Nitrogen-14 Nuclear Magnetic Resonance Studies on Sulphur–Nitrogen Compounds

Ivan P. Parkin and J. Derek Woollins*

Department of Chemistry, Imperial College of Science and Technology, London SW7 2AY Peter S. Belton AFRC, Norwich NR4 7AU

The ¹⁴N n.m.r. spectra of a variety of sulphur–nitrogen heterocycles and metal–sulphur–nitrogen complexes have been recorded and the observed shifts correlated with bonding type. The utility of ¹⁴N n.m.r. spectroscopy as a mechanistic tool in sulphur–nitrogen chemistry is illustrated for reactions in liquid ammonia.

The chemistry of sulphur-nitrogen compounds is a broad one with a great diversity of structural types and bonding.^{1,2} This field of chemistry has grown rapidly in the past ten years partly as a result of the availability of X-ray crystallography. However, the general absence of an easily accessible n.m.r. nucleus in sulphur-nitrogen systems has hampered expansion of mechanistic and structural studies. Nitrogen-15 n.m.r. spectroscopy has been used to probe sulphur-nitrogen systems and the narrow linewidths and coupling information $({}^{15}N, I = \frac{1}{2})$ have proved useful in some structural investigations, but the low natural abundance (0.36%) and the long relaxation times (typically 30 s repetition delay between scans) makes the measurements difficult except for very concentrated or ¹⁵N-labelled compounds.^{3,4} This latter technique is expensive and often involves multi-step procedures from the most commonly available enriched compound ¹⁵NH₄Cl.³

Early work on ¹⁴N n.m.r. spectroscopy using low-field instruments reported some data on sulphur-nitrogen complexes but did not establish the technique.⁵⁻⁷ We have shown recently that the quadrupolar ¹⁴N nucleus (I = 1, 99.6% abundant) although having broad lines and consequent loss of scalarcoupling information can give useful spectra in a wide variety of systems.⁸ High signal-to-noise ratio spectra are obtainable because very short pulse delays are possible due to the short spin-lattice relaxation times often observed for the quadrupolar ¹⁴N nucleus. The problems of signal loss, from fast relaxation, due to the wide lines can be reduced by the use of a high-power, wide band-width probe associated with a pulse sequence for the elimination of probe ring down.⁹

The actual linewidths observed using 14 N n.m.r. spectroscopy (ca. 500 in non-metal and 1 000 Hz in metal-sulphur-nitrogen complexes) are not great compared with the chemical shift range (800 p.p.m., 17.3 kHz at 7.0 T). Thus, in principle, a large amount of structural information can be gleaned from shift

data. It is also generally true that the symmetry of the atomic environment is related to the linewidth. 6

In this work we report the ¹⁴N n.m.r. spectra of a wide variety of non-metal-sulphur-nitrogen compounds together with metal-sulphur-nitrogen compounds recently prepared by us.¹⁰⁻¹⁵ These new data, together with those previously reported, ⁵⁻¹⁰ are correlated to give a diagnostic chemical-shift range for SN molecules. The usefulness of ¹⁴N n.m.r. spectroscopy as a mechanistic probe is illustrated for the study of sulphur-nitrogen compounds in liquid ammonia ¹⁰ and has very recently been demonstrated for liquid SO₂.¹⁰ Furthermore, as part of our studies into reactions in liquid ammonia, we have measured the ¹⁵N-¹⁴N exchange of 100% ¹⁵N-isotopically enriched [S₄N₃]Cl and S₄N₄ in liquid ammonia.

Experimental

Metal-sulphur-nitrogen complexes [(1)-(12)] were prepared as described by us previously.¹¹⁻¹⁵ The compounds [(13)-(28)]and standard sulphur-nitrogen reagents were prepared by the literature methods¹⁶⁻³⁵ referenced in Tables 3 and 4 respectively. All these compounds had satisfactory microanalytical data, mass and i.r. spectra. The n.m.r. solvents were dried as previously described¹¹ and degassed with argon prior to use.

