO₄ to constant *I*|calomel electrode (*ca.* 0.5 mol dm⁻³ NaCl) (A) by use of equations (5) and (6) and linear least-mean-

$$E = E^{\circ}(\text{cell}) - (RT\ln 10/F)\log[\text{H}]$$
(5)

$$\bar{n}_{\rm H} = (2c_1 - c_2 + c_3 - [{\rm H}])/c_1$$
 (6)

squares analysis with equations (7) and (8). Values of E at time

$$Y = \bar{n}_{\rm H} / [{\rm H}] (1 - \bar{n}_{\rm H}) \tag{7}$$

$$X = [H](2 - \bar{n}_{\rm H})/(1 - \bar{n}_{\rm H})$$
(8)

t = 0 were obtained by extrapolation of e.m.f.s taken at 0.5- or 1min intervals for about 5 min; $E^{\circ}(\text{cell})$ was calculated from the value of E when the cell contained only HCl and NaClO₄. The data are shown in Table 1 and the resultant β values in Table 5.

Values of β_{101} for a series of metal oxalacetates were calculated from the e.m.f.s of cell (A) after the incorporation of $M(ClO_4)_2$ (c_4). An estimate of $E^{\circ}(cell)$ was obtained as just described, and equation (5) then used to get an estimate of [H] after the additions c_1 and c_2 . Then from the known values of

 β_{011} and β_{021} and equations (9)-(12) a precise value of E° (cell)

$$[L] = (2c_1 + c_3 - c_2 - [H])/$$

$$(2\beta_{021}[H]^2 + \beta_{011}[H]) \quad (9)$$

$$[HL] = \beta_{011}[H][L]$$
(10)

$$[H_2L] = (2c_1 + c_3 - c_2 - [HL] - [H])/2$$
(11)

$$[LB] = c_1 - [HL] - [H_2L]$$
(12)

was obtained by adjusting it until |[L] - [LB]| was $< 10^{-7}$ mol dm⁻³.

From the value of *E* at t = 0 after adding M(ClO₄)₂ solution, equations (5), (9), and (10) gave [H], [L], and [HL], whence values of β_{101} were calculated from equations (13)—(15). The

$$[H_2L] = \beta_{021}[H]^2[L]$$
(13)

$$\bar{n} = (c_1 - [HL] - [H_2L] - [L])/c_4$$
 (14)

$$\beta_{101} = \bar{n} / [L] (1 - \bar{n}) \tag{15}$$

answers are shown in Table 2 and summarised in Table 5.

Table 3. Rate coefficients of decarboxylation of oxalacetic acid by spectrophotometry at $I = 0.5 \text{ mol dm}^{-3}$ and $37 \, ^{\circ}\text{C}^{a}$

mol dm ⁻³					
	ـــــ	$10^{4}k_{\rm obs.}$			
$10^{3}c_{1}$	$10^{3}c_{2}$	s ⁻¹	$10^2 \alpha_0$	$10^2 \alpha_1$	$10^2 \alpha_2$
3.036	4.240	1.293	45.0	53.2	1.78
3.036	5.660	1.217	49.9	48.8	1.35
3.848	22.26	0.608	76.5	23.3	0.21
3.848	44.52	0.386	86.4	13.5	0.06
3.457	6.678	1.087	53.5	45.4	1.09
3.457	10.02	0.927	61.3	38.0	0.67
3.457	13.36	0.813	67.0	32.6	0.44
3.457	16.70	0.708	71.3	28.4	0.32
3.560	111.3	0.224	94.1	5.9	0.01
3.560	167.0	0.170	96.0	4.0	
3.560	222.6	0.147	96.9	3.1	
3.457 <i>°</i>	37.0	0.955	0.02	0.21	99.77°
3.457 <i>°</i>	29.6	0.908	0.02	0.18	99.81 <i>°</i>
3.457 <i>°</i>	22.2	0.865		0.14	99.85°

^a Average standard deviation in $k_{obs.} = 0.3\%$. ^b Acetic acid +0.100 mol dm⁻³ Na(O₂CMe), $K_A = 3.067 \times 10^5$ mol dm⁻³ (H. S. Harned and F. C. Hickey, J. Am. Chem. Soc., 1937, **59**, 1284).

