Conversion of a μ_{3}-Alkylidyne into a μ_{3}-Acyl Group at a Trimetal Centre; \boldsymbol{X}-Ray Crystal Structures of the Phosphido Bridged Complexes [$\mathrm{WFe}_{2}\left(\mu_{3}-\mathbf{C R}\right)(\mu-\mathrm{H})(\mu-$ $\left.\left.\mathrm{PEt}_{2}\right)(\mathrm{CO})_{6}\left(\mathrm{PEt}_{2} \mathrm{H}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right] \cdot \mathrm{Et}_{2} \mathrm{O},\left[\mathrm{WFe}_{2}\left(\mu_{3}-\mathrm{CR}\right)\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{6}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right] \cdot 0.5$ $\mathrm{CH}_{2} \mathrm{Cl}_{2},\left[\mathrm{WFe}_{2}\left(\mu_{3}-\mathrm{OCCH}_{2} \mathrm{R}\right)\left(\mu-\mathrm{PPh}_{2}\right)_{2}\left(\mathrm{CO}_{5}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]\right.$, and $\left[\mathrm{WFe}_{2}\left(\mu-\mathrm{OCCH}_{2} \mathrm{R}\right)-\right.$ $\left.\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{6}\left(\mathrm{PPh}_{2} \mathrm{H}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \dagger$

John C. Jeffery* and Julian G. Lawrence-Smith
Department of Inorganic Chemistry, The University, Bristol BS8 1TS

In diethyl ether at room temperature the complex $\left[\mathrm{WFe}_{2}\left(\mu_{3}-\mathrm{CR}\right)(\mu-\mathrm{CO})(\mathrm{CO})_{8}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](1)(\mathrm{R}=$ $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)$ reacts with 1 equivalent of $\mathrm{PMe}_{2} \mathrm{Ph}$ or $\mathrm{PEt}_{2} \mathrm{H}$ affording the compounds $\left[\mathrm{WFe}_{2}\left(\mu_{3}-\mathrm{CR}\right)(\mu-\right.$ $\left.\mathrm{CO})(\mathrm{CO})_{7}\left(\mathrm{PR}_{3}^{\prime}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]\left[\mathrm{PR}_{3}=\mathrm{PMe}_{2} \mathrm{Ph}(2)\right.$ or $\mathrm{PEt}_{2} \mathrm{H}$ (3)]. At ambient temperature solutions of (3) slowly ($1-2 \mathrm{~d}$) lose CO giving the $\mu-\mathrm{PEt}_{2}$ complex $\left[\mathrm{WFe}_{2}\left(\mu_{3}-\mathrm{CR}\right)(\mu-\mathrm{H})\left(\mu-\mathrm{PEt}_{2}\right)(\mathrm{CO})_{7}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ (4), which exists as a mixture of isomers in which the hydride ligand bridges either a W-Fe (4a) or an $\mathrm{Fe}-\mathrm{Fe}$ (4b) bond. In solution (4a) and (4b) interconvert slowly on the n.m.r. time-scale. The reaction between (1) and an excess of $\mathrm{PEt}_{2} \mathrm{H}$ gave $\left[\mathrm{WFe}_{2}\left(\mu_{3}-\mathrm{CR}\right)(\mu-\mathrm{H})\left(\mu-\mathrm{PEt}_{2}\right)(\mathrm{CO})_{6}\left(\mathrm{PEt}_{2} \mathrm{H}\right)(\eta-\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)\right] \cdot \mathrm{Et}_{2} \mathrm{O}$ (5). The structure of (5) was established by a single-crystal X-ray diffraction study and consists of a WFe triangle of metal atoms capped by a $\mu_{3}-\mathrm{CR}$ ligand [W-Fe(1) 2.763(1), W-Fe(2) 2.830(1), $\mathrm{Fe}(1)-\mathrm{Fe}(2) 2.687(2), \mathrm{W}-\mu-\mathrm{C} 2.042$ (8), $\mathrm{Fe}(1)-\mu-\mathrm{C} 1.960$ (8), and $\mathrm{Fe}(2)-\mu-\mathrm{C} 2.104$ (8) \AA]. One W-Fe bond is bridged by a $\mu-\mathrm{PEt}_{2}$ group and the $\mathrm{Fe}-\mathrm{Fe}$ bond is bridged by an hydride ligand. The tungsten atom carries a CO and $\mathrm{C}_{5} \mathrm{H}_{5}$ group. One iron atom is ligated by two CO groups and a terminal $\mathrm{PEt}_{2} \mathrm{H}$ ligand which is trans to the $\mu-\mathrm{PEt}_{2}$ group, the remaining iron atom carries three approximately orthogonal CO ligands. Thermolysis of (5) results in loss of $\mathrm{H}_{\mathbf{2}}$ and formation of the compound $\left[\mathrm{WFe}_{2}\left(\mu_{3}-\mathrm{CR}\right)\left(\mu-\mathrm{PEt}_{2}\right)_{2}(\mathrm{CO})_{6}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ (6). The conversion of (5) into (6) may be more readily achieved at room temperature by the addition of a catalytic amount of $\mathrm{Li}\left[\mathrm{BEt}_{3} \mathrm{H}\right]$. The related reaction of complex (1) with 1 equivalent of $\mathrm{PPh}_{2} \mathrm{H}$ gave $\left[\mathrm{WFe}_{2}\left(\mu_{3}-\mathrm{CR}\right)(\mu-\right.$ $\left.\mathrm{H})\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{7}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](7)$, which has the same structure as the $\mu-\mathrm{PEt}_{2}$ isomer (4a). Treatment of (1) with an excess of $\mathrm{PPh}_{2} \mathrm{H}$ afforded a chromatographically separable mixture of the cluster compounds $\left[\mathrm{WFe}_{2}\left(\mu_{3}-\mathrm{CR}\right)\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{6}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right] \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}(8),\left[\mathrm{WFe}_{2}\left(\mu_{3}-\mathrm{OCCH}_{2} \mathrm{R}\right)(\mu-\right.$ $\left.\left.\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{5}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ (9), and $\left[\mathrm{WFe}_{2}\left(\mu-\mathrm{OCCH}_{2} \mathrm{R}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{6}\left(\mathrm{PPh}_{2} \mathrm{H}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10). The molecular structures of (8)-(10) have been established by single-crystal X-ray diffraction studies. The structures of both (8) and (9) consist of WFe_{2} triangles of metal atoms with $\mathrm{W}-\mathrm{Fe}$ and $\mathrm{Fe}-\mathrm{Fe}$ bonds bridged by $\mu-\mathrm{PPh}_{2}$ ligands. The iron atoms all have two terminal CO ligands and the tungsten atoms are ligated by one CO ligand and a $\mathrm{C}_{5} \mathrm{H}_{5}$ group. In addition a W-Fe bond in complex (8) is semibridged by a CO ligand $[\mathrm{Fe}(2)-\mathrm{C}(1) 1.791$ (7) \AA, $\mathrm{Fe}(2)-\mathrm{C}(1)-\mathrm{O}(1)$ $\left.159.4(8)^{\circ}\right]$. In compound (8) the metal triangle is capped by a μ_{3}-CR group [$\mathrm{W}-\mu$-CR 2.085(6), $\mathrm{Fe}-\mu-\mathrm{CR} 1.989(6)$ and $2.052(6) \AA$]. In contrast, the metal triangle in (9) is capped by a $\mu_{3}-$ $\mathrm{OCCH}_{2} \mathrm{R}$ moiety which is η^{2} bound to the tungsten atom with σ attachments to the two iron atoms [W-O $2.129(6), \mathrm{W}-\mathrm{C} 2.155(7), \mathrm{Fe}(1)-\mathrm{C} 1.913(10)$, and $\mathrm{Fe}(2)-\mathrm{O} 2.011$ (6) \AA]. Formation of complex (9) from (1) involves the transfer of two hydrogen atoms from terminal $\mathrm{PPh}_{2} \mathrm{H}$ ligands to the $\mu_{3}-\mathrm{CR}$ ligand, followed by migration of the resulting $\mu-\mathrm{CH}_{2} \mathrm{R}$ group to metal-bound CO. The structure of (10) consists of a W-Fe(2)-Fe(1) chain of metal atoms which arises via cleavage of a W-Fe bond in (1). The W-Fe(2) and $\mathrm{Fe}(2)-\mathrm{Fe}(1)$ bonds are bridged by $\mu-\mathrm{PPh}_{2}$ ligands and a $\mathrm{PPh}_{2} \mathrm{H}$ ligand is attached to $\mathrm{Fe}(1)$. The tungsten atom carries two CO ligands and a $\mathrm{C}_{5} \mathrm{H}_{5}$ group, and each iron atom has two terminal CO ligands. The $\mathrm{Fe}-\mathrm{Fe}$ bond is bridged by a $\mu-\mathrm{OCCH}_{2} \mathrm{R}$ group $\left[\mathrm{Fe}(2)-\mathrm{O} 2.038(3), \mathrm{Fe}(1)-\mathrm{C} 1.936(4) \AA\right.$ A. The spectroscopic data (i.r. and ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\left\{^{1} \mathrm{H}\right\}$, and ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r.) for the new WFe_{2} complexes are discussed and mechanisms are proposed to account for their formation.

The reaction of di- and higher nuclearity metal carbonyl complexes with secondary phosphines ($\mathrm{PR}_{2} \mathrm{H}, \mathrm{R}=$ alkyl or aryl) provides a useful synthetic route to new phosphido-

[^0]bridged species. ${ }^{1}$ The heterometallic alkylidyne clusters [$\mathrm{WFe}_{2}-$ $\left.\left(\mu_{3}-\mathrm{CR}\right)(\mu-\mathrm{CO})(\mathrm{CO})_{8}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right], \quad\left[\mathrm{MCO}_{2}\left(\mu_{3}-\mathrm{CR}\right)(\mathrm{CO})_{8}\left(\eta-\mathrm{C}_{5}-\right.\right.$ $\left.\left.\mathrm{H}_{5}\right)\right](\mathrm{M}=\mathrm{Mo}$ or W$)$, $\left[\mathrm{WReCo}_{2}\left(\mu_{3}-\mathrm{CR}\right)(\mathrm{CO})_{15}\right.$], and [Re-$\left.\mathrm{Co}_{2}\left(\mu_{3}-\mathrm{CR}\right)(\mathrm{CO})_{10}\right]$ react with secondary phosphine ligands under particularly mild conditions, allowing the systematic synthesis of mono, bis, and tris phosphido bridged derivatives. ${ }^{2,3}$

(1)

L
(2) $\mathrm{PMe}_{2} \mathrm{Ph}$
(3) $\mathrm{PEt}_{2} \mathrm{H}$

(4b)

(5)

(6)

$$
\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4 . \mathrm{CP}=\eta-\mathrm{C}_{5} \mathrm{H}_{5}
$$

Herein we report reactions of the complex [$\mathrm{WFe}_{2}\left(\mu_{3}-\mathrm{CR}\right)(\mu-$ $\left.\mathrm{CO})(\mathrm{CO})_{8}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ with secondary phosphine ligands $\mathrm{PR}^{\prime}{ }_{2} \mathrm{H}$ ($\mathrm{R}^{\prime}=\mathrm{Ph}$ or Et) which afford new phosphido bridged alkylidyne and acyl complexes. A preliminary account of some of this work has previously been published. ${ }^{3}$

Results and Discussion

The complex $\left[\mathrm{WFe}_{2}\left(\mu_{3}-\mathrm{CR}\right)(\mu-\mathrm{CO})(\mathrm{CO})_{8}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](1) ; \mathrm{R}=$ $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$) has been shown to react with 2 equivalents of $\mathrm{PMe}_{2} \mathrm{Ph}$ affording the bis(phosphine) derivative $\left[\mathrm{WFe}_{2}\left(\mu_{3}-\mathrm{CR}\right)\right.$ -$\left.(\mu-\mathrm{CO})(\mathrm{CO})_{6}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right] .{ }^{4}$ Similarly, treatment of (1) with 1 equivalent of the bidentate phosphine $\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}$ (dppm) gave $\left[\mathrm{WFe}_{2}\left(\mu_{3}-\mathrm{CR}\right)(\mu-\mathrm{CO})(\mathrm{CO})_{6}(\mathrm{dppm})\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right] .{ }^{4}$ We now find that treatment of (1) with a single equivalent of $\mathrm{PMe}_{2} \mathrm{Ph}$ in diethyl ether affords, after chromatography, good yields of the monosubstituted $\mathrm{PMe}_{2} \mathrm{Ph}$ complex (2). Moreover, the related reaction with $\mathrm{PEt}_{2} \mathrm{H}$ gives the terminal secondary phosphine complex (3). The spectroscopic and analytical data for complexes (2) and (3) are given in Tables 1-3. Their ${ }^{31} \mathrm{P}$ $\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectra show singlet resonances at $\delta 26.3$ (2) and 48.6 p.p.m. (3) and the absence of ${ }^{183} \mathrm{~W}$ satellite peaks on these signals confirms that the phosphine ligands ligate iron atoms in both complexes. The proton-coupled ${ }^{31} \mathrm{P}$ n.m.r. spectrum of (3) appears as a doublet at $\delta 48.6$ p.p.m. and the large $J(\mathrm{PH})$ coupling of 366 Hz confirms the presence of the $\mathrm{PEt}_{2} H$ proton. The ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectra showed the expected resonances for the ligated carbon atoms of the $\mu_{3}-\mathrm{CR}$ ligands and in both

Figure 1. Molecular structure of $\left[\mathrm{WFe}_{2}\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mu-\mathrm{H})(\mu-\right.$ $\left.\left.\mathrm{PEt}_{2}\right)(\mathrm{CO})_{6}\left(\mathrm{PEt}_{2} \mathrm{H}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right] \cdot \mathrm{Et}_{2} \mathrm{O}$ (5) showing the atom numbering scheme
complexes the carbonyl ligands gave rise to a single broad resonance which indicates dynamic behaviour of the type found in the parent complex (1). ${ }^{4}$

At $20^{\circ} \mathrm{C}$ solutions of complex (3) slowly lose carbon monoxide ($1-2 \mathrm{~d}$) and following chromatography good yields of the phosphido-bridged complex (4) are obtained. In solution (4) exists as an equilibrium mixture of two isomers [(4a): (4b) 6:1] in which the hydride ligand bridges either a $\mathrm{W}-\mathrm{Fe}$ (4a) or an $\mathrm{Fe}-\mathrm{Fe}$ (4b) bond. At temperatures up to $80^{\circ} \mathrm{C}$ sharp resonances are observed for both isomers in the n.m.r. spectra of (4). Evidently, interconversion of (4a) and (4b) via hydride migration is slow on the n.m.r. time-scale at these temperatures. When crystals of (4) are dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, n.m.r. spectra of the freshly prepared solution show diminished proportions of isomer (4b), and it requires $c a .4 \mathrm{~h}$ at room temperature for equilibrium to become established. This confirms that isomers (4a) and (4b) do slowly interconvert in solution and suggests that (4a) is the preferred isomer in the crystalline state.

Spectroscopic data for (4a) and (4b) are in accord with the structures shown. The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum has resonances at $\delta 162.8$ [$J(W P) 286 \mathrm{~Hz}$] and 157.3 p.p.m. [$J(W P) 366 \mathrm{~Hz}$], which may be assigned to the $\mathrm{W}\left(\mu-\mathrm{PEt}_{2}\right) \mathrm{Fe}$ moieties in (4a) and (4b) respectively. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum was particularly informative showing doublet resonances at $\delta-16.03[J(\mathrm{PH}) 31$, $J(\mathrm{WH}) 34 \mathrm{~Hz}]$ and $-24.72[J(\mathrm{PH}) 15 \mathrm{~Hz}]$, which may be assigned to the hydride ligands bridging the $\mathrm{W}-\mathrm{Fe}$ (4a) and $\mathrm{Fe}-\mathrm{Fe}(\mathbf{4 b})$ bonds. In (4a) and (4b) the $\mu-\mathrm{PEt}_{2}$ groups bridge heteronuclear $\mathrm{W}-\mathrm{Fe}$ bonds. In contrast the rearrangement of the related complexes $\left[\mathrm{WCo}_{2}\left(\mu_{3}-\mathrm{CR}\right)(\mathrm{CO})_{7}\left(\mathrm{PR}^{\prime}{ }_{2} \mathrm{H}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ ($\mathrm{R}^{\prime}=\mathrm{Ph}$ or Et) affords the compounds $\left[\mathrm{WCo}_{2}\left(\mu_{3}-\mathrm{CR}\right)(\mu-\right.$ $\left.\mathrm{H})\left(\mu-\mathrm{PR}^{\prime}\right)(\mathrm{CO})_{6}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$, in which the homonuclear $\mathrm{Co}-\mathrm{Co}$ bonds are bridged by the $\mu-\mathrm{PR}^{\prime}{ }_{2}$ ligands. ${ }^{2 a, b}$

Addition of excess of $\mathrm{PEt}_{2} \mathrm{H}$ (ca. 5 equivalents) to a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of (1) $\left(12 \mathrm{~h}, 20^{\circ} \mathrm{C}\right)$ affords a deep purple-red solution and following chromatography red crystals of complex (5) were obtained in good yield. The structure of (5) was established by a single-crystal X-ray diffraction study. The results are summarized in Table 4 and the molecular structure is shown in Figure 1. The compound has the expected triangular WFe_{2} core which is capped by a μ_{3}-alkylidyne ligand. The $\mathrm{M}-\mathrm{M}$ and $\mathrm{M}-\mu_{3}-\mathrm{C}$ separations [W-Fe(1) 2.763(1), W-Fe(2) 2.830(1), $\mathrm{Fe}(1)-\mathrm{Fe}(2) 2.687(2), \mathrm{W}-\mu-\mathrm{C} 2.042(8), \mathrm{Fe}(1)-\mu-\mathrm{C} 1.960(8)$, and

