Preparation and Properties of $[M{S_2N_3(SO_2NH_2)}(PR_3)_2]$ and $[Pt{SO_2(NH)_2}(PR_3)_2]$ from Reactions in Liquid Ammonia

Ivan P. Parkin and J. Derek Woollins*

Imperial College of Science, Technology and Medicine, South Kensington, London SW7 2AY

Reaction of $SO_2(NH_2)_2$ or SO_2Cl_2 in liquid ammonia with $[PtCl_2(PR_3)_2]$ gives $[Pt\{SO_2(NH)_2\}(PR_3)_2]$ (PR₃ = PMe₂Ph, PMePh₂, PPh₃, PEt₃, or $\frac{1}{2}Ph_2PCH_2CH_2PPh_2$) in good yield (*ca.* 70% isolated). Reaction of $SOCl_2$ in liquid ammonia with $[TiCl_2(C_5H_5)_2]$ or $[PtCl_2(PR_3)_2]$ yields $[Ti(NSO)_2(C_5H_5)_2]$ and $[Pt(NSO)_2(PR_3)_2]$ respectively in *ca.* 60% yield. The compound $S_4N_4O_2$ in liquid ammonia reacts with $[MCl_2(PR_3)_2]$ to produce $[M\{S_2N_3(SO_2NH_2)\}(PR_3)_2]$ (M = Pt, PR₃ = PMe_2Ph, PMePh₂, PEt₃, PPrⁿ₃, or PBuⁿ₃; M = Pd, PR₃ = $\frac{1}{2}Ph_2PCH_2CH_2PPh_2$) in fair yield (*ca.* 40%). The reactivity of Na₂SO₄, H₂NSO₃H, SO₃•NMe₃, S₃N₂(NSO₂CF₃), NaHNSO₂C₆H₄Me, (NSOR)₃, and H₂NSO₂Ph in liquid ammonia has also been investigated. The new compounds were characterised by ³¹P and ¹H n.m.r., i.r., mass spectroscopy, and microanalyses.

A number of compounds have been synthesized by dissolving sulphur-nitrogen species in liquid ammonia and adding metal complexes.¹⁻³ Treatment of $[{PdCl(L)}_2]$ with $[S_4N_3]Cl-NH_3(l)$ gives $[Pd(S_2N_2H)L]$ and reaction of [S₃N₂Cl]Cl-NH₃(l) $[PtCl_2(PR_3)_2]$ with produces $[Pt(S_2N_2)(PR_3)_2]$. Several techniques have been employed to investigate the species present in sulphur or sulphur-nitrogen compounds when dissolved in ammonia. Extensive use has been made of Raman and u.v.-visible spectroscopy in attempts at both identifying and quantifying the species present.⁴⁻⁶ A recent approach to this area has been to use ¹⁴N n.m.r. spectroscopy enabling quick and easy product speciation,⁷ for example in the identification of $S_3N_3^-$ in the solution formed when adding $[S_3N_2CI]Cl$ and $[S_4N_3]Cl$ to liquid ammonia.

Some attempts have been made to synthesize sulphurnitrogen-oxygen species. For example, oxygen-co-ordinated $S_4N_4O_2$ has been complexed in [TiCl₄($S_4N_4O_2$)].⁸ Recently we have shown that reaction of [PtCl₂(PR₃)₂] with S(NSO)₂ in liquid ammonia produces [Pt(NSO)₂(PR₃)₂] in good yield.⁹⁻¹²

The ¹⁴N n.m.r. spectra of $S(NSO)_2$ and $SOCl_2$ show the same peak associated with NSO⁻ ion (500 p.p.m.) in liquid ammonia.⁷ This suggested that $SOCl_2$ could be used instead of $S(NSO)_2$ in the synthesis of $[Pt(NSO)_2(PR_3)_2]$. Furthermore, the unusual ¹⁴N n.m.r. spectra of $S_4N_4O_2$ in ammonia initiated attempts to trap the 'SNO' species formed in solution by the addition of $[PtCl_2(PR_3)_2]$; a brief communication of this work has already appeared.¹³

Here, we describe the results of our studies into the synthetic versatility of liquid ammonia solutions of $S_4N_4O_2$, $SOcl_2$, SO_2Cl_2 , $SO_2(NH_2)_2$, $NaHNSO_2C_6H_4Me$, and H_2NSO_2Ph with [PtCl₂(PR₃)₂].