Spectral Measurements.—Nitrogen-14 spectral measurements were performed on a Bruker CXP 300 spectrometer operating at 7.05 T using a vertical non-spinning sample and a RIDE⁹ programme for the elimination of ring down. The resonance frequency for ¹⁴N was 21.682 MHz. The temperature of the measurements was typically 295 K except for those involving liquid ammonia which were controlled using a Bruker BVT1000 temperature controller. The shifts are relative to anhydrous ammonia at 0 p.p.m.

Table 1. Experimental conditions used for data collection

Experimental conditions	Liquid ammonia	Non-metal SN compounds	Metal SN compounds
Spectral width/Hz	25 000	50 000	50 000
Data table	4 096	1 024	1 024
$\pi/2$ Pulse length/ μ s	21.6	21.6	21.6
Number of transients accumulated	5 000	50 000	500 000
Recycle delay/ms	82	102	102
Accumulation time/h	0.167	1	10
Signal-to-noise ratio (for strongest SN signal)	>100	>100	> 50

Figure 1. (a) A ¹⁴N n.m.r. chemical-shift range for sulphur-nitrogen compounds, (b) ¹⁴N and ¹⁵N n.m.r. data for specific SN compounds. Crosses indicate data reported in this work, closed circles previous ¹⁴N studies, and open circles previous ¹⁵N studies. ^a Apical nitrogen. ^b Four equivalent nitrogens. ^cN₂SO Nitrogens. ^aN₂S Nitrogens. ^eNS₂ Nitrogen. ^fSNS(O) Nitrogen. ^a SNSR Nitrogen. ⁱ NS₂ Nitrogen. ⁱ T. Chivers, personal communication. ^j E = SF, SCI, CCH₃, or CNMe₂, NS₂ nitrogen. ^k SNSE Nitrogen. There is a discrepancy between the ¹⁵N and ¹⁴N chemical-shift data for S₄N⁻, see footnote on following page.

The spectra in liquid ammonia were obtained using thickwalled 10-mm tubes with Teflon in glass Youngs taps which were filled under an argon atmosphere. For the roomNitrogen-15 Exchange Reactions in Liquid Ammonia.—Nitrogen-15 enriched $[S_4N_3]Cl$ and S_4N_4 were prepared by the literature methods.³⁶

(a)

450 400 350 300 250 200 150 100 50 0 δ/p.p.m.

Figure 2. Nitrogen-14 n.m.r. spectrum of S₃N₂NSO₂CF₃ in CH₂Cl₂

Figure 3. Nitrogen-14 n.m.r. spectrum of $[Pd(S_2N_2H)(Me_2NC_{10}H_6)]$ (4) in CH₂Cl₂

was allowed to evaporate under a stream of argon. Extraction with tetrahydrofuran (thf) (10 cm³) afforded a red solution which was allowed to evaporate in air leaving a purple-black residue. Further extraction of this residue with thf (10 cm³) followed by evaporation of the solvent in air gave crystals of S_4N_4 . The ¹⁵N content was determined by mass spectrometry using a VG 2020 instrument operating in the electron impact mode.

Results and Discussion

The ¹⁴N data from this work are displayed in Tables 2 and 3 and the chemical-shift range, which combines these with those from previously reported ¹⁴N and ¹⁵N studies,⁴⁻¹⁰ is illustrated in Figure 1. There are a number of important features. First, it is clear that the degree of saturation has a marked effect on the chemical shift. Thus, simple singly bonded species such as S₇NH and $S_4(NR)_2$ are observed at *ca.* 0 p.p.m. Alternatively, triply bonded NSF has δ 576 p.p.m.¹⁰ Formal N=S double bonds are observed in di-imides, RNSNR, and the isoelectronic RNSO systems, and these give rise to signals at δ 250–400 p.p.m. It is interesting that the planar, 'pseudo-aromatic' 1.18 species such as $S_3N_3^-$, or $(NSX)_3$ (X = Cl or OR) give chemical shifts intermediate between singly and doubly bonded species. The poorly characterised $(OSNH)_x$ polymer gives δ 330 p.p.m., suggesting a large degree of unsaturation which is not compatable with the currently proposed¹ structure. The diagnostic ability of the technique is well illustrated by the spectrum of $S_4N_5^-$ which consists of two resonances (139, intensity 4 and 52 p.p.m., intensity 1). The larger signal is associated with the four equivalent nitrogens which are in similar environments to those in S_4N_4 (123 p.p.m.), whilst the smaller signal is due to the bridging N⁻ (isoelectronic with NH) which is not heavily involved in cluster bonding and so has a chemical shift close to that in S_7NH . Furthermore, in $S_3N_2NSO_2CF_3$ (Figure 2), all three nitrogens give well separated signals. The two ring nitrogens are readily assigned 319 and 224 p.p.m.) by comparison with the spectrum of S_3N_2O with the exocyclic nitrogen having δ 179 p.p.m. Compounds (27) and (28) were formed from the reaction of S_4N_4 and PR_3 (R = PEt₃ or PPh₂Me) and were identified by ³¹P n.m.r., i.r., and mass spectra. The microanalyses were difficult to perform due to phosphine sulphide impurity, however the observed shifts are similar to the reported ¹⁵N n.m.r. spectra of Ph₃PNS₃N₃.⁴

