Chemistry of Polynuclear Metal Complexes with Bridging Carbene or Carbyne Ligands. Part 97. ${ }^{1}$ Synthesis and Crystal Structures of the Molybdenumditungsten Compounds [$\mathrm{MoW}_{2}\left\{\mu-\sigma, \sigma^{\prime}: \eta^{4}-\mathbf{C}(\mathrm{Ph}) \mathrm{C}(\mathrm{Ph}) \mathrm{C}_{\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-\right.}\right.$ 4) $\left.\left.\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\right\}(\mathrm{CO})_{6}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right] \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\left[\mathrm{MoW}_{2}\left(\mu-\mathrm{C}_{2} \mathrm{Ph}_{2}\right)\left\{\mu-\mathrm{C}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-\right.\right.\right.$ 4) $\left.\left.{ }_{2}\right\}(\mathrm{CO})_{4}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right] \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}{ }^{*}$

Gabino A. Carriedo, Judith A. K. Howard, John C. Jeffery, Kathleen Sneller, F. Gordon A. Stone, and A. Mala M. Weerasuria
Department of Inorganic Chemistry, The University, Bristol BS8 1 TS

Treatment of $\left[\mathrm{MoW}_{2}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{2}(\mu-\mathrm{CO})_{2}(\mathrm{CO})_{4}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$ with $\mathrm{PhC} \equiv \mathrm{CPh}$ in n -hexane at reflux temperatures affords a chromatographically separable mixture of the two trimetal compounds $\left[\mathrm{MoW}_{2}\left\{\mu-\sigma, \sigma^{\prime}: \eta^{4}-\mathrm{C}(\mathrm{Ph}) \mathrm{C}(\mathrm{Ph}) \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\right\}(\mathrm{CO})_{6}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right](2)$ and $\left[\mathrm{MoW}_{2}(\mu-\right.$ $\left.\left.\mathrm{C}_{2} \mathrm{Ph}_{2}\right)\left\{\mu-\mathrm{C}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{2}\right\}(\mathrm{CO})_{4}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$ (3), the structures of which have been established by X-ray diffraction. In the molecule of (2) there is a bent W-Mo-W [143.2(1) ${ }^{\circ}$] spine with one short $[2.562(1) \AA]$ and one long $[2.987$ (1) \AA] metal-metal bond. The longer of the two Mo-W linkages is bridged by a $\mathrm{C}(\mathrm{Ph}) \mathrm{C}(\mathrm{Ph}) \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)$ fragment, with all four carbon atoms of the C_{4} chain ligating the molybdenum atom, and with the two terminal carbon atoms σ bonded to the tungsten. Each tungsten atom carries two CO groups and $\mathrm{C}_{5} \mathrm{H}_{5}$ ring, and the molybdenum is also co-ordinated by two CO ligands. All six CO groups deviate slightly from linearity [M (Mo or W)-C-O 171.4-173.9 ${ }^{\circ}$] due to their weakly semi-bridging the metal-metal bonds. The structure of compound (3) is based on an essentially equilateral triangle of metal atoms with the W-W bond [2.752(1) \AA] weakly semi-bridged by two CO groups (mean $\mathrm{W}-\mathrm{C}-\mathrm{O} 170^{\circ}$) and with the Mo-W bonds (mean $2.706 \AA$) bridged, respectively, by the alkynes $\mathrm{C}_{2} \mathrm{Ph}_{2}$ and $\mathrm{C}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{2}$. Each tungsten atom is co-ordinated by a $\mathrm{C}_{5} \mathrm{H}_{5}$ ring, and the molybdenum atom is ligated by two CO groups. The molecule is an interesting example of an unsaturated trimetal cluster with 44 valence electrons. The n.m.r. data (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$) for complexes (2) and (3) are in agreement with the structures established by X-ray diffraction.

We have previously reported ${ }^{2}$ a series of trimetal compounds of formulation $\left[\mathrm{M}_{2} \mathrm{M}^{\prime}(\mu-\mathrm{CR})_{2}(\mu-\mathrm{CO})_{2}\left(\mathrm{CO}_{4}\right) \mathrm{L}_{2}\right]\left\{(1) \mathrm{M}\right.$ and $\mathrm{M}^{\prime}=$ Mo or $W ; R=M e$ or aryl; $L=\eta-\mathrm{C}_{5} \mathrm{H}_{5}, \eta-\mathrm{C}_{5} \mathrm{Me}_{5}$, or $\mathrm{HB}(\mathrm{pz})_{3}$ [hydrotris(pyrazol-1-yl)borate]\}. These species were prepared by treating the complexes $\left[\mathrm{M}^{\prime}(\mathrm{CO})_{3}(\mathrm{NCMe})_{3}\right]$ with the reagents $\left[\mathrm{M}(\equiv \mathrm{CR})(\mathrm{CO})_{2} \mathrm{~L}\right]$. Structural studies (X-ray diffraction, and i.r. and n.m.r. spectroscopy) revealed that the complexes (1) can exist in the solid state in one or other of two isomeric forms [(I) and (II)], or as a mixture of both isomers in solution.

In the compounds (1) the presence of two alkylidyne ligands bridging the metal-metal bonds makes it likely that these species would react readily with alkynes. Previously we have shown ${ }^{3}$ that dimetal compounds containing one μ-alkylidyne group react with alkynes to afford molecules having a variety of different structures. This is because coupling of the alkylidyne fragments with alkyne molecules to form $\mathrm{C}-\mathrm{C}$ bonds is often accompanied by CO and hydrogen migratory processes. In general, these reactions are less complex, forming fewer products, if the $\mathrm{C} \equiv \mathrm{C}$ bond in the alkyne employed carries aryl substituents. It was for this reason that $\mathrm{PhC} \equiv \mathrm{CPh}$ was used as a model substrate in the work described below.

Results and Discussion

In refluxing n -hexane, a mixture of $\mathrm{PhC} \equiv \mathrm{CPh}$ and the species (1a; $M=W, M^{\prime}=\mathrm{Mo}, \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4, \mathrm{~L}=\eta-\mathrm{C}_{5} \mathrm{H}_{5}$) yielded two chromatographically separable compounds. It was not possible to deduce the molecular structures of these complexes from microanalytical and spectroscopic data, although it was

(I)

(II)

[^0]

(3)

Figure 1. The molecular structure of $\left[\mathrm{MoW}_{2}\left\{\mu-\sigma, \sigma^{\prime}: \eta^{4}-\mathrm{C}(\mathrm{Ph}) \mathrm{C}(\mathrm{Ph}) \mathrm{C}-\right.\right.$ $\left.\left.\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\right\}(\mathrm{CO})_{6}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$ (2) showing the crystallographic numbering scheme
apparent from their ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectra that $\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ groups were not present. Single-crystal X-ray diffraction studies were carried out on both products and from the results of this work they were identified as having the formulations $\left[\mathrm{MoW}_{2}\{\mu\right.$ $\left.\sigma, \sigma^{\prime}: \eta^{4}-\mathrm{C}(\mathrm{Ph}) \mathrm{C}(\mathrm{Ph}) \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\right\}(\mathrm{CO})_{6}(\eta-$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$ (2) and $\left[\mathrm{MoW}_{2}\left(\mu-\mathrm{C}_{2} \mathrm{Ph}_{2}\right)\left\{\mu-\mathrm{C}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{2}\right\}(\mathrm{CO})_{4}-\right.$ $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$] (3).