Experimental

Manipulations were performed under an inert argon atmosphere. The preparation of $[MCl_2(PR_3)_2]$ was as previously reported; ¹⁴ S₄N₄O₂, (SNOCl)₃, S₃N₃(OR)₃, S₃N₂O, S₃N₂N-SO₂CF₃, and NaNHSO₂C₆H₄Me were made by literature methods.¹⁵⁻²⁰ Ammonia (BOC anhydrous) and the remaining reagents (all Aldrich) were used as supplied. Solvents were dried before use; CH₂Cl₂ from CaH₂, light petroleum (b.p. 60–80 °C) and diethyl ether from sodium-benzophenone. ³¹P-{¹H} N.m.r. spectra were recorded in CDCl₃ on a JEOL FX90Q spectrometer operating at 36.21 MHz and are referred to external 85% H₃PO₄, ¹H n.m.r. on a Bruker 250 WM machine

operating at 250.21 MHz and referred to internal $CHCl_3$ at δ 7.24. I.r. spectra were obtained as KBr discs using a Perkin-Elmer 1720X spectrometer, mass spectra on a VG 2020 machine using both electron impact (e.i.) and fast atom bombardment (f.a.b.) (thiodiethanol matrix) modes. Microanalyses were carried out by the departmental service at Imperial College.

Preparations.— $[M{S_2N_3(SO_2NH_2)}(PR_3)_2]$. The same general procedure was adopted for all compounds, illustrated here for $[Pt{S_2N_3(SO_2NH_2)}(PEt_3)_2]$ (3). The compound $S_4N_4O_2$ (30 mg, 0.14 mmol) was dissolved in liquid ammonia (5 cm³) at -78 °C to generate a red solution. The complex $[PtCl_2(PEt_3)_2]$ (70 mg, 0.14 mmol) was added and the suspension stirred for 0.5 h at -78 °C. The ammonia was then allowed to evaporate slowly as the reaction warmed to room temperature leaving a brown-red solid. The residue was extracted with CH_2Cl_2 (5 cm³), filtered through a glass wool–Celite plug, and complex (3) obtained by the addition of light petroleum (20 cm³). Yield 0.062 mmol (44%).

For $[Pd{S_2N_3(SO_2NH_2)}(Ph_2PCH_2CH_2PPh_2)]$ (4) the reaction time was reduced to 5 min before the ammonia was allowed to evaporate. If the reaction was left for 0.5 h and worked up as above only $[Pd(S_2N_2)(Ph_2PCH_2CH_2PPh_2)]$ was obtained. Attempted reaction, of $[PtCl_2(PPh_3)_2]$ or $[PtCl_2(Ph_2PCH_2CH_2PPh_2)]$ under the conditions described above, gave only unreacted starting material. However allowing the reaction to warm to room temperature in a sealed vessel for 0.5 h before cooling and allowing the ammonia to evaporate produced $[Pt(S_2N_2)(PPh_3)_2]$ and $[Pt(S_2N_2)(Ph_2PCH_2CH_2PPh_2)]$ in *ca*. 60% yield.

 $[Pt(NSO)_2(PR_3)_2]$. The compound SOCl₂ (0.10 g, 0.84 mmol) was added dropwise to stirred liquid ammonia (5 cm³) at -78 °C to generate an orange solution. **CAUTION**: vigorous exothermic reaction. The complex $[PtCl_2(PR_3)_2]$ (0.2 mmol) was added and the suspension stirred for 0.5 h at -78 °C. The ammonia was allowed to evaporate slowly as the reaction warmed to room temperature to leave a yellow-white solid. The solid was extracted with CH₂Cl₂ (5 cm³), filtered through a Celite–glass wool plug, and mixed with diethyl ether (15 cm³). The product was obtained as well formed pale yellow crystals on cooling this solution to -20 °C for 12 h. Yield 0.145 mmol (*ca.* 70%).

[Pt(NSO)₂(PEt₃)₂]: $\delta(^{31}P) = 1.1$ p.p.m., J = 3070 Hz; m/z = 555 (M^+) and 493 ($M^+ -$ NSO); v(NSO) 1242vs, 1062s, and 567m cm⁻¹. [Pt(NSO)₂(PMePh₂)₂]: $\delta(^{31}P) =$ -8.1 p.p.m., J = 3120 Hz; m/z 720 (M^+) and 658 ($M^+ -$ NSO); v(NSO) 1242vs, 1062s, and 569w cm⁻¹.