We have also obtained useful information on metal-sulphurnitrogen complexes (Table 2, Figure 3). In MS_2N_2 and MS_2N_2H rings both nitrogens are observed and are readily distinguishable. In these metallacycles the angles at nitrogen deviate substantially from tetrahedral^{11,13} and the linewidths are greater than those observed for free di-imides. The assignment of the two resonances in these systems comes from looking at the effect of protonation. Typically, the protonated ligand $S_2N_2H^-$ gives signals at *ca*. 360 and 230 p.p.m. whereas for the $S_2N_2^{2^-}$ ligand the lower-frequency signal is shifted to *ca*. 320 p.p.m. We therefore assign the lower-frequency signal to the metal-bound nitrogen. We have also obtained the spectra of some $[Pt{N_3S_2(SO_2NH_2)}(PR_3)_2]$ complexes. The NH₂ group is well separated from the broad signal due to the three similar ring nitrogens. This might be expected since the S-N bond lengths show only marginal variation around the ring in this metallacycle.14

Table 4 summarises the species observed when a variety of sulphur-nitrogen compounds are dissolved in liquid ammonia. It appears that dissolution of a wide range of SN species in liquid ammonia gives rise to $S_3N_3^-$ with, in addition, in some cases, $S_4N_5^-$. A surprising observation is that although S_7NH disproportionates (to some extent) in solution, S₄N₄H₄ does not. The presence of signals at only 52 and 139 p.p.m. when $S_4N_5^{-1}$ is dissolved in liquid ammonia indicates that this species is not in equilibrium with $S_3N_3^-$ and the formation of the latter on dissolution of S_4N_4 thus appears to proceed by a parallel pathway⁹ to the formation of $S_4N_4^{-}$. We believe that dissolution of $S(NSO)_2$ gives NSO⁻ since the chemical shift (500 p.p.m.) is in the appropriate region [(12) occurs at 463 p.p.m.] and we have been able to isolate $[Pt(NSO)_2(PR_3)_2]$ complexes from these solutions.¹⁵ Since in reactions of this solution we have obtained metal complexes containing the $S_2N_2^2$ ligand we have assigned the resonances at 294 and 226 $S_2 N_2^{-1} N_2^{-1}$ inglith we assigned the resonances at 294 and 220 p.p.m. to $S_2 N_2^{-2-}$. This is in accord with our previous comments about $S_4 N_4$ -NH₃(l) solutions.¹⁰ However, $S_3 N_3 O^-$ has ¹⁵N shifts of 289 and 225 p.p.m.³⁶ and so it is possible that the liquid ammonia solution contains $S_3 N_3 O^-$ formed by oxidation of $S_3N_3^{-}$.