The molecular structure of compound (2) is shown in Figure 1 , and selected bond distances and angles are listed in Table 1. Like its precursor (1a), ${ }^{2 a}$ compound (2) is a trimetal species having a non-linear $\mathrm{W}-\mathrm{Mo}-\mathrm{W}$ spine [143.2(1) ${ }^{\circ}$, compared with $148.2(2)^{\circ}$ in (1a)]. However, whereas in (1a) the two Mo-W separations $[2.938(1) \AA]$ are the same, in complex (2) the distances are very different [Mo-W(1) 2.562(1), Mo-W(2) $2.987(1) \AA]$. The short Mo-W(1) distance strongly suggests multiple bonding. It may be compared with the $\mathrm{Mo}-\mathrm{W}$ single bond distances in the molecules [$\mathrm{MoW}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}\right.$ $\left.\left.\left(=\mathrm{CH}_{2}\right) \mathrm{C}(\mathrm{H}) \mathrm{MeC}(\mathrm{O})\right\}(\mathrm{CO})_{6}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right][3.131(1) \AA]$, $[\mathrm{MoW}\{\mu-$ $\left.\left.\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}(\mathrm{Me}) \mathrm{C}(\mathrm{Me})\right\}(\mathrm{CO})_{3}\left(\eta-\mathrm{MeC}_{2} \mathrm{Me}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$

Figure 2. The molecular structure of $\left[\mathrm{MoW}_{2}\left(\mu-\mathrm{C}_{2} \mathrm{Ph}_{2}\right)\left\{\mu-\mathrm{C}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-\right.\right.\right.$ $\left.\left.4)_{2}\right\}(\mathrm{CO})_{4}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$ (3) showing the crystallographic numbering scheme
$[2.971(2) \AA],{ }^{4}$ and (1a) $[2.938(1) \AA] .{ }^{2 a}$ Indeed, it is necessary to invoke a $\mathrm{Mo} \equiv \mathrm{W}$ linkage if $\mathrm{W}(1)$ is to have a filled 18 -electron valence shell.

The $\mathrm{Mo}-\mathrm{W}(2)$ bond is bridged by a $\mathrm{C}(\mathrm{Ph}) \mathrm{C}(\mathrm{Ph}) \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-\right.$ 4) $\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)$ fragment. Four carbon atoms of the latter ligate the molybdenum atom [Mo-C(10) 2.349(7), Mo-C(20) 2.434(6), $\mathrm{Mo}-\mathrm{C}(30) 2.394(6), \mathrm{Mo}-\mathrm{C}(40) 2.282(7) \AA$], and two are attached to the tungsten [W(2)-C(10) 2.194(7), W (2)-C(40) $2.196(7) \AA]$. In the reaction between compound (1a) and $\mathrm{PhC} \equiv \mathrm{CPh}$ the C_{4} group has evidently formed via a coupling of the two p-tolylmethylidyne groups in the former with a molecule of the alkyne. Moreover, in order to produce the bridge system present in (2), one of the $\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ ligands in (1a) has migrated from one of the tungsten centres to the other, in order to form the $\mathrm{C}(30)-\mathrm{C}(40)$ bond. Within the C_{4} chain the $\mathrm{C}-\mathrm{C}$ distances [$\mathrm{C}(10)-\mathrm{C}(20) 1.44(1), \mathrm{C}(20)-\mathrm{C}(30)$ $1.43(1), \mathrm{C}(30)-\mathrm{C}(40) 1.43(1) \AA]$ reflect electron delocalisation between this group of atoms. The $\mathrm{W}(2)-\mathrm{C}(10)$ and $\mathrm{W}(2)-\mathrm{C}(40)$ bond lengths (see below) are very similar to the corresponding distances (mean $2.188 \AA$) in the compounds [WFe $\{\mu$ $\left.\left.\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}(\mathrm{O}) \mathrm{C}(\mathrm{Me}) \mathrm{C}(\mathrm{Me})\right\}(\mathrm{CO})_{5}\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right],{ }^{3 d} \quad$ in which the terminal carbon atoms of the C_{4} chain are also σ bonded to the tungsten.

Each tungsten atom in compound (2) carries a cyclopentadienyl ring and two carbonyl groups, and the molybdenum atom is also co-ordinated by two carbonyl ligands. All six CO groups weakly semi-bridge the metal-metal bonds, with M(Mo or W$)-\mathrm{C}-\mathrm{O}$ angles ranging from 171.4 to 173.9°.

The co-ordination of the molybdenum atom in compound (2) is of interest. It is attached to all five atoms of the $C(10) C(20) C(30) C(40) W(2)$ ring. Since the groups $W(C O)_{2}(\eta-$ $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)$ and $\mathrm{CR}\left(\mathrm{R}=\right.$ alkyl or aryl) are isolobal, ${ }^{5}$ the $\mathrm{C}_{4} \mathrm{~W}$ ring attached to the molybdenum can be regarded as a pseudocyclopentadienyl ligand. This feature, together with the arrangement of the $\mathrm{C}(1) \mathrm{O}(1), \mathrm{C}(2) \mathrm{O}(2)$, and $\mathrm{W}(1)(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ groups around the molybdenum, leads to the familiar pianostool structure, which often results when a $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}$ ring and three monodentate ligands are co-ordinated to a metal centre. However, this description for (2) should not be overemphasised since the larger size of a tungsten atom, compared with carbon, results in the $\mathrm{C}(10) \mathrm{C}(20) \mathrm{C}(30) \mathrm{C}(40) \mathrm{W}(2)$ ring being nonplanar. This is reflected in a dihedral angle of 21° between the planes defined by the atoms $C(10) W(2) C(40)$ and $C(10) C$ (20) C(30)C(40).

The molecular structure of compound (3) is shown in Figure 2 , and selected internuclear distances and angles are given in

Table 1. Selected internuclear distances (\AA) and angles $\left(^{\circ}\right)$ for $\left[\mathrm{MoW}_{2}\left\{\mu-\sigma, \sigma^{\prime}: \eta^{4}-\mathrm{C}(\mathrm{Ph}) \mathrm{C}(\mathrm{Ph}) \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\right\}(\mathrm{CO})_{6}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$. $2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2), with estimated standard deviations (e.s.d.s) in parentheses

