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Blue Transient Complex Formation in the Electron-transfer Reaction between 
Iron(iii) and a Reduced Nicotinamide-Adenine Dinucleotide Analogue without 
an Amide Group 

Shunichi Fukuzumi," Seiji Mochizuki, and Toshio Tanaka 
Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565, Japan 

A blue transient complex with a stoicheiometry [Fe(C,,HloNMe)]3+ is formed very rapidly in the 
electron transfer from 9,lO-dihydro-I 0-methylacridine (C,,H,,NMe) to  Fe3+ in acetonitrile at 298 
K. The disappearance of the absorption band (Amax, 640 nm) due to [Fe(Cl,Hl0NMe)'J3+ obeys pseudo- 
first-order kinetics, and is accompanied by the appearance of an absorption band (Amax. 358 nm) due to  
the oxidized product, 1 0-methylacridinium ion (C,,H,N Me'). 

The biological importance of NADH (reduced nicotinamide- 
adenine dinucleotide) as an electron source has stimulated 
extensive studies on electron-transfer reactions from NADH 
and its analogues to various one-electron oxidants.' Electron- 
transfer reactions of NADH analogues reported so far involve 
co-ordinately saturated iron(m) complexes such as [Fe- 
(CN)6]3-,2*3 [Fe(CsH5)2]+,4 and [Fe(L-L)3]3' (L-L = 2,2'- 
bipyridine or l,lO-phenanthroline),' and thus proceed uia an 
outer-sphere pathway with no appreciable interaction between 
the NADH analogues and oxidants which are inert towards 
substitution. Such an outer-sphere electron-transfer pathway 
has been well established also for photo-induced electron- 
transfer reactions of NADH analogues.'S6 On the other hand, 
transient blue complexes (A,,,. 540 nm) are formed with 
stoicheiometries [Fe(NADH)] + and [Fe(NADH),I3 + in 
electron-transfer reactions from NADH to iron(II1) perchlorate.' 
Based on resonance-Raman studies,' these have been suggested 
to be complexes formed between iron(rI1) and the nicotin- 
amide ring. However, the role of the amide group remains 
unclear. In addition, no transient iron(II1) complexes of NADH 
analogues have so far been reported, although stable high-spin 
iron(m) porphyrin complexes are known to be formed with 
various NADH analoguesg 

We report herein that a blue transient iron(II1) complex 
is formed with a NADH analogue, 9,lO-dihydro-10-methyl- 
acridine (C, ,H,,NMe), which has no amide group. The 
stoicheiometry and the kinetics of the formation and decay 
of this complex have been examined using a stopped-flow 
technique, and its role in the electron-transfer reaction from 
CI3HloNMe to Fe3+ is discussed. 

Experimental 
9,lO-Dihydro-10-methylacridine (C13H1,NMe) was prepared 
from 10-methylacridinium iodide (C, ,H,NMe+I-) by re- 
duction with NaBH, in methanol, and purified by recrystal- 
lization from ethanol." The preparation and purification of 
l-benzyl-l,4-dihydronicotinamide (1-benzyl- lP-dihydropyrid- 
ine-3-carboxamide) were as described elsewhere." Iron(II1) 
perchlorate was obtained commercially. Acetonitrile was 
purified by the standard procedure.I2 

Kinetic measurements were carried out using a Union RA- 
103 stopped-flow spectrophotometer under deaerated condi- 
tions at 298 K. Transient spectra were obtained by measuring 
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Figure 1. Transient absorption spectra observed in the electron-transfer 
reaction from C,,H,,NMe to Fe(ClO,), in acetonitrile at 298 K 

the change in absorbance at various wavelengths. Rates of 
electron transfer from C,,H,,NMe to Fe3+ were monitored by 
the increase in absorbance at A,,,. 358 nm of CI3H9NMe+ or 
by the decrease in absorbance at A,,,. 640 nm of [Fe(C13H10- 
NMe)]'+ at various initial concentrations of C13H,,NMe and 
Fe3 + under pseudo-first-order conditions. Pseudo-first-order 
rate constants were determined by least-squares curve fitting 
using a Union System 77 microcomputer. The stoicheiometry 
of the reaction was determined from a plot of the concentration 
of C13H9NMe+ formed us. the ratio of the initial concentrations 
of C13HloNMe to Fe3+. 

Results and Discussion 
Mixing an acetonitrile solution of Fe(C104), with C13HloNMe 
in the stopped-flow spectrophotometer results in the instant 
appearance of a new absorption band at h,,,. 640 nm (Figure l), 
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Table. Pseudo-first-order rate constants kobs. for the decay of 
[Fe(C,3H,oNMe)]3+ and the formation ofC,,H,NMe+ in acetonitrile 
at 298 K; h,,,, = 640 nm in each case 

[Fe3+]/mol dm-3 [Ci3HloNMe]/mol dm-3 kobs.*/ s-l 
5.0 x 10-3 5.0 x 10-4 8.5 
2.5 x 10-3 2.5 x lo4 5.2 
1.4 x 10-4 5.0 x 10-3 8.7 (8.6) 
5.4 10-4 2.5 x 10-5 1.6 
2.7 x 10-4 2.5 x 10-5  0.90 

*Determined from the formation of C,,H,NMe+. The value in 
parentheses was determined from the decay of [Fe(Ci3H,oNMe)]3+. 
The experimental errors are f 10%. 

NADH analogue, 1-benzyl- lY4-dihydronicotinamide also re- 
sults in a facile oxidation to 1 -benzyl-3-carbamoylpyridinium. 
In this case, however, the reaction is too fast to monitor by the 
stopped-flow technique. 