[Ti(NSO)₂(C₅H₅)₂]. The compound SOCl₂ (0.30 g, 2.52 mmol) was carefully added dropwise to stirred liquid ammonia (10 cm³) at -78 °C to generate an orange solution. The complex [TiCl₂(C₅H₅)₂] (0.30 g, 1.22 mmol) was added and the red suspension stirred for 0.5 h at -78 °C. The ammonia was allowed to evaporate as the reaction slowly warmed to room temperature leaving a red-yellow solid. This was extracted with CH₂Cl₂ (20 cm³), filtered through a Celite–glass wool plug to leave a yellow solution which was pumped to dryness *in vacuo* and washed with diethyl ether (50 cm³) to leave a yellow solid, [Ti(NSO)₂(C₅H₅)₂] (0.17 g, 0.58 mmol, 48%); *m*/*z* 302 (*M*⁺) and 246 (*M*⁺ – NSO); δ (¹H) 6.37(s).

[Pt{SO₂(NH)₂}(PR₃)₂]. Method (i). The compound SO₂Cl₂ (0.10 g, 0.74 mmol) was carefully added dropwise to liquid ammonia (10 cm³) at -78 °C to generate a red solution. **CAUTION**: care exothermic reaction. Solid [PtCl₂(PR₃)₂] (0.2 mmol) was added and the suspension stirred at -78 °C for 0.5 h. The ammonia was then allowed to evaporate slowly as the reaction warmed slowly to room temperature producing a yellow solid. This was extracted into CH₂Cl₂ (5 cm³), filtered through a Celite–glass wool plug, and mixed with diethyl ether (15 cm³). Cooling of this solution to -20 °C produced colourless crystals of [Pt{SO₂(NH)₂}(PR₃)₂] (1.1–1.5 mmol, 54– 75%).

Method (ii). The same quantities and procedures were adopted as above save SO_2Cl_2 was replaced by $SO_2(NH_2)_2$ (0.21 mmol, 0.020 g).

[Pt(NHSO₂C₆H₄Me)₂(PR₃)₂]. The compound Na-[NHSO₂C₆H₄Me] (0.038 g, 0.2 mmol) was added to liquid ammonia at -78 °C to form a colourless solution; [PtCl₂(PR₃)₂] (0.1 mmol) was added and the suspension stirred for 0.5 h at -78 °C. The ammonia was allowed to evaporate as the solution warmed to room temperature leaving a white solid. This was extracted into CH₂Cl₂ (5 cm³), filtered through a Celite–glass wool plug, and mixed with diethyl ether (10 cm³). Cooling of this solution afforded a white solid [Pt(NHSO₂C₆-H₄Me)₂(PR₃)₂] (0.042 mmol, 42% yield).

The reaction can be repeated as above using H_2NSO_2Ph instead of Na[NHSO₂C₆H₄Me] to produce [Pt(NHSO₂Ph)-(PMePh₂)₂] (17) in 38% yield.

Reactions of $[PtCl_2(PR_3)_2]$ with $(SNOCl)_3$, $(SNOR)_3$ (R = Me or Prⁱ), $S_3N_2(NSO_2CF_3)$, or S_3N_2O .—The sulphurnitrogen-oxygen reagent (0.2 mmol) was dissolved in liquid ammonia at -78 °C. The complex $[PtCl_2(PR_3)_2]$ (0.2 mmol) was added and the suspension stirred for 0.5 h at -78 °C. The ammonia was allowed to evaporate as the reaction warmed slowly to room temperature and the residue extracted with CDCl₃ (3 cm³), filtered through a Celite-glass wool plug and the ³¹P n.m.r. spectrum recorded.

Results and Discussion

Reaction of $[PtCl_2(PR_3)_2]$ with $S_4N_4O_2$ in liquid ammonia gives $[Pt\{S_2N_3(SO_2NH_2)\}(PR_3)_2]$ in moderate yield [equation (1)]. The products can be regarded as having been formed with

$$S_4N_4O_2 + 3NH_3 + [PtCl_2(PR_3)_2] \longrightarrow$$

$$2NH_4Cl + [Pt\{S_2N_3(SO_2NH_2)\}(PR_3)_2] + 'SN' \quad (1)$$

elimination of S^{II} from the S₄N₄O₂ as was the case for the formation of NSO⁻ complexes from S(NSO)₂.⁹ The ³¹P n.m.r. spectrum of the crude reaction mixtures reveal the presence of a number of products; $[Pt{S_2N_3(SO_2NH_2)}(PR_3)_2]$ accounts for *ca.* 80% by integration. A small amount of $[Pt(S_2N_2)(PR_3)_2]$ (*ca.* 10%) is observed amongst other trace compounds. The products (1)–(6) crystallise from CH₂Cl₂ as well formed orange-yellow cubes by the addition of n-hexane. Attempts to isolate the product by chromatography (silica and size elution) failed to achieve separation from $[Pt(S_2N_2)(PR_3)_2]$.