W(1)-Mo	2.562(1)	W(1) . . C C 1)	2.739(8)	W(1) . . C ${ }^{\text {C }}$ ($)$	2.525(7)
W(1)-C(4)	1.94(1)	W(2)-Mo	2.987(1)	W(2)-C(5)	2.011(8)
$\mathrm{W}(2)-\mathrm{C}(6)$	$1.997(8)$	W(2)-C(10)	2.194(7)	W (2)-C(40)	2.196 (7)
$\mathrm{Mo}(1)-\mathrm{C}(1)$	1.956 (8)	Mo-C(2)	1.956 (8)	Mo-C(10)	2.349(7)
Mo-C(20)	2.434(6)	Mo-C(30)	2.394(6)	Mo-C(40)	2.282(7)
$\mathrm{C}(1)-\mathrm{O}(1)$	1.17(1)	$\mathrm{C}(2)-\mathrm{O}(2)$	1.17(1)	$\mathrm{C}(3)-\mathrm{O}(3)$	$1.18(1)$
$\mathrm{C}(4)-\mathrm{O}(4)$	1.16 (1)	$\mathrm{C}(5)-\mathrm{O}(5)$	1.16(1)	$\mathrm{C}(6)-\mathrm{O}(6)$	1.15(1)
$\mathrm{C}(10)-\mathrm{C}(20)$	1.44(1)	$\mathrm{C}(20)-\mathrm{C}(30)$	1.43(1)	$\mathrm{C}(30)-\mathrm{C}(40)$	1.43(1)
Mo-W(1)-C(3)	82.6(3)	Mo-W(1)-C(4)	80.1(1)	$\mathrm{C}(3)-\mathrm{W}(1)-\mathrm{C}(4)$	83.7(4)
Mo-W(2)-C(5)	82.1(2)	Mo-W(2)-C(6)	86.4(2)	$\mathrm{C}(5)-\mathrm{W}(2)-\mathrm{C}(6)$	80.9(3)
Mo-W(2)-C(10)	51.2(2)	Mo-W(2)-C(40)	49.4(2)	$\mathrm{C}(10)-\mathrm{W}(2)-\mathrm{C}(40)$	74.9(3)
$\mathrm{W}(1)-\mathrm{Mo}-\mathrm{W}(2)$	143.2(1)	$\mathrm{W}(1)-\mathrm{Mo}-\mathrm{C}(1)$	73.3(2)	$\mathrm{W}(2)-\mathrm{Mo}-\mathrm{C}(1)$	92.3(2)
W(1)-Mo-C(2)	66.4(2)	$\mathrm{W}(2)-\mathrm{Mo}-\mathrm{C}(2)$	147.9(2)	$\mathrm{C}(1)-\mathrm{Mo}-\mathrm{C}(2)$	86.0(3)
W(1)-Mo-C(10)	155.9(2)	$\mathrm{W}(2)-\mathrm{Mo}-\mathrm{C}(10)$	46.7(2)	W(1)-Mo-C(20)	148.9(2)
W(2)-Mo-C(20)	67.9(2)	$\mathrm{W}(1)-\mathrm{Mo}-\mathrm{C}(30)$	137.3(2)	W (2)-Mo-C(30)	68.6(2)
W(1)-Mo-C(40)	133.5(2)	$\mathrm{W}(2)-\mathrm{Mo}-\mathrm{C}(40)$	46.9(2)	$\mathrm{Mo}-\mathrm{C}(1)-\mathrm{O}(1)$	173.9(7)
$\mathrm{Mo}-\mathrm{C}(2)-\mathrm{O}(2)$	171.4(7)	$\mathrm{W}(1)-\mathrm{C}(3)-\mathrm{O}(3)$	172.4(7)	$\mathrm{W}(1)-\mathrm{C}(4)-\mathrm{O}(4)$	173.1(8)
$\mathrm{W}(2)-\mathrm{C}(5)-\mathrm{O}(5)$	172.8(8)	$\mathrm{W}(2)-\mathrm{C}(6)-\mathrm{O}(6)$	173.2(7)	$\mathrm{W}(2)-\mathrm{C}(10)-\mathrm{Mo}$	82.1(2)
$\mathrm{W}(2)-\mathrm{C}(10)-\mathrm{C}(11)$	126.8(5)	$\mathrm{Mo}-\mathrm{C}(10)-\mathrm{C}(11)$	124.0(5)	$\mathrm{W}(2)-\mathrm{C}(10)-\mathrm{C}(20)$	113.2(5)
Mo-C(10)-C(20)	75.7(4)	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(20)$	117.8(6)	Mo-C(20)-C(10)	69.3(4)
Mo-C(20)-C(21)	138.5(5)	$\mathrm{C}(10)-\mathrm{C}(20)-\mathrm{C}(21)$	123.1(6)	$\mathrm{Mo}-\mathrm{C}(20)-\mathrm{C}(30)$	71.3(4)
$\mathrm{C}(10)-\mathrm{C}(20)-\mathrm{C}(30)$	116.2(6)	$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(30)$	119.9(6)	Mo-C(30)-C(20)	74.3(4)
Mo-C(30)-C(31)	127.7(5)	$\mathrm{C}(20)-\mathrm{C}(30)-\mathrm{C}(31)$	120.7(6)	Mo-C(30)-C(40)	68.0(4)
$\mathrm{C}(20)-\mathrm{C}(30)-\mathrm{C}(40)$	124.2(6)	$\mathrm{W}(2)-\mathrm{C}(40)-\mathrm{Mo}$	83.7(2)	W(2)-C(40)-C(30)	114.4(5)
Mo-C(40)-C(30)	76.6(4)	W(2)-C(40)-C(41)	120.7(5)	Mo-C(40)-C(41)	130.1(5)

Table 2. Selected internuclear distances (\AA) and angles $\left({ }^{\circ}\right)$ for $\left[\mathrm{MoW}_{2}\left(\mu-\mathrm{C}_{2} \mathrm{Ph}_{2}\right)\left\{\mu-\mathrm{C}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{2}\right\}(\mathrm{CO})_{4}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right] \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}(3)$ with e.s.d.s in parentheses