Table 1. Analytical ${ }^{a}$ and physical data for the tungsten-iron complexes

Compound ${ }^{\text {b }}$	Colour	Yield (\%)	$\tilde{\mathrm{v}}(\mathrm{CO})^{\mathrm{c}} / \mathrm{cm}^{-1}$				Analysis (\%)	
				\checkmark (CO	/ cm^{-1}		C	H
(2) $\left[\mathrm{WFe}_{2}\left(\mu_{3}-\mathrm{CR}\right)(\mu-\mathrm{CO})(\mathrm{CO})_{7^{-}}\right.$ $\left.\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$	Brown	88	2045w, 1945 m ,	$\begin{aligned} & 2034 \mathrm{~m} \\ & 1893 \mathrm{w}(\mathrm{br}) \end{aligned}$	$\begin{aligned} & 1994 \mathrm{~s}, \\ & 1789 \mathrm{w}(\mathrm{br}) \end{aligned}$	1972s,	42.2(42.2)	2.9(2.8)
(3) $\left[\mathrm{WFe}_{2}\left(\mu_{3}-\mathrm{CR}\right)(\mu-\mathrm{CO})(\mathrm{CO})_{7}-\right.$ $\left.\left(\mathrm{PEt}_{2} \mathrm{H}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$	Brown	63	$\begin{array}{r} d 2037 \mathrm{~m}, \\ 1939 \mathrm{w}, \end{array}$	$\begin{aligned} & 2001 \mathrm{~s}, \\ & 1855 \mathrm{w}, \end{aligned}$	$\begin{aligned} & 1971 \mathrm{~s}, \\ & 1816 \mathrm{w}(\mathrm{br}) \end{aligned}$	$\begin{aligned} & 1947 \mathrm{w} \\ & 1792 \mathrm{w}(\mathrm{br}) \end{aligned}$	38.3(38.6)	2.8(3.0)
(4) $\begin{aligned} & {\left[\mathrm{WFe}_{2}\left(\mu_{3}-\mathrm{CR}\right)(\mu-\mathrm{H})\left(\mu-\mathrm{PEt}_{2}\right) \text { - }\right.} \\ & \left.(\mathrm{CO})_{7}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]\end{aligned}$	Black	67	$\begin{aligned} & { }^{\mathrm{e}} 2050 \mathrm{~s}, \\ & 1962 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 2007 \mathrm{~s}, \\ & 1942 \mathrm{~m} \end{aligned}$	1988 s,	1969 s ,	38.3(38.4)	3.1(3.1)
$\begin{aligned} & \text { (5) }\left[\mathrm{WFe}_{2}\left(\mu_{3}-\mathrm{CR}\right)(\mu-\mathrm{H})\left(\mathrm{PEt}_{2}\right)(\mathrm{CO})_{6}-\right. \\ & \left.\left(\mathrm{PEt}_{2} \mathrm{H}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]^{f} \end{aligned}$	Orange-red	53	$\begin{gathered} { }^{\mathrm{e}} 2 \mathrm{0} 023 \mathrm{~s}, \\ 1824 \mathrm{~m} \end{gathered}$	1986 s ,	1962 m ,	1937 s ,	42.5(42.0)	$4.8(5.0)$
(6) $\left[\mathrm{WFe}_{2}\left(\mu_{3}-\mathrm{CR}\right)\left(\mu-\mathrm{PEt}_{2}\right)_{2^{-}}-1\right.$ (CO) $\left.{ }_{6}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right] \quad$ (7)	Dark brown	69	$\begin{array}{r} { }^{g} 2016 \mathrm{~s}, \\ 1898 \mathrm{w} \end{array}$	1968 s ,	1954 s ,	1922s,	39.8(40.0)	4.0(4.0)
(7) $\left[\mathrm{WFe}_{2}\left(\mu_{3}-\mathrm{CR}\right)(\mu-\mathrm{H})\left(\mu-\mathrm{PPh}_{2}\right)-\right.$	Olive green	73	$\begin{aligned} & { }^{e} 2051 \mathrm{~s}, \\ & 1967 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 2012 \mathrm{~s} \\ & 1944 \mathrm{~m} \end{aligned}$	1992 s ,	1977 m ,	45.9(45.4)	3.2(2.7)
$\begin{aligned} & \text { (8) }\left[\mathrm{WFe}_{2}\left(\mu_{3}-\mathrm{CR}\right)\left(\mu-\mathrm{PPh}_{2}\right)_{2}-\right. \\ & \left.(\mathrm{CO})_{6}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]^{h} \end{aligned}$	Green	87	$\begin{aligned} & 2018 \mathrm{~s}, \\ & 1884 \mathrm{w}(\mathrm{br}) \end{aligned}$	1972 s ,	1950 s ,	1930 s ,	49.7(50.0)	3.2(3.2)
$\begin{aligned} & \text { (9) }\left[\mathrm{WFe}_{2}\left(\mu_{3}-\mathrm{OCCH}_{2} \mathrm{R}\right)\left(\mu-\mathrm{PPh}_{2}\right)_{2}-\right. \\ & \left.(\mathrm{CO})_{5}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right] \end{aligned}$	Black	50	$\begin{aligned} & 2007 \mathrm{~s} \\ & 1785 \mathrm{w}(\mathrm{br}) \end{aligned}$	1970 s,	1951 m ,	1916 m ,	51.3(51.4)	3.3(3.4)
$\begin{aligned} & \text { (10) }\left[\mathrm{WFe}_{2}(\mu-\mathrm{OCCH}\right. \\ & \left.\left.(\mathrm{CO})_{6}\left(\mathrm{PPh}_{2} \mathrm{H}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]^{i}-\mathrm{PPh}_{2}\right)_{2}- \end{aligned}$	Dark brown	22	$\begin{aligned} & { }^{j} 1992 \mathrm{~s}, \\ & 1904 \mathrm{~m}, \end{aligned}$	$\begin{aligned} & 1961 \mathrm{~s} \\ & 1835 \mathrm{~m} \end{aligned}$	1933 s ,	1915 m ,	52.4(52.5)	3.6(3.6)

${ }^{a}$ Calculated values are given in parentheses. ${ }^{b} \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4 .{ }^{c}$ In $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ unless otherwise stated. ${ }^{d} \mathrm{In} \mathrm{Et}_{2} \mathrm{O}$. ${ }^{e}$ In methylcyclohexane. ${ }^{f}$ Crystallized with one $\mathrm{Et}_{2} \mathrm{O} .{ }^{g}$ In hexane. ${ }^{h}$ Crystallized with $0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2} .{ }^{i}$ Crystallized with one $\mathrm{CH}_{2} \mathrm{Cl}_{2} .{ }^{j}$ Weak acyl CO absorption at $1480 \mathrm{~cm}^{-1}$.

Table 2. Hydrogen-1 and carbon-13 n.m.r. data ${ }^{a}$ for complexes

Compound

(2)
(3)
(4)
(5)
(6) $\quad 1.1-1.6\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Me}\right), 1.6-3.1(\mathrm{~m}, 8 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{Me}$), 2.21 (s, $3 \mathrm{H}, \mathrm{Me}-4$), 4.93 [d, 5 H , $\left.\mathrm{C}_{5} \mathrm{H}_{5}, J(\mathrm{PH}) 1\right], 6.38,6.77\left[(\mathrm{AB})_{2}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right.$, $J(\mathrm{HH}) 8]$
(7) $\quad-15.90[\mathrm{~d}, 1 \mathrm{H}, \mathrm{WFe}(\mu-\mathrm{H}), J(\mathrm{PH}) 33, J(\mathrm{WH})$ 33], 2.36 (s, $3 \mathrm{H}, \mathrm{Me}-4$), $5.46\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right.$), $7.0-8.0\left(\mathrm{~m}, 14 \mathrm{H}, \mathrm{Ph}, \mathrm{C}_{6} \mathrm{H}_{4}\right)$
(8) $\quad 2.13(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-4), 5.20\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 6.09$, $6.39\left[(\mathrm{AB})_{2}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}, J(\mathrm{HH}) 8\right], 6.7-8.0(\mathrm{~m}$, $20 \mathrm{H}, \mathrm{Ph}$)
(9) $2.23(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-4), 3.43\left[\mathrm{AB}_{\mathrm{q}}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{R}\right.$, $J(\mathrm{HH})$ 16], $4.85\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 6.77,6.89$ $\left[(\mathrm{AB})_{2}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}, J(\mathrm{HH}) 8\right], 7.0-8.2(\mathrm{~m}, 20$ H, Ph)
(10) $\quad 2.07(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-4), 4.29\left[\mathrm{AB}_{\mathrm{q}}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{R}\right.$, $J(\mathrm{HH}) 17], 4.45$ [dd, $1 \mathrm{H}, \mathrm{PPh}_{2} H, J(\mathrm{PH}) 354$, 11], $4.61\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 6.2-7.6(\mathrm{~m}, 34 \mathrm{H}, \mathrm{Ph}$, $\mathrm{C}_{6} \mathrm{H}_{4}$)
${ }^{13} \mathrm{C}(\delta){ }^{c}$
$270.4\left[\mu_{3}-\mathrm{CR}, J(\mathrm{WC}) 88\right], 218.2(\mathrm{~s}, \mathrm{br}, 8 \mathrm{CO}), 160.2\left[\mathrm{C}^{1}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right], 138.1$ [d, $\mathrm{C}^{1}(\mathrm{Ph})$, $J(\mathrm{PC}) 44], 136.2\left[\mathrm{C}^{4}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right], 128-132\left(\mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{Ph}\right), 91.4\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 21.2(\mathrm{Me}-4), 16.8[\mathrm{~d}$, $\mathrm{P} M e_{2} \mathrm{Ph}, J(\mathrm{PC})$ 15], 16.2 [d, $\mathrm{P} M e_{2} \mathrm{Ph}, J(\mathrm{PC})$ 15]
${ }^{d} 275.0\left(\mathrm{~s}, \mu_{3}-\mathrm{CR}\right), 216.0(\mathrm{~s}, \mathrm{br}, 8 \mathrm{CO}), 160.3\left[\mathrm{C}^{1}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right], 136.7\left[\mathrm{C}^{4}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right], 132.0$ $\left[\mathrm{C}^{2}, \mathrm{C}^{6}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right], 128.6\left[\mathrm{C}^{3}, \mathrm{C}^{5}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right], 89.5\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 21.2(\mathrm{Me}-4), 15.8\left[\mathrm{~d}, \mathrm{CH}_{2} \mathrm{Me}\right.$, $J(\mathrm{PC}) 28], 14.2$ [d, $\left.\mathrm{CH}_{2} \mathrm{Me}, J(\mathrm{PC}) 28\right], 11.4$ [d, $\left.\mathrm{CH}_{2} \mathrm{Me}, J(\mathrm{PC}) 9\right], 9.0\left(\mathrm{CH}_{2} \mathrm{Me}\right)$ 262.7 [$\left.\mu_{3}-C \mathrm{R}, J(\mathrm{WC}) 110\right], 213.7$ [Fe(CO) $)_{3}$], 213.3 [d, WCO, $J(\mathrm{PC}) 9, J(\mathrm{WC})$ 162], $213.0\left[\mathrm{~s}, \mathrm{br}, \mathrm{Fe}(\mathrm{CO})_{3}\right], 162.2\left[\mathrm{C}^{1}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right], 134.9\left[\mathrm{C}^{4}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right], 128.6\left[\mathrm{C}^{2}, \mathrm{C}^{6}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right]$, $127.6\left[\mathrm{C}^{3}, \mathrm{C}^{5}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right], 87.6\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 29.8\left[\mathrm{~d}, \mathrm{CH}_{2} \mathrm{Me}, \mathrm{J}(\mathrm{PC}) 28\right], 24.3\left[\mathrm{~d}, \mathrm{CH}_{2} \mathrm{Me}\right.$, $J(\mathrm{PC}) 24], 21.2$ (Me-4), 14.5 [d, $\left.\mathrm{CH}_{2} \mathrm{Me}, J(\mathrm{PC}) 9\right], 12.6\left(\mathrm{CH}_{2} \mathrm{Me}\right)$
${ }^{5} 256.6\left[\mu_{3}-C R, J(W C) 100\right], 225.4$ [d, WCO, $\left.J(\mathrm{PC}) 7, J(\mathrm{WC}) 172\right], 216.3$ [dd, FeCO, $J(\mathrm{PC}) 20,20], 215.1(\mathrm{FeCO}), 214.8(\mathrm{FeCO}), 211.7$ [d, FeCO, $J(\mathrm{PC}) 15], 209.9$ [dd, $\mathrm{FeCO}, J(\mathrm{PC}) 24,10], 162.7\left[\mathrm{C}^{1}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right], 133.8\left[\mathrm{C}^{4}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right], 129.8\left[\mathrm{br}, \mathrm{C}^{2}, \mathrm{C}^{6}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right]$, $128.4\left[\mathrm{C}^{3}, \mathrm{C}^{5}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right], 92.6\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 31.8$ [d, $\left.\mathrm{CH}_{2} \mathrm{Me}, J(\mathrm{PC}) 22\right], 26.3\left[\mathrm{~d}, \mathrm{CH}_{2} \mathrm{Me}\right.$, $J(\mathrm{PC}) 25], 21.1(\mathrm{Me}-4), 19.3$ [d, $\left.\mathrm{CH}_{2} \mathrm{Me}, J(\mathrm{PC}) 29\right], 14.7$ [d, $\left.\mathrm{CH}_{2} \mathrm{Me}, J(\mathrm{PC}) 27\right], 12.4$ [d, $\left.\mathrm{CH}_{2} \mathrm{Me}, J(\mathrm{PC}) 7\right], 12.0\left[\mathrm{~d}, \mathrm{CH}_{2} \mathrm{Me}, J(\mathrm{PC}) 10\right], 11.6\left(\mathrm{CH}_{2} \mathrm{Me}\right), 8.0\left(\mathrm{CH}_{2} \mathrm{Me}\right)$ 220.5 [dd, FeCO, $J(\mathrm{PC}) 20,12], 217.3$ [d, WCO, $J(\mathrm{PC}) 10, J(\mathrm{WC})$ 147], 216.9 [dd, μ_{3} $C \mathrm{R}, J(\mathrm{PC}) 37,12, J(\mathrm{WC}) 107], 215.0\left[\mathrm{br}, \mathrm{Fe}(\mathrm{CO})_{3}\right], 209.5$ [dd, $\left.\mathrm{FeCO}, J(\mathrm{PC}) 12,12\right]$, $161.5\left[\mathrm{C}^{1}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right], 133.8\left[\mathrm{C}^{4}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right], 128.5\left[\mathrm{C}^{2}, \mathrm{C}^{6}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right], 127.7\left[\mathrm{C}^{3}, \mathrm{C}^{5}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right]$, $92.4\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 32.2$ [d, $\left.\mathrm{CH}_{2} \mathrm{Me}, J(\mathrm{PC}) 20\right], 28.5\left[\mathrm{~d}, \mathrm{CH}_{2} \mathrm{Me}, J(\mathrm{PC}) 10\right], 27.4\left[\mathrm{~d}, \mathrm{CH}_{2} \mathrm{Me}\right.$, $J(\mathrm{PC}) 29], 20.9$ (Me-4), 19.5 [d, $\left.\mathrm{CH}_{2} \mathrm{Me}, J(\mathrm{PC}) 24\right], 12.6\left[\mathrm{~d}, \mathrm{CH}_{2} \mathrm{Me}, J(\mathrm{PC}) 7\right], 11.4$ [d, $\left.\mathrm{CH}_{2} \mathrm{Me}, J(\mathrm{PC}) 7\right], 11.3$ [d, $\left.\mathrm{CH}_{2} \mathrm{Me}, J(\mathrm{PC}) 7\right], 11.0\left[\mathrm{~d}, \mathrm{CH}_{2} \mathrm{Me}, J(\mathrm{PC}) 5\right]$
$270.5\left[\mu_{3}-\mathrm{CR}, J(\mathrm{WC}) 110\right], 213.5\left[\mathrm{Fe}(\mathrm{CO})_{3}\right], 212.4\left[\mathrm{~s}, \mathrm{br}, \mathrm{Fe}(\mathrm{CO})_{3}\right], 211.1$ [d, WCO, $J(\mathrm{PC}) 9, J(\mathrm{WC}) 164], 161.5\left[\mathrm{C}^{1}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right], 143.0-128.0\left(\mathrm{Ph}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 88.8\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 21.2$ (Me-4)
220.6 [dd, $\mathrm{FeCO}, J(\mathrm{PC}) 20,20], 214.0$ [s, br, Fe(CO) $)_{3}$], 212.6 (WCO), 212.2 [dd, $\mu_{3}-$ $C R, J(\mathrm{PC}) 38,15], 210.4$ [dd, FeCO, $J(\mathrm{PC}) 9,9], 169.5\left[\mathrm{C}^{1}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right], 147.0-127.0(\mathrm{Ph}$, $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 94.5\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 20.8(\mathrm{Me}-4)$
${ }^{9} 258.8\left(\mu_{3}-\mathrm{OCCH}_{2} \mathrm{R}\right), 219.7$ [d, $\left.\mathrm{CO}, J(\mathrm{PC}) 7\right], 217.5(\mathrm{CO}), 217.0[\mathrm{dd}, \mathrm{FeCO}, J(\mathrm{PC}) 12$, 12], 209.8 [dd, FeCO, $J(\mathrm{PC})$ 13, 13], 197.2 [d, CO, $J(\mathrm{PC})$ 12], 143.0-128.0 (m, Ph, $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 89.4\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 21.2(\mathrm{Me}-4)$
294.4 [dd, $\left.\mu-\mathrm{OCCH}_{2} \mathrm{R}, J(\mathrm{PC}) 25,18\right], 234.6$ [dd, FeCO, $J(\mathrm{PC}) 18$ 18], 232.7 [d, CO, $J(\mathrm{PC}) 18], 227.7$ [WCO, $J(\mathrm{WC}) 178$], 219.7 (br, CO), 217.1 [dd, FeCO, $J(\mathrm{PC}) 21,21$], 212.8 [ddd, $\mathrm{FeCO}, J(\mathrm{PC}) 18,9,9], 145.0-124.0\left(\mathrm{~m}, \mathrm{Ph}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 91.8\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 66.7$ [d, $\left.\mathrm{OCCH}_{2} \mathrm{R}, J(\mathrm{PC}) 9\right], 21.0$ (Me-4)
${ }^{a}$ Chemical shifts (δ) in p.p.m., coupling constants in Hz . ${ }^{b}$ Measured in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at room temperature. ${ }^{c}$ Hydrogen- 1 decoupled, measured in $\mathrm{CD}_{2} \mathrm{Cl}_{2}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ unless otherwise noted, chemical shifts to high frequency of $\mathrm{SiMe}_{4} \cdot{ }^{d}$ Measured at $0^{\circ} \mathrm{C}$. ${ }^{e}$ The resonance for the minor isomer ($\mathbf{4 b}$) is marked with an asterisk, other peaks for this isomer could not be assigned. ${ }^{f}$ Measured at $-30^{\circ} \mathrm{C} .{ }^{g}$ Measured at $-50^{\circ} \mathrm{C}$; a room-temperature spectrum in $\mathrm{CDCl}_{3}-\mathrm{CHCl}_{3}$ revealed the $\mu_{3}-\mathrm{OCCH}_{2} \mathrm{R}$ resonance at $\delta 53.5$ p.p.m.
$\mathrm{Fe}(2)-\mu-\mathrm{C} 2.104(8) \AA]$ are comparable with those found for a series of closely related complexes, data for which are summarized in Table 5. The W-Fe(2) bond is bridged by a μ PEt_{2} group [W-P(2) 2.311(2) and $\left.\mathrm{Fe}(2)-\mathrm{P}(2) 2.315(3) \AA\right]$ and a hydride ligand symmetrically bridges the $\mathrm{Fe}-\mathrm{Fe}$ bond [$\mathrm{Fe}(1)-$ $\mathrm{H}(2) 1.67(10)$ and $\mathrm{Fe}(2)-\mathrm{H}(2) 1.74(9) \AA]$. One iron atom carries three approximately orthogonal terminal carbonyl ligands, whilst the other has two terminal CO ligands and a terminal $\mathrm{PEt}_{2} \mathrm{H}$ ligand which is trans to the $\mu-\mathrm{PEt}_{2}$ group [P(1)-Fe(2)$\mathrm{P}(2)$ 174.3(1) $\left.{ }^{\circ}\right]$. The $\mathrm{PEt}_{2} H$ hydrogen atom was also located in the X-ray study and has a P-H separation $[1.46(9) \AA]$ which is identical within error to that found in $\left[\mathrm{Co}_{2}\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{4}-\right.$ $\left.\left(\mathrm{PPh}_{2} \mathrm{H}\right)_{2}\right][\mathrm{P}-\mathrm{H} 1.45(14) \AA]^{5}$ The $\mu-\mathrm{H}$ and $\mathrm{P}-\mathrm{H}$ hydrogen atoms are separated by $3.16(10) \AA$, and their relatively close proximity may facilitate the thermally induced loss of H_{2} from this complex which is discussed in a following section.