The formulation of $[Pt{S_2N_3(\bar{SO}_2NH_2)}(PR_3)_2]$ is justified on the basis of microanalysis, i.r., ³¹P n.m.r., mass spectroscopy, and in the case of PR₃ = PMe₂Ph by X-ray crystallography.¹³ The microanalyses (Table 1) indicate that the compounds are crystallised as solvates, with included CH₂Cl₂, as seen in the crystal structure.¹³

The ³¹P n.m.r. spectra of compounds (1)—(6) (Table 2) are of the AX type (${}^{2}J = 24$ Hz) with ¹⁹⁵Pt satellites (${}^{1}J ca. = 3500$ and 3 100 Hz) indicating platinum(II) species with inequivalent phosphine ligands. The lower value of ${}^{1}J$ is typical of a phosphine *trans* to a nitrogen donor in a platinum(II) complex.^{21,22} The high coupling constant of 3 500 Hz is more consistent with a co-ordinated oxygen,²³ however the close proximity of the electron-withdrawing SO₂NH₂ group to the co-ordinated nitrogen may be an important factor.

Selected i.r. vibrations due to the co-ordinated [S₂N₃- $(SO_2NH_2)^{2-}$ ligand are shown in Table 3. In the N-H stretching region two vibrations occur at ca. 3 300 and 3 220 cm⁻¹. The lower-frequency vibration is slightly broader than the higher frequency suggesting some degree of hydrogen bonding. The exocyclic SO_2NH_2 group has SO_2 vibrations at ca. 1 325 and 1 150 cm⁻¹ compared to those attributable to the same group in $S_4N_4O_2$ at 1 330 and 1 139 cm⁻¹. The $\delta(OSO)$ rock and $\delta(OSO)$ bend of compounds (1)–(4) were assigned by comparison with the observed vibrations of $S_4N_4O_2$. The crystal structure ¹³ of (1) indicates that the PtS_2N_3 ring can be regarded as a $Pt(S_2N_2)$ ring with a $N(SO_2NH_2)$ group inserted into the Pt-S bond. The ring contains a planar PtS_2N_2 unit with the $N(SO_2NH_2)$ nitrogen displaced below this plane. The observed v(N–S) bands at *ca*. 1 120, 870, 800, and 640 cm⁻¹ are similar to those observed for $[Pt(S_2N_2H)(PR_3)_2]$ (1040, 875, and 640 cm⁻¹) complexes.¹⁴ The band observed at 800 cm⁻¹. although not observed for the PtS₂N₂H and PtS₂N₂ rings, is typical of many observed SN stretches. The low-frequency vibrations at 491, 401, and 341 cm⁻¹ are assigned as $\delta(NS)$ modes by analogy with those of $[Pt(S_2N_2H)(PR_3)_2]$ and $[Pt(S_2N_2)(PR_3)_2]$ complexes.^{14,21} However the existence of Pt-S or Pt-N vibrations could account for some of the observed bands in this region.

The mass spectra of compound (1)—(6) consist principally of the parent ion $[M{S_2N_3(SO_2NH_2)}(PR_3)_2]^+$, and fragmentation ions due to $[M{S_2N_3(SO_2)}(PR_3)_2]^+$ and $[M(S_2N_3)(PR_3)_2]^+$, consistent with the proposed structure.

On varying the phosphine, unlike the $[PtCl_2(PR_3)_2]-S_4N_3Cl$ system,³ the product distribution in the $S_4N_4O_2-[PtCl_2(PR_3)_2]$ reaction is altered. With $[PtCl_2(PPh_3)_2]$ and $[PtCl_2(Ph_2PCH_2CH_2PPh_2)]$ no reaction occurred unless the mixture was allowed to warm to room temperature in a pressure tube. In this case $[Pt(S_2N_2)(PPh_3)_2]$ and $[Pt(S_2N_2)(Ph_2PCH_2CH_2PPh_2)]$ were the main products