Solutions of S_8 in liquid ammonia have been studied by a number of groups.^{36,37} In the ¹⁴N n.m.r. spectrum the peak at 485 p.p.m. can be assigned to S_4N^{-*} and that at 572 p.p.m. to NS⁺ (NSF,¹⁰ 576; NSAsF₆,¹⁰ 582 p.p.m.), with the major peak at 51 p.p.m. being due to S_7NH , and thus our n.m.r. measurements are in accord with previous u.v.-visible studies.^{37,39}

Peaks observed at 283 p.p.m. in the spectrum of $S_3N_3Cl_3$ (Figure 4), $S_4N_4O_2$, and S_5N_5Cl are assignable to SNS⁺ since SNS⁺AsF₆⁻¹⁰ occurs at 289 p.p.m. with the slight difference in

^{*} Although the previous ¹⁵N study ⁴ reported a much lower δ value for S_4N^- , more recently Chivers ³⁸ has measured ¹⁴N spectra for S_4N^- and S_3N^- which give shifts of +110 and +237 p.p.m. relative to MeNO₂ and +490 and +617 p.p.m. relative to liquid NH₃.

 Table 2. Nitrogen-14 n.m.r. spectral data for metal-sulphur-nitrogen compounds

Table 2 (continued)

 $\delta/p.p.m.$ Figure 4. Nitrogen-14 n.m.r. spectrum of $S_3N_3Cl_3$ in liquid ammonia

200

150

100

50

0

250

450

400

350

300

shift being due to the change in counter ion and solvent. In the spectrum of $S_4N_4O_2$ the main peak at 90 p.p.m. is likely to be of the type $R-SO_2-NH_2$ as 91—94 p.p.m. is observed for (9)—(11) and δ 93 p.p.m. for sulphamide.⁸ The unidentified species at 97—84 p.p.m. observed for $S_3N_3Cl_3$, S_5N_5Cl , and $SOCl_2$ is also probably of the $R-NH_2$ type.

Some of the observed liquid ammonia spectra (Table 4) are somewhat time dependent. However, the spectra of $[S_4N_3]Cl$, $[S_3N_2Cl]Cl$, and S_2Cl_2 which only contain peaks due to $S_3N_3^$ show no change after 1 week at room temperature. In general

The state of the second of the	Ta	ble	3.	N	itrogen-	14	n.m.r. s	pectral	data i	for sul	phur-n	itrogen	compoun	ds
--	----	-----	----	---	----------	----	----------	---------	--------	---------	--------	---------	---------	----

		Reference			
	Compound	of preparation	δ/p.p.m.	v _t /Hz	Solvent
(13) $S_4(NC_6H_{11})_2$	16	22	1 500	CH ₂ Cl ₂
(14	$S_7 NH$	17	26	780	Benzene
(15	$S_3N_3(OMe)_3$	18	88	1 400	CH ₂ Cl ₂
(16) $S_3N_3(OEt)_3$	18	93	1 470	CH ₂ Cl ₂
(17	$S_3N_3(OPr^i)_3$	18	96	1 560	CH ₂ Cl ₂
(18) $S_3N_3(OC_5H_{11})_3$	18	86	1 400	$CH_{2}CI_{2}$
(19) $[PPh_4][S_3N_3]$	19	146	200	CH ₂ Cl ₂
(20) $Na[S_4N_5]$	20	139, 52	300, 300	CH ₂ Cl ₂
(21) S_3N_2O	21	326, 259	240, 240	Benzene
(22	$S(NSO)_2$	22	330	240	Toluene
(23) $p-MeC_6H_4SO_2NSO$	23	345	390	Toluene
(24	$p-NO_2C_6H_4SO_2NSO$	23	372, 323	350, 580	Toluene
(25) (OSNH) _x	24	330	270	CH ₂ Cl ₂
(26	$S_3N_2NSO_2CF_3$	25	319, 224, 179	390, 500, 600	CH ₂ Cl ₂
(27) $Et_3PNS_3N_3$	26	287, 207, 85	600, 800, 1 300	CH ₂ Cl ₂
(28) Ph ₂ MePNS ₃ N ₃	26	287, 206, 126	1 100, 1 200, 600	CH ₂ Cl ₂

Table 4. Nitrogen-14 n.m.r. spectral data for the major sulphur-nitrogen species in liquid ammonia showing the approximate percentage (in brackets) attributable to each peak^a