Spectroscopic data for complex (5) are in accord with the solid-state structure being maintained in solution. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum has a resonance at $\delta-25.38$ p.p.m. [dd, $J(\mathrm{PH}) 24,11$ Hz] which is assigned to the $\mathrm{Fe}_{2}(\mu-\mathrm{H})$ moiety and the presence of the terminal $\mathrm{PEt}_{2} \mathrm{H}$ ligand is confirmed by the observation of

Table 3. Phosphorus-31 n.m.r. data for the complexes ${ }^{a}$
Compound

(2)	26.3 (s, $\mathrm{PMe}_{2} \mathrm{Ph}$)
(3)	${ }^{\text {b }} 48.6$ [d, br, $\left.\mathrm{PEt}_{2} \mathrm{H}, J(\mathrm{PH}) 366\right]$
(4a)	162.8 [s, WFe($\mu-\mathrm{P}$), J (WP) 286]
(4b)	157.3 [s, WFe($\mu-\mathrm{P}$), (WP) 366]
(5)	$\begin{aligned} & 43.0\left[\mathrm{~d}, \mathrm{Fe}\left(\mathrm{PEt}_{2} \mathrm{H}\right), J(\mathrm{PP}) 42\right], 164.5[\mathrm{~d}, \mathrm{WFe}(\mu-\mathrm{P}), J(\mathrm{PP}) \\ & 42, J(\mathrm{WP}) 366] \end{aligned}$
(6)	$\begin{aligned} & 196.3[\mathrm{~d}, \mathrm{WFe}(\mu-\mathrm{P}), J(\mathrm{PP}) 17, J(\mathrm{WP}) 317], 218.9 \text { [d, } \\ & \left.\mathrm{Fe}_{2}(\mu-\mathrm{P}), J(\mathrm{PP}) 17\right] \end{aligned}$
(7)	156.3 [s, WFe($\mu-\mathrm{P}$), J (WP) 298]
(8)	$\begin{aligned} & 186.8[\mathrm{~d}, \mathrm{WFe}(\mu-\mathrm{P}), J(\mathrm{PP}) 20, J(\mathrm{WP}) 332], 199.4 \text { [d, } \\ & \left.\mathrm{Fe}_{2}(\mu-\mathrm{P}), J(\mathrm{PP}) 20\right] \end{aligned}$
(9)	$\begin{aligned} & 120.2[\mathrm{~d}, \mathrm{WFe}(\mu-\mathrm{P}), J(\mathrm{PP}) 58, J(\mathrm{WP}) 308], 227.4[\mathrm{~d}, \\ & \left.\mathrm{Fe}_{2}(\mu-\mathrm{P}), J(\mathrm{PP}) 58\right] \end{aligned}$
(10)	44.0 [dd, $\left.\mathrm{Fe}\left(\mathrm{PPh}_{2} \mathrm{H}\right), J(\mathrm{PP}) 27,5\right], 154.4$ [dd, WFe($\left.\mu-\mathrm{P}\right)$, $J(\mathrm{PP}) 29,5, J(\mathrm{WP}) 303], 192.1$ [dd, $\mathrm{Fe}_{2}(\mu-\mathrm{P}), J(\mathrm{PP}) 29$, 27]

${ }^{a}$ Chemical shifts in p.p.m., coupling constants in Hz , Hydrogen-1 decoupled unless otherwise stated; chemical shifts are positive to high frequency of $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ (external), measured in $\mathrm{CD}_{2} \mathrm{Cl}_{2} .{ }^{b}$ Hydrogen-1 coupled.
a broad resonance for the $\mathrm{P}-\mathrm{H}$ proton at $\delta 3.7$ p.p.m. [dd, $J(\mathrm{PH})$ $369,10 \mathrm{~Hz}$. The resonances for the $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ protons were unusually broad and it is possible that steric hindrance from the $\mathrm{PEt}_{2} \mathrm{H}$ ligand results in restricted rotation of the $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ ring about the $\mathrm{C}(20)-\mathrm{C}(21)$ bond.The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum shows signals due to the $\mathrm{Fe}\left(\mathrm{PEt}_{2} \mathrm{H}\right)$ ligand [$\delta 43.0$ p.p.m., d, $J(\mathrm{PP}) 42 \mathrm{~Hz}$] and the $\mathrm{WFe}\left(\mu-\mathrm{PEt}_{2}\right)$ group [$\delta 164.5$ p.p.m., d, $J(\mathrm{PP}) 42, J(\mathrm{WP}) 366 \mathrm{~Hz}]$. The relatively large $\mathrm{P}-\mathrm{P}$ coupling is consistent with the trans orientation of these ligands found in the solid-state structure and the observation of ${ }^{183} \mathrm{~W}$ satellite peaks on the latter resonance confirms that the W-Fe(2) bond is bridged by the $\mu-\mathrm{PEt}_{2}$ ligand.

The mechanism by which complex (5) is formed from (1) and excess of $\mathrm{PEt}_{2} \mathrm{H}$ was examined in more detail by monitoring the reaction by i.r. spectroscopy and thin-layer chromatography. Initially rapid attack ($c a .10 \mathrm{~min}$) of $\mathrm{PEt}_{2} \mathrm{H}$ on (1) gives the terminal phosphine derivative (3). There was no evidence for the formation of a bis(phosphine) complex [$\mathrm{WFe}_{2}\left(\mu_{3}-\mathrm{CR}\right)(\mu-\mathrm{CO})$ $\left.(\mathrm{CO})_{6}\left(\mathrm{PEt}_{2} \mathrm{H}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ analogous to the bis- $\mathrm{PMe}_{2} \mathrm{Ph}$ complex $\left[\mathrm{WFe}_{2}\left(\mu_{3}-\mathrm{CR}\right)(\mu-\mathrm{CO})(\mathrm{CO})_{6}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$. This may be because the strongly σ-donating $\mathrm{PEt}_{2} \mathrm{H}$ ligand in (3) deactivates the cluster towards further carbonyl substitution. Further monitoring of the reaction revealed the formation of the $\mu-\mathrm{PEt}_{2}$ complex (4) from (3). This rearrangement was qualitatively observed to proceed more rapidly in the presence of excess of $\mathrm{PEt}_{2} \mathrm{H}$, and free $\mathrm{PEt}_{2} \mathrm{H}$ is evidently capable of acting as a Lewis-base catalyst for the transfer of a hydrogen atom from a $\mathrm{PEt}_{2} \mathrm{H}$ ligand to a metal-metal bond. Base-catalysed transformation of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mathrm{PRR}^{\prime} \mathrm{H}\right)\right]$ to $\left[\mathrm{Os}_{3}(\mu-\mathrm{H})\left(\mu-\mathrm{PRR}^{\prime}\right)\right.$ $\left.(\mathrm{CO})_{10}\right]$ has previously been reported. ${ }^{1 a}$ As (4) is formed, further attack of $\mathrm{PEt}_{2} \mathrm{H}$ gives (5). Interestingly, the latter complex is completely stable in the presence of $\mathrm{PEt}_{2} \mathrm{H}$. Presumably the $\mathrm{PEt}_{2} H$ proton in (5) is less acidic than the equivalent atom in (3), and (5) is therefore no longer susceptible to $\mathrm{PEt}_{2} \mathrm{H}$-catalysed rearrangement to a $\operatorname{bis}\left(\mu-\mathrm{PEt}_{2}\right)$ species such as (6).

Thermolysis of (5) in refluxing toluene $\left(111^{\circ} \mathrm{C}\right)$ results in loss of dihydrogen and formation of the $\operatorname{bis}\left(\mu-\mathrm{PEt}_{2}\right)$ complex (6). The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum of (6) shows two doublets at δ $196.3[J(\mathrm{PP}) 17, J(\mathrm{WP}) 317 \mathrm{~Hz}]$ and 218.9 p.p.m. [$J(\mathrm{PP}) 17 \mathrm{~Hz}]$ and these may be assigned to $\mu-\mathrm{PEt}_{2}$ groups bridging the $\mathrm{W}-\mathrm{Fe}$ and $\mathrm{Fe}-\mathrm{Fe}$ bonds respectively. In the ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum the $\mu_{3}-\mathrm{C}$ resonance appears at $\delta 216.9$ p.p.m. [dd, $J(\mathrm{PC}) 37,12$, $J(W C) 107 \mathrm{~Hz}]$. This is appreciably more shielded than found in the complexes (1) ($\delta 282.6$), (3) ($\delta 275.0$), or ($\mathbf{4 a}$) ($\delta 262.7$ p.p.m.)

Table 4. Selected internuclear distances (\AA) and angles $\left({ }^{\circ}\right)$ for $\left[\mathrm{WFe}_{2}\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mu-\mathrm{H})\left(\mu-\mathrm{PEt}_{2}\right)(\mathrm{CO})_{6}\left(\mathrm{PEt}_{2} \mathrm{H}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](5)$ with estimated standard deviations (e.s.d.s) in parentheses

W-Fe(1)	2.763(1)	W-Fe(2)	2.830(1)	W-P(2)	2.311(2)	W-C(6)	1.94(1)
W-C(20)	2.042(8)	$\mathrm{Fe}(1)-\mathrm{Fe}(2)$	2.687(2)	$\mathrm{Fe}(1)-\mathrm{H}(2)$	1.67(10)	$\mathrm{Fe}(1)-\mathrm{C}(1)$	1.792(9)
$\mathrm{Fe}(1)-\mathrm{C}(2)$	1.78(1)	$\mathrm{Fe}(1)-\mathrm{C}(3)$	1.79(1)	$\mathrm{Fe}(1)-\mathrm{C}(20)$	1.960(8)	$\mathrm{Fe}(2)-\mathrm{P}(1)$	2.241 (3)
$\mathrm{Fe}(2)-\mathrm{P}(2)$	$2.315(3)$	$\mathrm{Fe}(2)-\mathrm{H}(2)$	1.74(9)	$\mathrm{Fe}(2)-\mathrm{C}(4)$	$1.768(9)$	$\mathrm{Fe}(2)-\mathrm{C}(5)$	1.75 (1)
$\mathrm{Fe}(2)-\mathrm{C}(20)$	2.104(8)	$\mathrm{P}(1)-\mathrm{H}(1)$	1.46(9)	$\mathrm{C}(1)-\mathrm{O}(1)$	1.14(1)	$\mathrm{C}(2)-\mathrm{O}(2)$	1.14(1)
$\mathrm{C}(3)-\mathrm{O}(3)$	1.14(1)	$\mathrm{C}(4)-\mathrm{O}(4)$	1.15(1)	$\mathrm{C}(5)-\mathrm{O}(5)$	1.16(1)	$\mathrm{C}(6)-\mathrm{O}(6)$	1.18(1)
$\mathrm{Fe}(1)-\mathrm{W}-\mathrm{Fe}(2)$	57.4(1)	$\mathrm{Fe}(1)-\mathrm{W}-\mathrm{P}(2)$	91.2(1)	$\mathrm{Fe}(2)-\mathrm{W}-\mathrm{P}(2)$	52.3(1)	$\mathrm{Fe}(1)-\mathrm{W}-\mathrm{C}(20)$	45.1(2)
$\mathrm{Fe}(2)-\mathrm{W}-\mathrm{C}(20)$	47.9(2)	$\mathrm{P}(2)-\mathrm{W}-\mathrm{C}(20)$	100.2(2)	$\mathrm{C}(6)-\mathrm{W}-\mathrm{C}(20)$	112.1(3)	W-Fe(1)-Fe(2)	62.6(1)
W-Fe(1)-H(2)	95(3)	$\mathrm{Fe}(2)-\mathrm{Fe}(1)-\mathrm{H}(2)$	39(3)	$\mathrm{C}(1)-\mathrm{Fe}(1)-\mathrm{C}(2)$	93.4(4)	$\mathrm{C}(1)-\mathrm{Fe}(1)-\mathrm{C}(3)$	98.9(4)
$\mathrm{C}(2)-\mathrm{Fe}(1)-\mathrm{C}(3)$	96.2(5)	$\mathrm{W}-\mathrm{Fe}(1)-\mathrm{C}(20)$	47.6(2)	$\mathrm{Fe}(2)-\mathrm{Fe}(1)-\mathrm{C}(20)$	51.0(2)	$\mathrm{H}(2)-\mathrm{Fe}(1)-\mathrm{C}(20)$	88(3)
W-Fe(2)-Fe(1)	60.0(1)	W-Fe(2)-P(1)	133.5(1)	$\mathrm{Fe}(1)-\mathrm{Fe}(2)-\mathrm{P}(1)$	90.3(1)	$\mathrm{W}-\mathrm{Fe}(2)-\mathrm{P}(2)$	52.2(1)
$\mathrm{Fe}(1)-\mathrm{Fe}(2)-\mathrm{P}(2)$	93.0(1)	$\mathrm{P}(1)-\mathrm{Fe}(2)-\mathrm{P}(2)$	174.3(1)	$\mathrm{W}-\mathrm{Fe}(2)-\mathrm{H}(2)$	92(3)	$\mathrm{Fe}(1)-\mathrm{Fe}(2)-\mathrm{H}(2)$	37(3)
$\mathrm{P}(1)-\mathrm{Fe}(2)-\mathrm{H}(2)$	80(3)	$\mathrm{P}(2)-\mathrm{Fe}(2)-\mathrm{H}(2)$	100(3)	$\mathrm{P}(1)-\mathrm{Fe}(2)-\mathrm{C}(4)$	90.3(3)	$\mathrm{P}(1)-\mathrm{Fe}(2)-\mathrm{C}(5)$	92.1(3)
$\mathrm{C}(4)-\mathrm{Fe}(2)-\mathrm{C}(5)$	99.9(4)	W-Fe(2)-C(20)	46.0(2)	$\mathrm{Fe}(1)-\mathrm{Fe}(2)-\mathrm{C}(20)$	46.3(2)	$\mathrm{P}(1)-\mathrm{Fe}(2)-\mathrm{C}(20)$	87.4(2)
$\mathrm{P}(2)-\mathrm{Fe}(2)-\mathrm{C}(20)$	98.2(2)	$\mathrm{H}(2)-\mathrm{Fe}(2)-\mathrm{C}(20)$	82(3)	$\mathrm{Fe}(2)-\mathrm{P}(1)-\mathrm{H}(1)$	115(4)	W-P(2)-Fe(2)	75.4(1)
$\mathrm{Fe}(1)-\mathrm{H}(2)-\mathrm{Fe}(2)$	104(5)	$\mathrm{Fe}(1)-\mathrm{C}(1)-\mathrm{O}(1)$	174(1)	$\mathrm{Fe}(1)-\mathrm{C}(2)-\mathrm{O}(2)$	178.3(7)	$\mathrm{Fe}(1)-\mathrm{C}(3)-\mathrm{O}(3)$	176.8(8)
$\mathrm{Fe}(2)-\mathrm{C}(4)-\mathrm{O}(4)$	177.1(8)	$\mathrm{Fe}(2)-\mathrm{C}(5)-\mathrm{O}(5)$	177.5(8)	$\mathrm{W}-\mathrm{C}(6)-\mathrm{O}(6)$	169.8(7)	W-C(20)-Fe(1)	87.3(3)
W-C(20)-Fe(2)	86.1(3)	$\mathrm{Fe}(1)-\mathrm{C}(20)-\mathrm{Fe}(2)$	82.7(3)	$\mathrm{W}-\mathrm{C}(20)-\mathrm{C}(21)$	130.7(5)	$\mathrm{Fe}(1)-\mathrm{C}(20)-\mathrm{C}(21)$	128.7(5)
$\mathrm{Fe}(2)-\mathrm{C}(20)-\mathrm{C}(21)$	125.7(7)						