Table 1. Microanalytical data (calculated values in parentheses) and yields

			Analysis/%		
	Compound	C	Н	N	Yield/%
(1)	$[Pt{S_2N_3(SO_2NH_2)}(PMe_2Ph)_2] \cdot CH_2Cl_2$	27.40	3.45	7.50	40
		(27.45)	(3.35)	(7.55)	
(2)	$[Pt{S_2N_3(SO_2NH_2)}(PMePh_2)_2] \cdot CH_2Cl_2$	36.95	3.70	6.90	43
		(37.40)	(3.50)	(6.45)	
(3)	$[Pt{S_2N_3(SO_2NH_2)}(PEt_3)_2]$	23.25	5.25	9.00	43
		(23.35)	(5.20)	(9.05)	
(4)	$[Pd{S_2N_3(SO_2NH_2)}(Ph_2PCH_2CH_2PPh_2)] \cdot CH_2Cl_2$	41.25	3.45	7.10	48
		(41.90)	(3.40)	(7.25)	
(5)	$[Pt{S_2N_3(SO_2NH_2)}(PPr^n_3)_2]$	25.90	6.30	8.00	35
_		(26.70)	(5.75)	(7.05)	
(7)	$[Pt{SO_2(NH)_2}(PMe_2Ph)_2]$	33.95	3.85	5.05	34
(2)		(34.00)	(4.25)	(4.95)	
(8)	$[Pt{SO_2(NH)_2}(PMePh_2)_2]$	45.30	4.05	3.95	65
		(45.15)	(4.05)	(4.05)	
(9)	$[Pt{SO_2(NH)_2}(PPh_3)_2]$	51.50	3.95	3.85	54
(10)		(51.20)	(3.85)	(3.30)	
(10)	$[Pt{SO_2(NH)_2}(Ph_2PCH_2CH_2PPh_2)] \cdot 0.5CH_2Cl_2$	44.00	3.65	3.00	63
(11)		(43.60)	(3.45)	(3.80)	
(11)	$[Pt{SO_2(NH)_2}(PEt_3)_2]$	26.25	6.10	5.20	75
(13)		(26.45)	(5.80)	(4.95)	
(12)	$[Pt(NSO)_2(PEt_3)_2] \cdot 0.5CH_2CI_2$	24.55	5.75	4.75	71
(13)	$(\mathbf{D}_{\mathbf{A}})$ $(\mathbf{D}_{\mathbf{A}}$	(25.10)	(5.20)	(4.70)	
(13)	$[Pt(NSO)_2(PMePn_2)_2] \cdot CH_2 Cl_2$	39.80	3.85	3.25	65
(14)	[T:(NSO) (C, H,)] = 0.5CH C	(40.30)	(3.50)	(3.45)	10
(14)	$[\Pi(NSO)_2(C_5\Pi_5)_2]^{+0.5}C\Pi_2CI_2$	30.33	3.20	8.75	48
(15)	$[D_{1}(N HSO_{1}C_{1} I_{1}M_{2})]$ $(D_{1}M_{2},D_{2}h)$	(30.85)	(3.35)	(8.15)	10
(15)	$[\Gamma((NHSO_2C_6H_4Me)_2(\Gamma Me_2Ph)_2]$	44.55	3.85	3.30	42
(16)	[Pt(NHSO C H Ma) (DEt)]	(44.40)	(3.93)	(3.43)	40
(10)	$[1 ((11130_2 C_6 \Pi_4 MC)_2 (F E C_3)_2]$	40.50	0.00	3.80	42
(17)	[Pt(NHSO Ph) (PM_Ph) 3.0 SCH Cl	(40.30)	(3.93)	(3.03)	20
(\mathbf{u})		(48.75)	(3.00)	2.33	20
		(40.75)	(3.90)	(2.95)	

Table 2. ⁵ P N.m.r. data in CDCI ₃ and referred to 85% H ₃ PO	T	able 2	. 31 P	? N.m.r.	data in	CDCl ₃	and	referred	to	85	%	H	P(О	
--	---	--------	--------	----------	---------	-------------------	-----	----------	----	----	---	---	----	---	--

Compound	δ _a	δ _b	${}^{1}J_{a}$	${}^{1}J_{b}$	${}^{2}J_{ab}$
(1)	-16.0	- 19.1	3 539	3 178	24
(2)	- 5.1	-1.9	3 594	3 265	24
(3)	4.0	1.4	3 476	3 1 5 2	24
(4)	54.3	48.6		_	40
(5)	- 5.4	-6.3	3 478	3 178	22
(6)	- 3.3	- 5.5	3 480	3 168	22
	δ	5		I	
(7)	-2	2.2	3 3	808	
(8)	_	7.0	33	42	
(9)	1	0.9	34	54	
(10)	3	5.4	3 3	36	
(11)	0.9		3 276		
(15)	-17.5		3 301		
(16)	2.7		3 270		
(17)		4.9	3 3	64	

isolated in 60% yield. The ¹⁴N n.m.r. spectrum of $S_4N_4O_2$ in liquid ammonia ⁷ is temperature and time dependent, such that with time the peak associated with $S_3N_3^-$ increases. We have shown previously ²¹ that $S_3N_3^-$ reacts with [PtCl₂(PR₃)₂] to give [Pt(S₂N₂)(PR₃)₂]. The low solubility of [PtCl₂(PPh₃)₂] and [PtCl₂(Ph₂PCH₂CH₂PPh₂)] in liquid ammonia at -78 °C means that no reaction can occur until the system is allowed to warm up; on warming (and with time) more $S_3N_3^-$ is present and thus the product distribution is altered with [Pt(S₂N₂)(PR₃)₂] formation favoured.