Rates of decarboxylation of oxalacetic acid were obtained from timed u.v. absorptions at *ca.* 280 nm of the solutions oxalacetic acid(c_1), NaOH(c_2), HCl(c_3), NaClO₄ to I = 0.5 mol dm⁻³ (B) and oxalacetic acid(c_1), acetic acid(c_5), Na(O₂C-Me)(c_6), NaClO₄ to I = 0.5 mol dm⁻³ (C). Calculation of the rates was based on the matrix inversion method of Moore.⁸ This involves starting with estimated absorptions A at t = 0 and $t = \infty$. The program adjusted these and the value of k_{obs} until A at t = 0 was constant (to 0.001). The results are shown in Table 3 and summarised in Table 5.

One obtains equation (16) where $\alpha_0 = [H_2L]/c_1$, $\alpha_1 =$

$$k_{\rm obs.} = k_0 \alpha_0 + k_1 \alpha_1 + k_2 \alpha_2 \tag{16}$$

[HL]/ c_1 , and $\alpha_2 = 1 - \alpha_0 - \alpha_1$. For solutions (B), a first estimate of [H] $\approx c_3 + c_1/4$ was used with equation (9) to get [L], with equation (11) to get [H₂L], and equation (10) to get [HL]. The latter was compared with equation (17) whence with

$$[HL] = c_1 - [L] - [H_2L]$$
(17)

equation (18) the cycle starting at equation (9) was continued

$$[H] = 2c_1 + c_3 - c_2 - [HL] - 2[H_2L]$$
(18)

until the two calculations of [HL] agreed to $< 10^{-7}$ mol dm⁻³ so that the α values could be calculated.

Solutions (C) were used to get an assessment of k_2 . Starting estimates were $\alpha_0 = 0$, [MeCO₂H] = c_5 , [NaX] = 0, and [O₂CMe] = c_6 , then from equation (12) of ref. 2 and equation (19) one obtains equation (19).

$$\alpha_1 = 1 - \alpha_0 - \alpha_2 \tag{19}$$

From ref. 2, equation (20) can be written, so one gets [HL] =

$$\alpha_{2} = ([O_{2}CMe]/[MeCO_{2}H])(1 - \alpha_{0})/$$

$$(\beta_{011}/K_{A} + [O_{2}CMe]/[MeCO_{2}H]) \quad (20)$$

 $\alpha_1 c_1, [H] = \alpha_1/(\beta_{011}\alpha_2), \quad \alpha_0 = [H]\alpha_1\beta_{021}/\beta_{011}, \quad [L] = c_1 - [HL] - [H_2L], \quad [MeCO_2H] = c_5 + 2c_1 - [HL] - [H] - 2[H_2L], \quad [O_2CMe] = c_5 + c_6 - [MeCO_2H] \text{ and } [NaX] = [O_2CMe], \text{ where } K_A \text{ is the concentration association constant}$

1	7	5

		mol dm ⁻³			
N CH	103	103	103	$10^{5} k_{obs.}$	$10^4 k_{\rm ML}$
M.	$10^{5}c_{1}$	$10^{5}c_{3}$	$10^{5}c_{4}$	S -	S -
Cu	3.88	8.94	0.171	47.48	615
	3.88	8.94	0.256	69.16	647
	3.88	8.94	0.342	87.16	633
	3.85	11.31	0.356	70.38	632
	3.85	11.31	0.534	102.5	645
	3.85	11.31	0.712	131.6	638
	3.85	11.31	0.891	158.3	625
Zn	3.65	11.31	4.16	17.35	342
	3.65	11.31	8.32	25.73	352
	3.65	11.31	12.48	34.83	365
	3.65	11.31	16.64	42.98	363
	3.97	11.31	1.664	12.50	345
	3.97	11.31	2.494	14.20	352
	3.97	11.31	3.120	15.43	353
	18.28*	8.94	2.080	11.25	317
Ni	3.40	8.94	1.570	16.47	318
	3.40	8.94	3.150	22.92	333
	3.40	8.94	4.720	29.20	335
	3.40	8.94	5.250	31.37	337
	13.65	4.47	2.100	18.67	323
	13.65	4.47	3.150	23.15	337
	13.65	4.47	4.200	26.93	330
	23.35*	4.47	10.500	36.92	333
Co	3.96	11.31	22.90	11.83	363
	3.96	11.31	34.40	13.20	352
	3.96	11.31	45.80	14.63	350
	3.53	8.94	26.50	14.73	318
	3.53	8.94	53.00	19.20	327
	3.53	8.94	106.0	28.75	345
	23.73*	4.47	15.90	26.53	330
Mn	3.56	0	20.59	15.38	193
	3.56	0	30.88	17.62	188
	3.56	0	41.18	20.27	193
	19.88*	4.47	20.58	13.30	182

