Spectroscopic Studies on Molecular Vanadium Pentafluoride isolated in Inert Gas Matrices

Eric G. Hope

Department of Chemistry, The University, Leicester LE1 7RH

Matrix-isolation studies have been carried out on vanadium pentafluoride. In a nitrogen matrix prominent i.r. bands at 806 and 769 cm⁻¹ are assigned to V–F stretching modes of monomeric VF₅ (D_{3h}) . Corresponding u.v.–visible spectra were obtained and assigned on the basis of trigonal bipyramidal geometry.

Following the recent successes in the spectroscopic characterisation of transition metal hexafluorides in inert gas matrices,1-3 attention has been turned to the transition-metal pentafluorides. However, CrF₅⁴ and PtF₅⁵ disproportionate when heated under high vacuum whilst the other platinum metal pentafluorides afford complex matrix-isolated i.r. spectra due to the presence of oligomers in the gas phase.⁵ Following a brief report on the i.r. spectrum of vanadium pentafluoride isolated in an argon matrix,⁶ it was apparent that VF₅ could be a model compound to aid the interpretation of the more complex platinum metal pentafluoride spectra. Gaseous VF₅ has been extensively studied by i.r. and Raman spectroscopy and electron diffraction.^{7,8} It was shown to be a D_{3h} monomer and Blinova et al.⁶ postulated that it had the same symmetry in an argon matrix. However, recent work on transition-metal pentachlorides⁹ has indicated discrepancies between gas-phase data (i.r., Raman, electron diffraction) and matrix-isolated i.r. spectra, viz. molecular MoCl₅ appears to have D_{3h} symmetry from gas-phase studies but C_{4v} symmetry from matrix-isolated experiments.

Therefore in this paper spectroscopic studies on matrixisolated vanadium pentafluoride are reported with three aims: (*i*) to investigate a model transition-metal pentafluoride as an aid to the interpretation of the spectra of other matrix-isolated transition-metal pentafluorides, (*ii*) to investigate whether VF₅ has the same symmetry in the gas phase and isolated in a matrix, and (*iii*) to record the electronic spectrum of VF₅.

Experimental

Vanadium pentafluoride was prepared by the static fluorination of vanadium metal. In a typical preparation, vanadium powder (0.3 g, 5.9 mmol) was charged into a passivated stainless-steel autoclave (150 cm³) in a dry-box. After evacuation on a metal line, fluorine [300 cm³, 2 atm (202 650 Pa)] was admitted and the autoclave heated to 250 °C for 2 h. After cooling to room temperature, the excess of fluorine was removed at -78 °C, and the vanadium pentafluoride purified by sublimation under static vacuum. Yields typically 60—70%.

Details of the matrix-isolation apparatus have been reported elsewhere.⁴ Samples of sublimed VF₅ in F.E.P. tubes were connected via a poly(tetrafluoroethylene) (ptfe) tap (Production Techniques STD/VC-4/P) to the high-vacuum apparatus, and held at -63 °C during co-deposition with nitrogen or argon (BOC 99.999%) as matrix materials. Matrix gas ratios of >1 000:1 were routinely employed. I.r. spectra were recorded on a P.E. 983G spectrometer fitted with CsI optics, electronic spectra on a P.E. 554 instrument fitted with LiF optics.

Figure 1. I.r. spectrum of vanadium pentafluoride isolated in a nitrogen matrix

Table. Vibrational spectroscopic data for vanadium pentafluoride

Gas phase ^a		Nitrogen	Argon matrix		
I.r.	Raman	I.r.	I.r. ^b	L.r.¢	Assignment
	719				$a_{1}'(v_{1})$
	608				$a_{1}'(v_{2})$
784		769	771	774	$a_{2}''(v_{3})$
331		325	321	322	$a_{2}''(v_{4})$
810		809, 804	802	804	$e'(v_5)$
282	282	280	278	278	$e'(v_6)$
(≈200)	(≈200)				$e'(\mathbf{v}_7)$
	350				$e''(v_8)$
Ref. 10. ^b 7	This work; fi	requency acc	suracy ± 0.5	cm ⁻¹ . ^c R	ef. 6.