With $[PdCl_2(Ph_2PCH_2CH_2PPh_2)]$ if the reaction time is much greater than 5 min only $[Pd(S_2N_2)(Ph_2PCH_2CH_2PPh_2)]$

Table 3. Selected i.r. vibrations (cm ⁻	¹) of $[M{S_2N_3(SO_2NH_2)}(PR_3)_2]$
(pressed KBr discs)	

		Compour	ıd		
(1)	(2)	(3)	(4)	S ₄ N ₄ O ₂	Assignment
3 303s		3 301s	3 360s		v(N-H)
	3 209s				v(N-H)
3 232m		3 233s	3 216s		v(N-H)
1 404m	1 410w		1 410m		$\delta(N-H)$
1 327s	1 316m	1 325m	1 342m	1 330vs	$v_{asym}(S-O)$
1 149vs	1 148s	1 150vs	1 150vs	1 139vs	$v_{sym}(S-O)$
1 126s	1 108s	1 099s	1 123(sh)	1 115vs	$v_{asym}(S-O)$
880s	878(sh)	868s	863m		v(S-N)
816s		799s	795s		v(S-N)
657m	647m	640m	630m	620s	v(S-N)
604m	607m	608m		602m	δ(OSO) rock
584w	584w	583w	579m		
548m	545w	547m	548(sh)	557m	$\delta(OSO)$ bend
491 w	494w	497w	486w		$\delta(S-N)$
401w		401w	401w		
341w		358w	360w	376, 320	$\delta(N-S)/\nu(Pt-S)$

is formed. With shorter times the expected product (4) is obtained.

Reaction of SO_2Cl_2 or $SO_2(NH_2)_2$ with $[PtCl_2(PR_3)_2]$ in liquid ammonia gives $[Pt{SO_2(NH)_2}(PR_3)_2]$ (7)—(11) [equation (2)]. The SO_2Cl_2 provides an *in situ* source of

$$SO_{2}(NH_{2})_{2} + [PtCl_{2}(PR_{3})_{2}] + 2NH_{3} \longrightarrow$$

$$2NH_{4}Cl + [Pt\{SO_{2}(NH)_{2}\}(PR_{3})_{2}] \quad (2)$$

Table 4. Selected i.r. vibrations (cm^{-1}) of $[Pt{SO_2(NH)_2}(PR_3)_2]$ (pressed KBr discs)

Compound	v(N-H)	$v_{sym}(SO_2)$	$v_{asym}(SO_2)$	$\delta(OSO)$ rock
(7)	3 255vs	1 265vs	1 118s, 1 159m	588m
(8)	3 264vs	1 261 vs	1 137vs, 1 117vs	578m
(9)	3 236vs	1 270vs	1 110vs, 1 171m	584m
(10)	3 236vs	1 272vs	1 113vs	578m
(11)	3 245vs	1 262vs	1 115vs, 1 170m	582m

 Table 5. Mass spectral data

Compound	M^+	$M^+ - SO_2NH_2$	$M^+ - \text{NSO}_2\text{NH}_2$
(1)	658	577	523
(2)	748 *	705	691
(3)	617	537	523
	M^+	$M^+ - O_2$	$M^+ - \mathrm{SO}_2$
(8)		657	625
(9)	813		745
(11)	526	494	461

Mass spectra of (3) and (11) in the e.i. mode, the rest as f.a.b. spectra in a thiodiethanol matrix.

* $M^+ - O_2 H$

$$SO_2Cl_2 + 4NH_3 \longrightarrow 2NH_4Cl + SO_2(NH_2)_2$$
 (3)

 $SO_2(NH_2)_2$ [equation (3)]. The reaction proceeds cleanly with isolated yields of *ca.* 75%. The reaction type of chloride extraction from [PtCl₂(PR₃)₂] in liquid ammonia with simultaneous addition of SN species to the platinum is now quite well established.^{3,6,13} Compounds (7)--(11) are isoelectronic with the well known sulphato complex [Pt(SO₄)(PR₃)₂].