Table 4. Rate coefficients of decarboxylation of metal oxalacetates by spectrophotometry and by a transducer * at I = 0.5 mol dm⁻³ and 37 °C

of acetic acid. The cycle starting at equation (20) was continued until $|[O_2CMe] - [NaX]|$ was $< 10^{-7}$ mol dm⁻³. The resulting values of α_2 (Table 3) were > 0.997 and an extrapolation of $k_{obs.}$ vs. α_2 gave $k_{obs.}$ at $\alpha_2 = 1.0$. This value of k_2 was used to analyse the data obtained with solutions (B) by applying linear least mean squares with² equations (21) and (22). The 'intercept'

$$X = \alpha_1 \tag{21}$$

$$Y = k_{\rm obs.} - (k_2 - k'_0) \tag{22}$$

gives k'_0 and the 'slope' plus k'_0 gives k_1 ; k'_0 is a preliminary value of k_0 . The process was continued with k_0 replacing k'_0 until $|k'_0 - k_0|$ was $< 10^{-6} \text{ s}^{-1}$.

Rates of decarboxylation in the presence of metal(II) ions were also obtained from timed u.v. absorptions and from timed e.m.f. measurements E of a pressure-sensitive transducer, DVM microcomputer system described in the Experimental section. The calculations were based on the previously mentioned method of Moore,⁸ starting in the case of the transducer method with estimates of E at t = 0 and $t = \alpha$, and setting the conditions in the program to adjust these until E at t = 0 was constant to <0.01 mV. The transducer method was unsatisfactory on introducing the copper(II) ion. This is discussed later.

Temp./°C $I/mol dm^{-3}$ 25 0.5 5.	$10^{-3}\beta_{021}$ 40 + 0.9%	$10^{-5}\beta_{011}$	Ref.	
25 0.5 5.	40 + 0.9%			
25 0.5 5. 25 0.2 5.	.25 .65 + 0.6%	8.63 + 1.3% 8.63 10.11 + 0.8%	Present work 1 ^{<i>a</i>} 1 ^{<i>b</i>}	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 00\\ 30\\ 96 + 1.9\%\\ 00 + 1.1\%\\ 97\\ \end{array}$	$10.72 \\ 11.78 \\ 6.90 + 1.1\% \\ 7.09 + 3.2\% \\ 6.95 \\ 6.95 \\ 10.000$	1 ^{<i>a</i>} 1 Present work Present work	
37 0.2 5.	.66	8.14	1 <i>ª</i>	
(b) Stability constants β_{101} of metal oxalacetates				
Temp./°C $I/mol dm^{-3}$ Cu^{II} Zn^{II}	Ni ⁿ	Co ^{II}	Μn ^{ιι}	Ref.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{r} 156 \pm 1\% \\ 149 \\ 360 \pm 2.2\% \\ 662 \pm 22\% \end{array}$	$\begin{array}{c} 65.8 \pm 1.4\% \\ 70.7 \\ 168 \pm 0.6\% \\ 253 \pm 24\% \end{array}$	$\begin{array}{c} 16.3 \pm 2.5 \\ 17.4 \\ 13.7 \\ 43.4 \pm 0.5 \\ 91 \pm 20\% \\ 38 \end{array}$	% Present work Ref. 6 Present work % Present work Ref. 4, recalc Ref. 7 Present work Present work
(c) Rate coefficients at 37 °C for oxalacetic acid species (s^{-1})				
$I/\text{mol dm}^{-3} \qquad 10^6 k_0$ $0.5 \qquad 6.67 + 5\%$ $0.2 \qquad 5.87$ $0.1 \qquad 5.68$ $0.5 \qquad 6.1$	$10^{4} k_{1}$ 2.35 + 1.5% 2.52 2.51 2.54	$10^{5} k_{2}$ 6.7 6.9 6.9 6.9	Ref. Present wo 2 2 Ref. 2, extr	ork ap.
(d) Rate coefficients for metal oxalacetates $(10^4 k_{\rm MI}/s^{-1})$ at 37 °C				
$I/\text{mol dm}^{-3}$ Cu ^{II} Zn ^{II}	Ni ^{II}	Co ^{II}	Mn ^{II}	Ref.
$\begin{array}{ccccccccccccc} 0.5 & 634 \pm 1.3\% & 349 \pm 2.9\% & 331 \\ 0.2 & & & 311 \pm 2.6\%^c \\ 0.1 & 660 & 310 & 230 \end{array}$	+ 1.5% 341	1 ± 3.8% 18	89 + 2.1%	Present work Ref. 2 Ref. 4