Table 5. Bond length (\AA) data for closely related WFe_{2} complexes

Compound ${ }^{\text {a }}$	W-Fe	$\mathrm{Fe}-\mathrm{Fe}$	W- - - C	Fe- μ - C	W- μ-P	$\mathrm{Fe}-\mu-\mathrm{P}$
$\left[\mathrm{WFe}_{2}\left(\mu_{3}-\mathrm{CR}\right)(\mu-\mathrm{CO})(\mathrm{CO})_{8}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](1)^{\text {b }}$	2.756(2)	2.538(2)	2.093(5)	1.969 (5)		
	2.805(2)			2.036(5)		
$\left[\mathrm{WFe}_{2}\left(\mu_{3}-\mathrm{CR}\right)(\mu-\mathrm{H})\left(\mu-\mathrm{PEt}_{2}\right)(\mathrm{CO})_{6}\left(\mathrm{PEt}_{2} \mathrm{H}\right)\left(\mathrm{\eta}_{-}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](5)^{\text {c }}$	$2.763(1)$	$2.687(2)^{2}$	2.042(8)	$1.960(8)$	$2.311(2)$	$2.315(3)$
	$2.830(1)^{d}$			2.104(8)		
$\left[\mathrm{WFe}_{2}\left(\mu_{3}-\mathrm{CR}\right)\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{6}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](8)^{\text {c }}$	$2.735(1)^{d}$	$2.572(1)^{\text {d }}$	2.085(6)	$1.989(6)$	2.363(2)	2.194(2)
	2.783(1)			2.052(6)		2.229(2)
						2.248(2)
$\left[\mathrm{WFe}_{2}\left(\mu_{3}-\mathrm{OCCH}_{2} \mathrm{R}\right)\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{5}\left(\mathrm{\eta}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](9)^{\text {c }}$	$2.712(1)^{\text {d }}$	$2.616(2)^{\text {d }}$			2.412(2)	2.149(3)
	2.723(1)					2.255(2)
						2.256(2)
$\left[\mathrm{WFe}_{2}\left(\mu-\mathrm{OCCH}_{2} \mathrm{R}\right)\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{6}\left(\mathrm{PPh}_{2} \mathrm{H}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](10)^{\text {c }}$	$2.940(1)^{\text {d }}$	$2.667(1)^{\text {d }}$			2.392(1)	2.213(1)
						2.232(1)
						2.270(1)
$\left[\mathrm{WFe}_{2}\left(\mu_{3}-\mathrm{CR}\right)(\mu-\mathrm{H})\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{6}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]^{\text {f,g }}$	$2.523(1)^{\text {d }}$	$2.569(1)^{e}$	2.018(4)	$1.916(5)$	2.357(1)	2.219(1)
	$2.817(1)$			2.132(3)		
$\left[\mathrm{WFe}_{2}\left(\mu_{3}-\mathrm{CR}\right)\{\mu-\mathrm{C}(\mathrm{O}) \mathrm{C}(\mathrm{Me}) \mathrm{CHMe}\}\left(\mu-\mathrm{PEt}_{2}\right)(\mathrm{CO})_{5}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]^{\delta}$	${ }^{2.679(1)}$	2.673(1)	1.992(5)	$2.025(5)$	2.374(2)	2.262(2)
	$2.808(1)^{d}$			$2.130(5)$		
$\left[\mathrm{WFe}_{2}\left(\mu_{3}-\mathrm{CR}\right)\left(\mu-\mathrm{PEt}_{2}\right)_{3}(\mathrm{CO})_{4}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]^{h, i}$	$2.714(1)^{d}$	$2.569(1)^{\text {d }}$	1.981(5)	2.021(5)	2.338(2)	$2.185(2)$
	$2.722(1)^{d}$			2.081(5)	2.341(2)	$2.198(2)$
						2.233(2)
						2.250(2)
$\left[\mathrm{WFe}_{2}\left(\mu_{3}-\mathrm{CR}\right) \mathrm{H}\left(\mu-\mathrm{PEt}_{2}\right)_{3}(\mathrm{CO})_{4}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]^{h}$	$2.770(1)^{d}$	$2.576(1)^{\text {d }}$	2.040(5)	$2.019(5)$	2.361(1)	2.194(1)
	$2.796(1)^{d}$			2.068(5)	$2.375(1)$	$2.197(1)$
						2.209(1)
						2.210(2)

${ }^{a} \mathbf{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4 .{ }^{b}$ Ref. 4. ${ }^{\mathrm{c}}$ This paper. ${ }^{d}$ Bridged by a μ-P ligand. ${ }^{e}$ Bridged by a $\mu-\mathrm{H}$ ligand. ${ }^{s}$ Ref. $3 b .{ }^{g} 46$ Cluster valence electrons. ${ }^{h}$ J. C. Jeffery and J. G. Lawrence-Smith, unpublished work. ${ }^{i} 47$ Cluster valence electron radical.

Scheme 1. $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}$-4. (i) $\mathrm{LiBEt}_{3} \mathrm{H},+\mathrm{H}^{-}$, $-\mathrm{H}_{2}$; (ii) $-\mathrm{H}^{-}$; (iii) $111{ }^{\circ} \mathrm{C}$, toluene, $-\mathrm{H}_{2}$
and lies in the region more normally associated with iron CO ligands. Fortunately a similarly shielded $\mu_{3}-\mathrm{C}$ resonance at δ 212.2 p.p.m. is observed for the $\mu-\mathrm{PPh}_{2}$ analogue (8), and the structure of this complex has been confirmed by a single-crystal X-ray diffraction study (see following section).

Although free $\mathrm{PEt}_{2} \mathrm{H}$ is not sufficiently basic to catalyse the conversion of complex (5) into (6), this transformation may be effected under mild conditions $\left(20^{\circ} \mathrm{C}\right)$ by the addition of 0.1 molar equivalents of $\mathrm{Li}\left[\mathrm{BEt}_{3} \mathrm{H}\right]$. A plausible mechanism for this Lewis base-catalysed rearrangment is shown in Scheme 1.

(9)

$$
\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4, \mathrm{CP}=7-\mathrm{C}_{5} \mathrm{H}_{5}
$$

Deprotonation of (5) could afford anionic intermediates such as (A) or (B) which could readily rearrange with loss of H^{-}to give (6)

The reactions of complex (1) with $\mathrm{PPh}_{2} \mathrm{H}$ were also studied for comparison with those observed with $\mathrm{PEt}_{2} \mathrm{H}$. Treatment of (1) with 1 equivalent of $\mathrm{PPh}_{2} \mathrm{H}$ in a dilute diethyl ether solution initially gave an orange-brown solution which became dark green over a period of $c a .3$ h. I.r. spectroscopy suggests that the initial red-brown solution may contain a terminal $\mathrm{PPh}_{2} \mathrm{H}$ species analogous to the $\mathrm{PEt}_{2} \mathrm{H}$ complex (3). This red-brown intermediate could not be isolated because of the ease with which it rearranges to the stable dark green $\mu-\mathrm{PPh}_{2}$ bridged complex (7). Spectroscopic data for (7) show that it exists as a single isomer in solution having the same structure as the $\mathrm{PEt}_{2} \mathrm{H}$ isomer (4a). Thus the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum shows a resonance at $\delta 156.3$ p.p.m. for the $\mu-\mathrm{PPh}_{2}$ ligand and the presence of ${ }^{183} \mathrm{~W}$ satellites [$J(\mathrm{WP}) 298 \mathrm{~Hz}$] confirms that this ligand bridges a $\mathrm{W}-\mathrm{Fe}$ bond. In the ${ }^{1} \mathrm{H}$ n.m.r. spectrum the $\mu-\mathrm{H}$ resonance occurs at $\delta-15.90[J(\mathrm{PH}) 33, J(\mathrm{WH}) 33 \mathrm{~Hz}]$; these values are very similar to those observed for (4a) and confirm that the $\mu-\mathrm{H}$ ligand bridges a $\mathrm{W}-\mathrm{Fe}$ bond.

The reaction of complex (1) with an excess of $\mathrm{PPh}_{2} \mathrm{H}$ was also investigated and gave results which were substantially different from those obtained with $\mathrm{PEt}_{2} \mathrm{H}$. The reaction is sensitive to the concentration of $\mathrm{PPh}_{2} \mathrm{H}$ used. Treatment of (1) with ca. 3 equivalents of $\mathrm{PPh}_{2} \mathrm{H}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave a moderate yield ($c a$. 20%) of the $\mathrm{bis}\left(\mu-\mathrm{PPh}_{2}\right)$ complex (8), good yields (ca. 50%) of the μ_{3}-acyl complex (9), and traces ($<10 \%$) of the μ-acyl complex (10). At higher concentrations of $\mathrm{PPh}_{2} \mathrm{H}(>5$ equivalents in the minimum volume of solvent) the yield of (9) remains similar, and reduced yields ($<10 \%$) of (8) and proportionately increased yields (ca. 20\%) of (10) are observed. Spectroscopic data for (8)-(10) did not allow unambiguous assignment of their structures but fortunately the availability of crystals of these complexes allowed single-crystal X-ray diffraction studies to be carried out on all three species.

The structure of the $\operatorname{bis}\left(\mu-\mathrm{PPh}_{2}\right)$ complex (8) is shown in Figure 2 and selected bond lengths and angles are given in Table 6. The structure reveals the expected WFe_{2} triangle of metal atoms capped by a $\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ ligand. The $\mathrm{Fe}-\mathrm{Fe}$ and one $\mathrm{W}-\mathrm{Fe}$ bond are bridged by $\mu-\mathrm{PPh}_{2}$ ligands which are

Figure 2. Molecular structure of $\left[\mathrm{WFe}_{2}\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\left(\mu-\mathrm{PPh}_{2}\right)_{2}-\right.$ $\left.(\mathrm{CO})_{6}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right] \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathbf{8})$ showing the atom numbering scheme
approximately coplanar with the metal atoms. The tungsten atom carries a terminal CO ligand and a cyclopentadienyl group. The $\mathrm{W}-\mathrm{Fe}(2)$ bond is semi-bridged by a CO ligand attached to $\mathrm{Fe}(2)[\mathrm{Fe}(2)-\mathrm{C}(1) 1.791(7), \mathrm{W}-\mathrm{C}(1) 2.535(9) \AA$, $\left.\mathrm{Fe}(2)-\mathrm{C}(1)-\mathrm{O}(1) 159.4(8)^{\circ}\right]$ and both Fe atoms are ligated by two approximately orthogonal CO ligands. Comparison of the parameters of the $\mu_{3}-\mathrm{CWFe}_{2}$ core with those of the parent complex (1) (Table 5) shows that introduction of the $\mu-\mathrm{PPh}_{2}$ ligands leads to a contraction of the $W-F e$ and $W-\mu-C$ bonds and a proportional increase in the $\mathrm{Fe}-\mathrm{Fe}$ and $\mathrm{Fe}-\mu-\mathrm{C}$ distances. Spectroscopic data for (8) are extremely similar to those of the $\mu-\mathrm{PEt}_{2}$ analogue (6). Further investigation revealed that (8) may be more efficiently prepared by treating the $\mu-\mathrm{PPh}_{2}$ bridged complex (7) with 1 equivalent of $\mathrm{PPh}_{2} \mathrm{H}$. Formation of (8) from (1) therefore proceeds via a series of intermediates similar to those involved in the formation of the $\mu-\mathrm{PEt}_{2}$ complex (6). The absence of isolable terminal $\mathrm{PPh}_{2} \mathrm{H}$ complexes analogous to (3) and (5) emphasizes the ease with which terminal $\mathrm{PPh}_{2} \mathrm{H}$ complexes rearrange to $\mu-\mathrm{PPh}_{2}$ species.

The major product obtained in the reaction of (1) with an excess of $\mathrm{PPh}_{2} \mathrm{H}$ was the μ_{3}-acyl complex (9). The molecular structure of (9) is shown in Figure 3 and selected bond lengths and angles are in Table 7. The structure of (9) consists of a WFe_{2} triangle of metal atoms with $\mathrm{W}-\mathrm{Fe}$ and $\mathrm{Fe}-\mathrm{Fe}$ bonds bridged by $\mu-\mathrm{PPh}_{2}$ ligands. The $\mathrm{M}-\mathrm{M}$ and $\mathrm{Fe}-\mu-\mathrm{P}$ separations are unremarkable (Table 5), however the W-P(1) distance of 2.412(2) \AA is the longest we have observed in complexes of this type (normal range $W-\mu-P 2.311-2.392 \AA$). Interest centres on the μ_{3}-acyl ligand which acts as a five-electron donor to the metal triangle. The $\mathrm{RCH}_{2} \mathbf{C O}$ moiety is η^{2}-bound to tungsten [W-C(5) $2.155(7), \mathrm{W}-\mathrm{O}(5), 2.129(6) \AA$] with σ attachments to the two iron atoms $[\mathrm{Fe}(1)-\mathrm{C}(5) 1.913(10), \mathrm{Fe}(2)-\mathrm{O}(5) 2.011(6)$ $\AA]$. The co-ordination mode of this ligand is thus extremely similar to that observed in the complex [$\mathrm{WOs}_{3}\left(\mu_{3}-\mathrm{OCCH}_{2} \mathrm{C}_{6}\right.$ $\left.\left.\mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{11}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]^{6}$ The acyl $\mathrm{C}(5)-\mathrm{O}(5)$ distance of $1.43(1) \AA$ is characteristic of a $\mathrm{C}-\mathrm{O}$ single bond, and is substantially longer than found in the related homonuclear tri-iron complexes $\left[\mathrm{NEt}_{4}\right]\left[\mathrm{Fe}_{3}(\mu-\mathrm{OCMe})(\mathrm{CO})_{9}\right][1.32(2) \AA]$

Table 6. Selected internuclear separations (\AA) and angles $\left(^{\circ}\right)$ for $\left[\mathrm{WFe}_{2}\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{6}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](8)$ with e.s.d.s in parentheses