The ³¹P n.m.r. spectra of compounds (7)—(11) consist of a singlet with a ¹J(¹⁹⁵Pt-³¹P) coupling constant of *ca.* 3 300 Hz suggesting that the ligands *trans* to the phosphine groups are likely to be nitrogen donors because oxygen donors would give a larger coupling constant. The chemical shifts show typical variation with phosphine. The ¹H n.m.r. spectra have a peak at *ca.* δ 3 of relative integral 2 due to the N-H protons.

The e.i. mass spectra of compounds (7)—(11) give the molecular ion with the expected isotopic cluster abundance. The fragmentation ions are consistent with nitrogens co-ordinated to the platinum with peaks due to $[Pt{S(NH)_2}(PR_3)_2]^+$ and $[Pt(NH)_2(PR_3)_2]^+$ being observed. The i.r. spectra show a v(NH) vibration at *ca.* 3 240 cm⁻¹, the expected v(SO₂) symmetric and asymmetric stretches, as well as the SO₂ rock and bend modes. These modes are similar to those observed for (1)—(4). The existence of these vibrations coupled with the other information suggests that nitrogen rather than oxygens are bound to the platinum centre.

Reaction of Na[NHSO₂C₆H₄Me] or NH₂SO₂Ph with [PtCl₂(PR₃)₂] gives [Pt(NHSO₂R')₂(PR₃)₂] (R' = Ph or C₆H₅Me) (15)—(17) in good yield. The ³¹P n.m.r. spectra are very similar to those of (7)—(11) with the coupling constants being *ca.* 30 Hz different and the chemical shifts *ca.* + 3 p.p.m. greater. This is not surprising because both sets of species are nitrogen donors on a platinum(II) centre with effectively the same co-ordinated groups [(NH)₂SO₂ compared to (NHSO₂R)₂].

We have synthesized $[Pt(NSO)_2(PR_3)_2]$ from reaction of $[PtCl_2(PR_3)_2]$ with $S(NSO)_2$ in liquid ammonia.⁹ The compound $S(NSO)_2$ is difficult to prepare and handle although its use in the formation of $[Pt(NSO)_2(PR_3)_2]$ is effectively quantitative. The ¹⁴N n.m.r. spectra of $S(NSO)_2$ and $SOCl_2$ in liquid ammonia have the same peak at 500 p.p.m. previously assigned

as NSO⁻ ion. This, coupled with the reactivity of SO₂Cl₂ in liquid ammonia, prompted an investigation of the reactivity of SOCl₂-NH₃(l) with [PtCl₂(PR₃)₂] [equation (5)]. The reaction was found to proceed cleanly and the products (12)--(14) easily isolated as before. This route has the significant advantage of generating the NSO⁻ ion without having to isolate ⁹ S(NSO)₂ or a reactive salt such as KNSO or KNSNR^{11,12} [equation (4)].

$$SOCl_2 + 4NH_3 \longrightarrow 2NH_4Cl + [NH_4][NSO]$$
 (4)

$$2\text{NSO}^{-} + [\text{PtCl}_2(\text{PR}_3)_2] \xrightarrow{} [\text{Pt}(\text{NSO})_2(\text{PR}_3)_2] + 2\text{Cl}^{-} (5)$$

Reaction of $(SNOCl)_3$ with $[PtCl_2(PR_3)_2]$ in liquid ammonia gives a mixture of products (by ³¹P n.m.r. spectroscopy), of which $[Pt(NSO)_2(PR_3)_2]$ accounts for *ca.* 20% and $[Pt(S_2N_2)(PR_3)_2]$ *ca.* 15% by integration. The large number of products made isolation of $[Pt(NSO)_2(PR_3)_2]$ difficult. The ¹⁴N n.m.r. spectrum of $(SNOCl)_3$ does not show a peak due to NSO⁻, but only a broad singlet ⁷ at 98 p.p.m. Thus the reaction with $[PtCl_2(PR_3)_2]$ is surprisingly complicated.