Results and Discussion

I.R. Spectroscopic Studies.—Figure 1 shows a typical i.r. spectrum of vanadium pentafluoride isolated in a nitrogen matrix and the Table compares the i.r. spectrum with the previous matrix-isolated i.r. spectra and the gas-phase i.r. and Raman spectra of Claassen and Selig.¹⁰ There are no signs of

Figure 2. Electronic spectrum of vanadium pentafluoride isolated in a nitrogen matrix

oligomers and the very close agreement of the three sets of data and the ratios of intensity of the two v(V-F) stretches indicate conclusively that vanadium pentafluoride has the same symmetry in the gas phase as in argon and nitrogen matrices. Under very high resolution the *E* mode of VF₅ in a nitrogen matrix shows a slight splitting, but this is an effect often encountered in nitrogen matrix-isolated species,¹¹ and the D_{3h} symmetry of monomeric VF₅ suggested in previous studies is supported.

This contrasts with the results on molecular $MoCl_5$ which has D_{3h} symmetry in the gas phase and C_{4v} symmetry when isolated in nitrogen and argon matrices. However, this may just be a subtle electronic effect since the energy barrier for square pyramidal to trigonal bipyramidal inversion would be expected to be low, and further work on other five-co-ordinated molecules is in progress.

U.V.-Visible Spectroscopic Studies.-Figure 2 shows the electronic spectrum of molecular VF₅ in a nitrogen matrix. There are two principal bands (42 400 and 50 000 cm⁻¹) with a weaker low-energy band (36 000 cm^{-1}). This is considerably different from the only other report of the electronic spectrum of vanadium pentafluoride reported in conference proceedings.¹² Four maxima are claimed in the 200-400 nm region, 29 000, 33 800, 36 000, and 46 000 cm^{-1} , but only one of these bands correlates with the spectrum reported here. The i.r. studies on their samples suggested at least a 5% VOF₃ impurity; VOF₃ has a low volatility and could arise from hydrolysis during the experiments. It has been shown 13 that the intense absorptions of some transition-metal oxide and oxide fluoride impurities can completely obscure the electronic spectrum of the molecule under investigation. Hence their spectrum could easily arise from their VOF₃ impurity. The i.r. studies in this work indicate $\ll 1\%$ VOF₃ impurity, and there is no evidence for any bands lower than 36 000 cm⁻¹ in the electronic spectra of vanadium pentafluoride.

There has been very little work carried out on the electronic spectra of neutral five-co-ordinate molecules, and so any assignments of the electronic spectra must remain tentative. The position of the lowest-energy charge-transfer band, $E_{obs.}$, may be estimated using the optical electronegativity formula (1).¹⁴

$$E_{\rm obs.} = 30\ 000 \left[\chi_{\rm opt.}(F) - \chi_{\rm opt.}(V^{\rm V}) \right]$$
(1)

Taking $\chi_{opt.}(F) = 3.9$ and $\chi_{opt.}(V^v) = 2.7$, the lowest-energy charge-transfer band $(E_{obs.})$ is predicted to lie at 36 000 \pm 3 000 cm⁻¹ which is in good agreement with the observed transition at 36 000 cm⁻¹. There is no literature value for the optical electronegativity of V^v in a trigonal bipyramidal environment. However, previous studies ^{11,15} have indicated that the values for the same oxidation state of the metal differ little between five-and six-co-ordinate environments and the estimated value of $\chi_{opt.}$ has been taken from the electronic spectrum of octahedral $[VOF_5]^{2^-.16}$

The exact nature of the fluorine-to-metal charge-transfer transition is difficult to assign. The vanadium 3d orbitals split in D_{3h} symmetry to e'', e', and a_1' in order of increasing energy. Under D_{3h} symmetry the fluorine π orbitals are A_2' , 2E', A_2'' , and 2E'' but it is impossible to predict the ordering of these levels. Therefore under this symmetry $13\pi(F) \longrightarrow d(V)$ charge-transfer transitions are theoretically possible. There have been no estimates on the e'' to a_1' separation in VF₅, but it is likely to be at least 23 000 cm⁻¹ when one considers similar fluoride complexes for which 10 Dq is known, *i.e.* VF₆²⁻ 21 200, CrF₆²⁻ 21 250, and (CrF₅)_n 24 000 cm^{-1.14} Therefore, the lowest $\pi(F) \longrightarrow a_1'(V)$ transition would be at $\geq 60\ 000\ \text{cm}^{-1}$, outside the range of the spectrometer.