W-Fe(1)	2.735(1)	W-Fe(2)	2.783(1)	W-P(1)	2.363(2)	W-C(1)	2.535(9)
W-C(6)	1.987(7)	W-C(7)	2.085(6)	$\mathrm{Fe}(1)-\mathrm{Fe}(2)$	2.572(1)	$\mathrm{Fe}(1)-\mathrm{P}(1)$	2.248(2)
$\mathrm{Fe}(1)-\mathrm{P}(2)$	2.194(2)	$\mathrm{Fe}(1)-\mathrm{C}(4)$	1.808(8)	$\mathrm{Fe}(1)-\mathrm{C}(5)$	1.762(7)	$\mathrm{Fe}(1)-\mathrm{C}(7)$	1.989(6)
$\mathrm{Fe}(2)-\mathrm{P}(2)$	2.229(2)	$\mathrm{Fe}(2)-\mathrm{C}(1)$	1.791(7)	$\mathrm{Fe}(2)-\mathrm{C}(2)$	1.797(10)	$\mathrm{Fe}(2)-\mathrm{C}(3)$	1.753(10)
$\mathrm{Fe}(2)-\mathrm{C}(7)$	2.052(6)	$\mathrm{P}(1)-\mathrm{C}(11)$	$1.830(9)$	$\mathrm{P}(1)-\mathrm{C}(21)$	1.820(7)	$\mathrm{P}(2)-\mathrm{C}(31)$	1.840 (8)
$\mathrm{P}(2)-\mathrm{C}(41)$	1.832(6)	$\mathrm{C}(1)-\mathrm{O}(1)$	1.170(9)	$\mathrm{C}(2)-\mathrm{O}(2)$	1.13(1)	$\mathrm{C}(3)-\mathrm{O}(3)$	1.16(1)
$\mathrm{C}(4)-\mathrm{O}(4)$	1.12(1)	$\mathrm{C}(5)-\mathrm{O}(5)$	1.153(8)	$\mathrm{C}(6)-\mathrm{O}(6)$	1.156(8)	$\mathrm{C}(7)-\mathrm{C}(51)$	1.459(8)
$\mathrm{Fe}(1)-\mathrm{W}-\mathrm{Fe}(2)$	55.6(1)	$\mathrm{Fe}(1)-\mathbf{W}-\mathbf{P}(1)$	51.7(1)	Fe(2)-W-P(1)	106.8(1)	$\mathrm{Fe}(1)-\mathrm{W}-\mathrm{C}(6)$	84.5(2)
$\mathrm{Fe}(2)-\mathrm{W}-\mathrm{C}(6)$	83.7(2)	P(1)-W-C(6)	82.6(2)	$\mathrm{Fe}(1)-\mathrm{W}-\mathrm{C}(7)$	46.3(2)	$\mathrm{Fe}(2)-\mathrm{W}-\mathrm{C}(7)$	47.2(2)
$\mathrm{P}(1)-\mathrm{W}-\mathrm{C}(7)$	85.4(2)	$\mathrm{C}(6)-\mathrm{W}-\mathrm{C}(7)$	122.6(3)	$\mathrm{W}-\mathrm{Fe}(1)-\mathrm{Fe}(2)$	63.2(1)	$\mathrm{W}-\mathrm{Fe}(1)-\mathrm{P}(1)$	55.6(1)
$\mathrm{Fe}(2)-\mathrm{Fe}(1)-\mathrm{P}(1)$	118.2(1)	W-Fe(1)-P(2)	115.9(1)	$\mathrm{Fe}(2)-\mathrm{Fe}(1)-\mathrm{P}(2)$	55.1(1)	$\mathrm{P}(1)-\mathrm{Fe}(1)-\mathrm{P}(2)$	169.1(1)
$\mathrm{C}(4)-\mathrm{Fe}(1)-\mathrm{C}(5)$	103.2(3)	W-Fe(1)-C(7)	49.3(2)	$\mathrm{Fe}(2)-\mathrm{Fe}(1)-\mathrm{C}(7)$	51.6(2)	$\mathrm{P}(1)-\mathrm{Fe}(1)-\mathrm{C}(7)$	90.9(2)
$\mathrm{P}(2)-\mathrm{Fe}(1)-\mathrm{C}(7)$	78.3(2)	W-Fe(2)-Fe(1)	61.3(1)	$\mathrm{W}-\mathrm{Fe}(2)-\mathrm{P}(2)$	112.8(1)	$\mathrm{Fe}(1)-\mathrm{Fe}(2)-\mathrm{P}(2)$	53.8(1)
$\mathrm{C}(1)-\mathrm{Fe}(2)-\mathrm{C}(2)$	84.8(4)	$\mathrm{C}(1)-\mathrm{Fe}(2)-\mathrm{C}(3)$	91.6(4)	$\mathrm{C}(2)-\mathrm{Fe}(2)-\mathrm{C}(3)$	103.7(5)	W-Fe(2)-C(7)	48.2(2)
$\mathrm{Fe}(1)-\mathrm{Fe}(2)-\mathrm{C}(7)$	49.4(2)	$\mathrm{P}(2)-\mathrm{Fe}(2)-\mathrm{C}(7)$	76.2(2)	$\mathrm{W}-\mathrm{P}(1)-\mathrm{Fe}(1)$	72.7(1)	W-P(1)-C(11)	122.7(2)
$\mathrm{Fe}(1)-\mathrm{P}(1)-\mathrm{C}(11)$	118.1(3)	$\mathrm{W}-\mathrm{P}(1)-\mathrm{C}(21)$	121.3(2)	$\mathrm{Fe}(1)-\mathrm{P}(1)-\mathrm{C}(21)$	118.8(2)	$\mathrm{C}(11)-\mathrm{P}(1)-\mathrm{C}(21)$	102.5(4)
$\mathrm{Fe}(1)-\mathrm{P}(2)-\mathrm{Fe}(2)$	71.1(1)	$\mathrm{Fe}(1)-\mathrm{P}(2)-\mathrm{C}(31)$	119.3(3)	$\mathrm{Fe}(2)-\mathrm{P}(2)-\mathrm{C}(31)$	120.3(2)	$\mathrm{Fe}(1)-\mathrm{P}(2)-\mathrm{C}(41)$	124.1(2)
$\mathrm{Fe}(2)-\mathrm{P}(2)-\mathrm{C}(41)$	124.8(2)	C(31)-P(2)-C(41)	98.3(3)	$\mathrm{W}-\mathrm{C}(1)-\mathrm{O}(1)$	122.5(7)	$\mathrm{Fe}(2)-\mathrm{C}(1)-\mathrm{O}(1)$	159.4(8)
$\mathrm{Fe}(2)-\mathrm{C}(2)-\mathrm{O}(2)$	178.2(8)	$\mathrm{Fe}(2)-\mathrm{C}(3)-\mathrm{O}(3)$	175.6(6)	$\mathrm{Fe}(1)-\mathrm{C}(4)-\mathrm{O}(4)$	177.0(8)	$\mathrm{Fe}(1)-\mathrm{C}(5)-\mathrm{O}(5)$	175.5(7)
$\mathrm{W}-\mathrm{C}(6)-\mathrm{O}(6)$	176.5(6)	$\mathrm{W}-\mathrm{C}(7)-\mathrm{Fe}(1)$	84.3(2)	$\mathrm{W}-\mathrm{C}(7)-\mathrm{Fe}(2)$	84.5(2)	$\mathrm{Fe}(1)-\mathrm{C}(7)-\mathrm{Fe}(2)$	79.1(2)
W-C(7)-C(51)	132.0(4)	$\mathrm{Fe}(1)-\mathrm{C}(7)-\mathrm{C}(51)$	133.7(4)	$\mathrm{Fe}(2)-\mathrm{C}(7)-\mathrm{C}(51)$	124.5(5)		

Table 7. Selected internuclear distances (\AA) and angles $\left({ }^{\circ}\right)$ for $\left[\mathrm{WFe}_{2}\left(\mu_{3}-\mathrm{OCCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{5}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](9)$ with e.s.d.s in parentheses

W-Fe(1)	2.723(1)	W-Fe(2)	2.712(1)	W-P(1)	2.412(2)	W-C(5)	$2.155(7)$
W-O(5)	2.129(6)	W-C(9)	2.020(11)	$\mathrm{Fe}(1)-\mathrm{Fe}(2)$	2.616(2)	$\mathrm{Fe}(1)-\mathrm{P}(2)$	2.149(3)
$\mathrm{Fe}(1)-\mathrm{C}(5)$	1.913(10)	$\mathrm{Fe}(1)-\mathrm{C}(3)$	1.753(10)	$\mathrm{Fe}(1)-\mathrm{C}(4)$	1.793(12)	$\mathrm{Fe}(2)-\mathrm{P}(1)$	2.255(2)
$\mathrm{Fe}(2)-\mathrm{P}(2)$	2.256(2)	$\mathrm{Fe}(2)-\mathrm{C}(1)$	1.796(11)	$\mathrm{Fe}(2)-\mathrm{C}(2)$	1.780(11)	$\mathrm{Fe}(2)-\mathrm{O}(5)$	2.011(6)
$\mathrm{P}(1)-\mathrm{C}(11)$	1.838(7)	$\mathrm{P}(1)-\mathrm{C}(21)$	1.829(5)	$\mathrm{P}(2)-\mathrm{C}(31)$	1.847(6)	$\mathrm{P}(2)-\mathrm{C}(41)$	1.856(7)
$\mathrm{C}(1)-\mathrm{O}(1)$	1.13(2)	$\mathrm{C}(5)-\mathrm{O}(5)$	1.43(1)	$\mathrm{C}(5)-\mathrm{C}(6)$	1.55(1)	$\mathrm{C}(2)-\mathrm{O}(2)$	1.13(1)
$\mathrm{C}(3)-\mathrm{O}(3)$	1.16(1)	$\mathrm{C}(4)-\mathrm{O}(4)$	1.14(1)	$\mathrm{C}(6)-\mathrm{C}(51)$	1.53(1)	$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{a})$	1.16(9)
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~b})$	1.11(8)	$\mathrm{C}(9)-\mathrm{O}(9)$	1.13(1)				
$\mathrm{Fe}(1)-\mathrm{W}-\mathrm{Fe}(2)$	57.6(1)	$\mathrm{Fe}(1)-\mathrm{W}-\mathrm{P}(1)$	106.8(1)	$\mathrm{Fe}(2)-\mathrm{W}-\mathrm{P}(1)$	51.8(1)	$\mathrm{Fe}(1)-\mathrm{W}-\mathrm{C}(5)$	44.3(3)
$\mathrm{Fe}(2)-\mathrm{W}-\mathrm{C}(5)$	66.4(2)	P(1)-W-C(5)	112.5(2)	$\mathrm{Fe}(1)-\mathrm{W}-\mathrm{O}(5)$	69.3(1)	$\mathrm{Fe}(2)-\mathrm{W}-\mathrm{O}(5)$	47.2(2)
$\mathrm{P}(1)-\mathrm{W}-\mathrm{O}(5)$	76.9(1)	$\mathrm{C}(5)-\mathrm{W}-\mathrm{O}(5)$	39.0(3)	W-Fe(1)-Fe(2)	61.0(1)	W-Fe(1)-P(2)	112.3(1)
$\mathrm{Fe}(2)-\mathrm{Fe}(1)-\mathrm{P}(2)$	55.5(1)	$\mathrm{W}-\mathrm{Fe}(1)-\mathrm{C}(5)$	51.9(2)	$\mathrm{Fe}(2)-\mathrm{Fe}(1)-\mathrm{C}(5)$	71.5(2)	$\mathrm{P}(2)-\mathrm{Fe}(1)-\mathrm{C}(5)$	86.7(3)
$\mathrm{C}(3)-\mathrm{Fe}(1)-\mathrm{C}(4)$	91.6(5)	W-Fe(2)-Fe(1)	61.4(1)	$\mathrm{W}-\mathrm{Fe}(2)-\mathrm{P}(1)$	57.2(1)	$\mathrm{Fe}(1)-\mathrm{Fe}(2)-\mathrm{P}(1)$	115.7(1)
W-Fe(2)-P(2)	109.2(1)	$\mathrm{Fe}(1)-\mathrm{Fe}(2)-\mathrm{P}(2)$	51.7(1)	$\mathrm{P}(1)-\mathrm{Fe}(2)-\mathrm{P}(2)$	166.4(1)	$\mathrm{C}(1)-\mathrm{Fe}(2)-\mathrm{C}(2)$	97.6(5)
$\mathrm{W}-\mathrm{Fe}(2)-\mathrm{O}(5)$	51.0(2)	$\mathrm{Fe}(1)-\mathrm{Fe}(2)-\mathrm{O}(5)$	73.2(2)	$\mathrm{P}(1)-\mathrm{Fe}(2)-\mathrm{O}(5)$	83.0(1)	$\mathrm{P}(2)-\mathrm{Fe}(2)-\mathrm{O}(5)$	87.8(1)
W-P(1)-F(2)	70.9(1)	$\mathrm{W}-\mathrm{P}(1)-\mathrm{C}(11)$	124.2(3)	$\mathrm{Fe}(2)-\mathrm{P}(1)-\mathrm{C}(11)$	118.2(2)	W-P(1)-C(21)	120.5(2)
$\mathrm{Fe}(2)-\mathrm{P}(1)-\mathrm{C}(21)$	116.7(2)	$\mathrm{Fe}(1)-\mathrm{P}(2)-\mathrm{Fe}(2)$	72.8(1)	$\mathrm{Fe}(1)-\mathrm{P}(2)-\mathrm{C}(31)$	122.0(2)	$\mathrm{Fe}(2)-\mathrm{P}(2)-\mathrm{C}(31)$	117.1(2)
$\mathrm{Fe}(1)-\mathrm{P}(2)-\mathrm{C}(41)$	125.5(2)	$\mathrm{Fe}(2)-\mathrm{P}(2)-\mathrm{C}(41)$	117.5(2)	$\mathrm{Fe}(2)-\mathrm{C}(1)-\mathrm{O}(1)$	177.4(8)	$\mathrm{W}-\mathrm{C}(5)-\mathrm{Fe}(1)$	83.8(4)
$\mathrm{W}-\mathrm{C}(5)-\mathrm{O}(5)$	69.5(3)	$\mathrm{Fe}(1)-\mathrm{C}(5)-\mathrm{O}(5)$	112.9(6)	W-C(5)-C(6)	133.2(5)	$\mathrm{Fe}(1)-\mathrm{C}(5)-\mathrm{C}(6)$	130.0(5)
$\mathrm{O}(5)-\mathrm{C}(5)-\mathrm{C}(6)$	111.7(8)	$\mathrm{Fe}(2)-\mathrm{C}(2)-\mathrm{O}(2)$	179.4(9)	$\mathrm{Fe}(1)-\mathrm{C}(3)-\mathrm{C}(6)$	176.7(9)	$\mathrm{Fe}(1)-\mathrm{C}(4)-\mathrm{O}(4)$	178.8(7)
W-O(5)-Fe(2)	81.8(2)	$\mathrm{W}-\mathrm{O}(5)-\mathrm{C}(5)$	71.5(4)	$\mathrm{Fe}(2)-\mathrm{O}(5)-\mathrm{C}(5)$	102.3(5)	$\mathrm{C}(51)-\mathrm{C}(6)-\mathrm{C}(5)$	120.1(5)
W-C(9)-O(9)	161.9(7)						

and $\left[\mathrm{Fe}_{3}(\mu-\mathrm{H})\left(\mu_{3}\right.\right.$-OCMe $\left.)(\mathrm{CO})_{9}\right]\left[1.325(5) \AA \AA^{7}\right.$ The marked reduction of the acyl $\mathrm{C}-\mathrm{O}$ bond order found in (9) and to a lesser extent in $\left[\mathrm{WOs}_{3}\left(\mu_{3}-\mathrm{OCCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{11}(\eta-\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]\left[\mathrm{RCH}_{2} \mathrm{C}-\mathrm{O} \quad 1.37(2) \AA\right]$ may well reflect a strong interaction between the acyl oxygen atoms and the oxophilic tungsten centres in these clusters.
Spectroscopic data were consistent with the solid-state structure of complex (9) being maintained in solution. The i.r. spectrum in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed four absorptions attributable to terminal CO ligands and a broad band at $1785 \mathrm{~cm}^{-1}$ indicating the presence of a semi-bridging CO ligand. Several weak bands were observed in the region $1550-1450 \mathrm{~cm}^{-1}$ but none of these peaks could be unambiguously assigned to the expected acyl $\mathrm{C}-\mathrm{O}$ stretch. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum showed an AB quartet at δ 3.43 p.p.m. [J(HH) 16 Hz$]$ which may be assigned to the diastereotopic protons of the $\mu_{3}-\mathrm{OCCH}_{2} \mathrm{R}$ fragment, and the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum confirms the presence of $\mu-\mathrm{PPh}_{2}$
ligands bridging $\mathrm{W}-\mathrm{Fe}$ and $\mathrm{Fe}-\mathrm{Fe}$ bonds. In the ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum the acyl carbon of the $\mu_{3}-\mathrm{OCCH}_{2} \mathrm{R}$ ligand gives rise to a singlet at $\delta 258.8$ p.p.m. which is appreciably more shielded than found for the $\mu-\mathrm{OCCH}_{2} \mathrm{R}$ atom in (10) ($\delta 294.4$ p.p.m.)

The structure of the minor acyl complex (10) produced in the reaction of (1) with excess of $\mathrm{PPh}_{2} \mathrm{H}$ is shown in Figure 4 and selected bond length and angle data are in Table 8. The molecular structure of the 50 cluster-valence-electron complex consists of a $\mathrm{W}-\mathrm{Fe}-\mathrm{Fe}$ chain of metal atoms. The $\mathrm{W}-\mathrm{Fe}$ and $\mathrm{Fe}-\mathrm{Fe}$ bonds are both bridged by $\mu-\mathrm{PPh}_{2}$ ligands and a terminal $\mathrm{PPh}_{2} \mathrm{H}$ ligand is attached to the $\mathrm{Fe}(1)$ end of the metal chain. The W-Fe-Fe chain is bent [W-Fe(2)-Fe(1) 147.7(1) ${ }^{\circ}$] and comparable deviations from linearity have been observed in the related complexes $\left[\mathrm{Mn}_{2} \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{9}\right][\mathrm{Mn}-\mathrm{Pt}-\mathrm{Mn}$ $\left.159.54(6)^{\circ}\right]^{8} \quad$ and $\quad\left[\mathrm{Fe}_{2} \mathrm{Rh}\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mu-\mathrm{CO})_{2}(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{5^{-}}\right.\right.$ $\left.\left.\mathrm{H}_{4} \mathrm{Me}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]\left[\mathrm{Fe}-\mathrm{Rh}-\mathrm{Fe} 145.03(5)^{\circ}\right] .{ }^{.}$The $\mathrm{Fe}-\mathrm{Fe}$ bond is spanned by a μ-acyl ligand which now formally acts as a three-