	Reference			Principal
Compound	of preparation	δ/ p.p. m.	$v_{\frac{1}{2}}/Hz$	species
[S₄N₃]Cl	27	148(100)	120	S ₃ N ₃ ⁻
[S ₃ N ₂ Cl]Cl	28	148(100)	400	S ₃ N ₃ ⁻
S ₂ Cl ₂	Ь	149(100)	240	S ₃ N ₃ ⁻
S_4N_4	29	148(90)	120	$S_3N_3^-$
		138(10)	shoulder	S ₄ N ₅ ⁻
		52	120	
$[NH_4][S_4N_5]$	30	139(100)	180	S ₄ N ₅ ⁻
		52	150	
S₄N₄H₄	31	62(100)	700	S₄N₄H₄
S ₃ N ₃ O ₃ Cl ₃	32	98(100)	560	
S ₃ N ₃ Cl ₃	33	283(30)	110	SNS ⁺
		139(70)	230	S ₄ N ₅ ⁻
		52	200	
		97(15)	500	RNH ₂
[S,N,]Cl	34	283(10)	60	SNS ⁺
		149(70)	110°	$S_3N_3^-$
		139(15)		S ₄ N ₅ ⁻
		53	300	
		94(5)	200	RNH ₂
S ₇ NH	35	484(50)	120	S₄N⁻¯
		148(20)	100	$S_3N_3^-$
		49(20)	440	S ₇ NH
		-21(20)	500	?
SOCl ₂	Ь	502(15)	100	NSO-
-		485(50)	180	S₄N⁻
		272(15)	140	
		84(15)	800	$SO(NH_2)_2?$
S(NSO) ₂	22	500(50)	120	NSO ⁻
		294(10)	120	$S_2N_2^2 ?$
		226(10)	120	$S_{2}N_{2}^{2}$?
		149(20)	85	$S_{3}N_{3}^{-}$
S ₈	Ь	572(5)	100	NS ⁺
		485(10)	100	S₄N⁻
		352(5)	100	
		51(80)	350	S ₇ NH
$S_4N_4O_2$	35	283(10)	150	SNS ⁺
		157(20)	180	
		149(30)	180	S ₃ N ₃ ⁻
		137(10)	200	
		90(30)	410	RSO_2NH_2

^a For $S_4N_5^-$ the area under both peaks has been summed. ^b Aldrich. ^c Overlapping resonance does not allow individual linewidths to be determined with accuracy.

Figure 5. Nitrogen-14 n.m.r. spectrum of a 24 h-old thf solution obtained after bubbling NH_3 through a suspension of $[S_4N_3]Cl$ in thf for 10 min

the change in concentration of the various species in the more complex solutions (*i.e.* $S_4N_4O_2$) show *ca.* 20% change in product distribution after 24 h. Two systems that we have studied in some detail are the reaction between $[S_4N_3]Cl$ and $NH_3(g)$ in thf and the associated process, *i.e.* thf extraction of the $[S_4N_3]Cl-NH_3(l)$ residue (Table 5).

The thf extract from $[S_4N_3]Cl-NH_3(l)$ shows a multitude of different species, no $S_3N_3^-$ or $S_4N_5^-$ salts are observed but initially *ca.* 10% of S_4N_4 (121 p.m.)⁸ is apparent. The main component of the solution (344, 333 p.p.m.), *ca.* 65%, is a sulphur-di-imide-type species, possibly $N_2S^2^-$ or HNSN⁻. After

Table 5. The use of ¹⁴N n.m.r. spectroscopy in mechanistic studies

Reaction conditions thf extract from $[S_4N_3]Cl-NH_3(l)$ after 1 h thf extract from $[S_4N_3]Cl-NH_3(l)$ after 24 h thf solution from $[S_4N_3]Cl-NH_3(g)$ after 1 h thf solution from $[S_4N_3]Cl-NH_3(g)$ after 1 h

Figure 6. Graph showing the ¹⁵N content in the S_4N_4 recovered from solutions of (a) $S_4^{15}N_4(\times)$ and (b) $[S^{15}N_3]Cl(\bigcirc)$, where *t* refers to the total time the samples were in liquid ammonia (see Experimental section)

24 h more S_4N_4 is produced and the main peaks initially at 333 and 344 p.p.m. have decreased in magnitude.