W(1)-W(2)	2.752(1)	W(1)-Mo	2.708(2)	W(1)-C(1)	1.96(3)
W(1) \cdots C (2)	2.60(3)	$\mathrm{W}(1)-\mathrm{C}(1 \mathrm{~A})$	2.17(2)	W(1)-C(1B)	2.20(2)
W(2)-Mo	2.704(2)	W (2) . . C ${ }^{\text {(1) }}$	2.58(3)	$\mathrm{W}(2)-\mathrm{C}(2)$	1.94(3)
W(2)-C(2A)	2.17(2)	$\mathrm{W}(2)-\mathrm{C}(2 \mathrm{~B})$	2.17(2)	Mo-C(3)	1.93(2)
Mo-C(4)	1.96(3)	Mo-C(1A)	2.35(2)	$\mathrm{Mo}-\mathrm{C}(1 \mathrm{~B})$	2.29(2)
$\mathrm{Mo}-\mathrm{C}(2 \mathrm{~A})$	2.31(2)	$\mathrm{Mo}-\mathrm{C}(2 \mathrm{~B})$	2.25(2)	$\mathrm{C}(1)-\mathrm{O}(1)$	1.17(3)
$\mathrm{C}(2)-\mathrm{O}(2)$	1.20(3)	$\mathrm{C}(3)-\mathrm{O}(3)$	1.21(3)	$\mathrm{C}(4)-\mathrm{O}(4)$	1.16(3)
$\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(1 \mathrm{~B})$	1.35(3)	$\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(2 \mathrm{~B})$	1.32(3)		
W(2)-W(1)-Mo	59.4(1)	$\mathrm{W}(2)-\mathrm{W}(1)-\mathrm{C}(1)$	63.7(6)	Mo-W(1)-C(1)	77.3(5)
$\mathrm{W}(2)-\mathrm{W}(1)-\mathrm{C}(2)$	42.4(5)	Mo-W(1)-C(2)	66.1(4)	$\mathrm{C}(1)-\mathrm{W}(1)-\mathrm{C}(2)$	106.0(8)
$\mathrm{Mo}-\mathrm{W}(1)-\mathrm{C}(1 \mathrm{~A})$	56.4(5)	Mo-W(1)-C(1B)	54.5(5)	$\mathrm{C}(1 \mathrm{~A})-\mathrm{W}(1)-\mathrm{C}(1 \mathrm{~B})$	36.1(7)
W(1)-W(2)-Mo	59.5(1)	$\mathrm{W}(1)-\mathrm{W}(2)-\mathrm{C}(1)$	43.1(5)	Mo-W(2)-C(1)	68.6(4)
$\mathrm{W}(1)-\mathrm{W}(2)-\mathrm{C}(2)$	64.6(6)	Mo-W(2)-C(2)	75.2(5)	$\mathrm{C}(1)-\mathrm{W}(2)-\mathrm{C}(2)$	107.7(8)
$\mathrm{Mo}-\mathrm{W}(2)-\mathrm{C}(2 \mathrm{~A})$	55.2(4)	$\mathrm{Mo}-\mathrm{W}(2)-\mathrm{C}(2 \mathrm{~B})$	53.5(5)	$\mathrm{C}(2 \mathrm{~A})-\mathrm{W}(2)-\mathrm{C}(2 \mathrm{~B})$	35.5(7)
W(1)-Mo-W(2)	61.1(1)	$\mathrm{C}(3)-\mathrm{Mo}-\mathrm{C}(4)$	88.1(9)	W(1)-Mo-C(1A)	50.1(4)
W(1)-Mo-C(1B)	51.3(4)	$\mathrm{C}(1 \mathrm{~A})-\mathrm{Mo}-\mathrm{C}(1 \mathrm{~B})$	33.9(7)	W(2)-Mo-C(2A)	50.6(4)
$\mathrm{W}(2)-\mathrm{Mo}-\mathrm{C}(2 \mathrm{~B})$	51.0(4)	$\mathrm{C}(2 \mathrm{~A})-\mathrm{Mo}-\mathrm{C}(2 \mathrm{~B})$	33.8(6)	$\mathrm{W}(1)-\mathrm{C}(1)-\mathrm{W}(2)$	73.2(6)
$\mathrm{W}(1)-\mathrm{C}(1)-\mathrm{O}(1)$	169(2)	$\mathrm{W}(2)-\mathrm{C}(1)-\mathrm{O}(1)$	116(2)	$\mathrm{W}(1)-\mathrm{C}(2)-\mathrm{W}(2)$	73.0(7)
$\mathrm{W}(1)-\mathrm{C}(2)-\mathrm{O}(2)$	114(2)	$\mathrm{W}(2)-\mathrm{C}(2)-\mathrm{O}(2)$	171(2)	$\mathrm{Mo}-\mathrm{C}(3)-\mathrm{O}(3)$	174(2)
Mo-C(4)-O(4)	174(2)	$\mathrm{W}(1)-\mathrm{C}(1 \mathrm{~A})-\mathrm{Mo}$	73.5(5)	$\mathrm{W}(1)-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A} 1)$	142(1)
$\mathrm{Mo}-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A} 1)$	127(1)	$\mathrm{W}(1)-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(1 \mathrm{~B})$	73.1(9)	$\mathrm{Mo}-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(1 \mathrm{~B})$	71(1)
$\mathrm{C}(1 \mathrm{~A} 1)-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(1 \mathrm{~B})$	140(2)	$\mathrm{W}(1)-\mathrm{C}(1 \mathrm{~B})-\mathrm{Mo}$	74.2(5)	$\mathrm{W}(1)-\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(1 \mathrm{~A})$	71(1)
Mo-C(1B)-C(1A)	76(1)	$\mathrm{W}(1)-\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B} 1)$	137(1)	Mo-C(1B)-C(1B1)	131(1)
$\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B} 1)$	141(2)	$\mathrm{W}(2)-\mathrm{C}(2 \mathrm{~A})-\mathrm{Mo}$	74.1(5)	$\mathrm{W}(2)-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A} 1)$	141(1)
$\mathrm{Mo}-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(2 \mathrm{Al})$	129(1)	W(2)-C(2A)-C(2B)	72(1)	$\mathrm{Mo}-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(2 \mathrm{~B})$	71(1)
$\mathrm{C}(2 \mathrm{~A} 1)-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(2 \mathrm{~B})$	141(2)	W(2)-C(2B)-Mo	75.5(6)	$\mathrm{W}(2)-\mathrm{C}(2 \mathrm{~B})-\mathrm{C}(2 \mathrm{~A})$	72(1)
$\mathrm{Mo}-\mathrm{C}(2 \mathrm{~B})-\mathrm{C}(2 \mathrm{~A})$	76(1)	$\mathrm{W}(2)-\mathrm{C}(2 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B} 1)$	135(1)	Mo-C(2B)-C(2B1)	132(1)

Table 2. The core of the molecule is a metal triangle, the Mo-W edges of which are transversely bridged by the alkyne ligands $\mathrm{C}_{2} \mathrm{Ph}_{2}$ and $\mathrm{C}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{2}$, respectively, while the $\mathrm{W}-\mathrm{W}$ bond is semi-bridged by two CO groups [W(1)-C(1)-O(1) 169(2), $\left.\mathrm{W}(2)-\mathrm{C}(2)-\mathrm{O}(2) 171(2)^{\circ}\right]$. The molybdenum atom carries two terminal carbonyl ligands, and each tungsten atom is coordinated by a cyclopentadienyl ring. Overall the molecule has

44 cluster valence electrons (c.v.e.s) rather than the 48 required to give each of the three metal atoms in the cluster 18 -electron shells. Although 44 c.v.e. trimetal compounds are common among some of the later transition elements, such structures are uncommon with the metals Mo or W which adhere more closely to the 18 -electron formalism. In agreement with the electronic unsaturation, the metal-metal connectivities in (3) are some-
what shorter than those observed in electronically saturated polynuclear metal species, but comparable with the metalmetal bond distances in other unsaturated cluster compounds. Thus the $W-W$ distance $[2.752(1) \AA$] in (3) is significantly shorter than those in the electronically saturated molecules $\left[\mathrm{W}_{2}\{\mu-\mathrm{C}(\mathrm{Me}) \mathrm{B}(\mathrm{H}) \mathrm{Et}\}(\mathrm{CO})_{4}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right] \quad[2.978(2) \AA]^{6}$ and $\left[\mathrm{W}_{2} \mathrm{Os}\left\{\mu_{3}-\mathrm{C}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{2}\right\}(\mathrm{CO})_{7}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$ [two isomers, $3.159(2)$ and $3.017(2) \AA],{ }^{7}$ but is very similar to that found in the 46 c.v.e. species $\left[\mathrm{W}_{2} \mathrm{Fe}\left\{\mu_{3}-\mathrm{C}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{2}\right\}(\mathrm{CO})_{6}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$ [2.747(1) $\AA]^{8}{ }^{8}$ Similarly, the Mo-W distances in (3) [mean $2.706 \AA$] are appreciably shorter than those in $[\mathrm{MoW}\{\mu$ $\left.\left.\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-2\right) \mathrm{C}(\mathrm{Me}) \mathrm{O}\right\}(\mathrm{CO})_{4}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right][2.935(1) \AA]^{9}$ or (1a) $[2.938(1) \AA]$, ${ }^{2 a}$ but are comparable with that $[2.660(2) \AA]$ found in $\left[\mathrm{W}_{2}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{3}\left(\eta^{5}-\mathrm{C}_{9} \mathrm{H}_{7}\right)\left(\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9}\right.\right.$ $\left.\left.\mathrm{Me}_{2}\right)\right]\left(\mathrm{C}_{9} \mathrm{H}_{7}=\right.$ indenyl), a 32 c.v.e. complex. ${ }^{10}$ It is probable that the metal-metal bonding within the triangle in (3) is delocalised. However, to accord with the 18 -electron formalism we have chosen to indicate $\mathrm{Mo}=\mathrm{W}$ and $\mathrm{W}-\mathrm{W}$ bonds in the formula displayed.