The e'' to e' separation would be considerably smaller than the e'' to a_1' separation and a comparable band gap in the slightly distorted trigonal bipyramidal VCl₅⁻ has been reported at 6 200 cm⁻¹.¹⁷ Obviously this would be larger for fluoride complexes (unfortunately VF₅⁻ salts have not been isolated), but since 10 Dq for VCl₅⁻ is 16 000 cm⁻¹ and my estimate of 10 Dq for VF₅ is 23 000 cm⁻¹, the e'' to e' separation in VF₅ would be at least 9 000 cm⁻¹. Therefore, the bands at 36 000 and 42 400 cm⁻¹ may tentatively be assigned as $\pi(F) \longrightarrow e''(V)$ transitions and the band at 50 000 cm⁻¹ as the lowest $\pi(F) \longrightarrow e'(V)$ transition.

Conclusion

Monomeric vanadium pentafluoride has D_{3h} symmetry in the gas phase and in inert-gas matrices. The u.v.-visible spectrum has been recorded for the first time on a pure sample and assigned on the basis of D_{3h} symmetry.

Acknowledgements

I would like to thank the S.E.R.C. for financial support, Dr. J. S. Ogden for the use of his matrix-isolation equipment, and Dr. W. Levason for helpful discussions.

References

- 1 E. G. Hope, P. J. Jones, W. Levason, J. S. Ogden, and M. Tajik, J. Chem. Soc., Chem. Commun., 1984, 1355.
- 2 J. H. Holloway, G. Stanger, E. G. Hope, W. Levason, and J. S. Ogden, J. Chem. Soc., Dalton Trans., 1988, 1341.
- 3 A. K. Brisdon, P. J. Jones, W. Levason, J. S. Ogden, J. H. Holloway,
- E. G. Hope, and G. Stanger, J. Chem. Soc., Dalton Trans., 1990, 715. 4 E. G. Hope, P. J. Jones, W. Levason, J. S. Ogden, M. Tajik, and J. W.
- Turff, J. Chem. Soc., Dalton Trans., 1985, 1443. 5 E. G. Hope and G. Stanger, unpublished work, 1987–1988.
- 6 O. V. Blinova, D. D. Moldavskii, Yu. B. Predtechenskii, and L. D.
- Shcherba, Sov. J. Chem. Phys., 1985, 2, 2262.
- 7 I. R. Beattie, K. M. S. Livingston, G. A. Ozin, and D. J. Reynolds, *J. Chem. Soc. A*, 1969, 958.
- 8 G. Romanov and V. P. Spiridonov, Zh. Struct. Khim., 1966, 7, 816.

- 9 A. K. Brisdon, J. T. Graham, E. G. Hope, D. M. Jenkins, W. Levason, and J. S. Ogden, J. Chem. Soc., Dalton Trans., in the press. 10 H. H. Claassen and H. Selig, J. Chem. Phys., 1965, 44, 4039.
- 11 W. Levason, R. Narayanaswamy, J. S. Ogden, A. J. Rest, and J. W. Turff, J. Chem. Soc., Dalton Trans., 1981, 2501.
- 12 O. V. Blinova and N. S. Mitchenko, Proceedings of the 11th Conference of Young Specialists of the Vavilov State Optical Institute Leningrad, 1976.
- 13 E. G. Hope, W. Levason, and J. S. Ogden, J. Chem. Soc., Dalton Trans., 1988, 61.
- 14 A. B. P. Lever, 'Inorganic Electronic Spectroscopy,' 2nd edn., Elsevier, Amsterdam, 1984.
- 15 P. J. Jones, W. Levason, J. S. Ogden, J. W. Turff, E. M. Page, and D. A. Rice, J. Chem. Soc., Dalton Trans., 1983, 2625.
- 16 O. Piovesana and J. Selbin, J. Inorg. Nucl. Chem., 1969, 31, 433.
- 17 K. R. Seddon, Inorg. Chim. Acta, 1974, 9, 123.

Received 17th August 1989; Paper 9/03532J