The initial thf extract from $[S_4N_3]Cl-NH_3(l)$ is known to react with $[PtCl_2(PR_3)_2]$ to yield $[Pt(S_2N_2)(PR_3)_2]$.⁴⁰ From the ¹⁴N n.m.r. spectrum it is unlikely that the reaction proceeds in the same way as that of the thf solution of $[S_4N_3]Cl-NH_3(g)$ with $[PtCl_2(PR_3)_2]$ because the same reactive SN species are not detected by ¹⁴N n.m.r. spectroscopy. The main product from passing NH₃(g) through a solution of $[S_4N_3]Cl$ in thf is S_4N_4 in *ca.* 85% yield, detected by ¹⁴N n.m.r. spectroscopy. This agrees with the current theory that S_4N_3Cl is an intermediate in the synthesis of S_4N_4 from 'SCl₃' and ammonia.¹

In the light of our n.m.r. measurements we have dissolved ¹⁵N-labelled S_4N_4 in liquid ammonia to determine if the nitrogen atoms in the SN heterocycle exchange with the solvent. Figure 6 illustrates the decrease in ¹⁵N content of the S_4N_4 with time together with the same results for $[S_4N_3]Cl$. It is clear that the SN species observed by n.m.r. spectroscopy, *i.e.* $S_3N_3^-$ is in equilibrium with other SN molecules in reactions which incorporate the solvent nitrogen atoms. The initial ¹⁵N-¹⁴N exchange is very rapid in the $[S_4N_3]Cl$ case and we believe that there are two processes that account for the loss of ¹⁵N label from the heterocycle. The formation of the $S_3N_3^-$ anion occurs rapidly [equation (1)] and this species is involved in other equilibria which result in further

$$7 S_4 N_3^+ + 6 NH_3 \longrightarrow 9 S_3 N_3^- + H_2 S + 16 H^+ (1)$$

exchange of the nitrogen atoms. We have previously speculated⁹ on the species that might be involved since we do

 $\begin{array}{c} \delta/\text{p.p.m.} (\% \text{ of total}) \\ 393, 372, 344, 333, 191, 121, 103, 24 \\ (5) (5) (25) (35) (10) (10) (5) (5) \\ 333, 274, 193, 121, 24 \\ (20) (30) (5) (40) (5) \\ 366, 310, 305, 274, 214, 179, 121, 33 \\ (2) (1) (1) (2) (2) (5) (85) (2) \\ 366, 309, 180, 121, 29 \\ (4) (7) (1) (85) (3) \end{array}$

observe some weak signals (1-2%) of the total) in the spectrum of S_4N_4 in liquid ammonia. It seems likely that small amounts of SN anions such as S_3N^- , $S_2N_2^{2-}$, $S_2N_2H^-$, and SN_2^{2-} may be present.

Acknowledgements

We are grateful to Johnson Matthey for loans of precious metals, to Dr. P. F. Kelly for useful suggestions, and to Professor T. Chivers (Calgary) for providing ¹⁴N chemical shift data on S_4N^- and S_3N^- prior to publication.