Figure 3. Molecular structure of $\left[\mathrm{WFe}_{2}\left(\mu_{3}-\mathrm{OCCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\right.$ -$\left.\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{5}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](9)$ showing the atom numbering scheme
electron donor. Bonding in μ-acyl ligands has been discussed in terms of the relative contributions of the acyl and oxyalkylidene resonance forms shown below. The μ-acyl $\mathrm{C}-\mathrm{O}$ separations

in (10) $[1.255(6) \AA]$ and in the related complexes $\left[\mathrm{Fe}_{2}(\mu-\right.$ $\left.\mathrm{OCMe})\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{5}\left(\mathrm{PMePh}_{2}\right)\right]^{10}$ (average $1.247 \AA$) $[\mathrm{Mo}-$ $\left.\mathrm{Mn}\left(\mu-\mathrm{OCC}_{6} \mathrm{H}_{11}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{6}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]^{11}[1.26(1) \AA$, , and $\left[W R e\left(\mu-\mathrm{OCCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mu-\mathrm{dppm})(\mathrm{CO})_{6}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}\right]^{12}$ $[1.248(7) \AA]$ are appreciably shorter than the μ_{3}-acyl $\mathrm{C}-\mathrm{O}$ separation in (9) [1.43(1) \AA]. Evidently the C-O bond in (10) retains significant multiple-bond character, reflecting a major contribution from the acyl resonance form. The $\mathrm{Fe}(1)-\mathrm{C}($ acyl) distance of $1.936(4) \AA$ is comparable with that observed in $\left[\mathrm{Fe}_{2}(\mu-\mathrm{OCMe})\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{5}\left(\mathrm{PMePh}_{2}\right)\right]^{10}$ (average $1.957 \AA$). Slightly shorter $\mathrm{Fe}-\mathrm{C}$ (acyl) separations are found in the complexes $\left[\mathrm{MnFe}(\mu-\mathrm{OCMe})\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{5}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]^{13}$ (average $1.921 \AA)$ and $\left[\mathrm{MoFe}(\mu-\mathrm{OCMe})\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{3}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]^{14}$ $[1.906(3) \AA]$ and this is consistent with these species possessing more oxyalkylidene character than complex (10).
The solution i.r. spectrum of complex (10) showed six bands attributable to terminal carbonyl ligands. A weak absorption at $1480 \mathrm{~cm}^{-1}$ may be tentatively assigned to the acyl C-O group. A similar band at $1483 \mathrm{~cm}^{-1}$ in the solution i.r. spectrum of $\left[\mathrm{Fe}_{2}(\mu-\mathrm{OCMe})\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{5}\left(\mathrm{PMePh}_{2}\right)\right]$ has previously been ascribed to the CO function of the μ-acetyl moiety. ${ }^{10}$ The ${ }^{1} \mathrm{H}$ n.m.r. spectrum showed an $A B$ quartet at $\delta 4.29$ p.p.m. [$J(H H)$ 17 Hz] which may be assigned to the diastereotopic protons of the $\mu-\mathrm{OCCH}_{2} \mathrm{R}$ fragment and the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum showed the expected resonances for both the bridging and the terminal phosphine ligands. In the ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum the $\mu-\mathrm{OCCH}_{2} \mathrm{R}$ carbon gives rise to a resonance at $\delta 294.4$ p.p.m. [dd, $J(\mathrm{PC}) 25,18 \mathrm{~Hz}$] which is similar to that observed for the μ-OCR centres in the complexes $\left[\mathrm{Fe}_{2}(\mu-\mathrm{OCMe})\left(\mu-\mathrm{PPh}_{2}\right)\right.$ $\left.(\mathrm{CO})_{5}\left(\mathrm{PMePh}_{2}\right)\right]^{10}(\delta 299.6$ p.p.m. $)$ and $\left[\mathrm{WRe}\left(\mu-\mathrm{OCCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}-\right.\right.$ $\left.\mathrm{Me}-4)(\mu-\mathrm{dppm})(\mathrm{CO})_{6}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}\right]^{12}$ ($\delta 284.5$ p.p.m.). More deshielded μ-OCR resonances are found for the complexes $\left[\mathrm{MnFe}(\mu-\mathrm{OCMe})\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{5}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]^{13}(\delta 319.3$ p.p.m. $)$

Figure 4. Molecular structure of $\left[\mathrm{WFe}_{2}\left(\mu_{3}-\mathrm{OCCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mu-\right.$ $\left.\left.\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{6}\left(\mathrm{PPh}_{2} \mathrm{H}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathbf{1 0})$ showing the atom numbering scheme
and $\left[\mathrm{MoFe}(\mu-\mathrm{OCMe})\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{3}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]^{14}$ ($\delta 324.4$ p.p.m.) and once again this is consistent with these species having more oxyalkylidene character than (10).

A possible mechanism by which complexes (8)-(10) are formed from (1) in the presence of excess of $\mathrm{PPh}_{2} \mathrm{H}$ is shown in Scheme 2. Initial attack of $\mathrm{PPh}_{2} \mathrm{H}$ on (1) affords a terminal $\mathrm{PPh}_{2} \mathrm{H}$ intermediate (A), analogous to the moderately stable $\mathrm{PEt}_{2} \mathrm{H}$ complex (3). At low concentrations of $\mathrm{PPh}_{2} \mathrm{H}$, (A) cleanly rearranges to give the $\mu-\mathrm{PPh}_{2}$ bridged complex (7) which we have established reacts with a further molecule of $\mathrm{PPh}_{2} \mathrm{H}$ to give the $\operatorname{bis}\left(\mu-\mathrm{PPh}_{2}\right)$ complex (8). Since (7) with $\mathrm{PPh}_{2} \mathrm{H}$ does not give the acyl complexes (9) and (10) these must arise from attack of a second molecule of $\mathrm{PPh}_{2} \mathrm{H}$ upon (A) giving the bis(terminal $\left.\mathrm{PPh}_{2} \mathrm{H}\right)$ intermediate (B). Formation of (B) will clearly be favoured by high concentrations of $\mathrm{PPh}_{2} \mathrm{H}$. Subsequent rearrangement of (B) to a μ-alkyl intermediate (E), followed by CO insertion, could then give the μ_{3}-acyl complex (9). At very high concentrations of $\mathrm{PPh}_{2} \mathrm{H}$ attack of a third molecule of $\mathrm{PPh}_{2} \mathrm{H}$ on either (B) or (E), with concomitant ring opening, provides a route to the μ-acyl complex (10).

Shapley et al. ${ }^{15}$ have shown that thermolysis of the μ_{3}-acyl compound $\left[\mathrm{WOs}_{3}\left(\mu_{3}-\mathrm{OCCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{11}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ affords the oxo-alkylidyne complex $\left[\mathrm{WOs}_{3}(\mu-\mathrm{O})\left(\mu_{3}-\mathrm{CCH}_{2}-\right.\right.$ $\left.\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{9}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ via cleavage of the acyl $\mathrm{C}-\mathrm{O}$ bond. Further thermolysis of the latter oxo complex at $111^{\circ} \mathrm{C}$ under N_{2} gave $\left[\mathrm{WOs}_{3}(\mu-\mathrm{H})(\mu-\mathrm{O})\left\{\mu-\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right\}\right.$ -$(\mathrm{CO})_{9}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$], whilst the same reaction in the presence of H_{2} gave the alkylidene complex [$\mathrm{WOs}_{3}(\mu-\mathrm{H})(\mu-\mathrm{O})\{\mu-\mathrm{C}(\mathrm{H})-$ $\left.\left.\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right\}(\mathrm{CO})_{9}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$. It was therefore of interest to examine related reactions of $(\mathbf{9})$ and (10). Thermolysis of the μ-acyl complex (10) in refluxing toluene $\left(111^{\circ} \mathrm{C}\right)$ led to the formation of the μ_{3}-acyl complex (9), a reaction involving loss of the terminal $\mathrm{PPh}_{2} \mathrm{H}$ ligand and a CO group, with concomitant formation of a W-Fe bond. Unfortunately prolonged thermolysis of (10) at temperatures up to $142^{\circ} \mathrm{C}$ did not lead to any evidence of acyl $\mathrm{C}-\mathrm{O}$ bond cleavage, and when the reaction was repeated under $\mathrm{H}_{2}\left(6 \mathrm{~atm}, c a .6 \times 10^{5} \mathrm{~Pa}\right)$ a plethora of complexes were formed which could not be separated.

Experimental

Light petroleum refers to that fraction of b.p. $40-60^{\circ} \mathrm{C}$. All

Table 8. Selected internuclear distances (\AA) and angles $\left({ }^{\circ}\right)$ for $\left[\mathrm{WFe}_{2}\left(\mu-\mathrm{OCCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{6}\left(\mathrm{PPh}_{2} \mathrm{H}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](10)$ with e.s.d.s in parentheses

W-Fe(2)	2.940(1)	W-P(3)	2.392(1)	W-C(5)	1.938(7)	W-C(6)	1.960(7)
$\mathrm{Fe}(1)-\mathrm{Fe}(2)$	2.667(1)	$\mathrm{Fe}(1)-\mathrm{P}(1)$	2.296(1)	$\mathrm{Fe}(1)-\mathrm{P}(2)$	2.213(1)	$\mathrm{Fe}(1)-\mathrm{C}(10)$	1.936(4)
$\mathrm{Fe}(1)-\mathrm{C}(1)$	1.756(6)	$\mathrm{Fe}(1)-\mathrm{C}(2)$	1.808(6)	$\mathrm{Fe}(2)-\mathrm{P}(2)$	2.232(1)	$\mathrm{Fe}(2)-\mathrm{P}(3)$	2.270(1)
$\mathrm{Fe}(2)-\mathrm{O}(10)$	2.038(3)	$\mathrm{Fe}(2)-\mathrm{C}(4)$	1.757(5)	$\mathrm{Fe}(2)-\mathrm{C}(3)$	1.823(6)	$\mathrm{P}(2)-\mathrm{C}(111)$	1.832(6)
$\mathrm{P}(1)-\mathrm{C}(121)$	1.829(5)	$\mathrm{P}(1)-\mathrm{H}(1)$	1.20 (6)	$\mathrm{P}(2)-\mathrm{C}(211)$	1.835(5)	$\mathrm{P}(2)-\mathrm{C}(221)$	1.832(6)
$\mathrm{P}(3)-\mathrm{C}(311)$	1.828(5)	$\mathrm{P}(3)-\mathrm{C}(321)$	1.840(6)	$\mathrm{C}(10)-\mathrm{C}(11)$	1.512(7)	$\mathrm{C}(10)-\mathrm{O}(10)$	$1.255(6)$
$\mathrm{C}(11)-\mathrm{C}(12)$	1.499(8)	$\mathrm{C}(11)-\mathrm{H}(2)$	1.00 (6)	$\mathrm{C}(11)-\mathrm{H}(3)$	0.80(7)	$\mathrm{C}(4)-\mathrm{O}(4)$	$1.150(6)$
$\mathrm{C}(1)-\mathrm{O}(1)$	1.147(8)	$\mathrm{C}(2)-\mathrm{O}(2)$	1.138(8)	$\mathrm{C}(3)-\mathrm{O}(3)$	1.149(8)	$\mathrm{C}(5)-\mathrm{O}(5)$	1.177(9)
$\mathrm{C}(6)-\mathrm{O}(6)$	1.157(8)	$\mathrm{C}-\mathrm{Cl}(1)$	1.69(2)	$\mathrm{C}-\mathrm{Cl}(2)$	1.76(2)		
$\mathrm{Fe}(2)-\mathrm{W}-\mathrm{P}(3)$	49.1(1)	$\mathrm{Fe}(2)-\mathrm{W}-\mathrm{C}(5)$	78.8(3)	P(3)-W-C(5)	82.6(2)	$\mathrm{Fe}(2)-\mathrm{W}-\mathrm{C}(6)$	87.2(2)
$\mathrm{P}(3)-\mathrm{W}-\mathrm{C}(6)$	111.3(2)	C(5)-W-C(6)	78.8(3)	$\mathrm{Fe}(2)-\mathrm{Fe}(1)-\mathrm{P}(1)$	98.2(1)	$\mathrm{Fe}(2)-\mathrm{Fe}(1)-\mathrm{P}(2)$	53.5(1)
$\mathrm{P}(1)-\mathrm{Fe}(1)-\mathrm{P}(2)$	93.5(1)	$\mathrm{Fe}(2)-\mathrm{Fe}(1)-\mathrm{C}(10)$	67.8(1)	$\mathrm{P}(1)-\mathrm{Fe}(1)-\mathrm{C}(10)$	162.6(2)	$\mathrm{P}(2)-\mathrm{Fe}(1)-\mathrm{C}(10)$	86.3(2)
$\mathrm{Fe}(2)-\mathrm{Fe}(1)-\mathrm{C}(1)$	144.6(2)	$\mathrm{P}(1)-\mathrm{Fe}(1)-\mathrm{C}(1)$	100.9(2)	$\mathrm{P}(2)-\mathrm{Fe}(1)-\mathrm{C}(1)$	95.7(2)	$\mathrm{C}(10)-\mathrm{Fe}(1)-\mathrm{C}(1)$	96.4(2)
$\mathrm{Fe}(2)-\mathrm{Fe}(1)-\mathrm{C}(2)$	111.3(2)	$\mathrm{P}(1)-\mathrm{Fe}(1)-\mathrm{C}(2)$	88.8(2)	$\mathrm{P}(2)-\mathrm{Fe}(1)-\mathrm{C}(2)$	164.8(2)	$\mathrm{C}(10)-\mathrm{Fe}(1)-\mathrm{C}(2)$	87.0(2)
$\mathrm{C}(1)-\mathrm{Fe}(1)-\mathrm{C}(2)$	98.6(3)	$\mathrm{W}-\mathrm{Fe}(2)-\mathrm{Fe}(1)$	147.7(1)	W-Fe(2)-P(2)	157.0(1)	$\mathrm{Fe}(1)-\mathrm{Fe}(2)-\mathrm{P}(2)$	52.8(1)
$\mathrm{W}-\mathrm{Fe}(2)-\mathrm{P}(3)$	52.8(1)	$\mathrm{Fe}(1)-\mathrm{Fe}(2)-\mathrm{P}(3)$	152.1(1)	$\mathrm{P}(2)-\mathrm{Fe}(2)-\mathrm{P}(3)$	104.3(1)	$\mathrm{W}-\mathrm{Fe}(2)-\mathrm{O}(10)$	94.6(1)
$\mathrm{Fe}(1)-\mathrm{Fe}(2)-\mathrm{O}(10)$	70.1(1)	$\mathrm{P}(2)-\mathrm{Fe}(2)-\mathrm{O}(10)$	84.6(1)	$\mathrm{P}(3)-\mathrm{Fe}(2)-\mathrm{O}(10)$	94.2(1)	W-Fe(2)-C(4)	90.7(2)
$\mathrm{Fe}(1)-\mathrm{Fe}(2)-\mathrm{C}(4)$	103.2(2)	$\mathrm{P}(2)-\mathrm{Fe}(2)-\mathrm{C}(4)$	92.3(2)	$\mathrm{P}(3)-\mathrm{Fe}(2)-\mathrm{C}(4)$	92.5(2)	$\mathrm{O}(10)-\mathrm{Fe}(2)-\mathrm{C}(4)$	173.1(2)
$\mathrm{W}-\mathrm{Fe}(2)-\mathrm{C}(3)$	70.1(2)	$\mathrm{Fe}(1)-\mathrm{Fe}(2)-\mathrm{C}(3)$	80.5(2)	$\mathrm{P}(2)-\mathrm{Fe}(2)-\mathrm{C}(3)$	132.6(2)	$\mathrm{P}(3)-\mathrm{Fe}(2)-\mathrm{C}(3)$	122.8(2)
$\mathrm{O}(10)-\mathrm{Fe}(2)-\mathrm{C}(3)$	87.1(2)	$\mathrm{C}(4)-\mathrm{Fe}(2)-\mathrm{C}(3)$	90.5(3)	$\mathrm{Fe}(1)-\mathrm{P}(2)-\mathrm{Fe}(2)$	73.7(1)	$\mathrm{W}-\mathrm{P}(3)-\mathrm{Fe}(2)$	78.1(1)
$\mathrm{Fe}(1)-\mathrm{C}(10)-\mathrm{C}(11)$	126.4(4)	$\mathrm{Fe}(1)-\mathrm{C}(10)-\mathrm{O}(10)$	$117.5(3)$	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{O}(10)$	115.6(4)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	118.0(5)
$\mathrm{Fe}(2)-\mathrm{O}(10)-\mathrm{C}(10)$	104.0(3)	$\mathrm{Fe}(2)-\mathrm{C}(4)-\mathrm{O}(4)$	177.5(5)	$\mathrm{Fe}(1)-\mathrm{C}(1)-\mathrm{O}(1)$	178.9(5)	$\mathrm{Fe}(1)-\mathrm{C}(2)-\mathrm{O}(2)$	176.2(6)
$\mathrm{Fe}(2)-\mathrm{C}(3)-\mathrm{O}(3)$	173.5(5)	W-C(5)-O(5)	176.8(6)	W-C(6)-O(6)	177.3(5)	$\mathrm{Cl}(1)-\mathrm{C}-\mathrm{Cl}(2)$	112.1(11)

(1)

(A)

(E)

(9)

(10)

Scheme 2. $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$. (i) $\mathrm{PPh}_{2} \mathrm{H}$; (ii) -CO ; (iii) +CO ; (iv) $111^{\circ} \mathrm{C},-\mathrm{PPh}_{2} \mathrm{H},-\mathrm{CO}$
solvents were dried and deoxygenated before use. Experiments were carried out using Schlenk-tube techniques, under a dry oxygen-free atmosphere. The i.r. spectra were measured with Nicolet $10-\mathrm{MX}$ and 5Z-DX spectrophotometers, and n.m.r spectra with JNM FX 90Q, GX 270, and GX 400 instru-
ments. Chromatography was carried out on Aldrich Florisil ($100-200$ mesh) or B.D.H. alumina. The compound [WFe 2^{-} $\left.\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mu-\mathrm{CO})(\mathrm{CO})_{8}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ was prepared by the literature method. ${ }^{4}$ Analytical and other data for the new compounds are listed in Tables 1-3.