Compound (3) results from addition of $\mathrm{PhC} \equiv \mathrm{CPh}$ to (1a), accompanied by a coupling of the two μ - p-tolylmethylidyne groups in the latter to form the $\mu-\mathrm{C}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{2}$ alkyne. We obtained no evidence that (3) is an intermediate in the formation of (2), and the pathways by which (2) and (3) are formed from (1a) are presently obscure.

The spectroscopic (i.r. and n.m.r.) properties of compounds (2) and (3) (see Experimental section) are in accord with the structures established by X-ray crystallography. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum of complex (2) shows resonances for two nonequivalent $\mathrm{Me}-4$ groups and two non-equivalent $\mathrm{C}_{5} \mathrm{H}_{5}$ rings. In the ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum broad peaks at $\delta 232.2$ and 225.3 p.p.m. are ascribed to the $\mathrm{Mo}(\mathrm{CO})_{2}$ and $\mathrm{W}(1)(\mathrm{CO})_{2}$ groups (Figure 1), respectively, on the basis of their chemical shifts, the broadness of these signals being due to site exchange. Two sharp resonances at $\delta 220.9$ and 220.7 p.p.m. are attributed to the $\mathrm{W}(2)(\mathrm{CO})_{2}$ group since they both show ${ }^{183} \mathrm{~W}-{ }^{13} \mathrm{C}$ coupling ($c a$. 130 Hz). Complex (3) has a more symmetrical structure, and if the very minor difference between the substituents on the alkyne carbon atoms is ignored there is a mirror plane through the $\mathrm{Mo}(\mathrm{CO})_{2}$ group and the midpoint of the $\mathrm{W}(1)-\mathrm{W}(2)$ bond. A mirror plane is also defined by the metal atoms and the midpoints of the ligated $\mu-\mathrm{C}_{2}$ groups. Consequently, in the ${ }^{1} \mathrm{H}$ n.m.r. spectrum of (3) there is only one $\mathrm{C}_{5} \mathrm{H}_{5}$ and one Me-4 resonance, a feature also found in the ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum. The $\mathrm{Mo}(\mathrm{CO})_{2}$ group gives rise to a signal at $\delta 232.3$ p.p.m., and the two semi-bridging CO ligands resonate at $\delta 231.7$ p.p.m. [$J(W C) 98 \mathrm{~Hz}$]. Peaks at $\delta 114.9$ and 113.1 p.p.m. are tentatively ascribed to the $\mu-\mathrm{C}_{2}$ groups.

The results described herein shows that the compounds (1) are likely to be interesting reagents for use in further syntheses. Indeed preliminary work indicates that low-valent metal fragments combine with the complexes (1) to afford cluster species.

Experimental

Light petroleum refers to that fraction of b.p. $40-60^{\circ} \mathrm{C}$, and all solvents were freshly distilled over appropriate drying agents prior to use. Chromatography was carried out on alumina (Brockman, activity II), and the compounds were handled using Schlenk-tube techniques under dry oxygen-free nitrogen. The compound (1a) was prepared by the method previously reported. ${ }^{2 a}$ The instrumentation used for the spectroscopic measurements has been described in previous parts of this series. ${ }^{2,3}$ The n.m.r. chemical shifts are listed in p.p.m., and values are positive to high frequency of $\left(\mathrm{SiMe}_{4}\right)$ with coupling constants in Hz . Measurements were at room temperature.

The Reaction between $\mathrm{PhC} \equiv \mathrm{CPh}$ and $\left[\mathrm{MoW}_{2}\left(\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-\right.\right.$ 4) $\left.)_{2}(\mu-\mathrm{CO})_{2}(\mathrm{CO})_{4}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right](1 \mathrm{a})$.-A mixture of complex (1a) $(0.17 \mathrm{~g}, 0.17 \mathrm{mmol})$ and $\mathrm{PhC} \equiv \mathrm{CPh}(0.13 \mathrm{~g}, 0.70 \mathrm{mmol})$ in $\mathrm{n}-$ hexane ($30 \mathrm{~cm}^{3}$) was heated at reflux for 45 min . After cooling to room temperature, solvent was decanted and the residue was washed with light petroleum ($2 \times 10 \mathrm{~cm}^{3}$), dissolved in $\mathrm{Et}_{2} \mathrm{O}$ $\left(10 \mathrm{~cm}^{3}\right)$, and chromatographed. Elution with the same solvent removed a yellow eluate which after removal of solvent in vacuo gave yellow microcrystals. These were recrystallised from n -hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (4:1) to afford [$\mathrm{MoW}_{2}\left\{\mu-\sigma, \sigma^{\prime}: \eta^{4}-\mathrm{C}(\mathrm{Ph}) \mathrm{C}-\right.$ (Ph) $\left.\left.\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\right\}(\mathrm{CO})_{6}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right] \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2) $(0.04 \mathrm{~g}, 20 \%)$ (Found: C, 44.2; H, 3.0. $\mathrm{C}_{46} \mathrm{H}_{34} \mathrm{MoO}_{6} \mathrm{~W}_{2}$. $2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ requires $\mathrm{C}, 43.8 ; \mathrm{H}, 2.9 \%$), $v_{\text {max. }}(\mathrm{CO})$ at $1995 \mathrm{~s}, 1938 \mathrm{~s}$, $1857 \mathrm{~m}(\mathrm{br})$, and $1814 \mathrm{w}(\mathrm{br}) \mathrm{cm}^{-1}$ (in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). N.m.r.: ${ }^{1} \mathrm{H}$ $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right), \delta 2.16,2.22(\mathrm{~s} \times 2,6 \mathrm{H}, \mathrm{Me}-4), 4.99,5.48(\mathrm{~s} \times 2,10 \mathrm{H}$, $\mathrm{C}_{5} \mathrm{H}_{5}$), and $6.60-7.60\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{Ph}\right.$ and $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right) ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right), \delta 232.2$ (br, MoCO), 225.3 (br, WCO), 220.9 [WCO, $J(W C)$ 129], 220.7 [WCO, $J(W C)$ 130], 167.6-$124.8\left(\mu-\mathrm{CPh}\right.$ and $\left.\mu-\mathrm{CC}_{6} \mathrm{H}_{4}\right), 93.2,89.9\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 21.2$ and 20.9 (Me-4). Mass spectrum (fast atom bombardment): $M^{+}, 1148$ (calc. 1 148).
Further elution of the chromatography column with $\mathrm{CH}_{2} \mathrm{Cl}_{2}^{-}$ $\mathrm{Et}_{2} \mathrm{O}$ (1:1) removed a purple fraction which was concentrated to a volume of $c a .2 \mathrm{~cm}^{3}$. Addition of light petroleum ($c a .8$ cm^{3}) and cooling to ca. $-10^{\circ} \mathrm{C}$ gave black-violet crystals of $\left[\mathrm{MoW}_{2}\left(\mu-\mathrm{C}_{2} \mathrm{Ph}_{2}\right)\left\{\mu-\mathrm{C}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{2}\right\}(\mathrm{CO})_{4}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$. $0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3) $(0.038 \mathrm{~g}, 20 \%)$ (Found: C, $47.4 ; \mathrm{H}, 3.1$. $\mathrm{C}_{44} \mathrm{H}_{34} \mathrm{MoO}_{4} \mathrm{~W}_{2} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ requires $\mathrm{C}, 47.1 ; \mathrm{H}, 3.1 \%$), $v_{\text {max. }}(\mathrm{CO})$ at $1922 \mathrm{vs}(\mathrm{br})$ and $1858 \mathrm{~s}(\mathrm{br}) \mathrm{cm}^{-1}$ (in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). N.m.r.: ${ }^{1} \mathrm{H}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right), \delta 2.32(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}-4), 5.59\left(\mathrm{~s}, 10 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right)$, and $7.06-7.71\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{Ph}\right.$ and $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right) ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}-\right.$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), $\delta 232.3$ (MoCO), 231.7 [WCO, $\left.J(\mathrm{WC}) 98\right], 145.8-$ $127.0\left(\mathrm{Ph}\right.$ and $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 114.9,113.1\left(\mu-\mathrm{CPh}\right.$ and $\left.\mu-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)$, $95.3\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)$, and $21.5(\mathrm{Me}-4)$.