Table 5. Summary of stability constants and rate coefficients of oxalacetic acid and some metal oxalacetates

^{*a*} Calculated from equations (4) and (5) of ref. 1. ^{*b*} Recalculated by present method from data in Tables 4 and 7 of ref. 2. ^{*c*} Recalculated by present method using data in Table 5 of ref. 2 in which [HCl] = 0.05—0.005 mol dm⁻³. For [HCl] = 0.1—0.18 mol dm⁻³, k_{ML} rises slightly. This may be due to MHL formation being significant but the evidence is too slight for a quantitative analysis.

To calculate values of $k_{\rm ML}$ [equation (4)], equations (9) and (10) were used with a first estimate of [H] to get first estimates of [L] and [HL] and of [H₂L] from equation (13). One can also write equation (23) in which [ML] = 0 is used in the first cycle,

$$[HL] = c_1 - [L] - [H_2L] - [ML]$$
(23)

and (24)-(26). The cycle starting at equation (9) was continued

$$[H] = 2c_1 + c_3 - c_2 - [HL] - 2[H_2L]$$
(24)

 $[ML] = \beta_{101}[M][L]$ (25)

$$[M] = c_4 - [ML]$$
(26)

until the two calculations of [HL] agreed to $<10^{-7}$ mol dm⁻³, whence from equation (4) one obtains equation (27). The results

$$k_{\rm ML} = (k_{\rm obs.}c_1 - k_0[{\rm H}_2{\rm L}] - k_1[{\rm HL}] - k_2[{\rm L}])/[{\rm ML}]$$
 (27)

are shown in Table 4 and a summary is in Table 5.

Gelles and Salama³ calculated β_{101} values from pH measurements (to ± 0.001 pH) with a cell similar to (A). They used

dilute solutions of varying ionic strengths (*ca.* 0.012 to *ca.* 0.029 mol dm⁻³) and obtained β_{101} values at I = 0 by a graphical method based on functions which included activity coefficients. Their plots were curved unless they allowed for M₂L formation.

The kinetics of the metal-ion catalysed decarboxylation were followed manometrically at $I = 0.1 \text{ mol } \text{dm}^{-3}$ and the values of $k_{\text{ML}}\beta_{101}$ were derived by a plotting procedure involving functions which also incorporated β_{111} values, namely from equation (28). A plot of the left-hand function against 1/[H]

$$(k_{obs.} - k_u)\beta_{011}/(\alpha_1 c_4) = k_{ML}\beta_{101}/[H] + k_{MHL}\beta_{111}\beta_{011}$$
(28)

should be linear with a slope of $k_{\rm ML}\beta_{101}$ and intercept of $k_{\rm MHL}\beta_{111}\beta_{011}$. The evidence for β_{111} is very slender since the intercept values were small or zero.

By calculating activity coefficients,⁹ β_{101} values at I = 0.1 mol dm⁻³ were estimated to be those at I = 0 multiplied by 0.143 and approximate $k_{\rm ML}$ values at I = 0.1 mol dm⁻³ and 37 °C were also assessed. The corresponding data³ have been recalculated by the present method and the outcome is shown in Table 5.

The orders of the stability constants β_{101} and of the rate coefficients k_{ML} of the ML species from the present work and from that of Gelles and Salama⁴ are about the same but the present standard deviations in β_{101} are much smaller. In closer

detail, one would not expect marked ionic strength effects upon the $k_{\rm ML}$ values and while this is found with Cu^{II} and Zn^{II} , the present k_{ML} values for the other metal oxalacetates are much higher than those of Gelles and Salama.⁴ This may be due, to some extent, to the different methods of calculating $k_{\rm ML}$. Their figures are based on one kinetic method (rate of gas evolution) whereas both this technique and spectrophotometry were used in the present studies and the answers are in good accord with one exception. It was mentioned earlier that satisfactory answers could not be obtained with the transducer method in the presence of Cu^{II} . The calculated value of k_{obs} , varied with the proportion of reaction analysed, *i.e.* first-order kinetics were not followed. Gelles and Salama⁴ did not report any kinetic work with Cu^{II} and based their calculations upon the kinetic studies of Pedersen.² In this particular case the expression relating k_{obs} , with the pressure readings had to be modified for the copper(II)-oxalacetate system. One possible explanation is that this is a consequence of the strong complexing ability of Cu^{II}. As the reaction proceeds, inert copper(II) pyruvate forms and this reduces the concentration of copper(II) oxalacetate that could exist so the rate of reaction is retarded. This effect was not apparent in the spectrophotometric work, possibly because the concentrations of reactants used (small c_4 and $c_4 \ll c_1$ and c_3) produced only low concentrations of these complexes.