Table 9. Atomic positional parameters (fractional co-ordinates $\times 10^{4}$) for compound (5) with e.s.d.s in parentheses

Atom	x	y	z	Atom	x	y	z
W	$1746(1)$	$5890(1)$	$8862(1)$	$\mathrm{C}(20)$	$1798(7)$	$6454(4)$	$7773(5)$
$\mathrm{Fe}(1)$	$255(1)$	$6175(1)$	$7241(1)$	$\mathrm{C}(21)$	$2348(7)$	$7151(4)$	$7691(5)$
$\mathrm{Fe}(2)$	$2095(1)$	$5466(1)$	$7256(1)$	$\mathrm{C}(22)$	$3474(8)$	$7212(5)$	$7868(7)$
$\mathrm{P}(1)$	$2159(2)$	$6063(1)$	$6053(2)$	$\mathrm{C}(23)$	$3953(8)$	$7867(5)$	$7843(8)$
$\mathrm{P}(2)$	$2034(2)$	$4746(1)$	$8422(1)$	$\mathrm{C}(24)$	$3358(8)$	$8498(4)$	$7667(5)$
$\mathrm{C}(1)$	$-65(8)$	$6673(4)$	$6234(6)$	$\mathrm{C}(25)$	$2262(8)$	$8423(4)$	$7481(5)$
$\mathrm{O}(1)$	$-345(6)$	$7013(4)$	$5614(4)$	$\mathrm{C}(26)$	$1740(7)$	$7782(4)$	$7488(5)$
$\mathrm{C}(2)$	$-286(8)$	$6844(5)$	$7793(7)$	$\mathrm{C}(27)$	$3931(11)$	$9212(5)$	$7676(7)$
$\mathrm{O}(2)$	$-655(6)$	$7271(4)$	$8127(5)$	$\mathrm{C}(111)$	$1163(9)$	$5754(4)$	$5021(5)$
$\mathrm{C}(3)$	$-931(10)$	$5605(5)$	$6979(7)$	$\mathrm{C}(112)$	$1084(12)$	$6239(6)$	$4231(7)$
$\mathrm{O}(3)$	$-1713(7)$	$5267(4)$	$6789(5)$	$\mathrm{C}(113)$	$3480(10)$	$6108(6)$	$5818(8)$
$\mathrm{C}(4)$	$1907(8)$	$4654(4)$	$6662(6)$	$\mathrm{C}(114)$	$3856(12)$	$5387(7)$	$5578(10)$
$\mathrm{O}(4)$	$1777(7)$	$4143(3)$	$6244(5)$	$\mathrm{C}(211)$	$940(8)$	$4056(4)$	$8191(6)$
$\mathrm{C}(5)$	$3533(9)$	$5469(4)$	$7697(6)$	$\mathrm{C}(212)$	$816(9)$	$3747(5)$	$9031(7)$
$\mathrm{O}(5)$	$4485(6)$	$5446(4)$	$7978(5)$	$\mathrm{C}(213)$	$3296(8)$	$4216(5)$	$8903(6)$
$\mathrm{C}(6)$	$287(8)$	$5585(4)$	$8794(6)$	$\mathrm{C}(214)$	$3569(9)$	$3659(5)$	$8342(7)$
$\mathrm{O}(6)$	$-546(6)$	$5388(4)$	$8890(5)$	$\mathrm{C}(50)$	$4119(27)$	$1863(14)$	$-186(19)$
$\mathrm{C}(11)$	$2134(12)$	$5885(5)$	$10383(6)$	$\mathrm{C}(51)$	$3259(16)$	$1991(12)$	$137(17)$
$\mathrm{C}(12)$	$1863(11)$	$6589(5)$	$10070(6)$	$\mathrm{O}(50)$	$3430(11)$	$2735(9)$	$644(9)$
$\mathrm{C}(13)$	$2659(12)$	$6851(6)$	$9715(7)$	$\mathrm{C}(52)$	$2879(16)$	$2928(20)$	$1174(14)$
$\mathrm{C}(14)$	$3468(10)$	$6305(7)$	$9820(7)$	$\mathrm{C}(53)$	$3216(21)$	$3515(14)$	$1728(25)$
$\mathrm{C}(15)$	$3148(12)$	$5733(7)$	$10220(7)$				

Table 10. Atomic positional parameters (fractional co-ordinates $\times 10^{4}$) for compound (8) with e.s.d.s in parentheses

Atom	x	y	z	Atom	x	z	z
W	$2007(1)$	$7470(1)$	$7996(1)$	$\mathrm{C}(25)$	$3283(7)$	$6912(5)$	$10954(4)$
$\mathrm{Fe}(1)$	$3721(1)$	$8382(1)$	$8672(1)$	$\mathrm{C}(26)$	$3076(6)$	$7216(4)$	$10240(4)$
$\mathrm{Fe}(2)$	$3718(1)$	$7835(1)$	$7379(1)$	$\mathrm{C}(31)$	$5774(6)$	$9170(4)$	$8002(4)$
$\mathrm{P}(1)$	$2215(1)$	$8201(1)$	$9081(1)$	$\mathrm{C}(32)$	$5832(6)$	$9770(4)$	$8444(5)$
$\mathrm{P}(2)$	$5179(1)$	$8340(1)$	$8236(1)$	$\mathrm{C}(33)$	$6345(8)$	$10384(5)$	$8298(7)$
$\mathrm{C}(1)$	$2405(7)$	$7571(4)$	$6716(4)$	$\mathrm{C}(34)$	$6765(8)$	$10391(6)$	$7696(7)$
$\mathrm{O}(1)$	$1742(5)$	$7417(3)$	$6133(3)$	$\mathrm{C}(35)$	$6732(8)$	$9821(7)$	$7253(6)$
$\mathrm{C}(2)$	$3593(7)$	$8592(5)$	$6762(5)$	$\mathrm{C}(36)$	$6230(7)$	$9189(5)$	$7398(5)$
$\mathrm{O}(2)$	$3484(6)$	$9068(4)$	$6369(4)$	$\mathrm{C}(41)$	$6498(5)$	$7890(4)$	$8729(4)$
$\mathrm{C}(3)$	$4453(7)$	$7219(6)$	$6995(4)$	$\mathrm{C}(42)$	$6841(6)$	$7271(4)$	$8458(4)$
$\mathrm{O}(3)$	$4880(6)$	$6809(4)$	$6700(4)$	$\mathrm{C}(43)$	$7872(7)$	$6969(5)$	$8860(5)$
$\mathrm{C}(4)$	$3285(6)$	$9259(4)$	$8305(5)$	$\mathrm{C}(44)$	$8552(6)$	$7267(5)$	$9501(5)$
$\mathrm{O}(4)$	$3005(5)$	$9793(3)$	$8046(4)$	$\mathrm{C}(45)$	$8226(6)$	$7889(4)$	$9773(5)$
$\mathrm{C}(5)$	$4518(6)$	$8542(4)$	$9633(4)$	$\mathrm{C}(46)$	$7200(6)$	$8196(4)$	$9382(4)$
$\mathrm{O}(5)$	$5049(5)$	$8692(3)$	$10248(3)$	$\mathrm{C}(51)$	$4471(5)$	$6771(3)$	$8745(4)$
$\mathrm{C}(6)$	$1258(6)$	$8324(4)$	$7436(4)$	$\mathrm{C}(52)$	$5195(5)$	$6783(4)$	$9503(4)$
$\mathrm{O}(6)$	$772(5)$	$8801(3)$	$7099(3)$	$\mathrm{C}(53)$	$5843(6)$	$6211(4)$	$9832(5)$
$\mathrm{C}(7)$	$3749(5)$	$7365(3)$	$8400(3)$	$\mathrm{C}(54)$	$5832(7)$	$5593(4)$	$9429(6)$
$\mathrm{C}(11)$	$1289(6)$	$8953(4)$	$9077(4)$	$\mathrm{C}(55)$	$5134(7)$	$5564(4)$	$8683(6)$
$\mathrm{C}(12)$	$1725(7)$	$9615(4)$	$9336(6)$	$\mathrm{C}(56)$	$4480(6)$	$6118(4)$	$8355(4)$
$\mathrm{C}(13)$	$981(10)$	$10180(5)$	$9265(8)$	$\mathrm{C}(57)$	$6558(8)$	$4962(5)$	$9817(8)$
$\mathrm{C}(14)$	$-138(9)$	$10091(5)$	$8995(7)$	$\mathrm{C}(61)$	$542(8)$	$6790(4)$	$7251(4)$
$\mathrm{C}(15)$	$-571(7)$	$9443(5)$	$8750(6)$	$\mathrm{C}(62)$	$272(6)$	$6981(4)$	$7911(4)$
$\mathrm{C}(16)$	$143(6)$	$8870(4)$	$8802(5)$	$\mathrm{C}(63)$	$1050(7)$	$6680(4)$	$8555(5)$
$\mathrm{C}(21)$	$2425(5)$	$7826(4)$	$10034(4)$	$\mathrm{C}(64)$	$1805(7)$	$6276(4)$	$8286(6)$
$\mathrm{C}(22)$	$1983(7)$	$8105(5)$	$10577(4)$	$\mathrm{C}(65)$	$1490(7)$	$6350(4)$	$7490(5)$
$\mathrm{C}(23)$	$2173(8)$	$7803(5)$	$11290(5)$	Cl	$4511(5)$	$706(3)$	$4836(4)$
$\mathrm{C}(24)$	$2816(7)$	$7204(5)$	$11472(4)$	C	$4671(23)$	$-95(38)$	$5312(23)$

Reactions.- $\left[\mathrm{WFe}_{2}\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mu-\mathrm{CO})(\mathrm{CO})_{8}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ (1) with $\mathrm{PMe}_{2} \mathrm{Ph}$. A diethyl ether ($25 \mathrm{~cm}^{3}$) solution of complex (1) $(0.42 \mathrm{~g}, 0.59 \mathrm{mmol})$ was treated with $\mathrm{PMe}_{2} \mathrm{Ph}(0.08 \mathrm{~g}$, 0.59 mmol) at $20^{\circ} \mathrm{C}$. The mixture was stirred for 3 h , after which time the i.r. spectrum indicated an absence of (1). The solvent was removed from the resulting orange-brown solution in vacuo. The residue was dissolved in the minimum volume of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum (2:3) and chromatographed on alumina. Elution with the same solvent afforded a major orangebrown band which was collected. Removal of the solvent in vacuo followed by recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light
petroleum (1:10) afforded brown microcrystals of $\left[\mathrm{WFe}_{2}\left(\mu_{3}-\right.\right.$ $\left.\left.\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mu-\mathrm{CO})(\mathrm{CO})_{7}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ (2) $(0.43 \mathrm{~g})$.

With $\mathrm{PEt}_{2} \mathrm{H}$. (i) The complex (1) $(0.35 \mathrm{~g}, 0.49 \mathrm{mmol})$ was dissolved in diethyl ether ($30 \mathrm{~cm}^{3}$) and $\mathrm{PEt}_{2} \mathrm{H}(0.045 \mathrm{~g}, 0.50$ mmol) was added. After 30 min had elapsed, the volume of the solution was reduced to $c a .10 \mathrm{~cm}^{3}$ in vacuo, and light petroleum $\left(20 \mathrm{~cm}^{3}\right)$ was added to afford brown microcrystals of $\left[\mathrm{WFe}_{2}\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mu-\mathrm{CO})(\mathrm{CO})_{7}\left(\mathrm{PEt}_{2} \mathrm{H}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](3)$ (0.24 g).
(ii) A diethyl ether ($30 \mathrm{~cm}^{3}$) solution of complex (1) $(0.27 \mathrm{~g}$, $0.38 \mathrm{mmol})$ was treated with $\mathrm{PEt}_{2} \mathrm{H}(0.035 \mathrm{~g}, 0.39 \mathrm{mmol})$ at
$20^{\circ} \mathrm{C}$. The mixture was stirred for 3 d at this temperature, after which time the solvent was removed in vacuo. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ light petroleum (3:7) and chromatographed on alumina. The major green-brown band was collected, affording a brown solution. The solvent was removed in vacuo. Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-pentane (1:10) afforded black crystals of $\left[\mathrm{WFe}_{2}\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mu-\mathrm{H})(\mu-\right.$ $\left.\left.\mathrm{PEt}_{2}\right)(\mathrm{CO})_{7}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](4)(0.19 \mathrm{~g})$.
(iii) $\mathrm{A}_{\mathrm{CH}}^{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ solution of complex (1) $(0.6 \mathrm{~g}, 0.84$ $\mathrm{mmol})$ was treated with an excess of $\mathrm{PEt}_{2} \mathrm{H}(0.38 \mathrm{~g}, 4.2 \mathrm{mmol})$ at $20^{\circ} \mathrm{C}$. After 12 h the solvent was removed in vacuo. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ light petroleum (2:3) and chromatographed on Florisil at $7{ }^{\circ} \mathrm{C}$. Elution with the same solvent afforded three major bands. The first green-brown band (ca. 15%) was identified as (4) by its i.r. spectrum. The second redpurple band was collected. The solvent was removed in vacuo, and recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-diethyl ether-light petroleum (1:1:5) at $-20^{\circ} \mathrm{C}$ afforded plate-like orange-red crystals of $\quad\left[\mathrm{WFe}_{2}\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mu-\mathrm{H})\left(\mu-\mathrm{PEt}_{2}\right)(\mathrm{CO})_{6}-\right.$ $\left.\left(\mathrm{PEt}_{2} \mathrm{H}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right] \cdot \mathrm{Et}_{2} \mathrm{O}(5)(0.40 \mathrm{~g})$. Further elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum (3:2) afforded a third orange band (ca. 5%). This was identified as the compound (3) by its i.r. spectrum.
$\left[\mathrm{WFe}_{2}\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mu-\mathrm{H})\left(\mu-\mathrm{PEt}_{2}\right)(\mathrm{CO})_{6}\left(\mathrm{PEt}_{2} \mathrm{H}\right)(\eta-\right.$ $\mathrm{C}_{5} \mathrm{H}_{5}$)] (5) (i) A toluene solution of complex (5) $(0.36 \mathrm{~g}, 0.41$ mmol) was refluxed at $111^{\circ} \mathrm{C}$ for 4 h , after which time the solvent was removed in vacuo. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum (1:3) and chromatographed on alumina. Elution with the same solvent afforded a green-brown band which was collected. The solvent was removed in vacuo, and recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum (1:10) afforded dark brown crystals of $\left[\mathrm{WFe}_{2}\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mu-\right.$ $\left.\left.\mathrm{PEt}_{2}\right)_{2}(\mathrm{CO})_{6}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](6)(0.23 \mathrm{~g})$.
(ii) A thf solution of complex (5) $(0.51 \mathrm{~g}, 0.58 \mathrm{mmol})$ was treated with $\mathrm{Li}\left[\mathrm{BEt}_{3} \mathrm{H}\right]\left[60 \mu \mathrm{l}\right.$ of a $1 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in tetrahydrofuran (thf), 0.06 mmol$]$ and the solution was stirred for 24 h . After this time the solvent was removed in vacuo. Chromatography and recrystallization as in (i) afforded crystals of (6) $(0.29 \mathrm{~g}$).
$\left[\mathrm{WFe}_{2}\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mu-\mathrm{CO})(\mathrm{CO})_{8}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ (1) with $\mathrm{PPh}_{2} \mathrm{H}$. (i) A diethyl ether ($25 \mathrm{~cm}^{3}$) solution of complex (1) (0.42 $\mathrm{g}, 0.60 \mathrm{mmol})$ was treated with $\mathrm{PPh}_{2} \mathrm{H}(0.11 \mathrm{~g}, 0.60 \mathrm{mmol})$. The mixture was stirred for 3 h , after which time the i.r. spectrum showed an absence of starting material. The solvent was removed from the resulting green solution in vacuo. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum ($1: 10$) and chromatographed on Florisil $(2 \times 20 \mathrm{~cm})$. Elution with the same solvent afforded an olive-green band. The solvent was removed in vacuo and recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-diethyl ether-light petroleum gave dark brown crystals of $\left[\mathrm{WFe}_{2}\left(\mu_{3}-\right.\right.$ $\left.\left.\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mu-\mathrm{H})\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{7}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ (7) $(0.37 \mathrm{~g})$.
(ii) A $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1 \mathrm{~cm}^{3}\right)$ solution of complex (1) $(0.62 \mathrm{~g}, 0.87$ $\mathrm{mmol})$ was treated with $\mathrm{PPh}_{2} \mathrm{H}(0.8 \mathrm{~g}, 4.3 \mathrm{mmol})$. The mixture was stirred for 24 h , after which time the solvent was removed in vacuo. The residual brown oil was dissolved in the minimum volume of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum (1:4) and chromatographed on alumina. Gradient elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum (1:4 to $3: 2$) afforded three major bands. The first green band was identified as $\left[\mathrm{WFe}_{2}\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{6}(\eta-\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](8)(c a .10 \%)$. A more efficient synthesis of compound (8) is described in the following section. The second brown band was collected and the solvent was removed in vacuo. Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum (1:10) afforded dark brown crystals of $\left[\mathrm{WFe}_{2}\left(\mu-\mathrm{OCCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mu-\right.$ $\left.\left.\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{6}\left(\mathrm{PPh}_{2} \mathrm{H}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10) $(0.25 \mathrm{~g})$. The third grey-green band was also collected and the solvent was removed in vacuo. Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum gave black crystals of $\left[\mathrm{WFe}_{2}\left(\mu_{3}-\mathrm{OCCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right.\right.$ 4) $\left.\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{5}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](9)(0.43 \mathrm{~g})$.
$\left[\mathrm{WFe}_{2}\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mu-\mathrm{H})\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{7}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ (7) with $\mathrm{PPh}_{2} \mathrm{H}$. A toluene $\left(10 \mathrm{~cm}^{3}\right)$ solution of complex (7) $(0.27 \mathrm{~g}$, 0.33 mmol) was refluxed $\left(111^{\circ} \mathrm{C}\right)$ for 30 min to generate in situ a solution of the unsaturated derivative $\left[\mathrm{WFe}_{2}\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-\right.\right.$ $\left.4)(\mu-\mathrm{H})\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{6}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$. The solvent was removed in vacuo, $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ was added, and the resulting solution was treated with $\mathrm{PPh}_{2} \mathrm{H}(0.06 \mathrm{~g}, 0.32 \mathrm{mmol})$. The solution was stirred for 24 h , after which time the solvent was removed in vacuo. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum (2:3) and chromatographed on alumina. Elution with the same solvent mixture afforded a major green band which was collected. The solvent was removed in vacuo, and recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum (1:8) afforded green crystals of $\left[\mathrm{WFe}_{2}\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{6}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right] \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (8) $(0.30 \mathrm{~g})$.