Crystal Structure Determinations.-(a) $\left[\mathrm{MoW}_{2}\left\{\mu-\sigma, \sigma^{\prime}: \eta^{4}\right.\right.$ $\left.\left.\mathrm{C}(\mathrm{Ph}) \mathrm{C}(\mathrm{Ph}) \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\right\}(\mathrm{CO})_{6}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$. $2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2). Crystals of complex (2) were grown from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ light petroleum mixtures as yellow prisms. Diffracted intensities were collected on a Nicolet $P 2_{1}$ diffractometer at 293 K , from a crystal of dimensions $c a .0 .70 \times 0.25 \times 0.20 \mathrm{~mm}$. Of the 8723 data collected (Wyckoff ω scans, $2 \theta \leqslant 50^{\circ}$), 6342 unique data had $F \geqslant 5 \sigma(F)$, and only these were used for structure solution and refinement. The data were corrected for Lorentz, polarisation and X-ray absorption effects, the latter by an empirical method based upon azimuthal scan data. ${ }^{11}$

Crystal data. $\quad \mathrm{C}_{46} \mathrm{H}_{34} \mathrm{MoO}_{6} \mathrm{~W}_{2} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}, \quad M=1316.3$, monoclinic, space group $P 2_{1} / c, a=17.280(7), b=13.592(5)$, $c=19.678(7) \quad \AA, \quad \beta=81.87(3)^{\circ}, \quad U=4575(3) \AA^{3}, \quad Z=4$, $D_{\mathrm{c}}=1.91 \quad \mathrm{~g} \mathrm{~cm}{ }^{-3}, \quad F(000)=2528, \quad$ Mo- $K_{\alpha} \quad X$-radiation (graphite monochromator), $\lambda=0.71069 \AA, \mu\left(\mathrm{Mo}-K_{\alpha}\right)=$ $85.1 \mathrm{~cm}^{-1}$.
The structure was solved by conventional heavy-atom methods and successive difference Fourier syntheses were used to locate all non-hydrogen atoms, which were refined with anisotropic thermal parameters. All hydrogen atoms were included in calculated positions ($\mathrm{C}-\mathrm{H} 0.96 \AA$) with either fixed isotropic thermal parameters $c a .1 .2 U_{\text {equiv. }}$ of the parent carbon atoms (aryl and $\eta-\mathrm{C}_{5} \mathrm{H}_{5}$), or a common refined isotropic thermal parameter (Me). Refinement by blocked-cascade least squares led to $R=0.038\left(R^{\prime}=0.040\right)$ with a weighting scheme of the form $w^{-1}=\left[\sigma^{2}(F)+0.0005|F|^{2}\right]$ giving a satisfactory analysis of variance. The final electron-density difference synthesis showed no peaks >1.7 or $<-1.1 \mathrm{e} \AA^{-3}$.
(b) $\left[\mathrm{MoW}_{2}\left(\mu-\mathrm{C}_{2} \mathrm{Ph}_{2}\right)\left\{\mu-\mathrm{C}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)_{2}\right\}(\mathrm{CO})_{4}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$ $0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3). Crystals of complex (3) were grown from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ light petroleum mixtures as black prisms. Diffracted intensities were collected at 293 K , from a crystal with well

Table 3. Atomic positional parameters (fractional co-ordinates $\times 10^{4}$) for compound (2) with e.s.d.s in parentheses

Atom	x	y	z	Atom	x	y	z
W(1)	$3045(1)$	$5161(1)$	5 247(1)	C(32)	522(5)	7264 (6)	$7622(5)$
W(2)	3 620(1)	7476 (1)	7 262(1)	C(33)	-262(5)	7 342(6)	$7570(5)$
Mo	$2895(1)$	5 993(1)	$6426(1)$	C(34)	-538(5)	7 256(7)	$6960(6)$
C(1)	$3802(4)$	5 122(5)	$6379(4)$	C(35)	14(5)	7 083(7)	6 372(5)
O(1)	$4333(4)$	4 604(5)	6415 (3)	C(36)	805(4)	6 978(6)	6428(4)
$\mathrm{C}(2)$	2 276(5)	4 791(6)	6 407(4)	C(37)	-1 396(6)	$7312(9)$	$6906(8)$
O(2)	$1900(4)$	4 072(5)	6486 (3)	C(40)	2 534(4)	7 536(5)	$6803(4)$
C(3)	$2352(5)$	6 212(7)	5 049(4)	C(41)	2340 (4)	$8419(5)$	$6412(4)$
$\mathrm{O}(3)$	$1943(4)$	$6812(5)$	$4853(3)$	C(42)	$1847(5)$	$9150(6)$	$6737(5)$
C(4)	3 845(6)	$6167(7)$	5 071(5)	C(43)	1 684(6)	10 012(6)	6 395(6)
O(4)	$4337(5)$	$6732(6)$	$4899(4)$	C(44)	2 014(6)	$10182(6)$	5 736(6)
C(5)	4 123(4)	$7924(6)$	6 329(4)	C(45)	2 505(5)	9 454(7)	5 402(5)
O(5)	4460 (4)	8 246(6)	$5829(3)$	C(46)	$2652(5)$	8 586(6)	5 727(4)
C(6)	4 559(4)	6 602(6)	7 153(4)	C(47)	$1862(8)$	11 144(8)	5 393(8)
O(6)	5 133(3)	$6168(5)$	$7128(3)$	C(51)	2 510(6)	3 779(7)	$4778(5)$
C(10)	$2988(4)$	6 123(5)	7 602(4)	C(52)	2 776(7)	4 348(7)	4 238(5)
C(11)	3 273(4)	5 303(6)	8 024(4)	C(53)	3 565(7)	4 425(7)	4 196(5)
C(12)	$3781(4)$	5466 (6)	8 495(4)	C(54)	3 806(6)	3 875(7)	4 735(6)
C(13)	$4018(5)$	4 690(7)	$8873(5)$	C(55)	$3115(7)$	3 483(7)	$5091(5)$
C(14)	3780 (5)	3 759(7)	$8790(5)$	C(61)	4 239(5)	8 794(6)	7 688(5)
C(15)	3 279(5)	3 571(6)	$8317(4)$	C(62)	3 480(6)	$9077(6)$	7 592(5)
C(16)	3 034(5)	$4328(6)$	$7945(4)$	C(63)	2943 (5)	8 557(6)	8 060(5)
C(20)	$2162(4)$	$6181(5)$	7 569(3)	C(64)	3 355(5)	7 939(7)	8 440(4)
C(21)	$1561(4)$	5 622(6)	8 046(4)	C(65)	4 157(5)	8099 (7)	8 213(4)
C(22)	$1550(5)$	5 794(9)	$8744(4)$	C(7)	3 908(9)	4050 (11)	1 263(7)
C(23)	942(6)	$5438(10)$	9 232(5)	$\mathrm{Cl}(1)$	4 495(2)	3 531(3)	614(2)
C(24)	366(6)	$4887(10)$	8 986(6)	$\mathrm{Cl}(2)$	3 371(3)	3 132(4)	$1787(2)$
C(25)	379(5)	4 695(7)	$8329(5)$	C(8)	83(13)	560(13)	1 057(14)
C(26)	973(4)	$5054(5)$	$7843(4)$	$\mathrm{Cl}(3)$	-861(3)	368(4)	$1309(4)$
C(30)	$1921(4)$	$6929(5)$	$7134(4)$	$\mathrm{Cl}(4)$	263(4)	1 626(6)	546(3)
C(31)	$1065(4)$	7 050(5)	7 054(4)				