The decay of [Fe(C,,H,oNMe)]3+ as well as the form- 
ation of C1 ,H,NMe+ obeys pseudo-first-order kinetics. The 
observed rate constant kobs. for the decay of [Fe(C, ,Hi0- 
NMe)13+ agrees with that for the formation of C1,H,NMe+ 
(Table). This agreement does not, by itself, prove that the 
complex lies along the reaction pathway of the electron-transfer 
reaction from C,,H,,NMe to Fe3+ to yield C13H,NMe+. The 
complex formation may represent an unrelated side reaction. l 3  

The difference lies in whether the rate-limiting step is a reaction 
(ki) of the complex [equation (3)], or a bimolecular reaction (kb) 
(4) in which the complex is an innocent bystander. In both cases, 

Fe3+ + C1,Hl0NMe & [Fe(C,3H,oNMe)]3f A 
Fe2+ + C13HloNMe'+ (3) 

[Fe(C13H,,NMe)]3+ Fe3+ + Cl3Hl0NMe 3 
Fe2+ + C13H10NMe'+ (4) 

0.2s 
V Cl3HloNMe*+ may be deprotonated by the solvent which 

contains water to give C1,H,NMe' [equation (5)] and 
subsequent facile electron transfer from C1,H,NMe' to Fe3 + 

occurs to yield Cl3H9NMe+ and Fe2+ [equation (6)]. The 

C13H10NMe'+ 5 C,,H,NMe* + H +  ( 5 )  

Fe3+ + C , , H , N M e ' a  Fe2+ + C13H,NMe+ (6) 

I \  
Time 

Figure 2. Decay (a) and rise (b) of the absorbance at 640 and 358 nm 
respectively in the electron-transfer reaction from C, ,H,,NMe 
(5.0 x mol dm-3) to Fe3+ (1.4 x lW4 mol dm-3) in acetonitrile 
at 298 K 

followed by its decay. The new band may be ascribed to the 
formation of a complex between Fe3+ and CIJHloNMe. The 
transient absorption spectra were measured at various ratios of 
[Fe"] to [C13H,,NMe]. There is no change in the shape, 
only in the intensity of the spectra, as shown in the Table. The 
same absorbance was obtained when the ratio of [Fe3+] to 
[C, ,H,,NMe] was reversed. Thus, the stoicheiometry of the 
complex between Fe3+ and C13H,,NMe must be 1 : 1, equation 
(1). The absorption coefficient of A,,,. 640 nm was determined 

Fe3+ + C,,H,,NMe [Fe(C,,H,,NMe)]3+ (1) 

second electron transfer cannot be rate determining, since the 
oxidation potential of C,,H,NMe' (-0.43 V us. s.c.e.)6 is 
much more negative than that of C13H10NMe (0.80 V us. s.c.e.) 
and thereby the second electron transfer [equation (6)] is 
energetically much more favourable than the first [equation 

If [Fe(C13H,,NMe)]3 + participates in the equilibrium (4) 
the observed pseudo-first-order rate constant kobs, for the decay 
of [Fe(Cl,H,,NMe)]3+ as well as the formation of C13H9- 
NMe' in the presence of a large excess of Fe3+ is given by 
equation (7), which can be rewritten as (8). Alternatively, if 
[Fe(C, ,H,,,NMe)l3+ lies along the reaction pathway (3), kobs. 
is given by equation (9), which can be rewritten as (10). 
Equations (7) and (8) are kinetically indistinguishable from (9) 

(3) or (411. 

k& = k,'(K + [Fe3']-') 

as 1.1 x lo4 dm3 mol-' cm-'. The decrease in the absorbance 

an increase in absorbance at h,,,. 358 nm due to the oxidized 

Figure 2. The stoicheiometry of the electron-transfer reaction 
was determined as described in the Experimental section and 
given by equation (2). Replacement of C13H10NMe by another 

at A,,,. 640 nm due to [Fe(C13HloNMe)13+ coincides with 

product, 10-methylacridinium ion (C, ,H,NMe+) as shown in 

kobs. = kiflFe3+]/(1 + a F e 3 + ] )  

kits. = k;'(l + K-l[Fe3+]-') 

(9) 

(10) 

and (lo), and both cases predict a linear correlation between 
kits. and [Fe3+]-'. The kobs. values at various concentrations of 

I 

Cl3HloNMe 

Me 
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Fe3+ are given in the Table, and a plot of kits. us. [Fe3']-' is 
linear. When equations (8) and (10) are applied to the linear 
correlation the K value obtained is 2.7 x lo2 dm3 mol-' from 
the ratio of the intercept to slope, and ki and k,  are 13 s-' and 
3.5 x lo3 dm3 mol-' s-l, respectively. 

The blue transient complex formed between Fe3 + and 
C1,HloNMe which contains no amide group may be a 7c 
complex between iron(II1) and the acridine ring as reported for 
blue iron(rI1) complexes of NADH, since the acridine ring 
tertiary nitrogen is known to be a very weak base.8 As such, an 
amide group is not required for blue complex formation 
between Fe3+ and a NADH analogue. The absorption 
maximum of [Fe(C13HloNMe)13+ (Amax. 640 nm) is red shifted 
compared with that of [Fe(NADH)13+ (Amax. 540 nm) 
probably because of the greater delocalization in the acridine n 
orbitals than those of the nicotinamide ring. The 7c complex 
may be stabilized by ligand-to-metal charge-transfer (1.m.c.t.) 
interaction. The degree of charge transfer may be close to loo%, 
since the absorption maxima of [Fe(C13HloNMe)13+ (Imax. 
640 nm) and [Fe(NADH)13+ (Amax. 540 nm) are the same as 
those of the free radical cations, Cl3HloNMe*+ (Amax. 640 
nm) l4 and NADH" (Amax. 540 nm). '' 
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