Another SNO reagent, $S_3N_2(NSO_2CF_3)$ (five-membered S_3N_2 ring with an exocyclic NSO_2CF_3 group) reacts in liquid ammonia with $[PtCl_2(PR_3)_2]$ to give exclusively $[Pt(S_2N_2)-(PR_3)_2]$. No platinum compound with an exocyclic SO_2CF_3 group analogous to SO_2NH_2 in compound (1)—(6) was found. This is probably because in ammonia $S_3N_2(NSO_2CF_3)$ dissociates the exocyclic group [equation (6)]. The generated

$$S_{3}N_{2}(NSO_{2}CF_{3}) + NH_{3} \longrightarrow S_{3}N_{3}^{-} + H_{3}NSO_{2}CF_{3}^{+}$$
(6)

 $S_3N_3^-$ ion is known¹⁸ to react with $[PtCl_2(PR_3)_2]$ to give $[Pt(S_2N_2)(PR_3)_2]$ [equation (7)].

$$S_{3}N_{3}^{-} + [PtCl_{2}(PR_{3})_{2}] + 3NH_{3} \longrightarrow$$

$$2NH_{4}Cl + [Pt(S_{2}N_{2})(PR_{3})_{2}] + 'NSNH^{-}' (7)$$

Like $S_3N_2(NSO_2CF_3)$, the reaction of S_3N_2O in ammonia with $[PtCl_2(PR_3)_2]$ failed to lead to a compound containing oxygen but yielded $[Pt(S_2N_2)(PR_3)_2]$. In liquid ammonia S_3N_2O probably reacts to form $S_3N_3^-$ [equation (8)].

$$S_3N_2O + 2NH_3 \longrightarrow [NH_4][S_3N_3] + H_2O \quad (8)$$

Acknowledgements

We are grateful to Johnson Matthey for loans of K_2 PtCl₄ and to the University of London Central Research fund for support.

References

- 1 H. Martan and J. Weiss, Z. Anorg. Allg. Chem., 1984, 515, 225.
- 2 P. S. Belton, I. P. Parkin, D. J. Williams, and J. D. Woollins, J. Chem. Soc., Chem. Commun., 1988, 1479.
- 3 I. P. Parkin, C. A. O'Mahoney, D. J. Williams, and J. D. Woollins, J. Chem. Soc., Dalton Trans., 1989, 1179.
- 4 H. Prestel and U. Schindewolf, Z. Anorg. Allg. Chem., 1987, 551, 21.
- 5 P. Dubois, J. P. Lelieur, and G. Lepourte, Inorg. Chem., 1988, 27, 73.
- 6 O. J. Scherer and G. Wolmershauser, Chem. Ber., 1977, 110, 3241.
- 7 P. S. Belton, I. P. Parkin, and J. D. Woollins, J. Chem. Soc., Dalton Trans., preceding paper.
- 8 T. Chivers and F. Edelman, Polyhedron, 1986, 5, 1661.
- 9 I. P. Parkin, A. M. Z. Slawin, D. J. Williams, and J. D. Woollins, *Polyhedron*, 1989, **8**, 835.
- 10 R. Short, M. B. Hursthouse, T. G. Purcell, and J. D. Woollins, J. Chem. Soc., Chem. Commun., 1987, 407.
- 11 H. Dieno, H. W. Roesky, M. Noltemeyer, and G. M. Sheldrick, J. Chem. Soc., Chem. Commun., 1987, 1483.

- 12 M. Heberhold, F. Newmann, G. S. Fink, and U. Thewalt, *Inorg. Chem.*, 1987, 26, 3612.
- 13 I. P. Parkin, A. M. Z. Slawin, D. J. Williams, and J. D. Woollins, J. Chem. Soc., Chem. Commun., 1989, 58.
- 14 R. Jones, C. P. Warrens, D. J. Williams, and J. D. Woollins, J. Chem. Soc., Dalton Trans., 1987, 967.
- 15 H. W. Roesky, H. Schaper, O. Peterson, and T. Muller, Chem. Ber., 1977, 110, 2695.
- 16 T. Moeller, T. H. Chang, A. Ovechi, A. Vandi, and A. Failli, Inorg. Synth., 1972, 13, 9.
- 17 R. Jones, I. P. Parkin, D. J. Williams, and J. D. Woollins, *Polyhedron*, 1987, 6, 2161.
- 18 H. W. Roesky, G. Holtschneider, H. Weizer, and B. Krebs, Chem. Ber., 1976, 109, 1358.
- 19 H. W. Roesky and A. Hamza, Angew. Chem., Int. Ed. Engl., 1976, 15, 220.
- 20 C. W. Rees and M. Amin, personal communication.
- 21 P. A. Bates, M. B. Hursthouse, P. F. Kelly, and J. D. Woollins, J. Chem. Soc., Dalton Trans., 1986, 2367.
- 22 P. F. Kelly and J. D. Woollins, J. Chem. Soc., Dalton Trans., 1988, 1053.

Received 30th May 1989; Paper 9/02239B