Table 4. Atomic positional parameters (fractional co-ordinates) for compound (3) with e.s.d.s in parentheses

Atom	x	y	z	Atom	x	y	z
W(1)	0.157 56(6)	0.229 34(4)	-0.009 26(4)	C(1A)	$-0.0044(15)$	$0.2038(10)$	-0.095 4(11)
W(2)	0.343 33(6)	0.226 26(4)	-0.080 15(4)	C(1A1)	-0.093 8(15)	0.1501 (9)	$-0.1157(10)$
Mo	$0.12460(13)$	0.236 53(8)	-0.174 86(9)	C(1A2)	$-0.077(2)$	$0.0905(10)$	-0.070 4(12)
C(11)	0.219 9(13)	0.2859 (7)	0.120 0(10)	C(1A3)	$-0.160(2)$	0.040 6(11)	-0.087 6(13)
C(12)	0.096 9(13)	0.288 8(7)	0.097 7(10)	C(1A4)	-0.265(2)	0.048 8(11)	-0.148 5(14)
C(13)	0.054 2(13)	0.2219 (7)	0.095 4(10)	C(4A)	-0.362(3)	-0.005 3(12)	-0.164 3(15)
C(14)	0.150 8(13)	0.177 7(7)	$0.1163(10)$	C(1A5)	$-0.278(2)$	$0.1069(10)$	-0.193 3(13)
C(15)	0.253 2(13)	0.217 3(7)	0.131 4(10)	C(1A6)	-0.194(2)	0.157 1(10)	-0.178 0(12)
C(11A)	$0.135(4)$	0.306 (2)	0.094(3)	C(1B)	0.004 3(14)	0.271 8(11)	-0.095 3(10)
C(12A)	0.047(4)	0.256(2)	0.086(3)	C(1B1)	-0.066(2)	0.332 5(10)	$-0.1001(11)$
C(13A)	0.101(4)	0.193(2)	0.109(3)	C(1B2)	-0.185(3)	0.326 8(13)	-0.120 1(14)
C(14A)	0.223(4)	0.204(2)	0.131(3)	C(1B3)	$-0.251(3)$	0.386 9(13)	-0.128 4(15)
$\mathrm{C}(15 \mathrm{~A})$	0.244(4)	0.274(2)	0.122(3)	C(1B4)	-0.199(2)	0.449 2(12)	$-0.1161(14)$
C(21)	0.528(3)	0.269 7(9)	-0.021(2)	C(4B)	-0.270(3)	0.5140 (12)	-0.125(2)
C(22)	0.495(3)	0.227 2(9)	0.038(2)	C(1B5)	-0.083(2)	$0.4519(12)$	-0.095 1(14)
C(23)	0.486(3)	0.160 5(9)	0.006(2)	C(1B6)	-0.019(3)	0.393 2(11)	$-0.0866(13)$
C(24)	0.514(3)	$0.1618(9)$	-0.072(2)	$\mathrm{C}(2 \mathrm{~A})$	0.297 9(14)	$0.2640(10)$	-0.205 8(10)
C(25)	0.540(3)	0.229 3(9)	-0.088(2)	C(2A2)	0.399 2(11)	0.372 2(7)	-0.218 6(7)
C(21A)	0.544(4)	0.256(2)	-0.052(3)	C(2A3)	0.423 3(11)	$0.4257(7)$	$-0.2656(6)$
C(22A)	0.516(4)	0.244(2)	0.024(3)	C(2A4)	0.372 2(11)	0.4283 (7)	-0.349 9(6)
C(23A)	0.484(4)	0.175(2)	0.026(3)	C(2A5)	0.296 9(11)	0.377 3(7)	-0.387 2(6)
C(24A)	0.492(4)	0.145(2)	-0.049(3)	C(2A6)	0.272 7(11)	0.323 8(7)	-0.340 2(6)
C(25A)	0.529(4)	0.195(2)	-0.098(3)	C(2A1)	0.323 9(11)	0.321 2(7)	-0.255 9(6)
C(1)	0.207(2)	0.140 0(11)	-0.037 2(11)	C(2B)	0.284 2(15)	0.1978 (9)	-0.208 8(11)
O(1)	$0.2307(13)$	0.083 3(7)	-0.042 8(9)	C(2B2)	0.333 0(14)	0.1510 (7)	-0.333 0(10)
C(2)	0.292(2)	0.315 3(11)	-0.057 2(12)	C(2B3)	0.349 0(14)	0.0967 (7)	-0.381 9(10)
$\mathrm{O}(2)$	0.276 8(12)	0.372 4(8)	-0.040 3(9)	C(2B4)	0.334 8(14)	0.031 1(7)	$-0.3565(10)$
C(3)	0.062(2)	0.311 2(11)	-0.245 6(12)	C(2B5)	0.304 6(14)	0.019 7(7)	-0.282 3(10)
O(3)	0.025 1(12)	$0.3618(7)$	-0.283 2(9)	C(2B6)	0.288 6(14)	0.074 0(7)	-0.233 4(10)
C(4)	0.038(2)	0.1760 (12)	-0.260 3(13)	C(2B1)	0.302 8(14)	0.139 6(7)	-0.258 8(10)
$\mathrm{O}(4)$	$-0.0100(14)$	$0.1360(9)$	$-0.3067(10)$	Cl	0.052(3)	0.044 8(15)	0.521(2)

developed faces of the types $(0,1,0),(0, \overline{1}, 0),(\overline{1}, 0,1),(1,0, \overline{1}),(1$, 0,1), and ($\overline{1}, 0, \overline{1}$). Of the 5848 data collected ($\theta-2 \theta$ scans, $2 \theta \leqslant 50^{\circ}$), 3127 unique data had $F \geqslant 5 \sigma(F)$, and only these were used for structure solution and refinement. The data were corrected for Lorentz, polarisation and X-ray absorption effects, the latter by an analytical method based upon crystal faces. ${ }^{11}$