References

- 1 H. G. Heal, 'The Inorganic Heterocyclic Chemistry of Sulphur, Nitrogen and Phosphorus,' Academic Press, London, 1980.
- 2 J. D. Woollins, 'Non-Metal Rings Cages and Clusters,' Wiley, Chichester, 1988.
- 3 M. Herberhold, S. M. Frank, and B. Wrackmeyer, Z. Naturforsch., Teil B, 1988, 43, 985.
- 4 T. Chivers, R. T. Oakley, O. J. Scherer, and G. Wolmershauser, *Inorg. Chem.*, 1981, 20, 914.
- 5 D. A. Armitage, J. Mason, and J. G. Vinter, Inorg. Chem., 1978, 17, 776.
- 6 J. Mason, W. van Bronswijk, and O. Glemser, J. Phys. Chem., 1978, 82, 463.
- 7 J. Mason, Chem. Rev., 1981, 81, 205.
- 8 P. S. Belton and J. D. Woollins, Magn. Reson. Chem., 1986, 24, 1082.
- 9 P. S. Belton, I. J. Cox, and R. K. Harris, J. Chem. Soc., Faraday Trans. 2, 1985, 63.
- 10 P. S. Belton, I. P. Parkin, and J. D. Woollins, J. Chem. Soc., Chem. Commun., 1988, 1479; J. Passmore and M. J. Schiver, Inorg. Chem., 1988, 27, 2749.
- 11 R. Jones, C. P. Warrens, D. J. Williams, and J. D. Woollins, J. Chem. Soc., Dalton Trans., 1987, 907.
- 12 I. P. Parkin, C. A. O'Mahoney, D. J. Williams, and J. D. Woollins, J. Chem. Soc., Dalton Trans., 1989, 1179.
- 13 P. A. Bates, N. B. Hursthouse, P. F. Kelly, and J. D. Woollins, J. Chem. Soc., Dalton Trans., 1986, 2367.
- 14 I. P. Parkin, A. M. Z. Slawin, D. J. Williams, and J. D. Woollins, J. Chem. Soc., Chem. Commun., 1989, 58.
- 15 I. P. Parkin, A. M. Z. Slawin, D. J. Williams, and J. D. Woollins, Polyhedron, 1989, 8, 835.
- 16 R. Jones, D. J. Williams, and J. D. Woollins, Angew. Chem., Int. Ed. Engl., 1985, 24, 760.
- 17 J. Bojes, T. Chivers, and I. Drummond, Inorg. Synth., 1979, 18, 203.
- 18 R. Jones, I. P. Parkin, D. J. Williams, and J. D. Woollins, *Polyhedron*, 1987, **6**, 2161.
- 19 R. Jones, P. F. Kelly, D. J. Williams, and J. D. Woollins, *Polyhedron*, 1987, 6, 1541.
- 20 J. Bojes, Inorg. Nucl. Chem. Lett., 1976, 12, 551.
- 21 H. W. Roesky, G. Holtschneider, H. Weizer, and B. Krebs, Chem. Ber., 1976, 109, 1358.
- 22 D. A. Armitage and A. W. Sinden, Inorg. Chem., 1972, 11, 1151.
- 23 G. Kresze and W. Wucherptennig, Angew. Chem., Int. Ed. Engl., 1967, 6, 149.
- 24 M. B. Goehring, R. Schwarz, and W. Spiess, Z. Anorg. Allg. Chem., 1958, 283, 294.

- 25 H. W. Roesky and A. Hamza, Angew. Chem., Int. Ed. Engl., 1976, 15, 226.
- 26 I. P. Parkin, unpublished work.
- 27 N. Logan and W. L. Jolly, Inorg. Chem., 1965, 1508.
- 28 D. B. Adams, A. J. Banister, D. J. Clark, and D. Kilcast, Int. J. Sulfur Chem., Part A, 1971, 143.
- 29 M. Villano Blanco and W. L. Jolly, Inorg. Synth., 1967, 9, 98.
- 30 O. J. Scherer and G. Wolmershauser, Chem. Ber., 1977, 110, 3241.
- 31 A. Meuwsen and M. Lossel, Z. Anorg. Allg. Chem., 1953, 271, 217.
- 32 T. Moeller, T. H. Chang, A. Ovechi, A. Vandi, and A. Failli, Inorg. Synth., 1972, 13, 9.
- 33 W. L. Jolly and K. D. Maguire, Inorg. Chem., 1967, 9, 102.

- 34 L. Zaborilova and P. Gebauer, Z. Chem. Leipzig., 1979, 19, 32.
- 35 H. W. Roesky, H. Schaper, O. Peterson, and T. Muller, Chem. Ber., 1977, 110, 2695.
- 36 T. Chivers, A. W. Cordes, R. T. Oakley, and W. T. Pennington, *Inorg. Chem.*, 1983, **22**, 2429.
- 37 H. Prestel and U. Schindewolf, Z. Anorg. Allg. Chem., 1987, 551, 21.
- 38 T. Chivers, personal communication.
- 39 P. Dubois, J. P. Lelieur, and G. Lepoutre, Inorg. Chem., 1987, 26, 1897.
- 40 P. F. Kelly, Ph.D. Thesis, University of London, 1987.

Received 17th February 1989; Paper 9/00754G