One feature worth mentioning is that the rate coefficients k_0 of H₂L and k_{ML} of CuL have similar values.

Experimental

Oxalacetic acid (Aldrich Chemical Co. Ltd., 96%) was recrystallised by dissolving it in hot acetone, precipitating by toluene, filtering on to a glass sinter, and air-drying to constant weight. The other reagents were either of AnalaR grade or were made from AnalaR perchloric acid and metal oxides. Stock solutions of the metal perchlorates were analysed by use of a hydrogen-ion exchange resin column and standard sodium hydroxide.

E.m.f. measurements were obtained with the DVM system described elsewhere ¹⁰ and UV measurements with a previously described ¹¹ kinetic version of a Pye-Unicam SP8-200 spectrophotometer. Kinetic studies made by means of a transducer (Radio Spares, type 303-343) involved siting this near the top of a wide-necked vessel shaped like a graduated flask and with a bulb of about 60 cm³ in capacity. The transducer output was fed into the DVM system mentioned above and the DVM output was recorded at selected time intervals by connecting it *via* a multiplexer into a BBC microcomputer. The readings could be followed by the monitor and at the same time printed out for use in the calculation programs.

The transducer flask was clamped in a thermostatted plastic tank of water sited on a magnetic stirrer so that the solution could be agitated by a 'flea' during a run. Stock solution (50 cm³) containing 0.5 mol dm⁻³ NaClO₄ and specific amounts of stock solutions of HCl and metal perchlorate were pipetted into the flask and when thermal equilibrium was reached about 0.15 g (weighed to 0.1 mg) of oxalacetic acid was tipped in *via* a narrow tube. The flask was sealed by a rubber bung and readings were taken at timed intervals (3—15 min, depending on the rate) until the e.m.f.s were almost unchanged with time.

For the determinations of the stability constants β_{011} and β_{021} of the acid by means of the e.m.f. cells (A) and (B), dilute HCl (*ca.* 0.0005 mol dm⁻³, 150 cm³) was equilibrated, about 0.3—0.5 g of solid oxalacetic acid (weighed to 0.01 mg) stirred in followed by sufficient standard NaOH to effect partial neutralisation. E.m.f. readings were taken at 0.5—1 min intervals and extrapolated to zero time to compensate for changes caused by decarboxylation. The same procedure was used for the β_{101} values of the metal perchlorates except that only a small amount of standard NaOH was added so that the e.m.f. change with time was small and this was quickly followed by several cm³ of stock metal perchlorate and sufficient timed readings were taken for extrapolation.

Acknowledgements

I wish to thank the S.E.R.C. for the grant to purchase the spectrophotometer, and Mr. Ifan Williams and Mr. Dyson Jones for hardware and software for the transducer apparatus. I am also indebted to this department for funding part of the project.

References

- 1 K. J. Pedersen, Acta Chem. Scand., 1952, 6, 243.
- 2 K. J. Pedersen, Acta Chem. Scand., 1952, 6, 285.
- 3 E. Gelles and A. Salama, J. Chem. Soc., 1958, 3683.
- 4 E. Gelles and A. Salama, J. Chem. Soc., 1958, 3689.
- 5 R. W. Hay, in 'Metal ions in Biological Systems,' vol. 5, ed. H. Sigel, Marcel Dekker, New York, 1976.
- 6 M. Birus and D. L. Leussing, Inorg. Chem., 1982, 21, 374.
- 7 H-K. Mao and D. L. Leussing, Inorg. Chem., 1981, 20, 4240.
- 8 P. Moore, J. Chem. Soc., Faraday Trans. 1, 1972, 1890.
- 9 C. W. Davies, 'Ion Association,' Butterworths, London, 1962, p. 41.
- 10 P. B. Abdullah and C. B. Monk, J. Chem. Soc., Faraday Trans. 1, 1985, 983.
- 11 D. Smith, M. F. Amira, P. B. Abdullah, and C. B. Monk, J. Chem. Soc., Dalton Trans., 1983, 337.

Received 6th October 1988; Paper 8/03986K