Crystal data. $\mathrm{C}_{44} \mathrm{H}_{34} \mathrm{MoO}_{4} \mathrm{~W}_{2} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}, \quad M=1132.9$, monoclinic, space group $P 2_{1} / n, a=11.894(5), b=19.876(5)$, $c=16.747(4) \AA, \beta=104.11(2)^{\circ}, \quad U=3840(2) \AA^{3}, Z=4$, $D_{\mathrm{c}}=1.96 \mathrm{~g} \mathrm{~cm}{ }^{-3}, \quad F(000)=2164$, Mo- $K_{\alpha} \quad X$-radiation (graphite monochromator), $\bar{\lambda}=0.71069 \AA, \mu\left(\mathrm{Mo}-K_{\alpha}\right)=65.3$ cm^{-1}.

The structure was solved by conventional heavy-atom methods and successive difference Fourier syntheses were used to locate all non-hydrogen atoms. The metal atoms, the ligated carbon atoms of the alkynes, and the carbonyl ligands [with the exception of $\mathrm{C}(2) \mathrm{O}(2)$] were refined with anisotropic thermal parameters. Hydrogen atoms were included in calculated positions ($\mathrm{C}-\mathrm{H} 0.96 \AA$) with either fixed isotropic thermal parameters $c a .1 .2 U_{\text {equiv. }}$ of the parent carbon atoms (aryl and η $\mathrm{C}_{5} \mathrm{H}_{5}$), or a common refined isotropic thermal parameter (Me). A stable refinement could not be achieved for the methyl hydrogens of $C(4 A)$ and they were therefore not included in the final refinement. The aryl and cyclopentadienyl ring systems were refined as rigid groups [C-C(cyclopentadienyl) 1.420, C-C(aryl) $1.395 \AA]$. The two cyclopentadienyl rings were disordered and each was modelled by two staggered rings with site occupations in the ratios of $80: 20[\mathrm{~W}(1)]$ and $64: 36$ [W(2)], respectively. Only the cyclopentadienyl sites of major occupancy $[\mathrm{C}(11)-\mathrm{C}(15)$ and $\mathrm{C}(21)-\mathrm{C}(25)]$ are shown in Figure 2. The unit cell also contains $c a$. half a molecule of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ per molecule of the complex. These solvent molecules are disordered about inversion centres and only the chlorine atom was located and refined. Refinement by blocked-cascade least squares led to $R=0.049$ ($R^{\prime}=0.049$) with a weighting scheme of the form $w^{-1}=\left[\begin{array}{ll}\sigma^{2}(F)+0.000 & 65|F|^{2}\end{array}\right]$ giving a satisfactory analysis of variance. The final electron-density difference synthesis showed no peaks >2.4 or <-1.3 e \AA^{-3}.
For both structures refinement was performed on a Data General 'Eclipse' computer with the SHELXTL system of
programs. ${ }^{11}$ Scattering factors with corrections for anomalous dispersion were taken from ref. 12. Atom co-ordinates are given in Tables 3 and 4.

Additional material available from the Cambridge Crystallographic Data Centre comprises H-atom co-ordinates, thermal parameters, and remaining bond lengths and angles.

References

1 Part 96, H. F. Dare, J. A. K. Howard, T. P. Spaniol, F. G. A. Stone, and J. Szameitat, J. Chem. Soc., Dalton Trans., 1990, 495.
2 (a) G. A. Carriedo, J. A. K. Howard, K. Marsden, F. G. A. Stone, and P. Woodward, J. Chem. Soc., Dalton Trans., 1984, 1589; (b) M. D. Bermudez, E. Delgado, G. P. Elliott, N. H. Tran-Huy, F. MayorReal, F. G. A. Stone, and M. J. Winter, ibid., 1987, 1235; (c) S. J. Dossett, A. F. Hill, J. A. K. Howard, B. A. Nasir, T. P. Spaniol, P. Sherwood, and F. G. A. Stone, ibid., 1989, 1871.
3 (a) M. E. Garcia, J. C. Jeffery, P. Sherwood, and F. G. A. Stone, J. Chem. Soc., Datton Trans., 1988, 2431, 2443; (b) I. J. Hart and F. G. A. Stone, ibid., p. 1899; (c) I. J. Hart, J. C. Jeffery, M. J. Grosse-Ophoff, and F. G. A. Stone, ibid., p. 1867; (d) J. Hein, J. C. Jeffery, P. Sherwood, and F. G. A. Stone, ibid., 1987, 2211 and refs. therein.
4 E. Delgado, M. E. Garcia, J. C. Jeffery, P. Sherwood, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1988, 207.
5 R. Hoffmann, Angew. Chem., Int. Ed. Engl., 1982, 21, 711.
6 D. Barratt, S. J. Davies, G. P. Elliott, J. A. K. Howard, D. B. Lewis, and F. G. A. Stone, J. Organomet. Chem., 1987, 325, 185.
7 L. Busetto, M. Green, B. Hessner, J. A. K. Howard, J. C. Jeffery, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1983, 519.

8 L. Busetto, J. C. Jeffery, R. M. Mills, F. G. A. Stone, M. J. Went, and P. Woodward, J. Chem. Soc., Dalton Trans., 1983, 101.

9 I. J. Hart, J. C. Jeffery, R. M. Lowry, and F. G. A. Stone, Angew. Chem., Int. Ed. Engl., 1988, 27, 1703.
10 M. Green, J. A. K. Howard, A. P. James, A. N. de M. Jelfs, C. M. Nunn, and F. G. A. Stone, J. Chem. Soc., Dalton Trans., $1987,81$.
11 G. M. Sheldrick, SHELXTL programs for use with the Nicolet X ray system, Göttingen, Revision 5.1, 1986.
12 'International Tables for X-Ray Crystallography,' Kynoch Press, Birmingham, 1974, vol. 4.

[^0]: * 1,1,2,2,3,3-Hexacarbonyl-1,3-bis(η-cyclopentadienyl)-1,2- $\mu-\left[1^{\prime}, 2^{\prime}-\right.$ diphenyl-3', 4^{\prime}-bis (p-tolyl)buta- $1^{\prime}, 3^{\prime}$-diene- $1^{\prime}, 4^{\prime}$-diyl- $C^{1,4}\left(\mathbf{M o}, \mathbf{W}^{\prime}\right) C^{2,3}$. (Mo)]-2-molybdenum-1,3-ditungsten ($M o-W^{1}, M o \equiv W^{2}$) dichloromethane ($1 / 2$) and 1,1,2,3-tetracarbonyl-2,3-bis(η-cyclopentadienyl)-$1,2-\mu$-diphenylacetylene- $1,3-\mu$-di-p-tolylacetylene-triangulo-molybdenumditungsten $(2 M o=W)$-dichloromethane (2/1)
 Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1990, Issue 1, pp. xix-xxii.