Thermolysis of $\left[\mathrm{WFe}_{2}\left(\mu-\mathrm{OCCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\left(\mu-\mathrm{PPh}_{2}\right)_{2}-\right.$ $\left.(\mathrm{CO})_{6}\left(\mathrm{PPh}_{2} \mathrm{H}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right](10)$.-A toluene $\left(10 \mathrm{~cm}^{3}\right)$ solution of complex (10) $(0.20 \mathrm{~g}, 0.15 \mathrm{mmol})$ was refluxed $\left(111{ }^{\circ} \mathrm{C}\right)$ for 4 h , after which time the solvent was removed in vacuo. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum (1:1) and chromatographed on alumina. Elution with the same solvent mixture afforded a grey-green band of $(9)(0.11 \mathrm{~g}, 73 \%)$.

Crystal Structure Determinations.-Data were collected using Nicolet $P 2_{1}$ or $P 3$ diffractometers ($293 \mathrm{~K}, \mathrm{Mo}-K_{\alpha} X$-radiation, graphite monochromator, $\bar{\lambda}=0.71069 \AA$). The data were corrected for Lorentz, polarization and X-ray absorption effects. ${ }^{16}$ The structures were solved by conventional heavyatom or direct methods and successive difference Fourier syntheses were used to locate all non-hydrogen atoms. Final refinements by blocked-cascade least squares were performed on a Data General 'Eclipse' computer with the SHELXTL system of programs. ${ }^{16}$ Scattering factors with corrections for anomalous dispersion were taken from ref.17. Atom coordinates are given in Tables 9-12.

Additional material available from the Cambridge Crystallographic Data Centre comprises H -atom co-ordinates, thermal parameters, and remaining bond lengths and angles.
$\left[\mathrm{WFe}_{2}\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mu-\mathrm{H})\left(\mu-\mathrm{PEt}_{2}\right)(\mathrm{CO})_{6}\left(\mathrm{PEt}_{2} \mathrm{H}\right)(\eta\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)\right] \cdot \mathrm{Et}_{2} \mathrm{O}(5)$. Crystals of (5) were grown from a $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ diethyl ether-light petroleum ($1: 1: 4$) solvent mixture at $-20^{\circ} \mathrm{C}$ as orange plates (crystal dimensions ca. $0.40 \times 0.35 \times 0.10$ mm). Of the 4238 data collected ($\theta-2 \theta$ scans, $2 \theta \leqslant 50^{\circ}$, weak data for $2 \theta \geqslant 40^{\circ}$ were not collected), 3660 unique data had $F \geqslant 5 \sigma(F)$, and only these were used for structure solution and refinement. An empirical absorption correction was applied using a method based upon azimuthal scan data.

Crystal data. $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{Fe}_{2} \mathrm{O}_{6} \mathrm{P}_{2} \mathrm{~W} \cdot \mathrm{Et}_{2} \mathrm{O}, M=886.2$, monoclinic, space group $P 2_{1} / c, a=12.738(9), b=18.711(11), c=$ 15.936(8) $\AA, \beta=107.69(5)^{\circ}, U=3619(4) \AA^{3}, Z=4, D_{\mathrm{c}}=$ $1.63 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=1768, \mu\left(\mathrm{Mo}-K_{\alpha}\right)=41.6 \mathrm{~cm}^{-1}$.
The asymmetric unit contains a molecule of diethyl ether. All non-hydrogen atoms were refined with anisotropic thermal parameters. The positions of the $\mathrm{P}-\mathrm{H}(1)$ and $\mu-\mathrm{H}(2)$ hydrogen atoms were refined with fixed isotropic thermal parameters. The hydrogen atoms of the diethyl ether solvent of crystallization were not included in the refinement but all remaining nonsolvent hydrogen atoms were included in calculated positions ($\mathrm{C}-\mathrm{H} 0.96 \AA$) with fixed isotropic thermal parameters $c a$. $1.2 U_{\text {equiv. }}$ of the parent carbon atoms. Final $R=0.041\left(R^{\prime}=\right.$ 0.044) with a weighting scheme $w^{-1}=\left[\sigma^{2}(F)+0.0015|F|^{2}\right]$. The final electron-density difference synthesis showed no peaks >1.2 or $<-0.9 \mathrm{e}^{\AA^{-3}}$.
$\left[\mathrm{WFe}_{2}\left(\mu_{3}-\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{6}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right] \cdot 0.5-$
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (8). Crystals of complex (8) were grown from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ light petroleum mixtures as black prisms [crystal dimensions ca. $0.255 \times 0.10 \times 0.075 \mathrm{~mm}$ with well developed faces of the

Table 11. Atomic positional parameters (fractional co-ordinates $\times 10^{4}$) for compound (9) with e.s.d.s in parentheses

Atom	x	y	z	Atom	x	y	z
W	2756 (1)	$1795(1)$	2 446(1)	C(45)	4194	-3613	3719
$\mathrm{Fe}(1)$	710(1)	-494(1)	3 163(1)	C(46)	3543	-2849	3313
$\mathrm{Fe}(2)$	2 508(1)	-453(1)	$2004(1)$	C(51)	4 392(4)	604(5)	4 040(3)
$\mathrm{P}(1)$	3 708(3)	$1584(2)$	$1253(1)$	C(52)	5560	474	3606
P (2)	1216 (2)	-2 219(2)	2950 (1)	C(53)	6851	1150	3644
C(11)	3 169(7)	2 195(5)	427(3)	C(54)	6975	1956	4116
C(12)	2993	1393	-44	C(55)	5808	2086	4550
C(13)	2539	1814	-622	C(56)	4516	1410	4513
C(14)	2261	3036	-809	C(57)	8416(12)	2 653(10)	4 168(5)
C(15)	2436	3837	-337	C(61)	3063 (7)	$3011(5)$	3 290(3)
C(16)	2890	3417	280	C(62)	2230	3507	2867
C(21)	5 551(5)	$1886(6)$	919(3)	C(63)	3027	4066	2130
C(22)	6245	2514	186	C(64)	4352	3917	2098
C(23)	7648	2710	-46	C(65)	4374	3265	2815
C(24)	8357	2278	454	C(1)	$3552(1)$)	-1 349(9)	1 601(5)
C(25)	7663	1649	1187	$\mathrm{O}(1)$	4 171(9)	-1957(9)	$1358(5)$
C(26)	6260	1453	1419	C(5)	2 494(10)	46(7)	$3315(4)$
C(31)	-9(5)	-3540(4)	2740 (3)	C(2)	1241 (10)	$-700(8)$	$1509(5)$
C(32)	479	-4161	2228	$\mathrm{O}(2)$	429(8)	-859(7)	1 201(4)
C(33)	-432	-5 127	2040	C(3)	- 137(11)	-921(9)	$4094(6)$
C(34)	-1830	-5473	2365	$\mathrm{O}(3)$	-726(9)	-1 266(8)	4709 (4)
C(35)	-2318	-4853	2877	C(4)	-877(10)	-740(8)	$2909(6)$
C(36)	-1408	-3886	3065	O(4)	-1891(8)	-921(7)	2755 (5)
C(41)	2 119(6)	-3 209(5)	3479 (3)	$\mathrm{O}(5)$	3 561(6)	158(5)	2 695(3)
C(42)	1346	-4334	4050	C(6)	2 962(9)	-177(8)	4033(4)
C(43)	1997	-5098	4456	C(9)	925(10)	1 630(8)	$2215(6)$
C(44)	3421	-4738	4291	O(9)	65(8)	$1877(7)$	$1989(5)$

types $(1,0, \overline{1}),(\overline{1}, 0,1),(0,1,0),(0, \overline{1}, 0),(1,0,1),(\overline{1}, \overline{1}, \overline{1})]$. Of the 8069 data collected ($\theta-2 \theta$ scans, $2 \theta \leqslant 50^{\circ}$), 4702 unique data had $F \geqslant 5 \sigma(F)$, and only these were used for structure solution and refinement. The data were corrected for X-ray absorption effects by an analytical method using crystal faces.

Crystal data. $\mathrm{C}_{43} \mathrm{H}_{32} \mathrm{Fe}_{2} \mathrm{O}_{6} \mathrm{P}_{2} \mathrm{~W} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}, M=1044.6$, monoclinic, space group $P 2_{1} / n$ (non-standard setting of $P 2_{1} / c$), $a=12.484(3), b=18.900(7), c=18.230(4) \AA, \beta=107.48(2)^{\circ}$, $U=4103(2) \AA^{3}, Z=4, D_{\mathrm{c}}=1.69 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=2060$, $\mu\left(\mathrm{Mo}-K_{\alpha}\right)=37.4 \mathrm{~cm}^{-1}$.

All non-hydrogen atoms were refined with anisotropic thermal parameters. The asymmetric unit contains half a molecule of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ of crystallization which is disordered about the point $\frac{1}{2}, 0, \frac{1}{2}$. Solvent hydrogen atoms were not included in the refinement. All other hydrogen atoms were included in calculated positions ($\mathrm{C}-\mathrm{H} 0.96 \AA$) with either fixed isotropic thermal parameters $c a .1 .2 U_{\text {equiv. }}$ of the parent carbon atoms $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right.$ and $\left.\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$, or a common refined isotropic thermal parameter (Me-4). Final $R=0.035$ ($R^{\prime}=0.038$) with a weighting scheme $w^{-1}=\left[\begin{array}{lll}\sigma^{2}(F)+0.000 & 1 & |F|^{2}\end{array}\right]$. The final electron-density difference synthesis showed no peaks >0.86 or <-0.57 e \AA^{-3}.
$\left[\mathrm{WFe}_{2}\left(\mu_{3}-\mathrm{OCCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{5}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$
(9). Crystals of complex (9) were grown from dichloromethanelight petroleum mixtures as black plates [crystal dimensions $c a$. $0.40 \times 0.14 \times 0.13 \mathrm{~mm}$, with well developed faces of the types $(1,0,0),(1,0,0),(0,1,0),(0, \overline{1}, 0),(0,0,1),(0,0, \overline{1})]$. Of the 7282 data collected ($\theta-2 \theta$ scans, $2 \theta \leqslant 50^{\circ}$), 4189 unique data had $F \geqslant 5 \sigma(F)$, and only these were used for structure solution and refinement. The data were corrected for X-ray absorption effects by an analytical method using crystal faces.

Crystal data. $\mathrm{C}_{43} \mathrm{H}_{34} \mathrm{Fe}_{2} \mathrm{O}_{6} \mathrm{P}_{2} \mathrm{~W}, \quad M=1003.6$, triclinic, space group $P \overline{1}, a=10.430(7), b=10.767(9), c=19.372(20)$ $\AA, \alpha=77.37(8), \beta=78.83(7), \gamma=103.74(6)^{\circ}, U=1992(3) \AA^{3}$, $Z=2, D_{\mathrm{c}}=1.67 \mathrm{~g} \mathrm{~cm}^{-3}, \quad F(000)=992, \mu\left(\mathrm{Mo}-K_{\alpha}\right)=39.9$ cm^{-1}.

All non-hydrogen atoms were refined with anisotropic thermal parameters. The positions of the $\mathrm{RCH}_{2} \mathrm{CO}$ hydrogen atoms were refined with fixed isotropic thermal parameters. All remaining hydrogen atoms were included in calculated positions ($\mathrm{C}-\mathrm{H} 0.96 \AA$) and chemically related groups of hydrogen atoms were given common refined isotropic thermal parameters. Final $R=0.045\left(R^{\prime}=0.045\right)$ with weighting scheme $w^{-1}=\left[\sigma^{2}(F)+0.002|F|^{2}\right]$. The final electron-density difference synthesis showed no peaks >0.84 or $<-1.40 \AA^{-3}$, except in the vicinity of the W atom where peaks of $c a .2 .2 \mathrm{e} \AA^{-3}$ were observed.
$\left[\mathrm{WFe}_{2}\left(\mu-\mathrm{OCCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\left(\mu-\mathrm{PPh}_{2}\right)_{2}(\mathrm{CO})_{6}\left(\mathrm{PPh}_{2} \mathrm{H}\right)(\eta-\right.$
$\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathbf{1 0})$. Crystals of complex (10) were grown from dichloromethane-light petroleum mixtures as black prisms [crystal dimensions ca. $0.60 \times 0.15 \times 0.15 \mathrm{~mm}$, with well developed faces of the types $(1,0,0),(\overline{1}, 0,0),(0,1,0),(0, \overline{1}, 0),(0,0,1)$, $(0,0, \overline{1})]$. Of the 7728 data collected $\left(\theta-2 \theta\right.$ scans, $2 \theta \leqslant 50^{\circ}$, weak data for $2 \theta \geqslant 40^{\circ}$ were not collected), 7114 unique data had $F \geqslant 5 \sigma(F)$, and only these were used for structure solution and refinement. The data were corrected for X-ray absorption effects by an analytical method using crystal faces.

Crystal data. $\mathrm{C}_{56} \mathrm{H}_{45} \mathrm{Fe}_{2} \mathrm{O}_{7} \mathrm{P}_{3} \mathrm{~W} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}, \quad M=1303.4$, triclinic, space group $P \overline{1}, a=11.120(4), b=13.289(4), c=$ 19.083(5) $\AA, \alpha=90.96(2), \beta=99.59(2), \gamma=80.88(3)^{\circ}, U=$ $2745(1) \AA^{3}, Z=2, D_{\mathrm{c}}=1.58 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=1300, \mu(\mathrm{Mo}-$ $\left.K_{\alpha}\right)=28.9 \mathrm{~cm}^{-1}$.

All non-hydrogen atoms were refined with anisotropic thermal parameters. The positions of the $\mathrm{RCH}_{2} \mathrm{CO}$ and $\mathrm{P}-\mathrm{H}$ hydrogen atoms were refined with fixed isotropic thermal parameters. All other hydrogen atoms were included in calculated positions ($\mathrm{C}-\mathrm{H} 0.96 \AA$) with either fixed isotropic thermal parameters ca. $1.2 U_{\text {equiv. }}$ of the parent carbon atoms $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right.$ and $\eta-\mathrm{C}_{5} \mathrm{H}_{5}$), or a common refined isotropic thermal parameter (Me-4). Final $R=0.036$ ($R^{\prime}=0.038$) with a weighting scheme $: v^{-1}=\left[\sigma^{2}(F)+0.001|F|^{2}\right]$. The final electron-density difference synthesis showed no peaks >1.14 or $<-1.08 \mathrm{e} \AA^{-3}$.

Table 12. Atomic positional parameters (fractional co-ordinates $\times 10^{4}$) for compound (10) with e.s.d.s in parentheses

Atom	x	y	z	Atom	x	y	z
W	4 667(1)	$2518(1)$	$1928(1)$	C(214)	-2996(7)	4 819(7)	988(4)
$\mathrm{Fe}(1)$	$1708(1)$	$5773(1)$	2 754(1)	C(215)	-2 835(6)	5474(6)	$1556(4)$
$\mathrm{Fe}(2)$	2 537(1)	3 963(1)	2 240(1)	C(216)	-1712(5)	5360 (5)	$2019(4)$
P (1)	790(1)	$6565(1)$	1 696(1)	C(221)	246(4)	$3850(4)$	3 303(3)
P (2)	691(1)	4 466(1)	2 555(1)	C(222)	-444(5)	3 052(4)	3 164(3)
$\mathrm{P}(3)$	2 732(1)	2 237(1)	2 215(1)	C(223)	-754(6)	2 541(5)	3 724(4)
C(10)	$2833(4)$	4 916(4)	3467 (3)	C(224)	-398(6)	2813 (5)	4 410(3)
C(11)	3 466(6)	5 256(4)	4 175(3)	C(225)	265(6)	3 602(5)	$4555(3)$
$\mathrm{O}(10)$	3 188(3)	4012(3)	3 302(2)	C(226)	585(5)	4 124(4)	4010 (3)
C(4)	$1918(5)$	$4079(4)$	1331 (3)	C(311)	1 542(5)	$1684(4)$	$1627(3)$
$\mathrm{O}(4)$	$1542(4)$	$4180(3)$	733(2)	C(312)	678(5)	1210 (4)	$1903(3)$
$\mathrm{C}(1)$	776(5)	6 401(4)	3 336(3)	C(313)	-268(6)	850(5)	$1453(4)$
$\mathrm{O}(1)$	175(5)	$6800(4)$	3725 (3)	C(314)	-388(7)	968(5)	730(4)
C(2)	$2857(6)$	6 608(4)	2 833(3)	C(315)	453(6)	1 426(5)	450(3)
$\mathrm{O}(2)$	3 565(5)	7149 (4)	2 919(3)	C(316)	1 406(6)	$1772(4)$	879(3)
C(3)	$3775(5)$	$4651(4)$	2 105(3)	C(321)	2 930(5)	$1435(4)$	$3015(3)$
$\mathrm{O}(3)$	4 472(4)	5166 (3)	2009 (3)	C(322)	$2739(6)$	$1794(5)$	3 675(3)
C(5)	4 405(6)	$1409(5)$	1276 (4)	C(323)	2 983(7)	1146 (5)	4 261(4)
$\mathrm{O}(5)$	4 307(5)	721(4)	886(3)	C(324)	3 445(9)	130(6)	$4189(4)$
C(6)	4 445(5)	$3218(5)$	$1008(4)$	C(325)	3 602(9)	-264(6)	3 527(4)
$\mathrm{O}(6)$	$4359(5)$	$3610(4)$	461(3)	C(326)	3 368(7)	409(5)	2941 (4)
C(111)	$1779(5)$	7 287(4)	1 294(3)	C(12)	3 506(5)	4 612(4)	$4818(3)$
C(112)	$1735(6)$	$8328(4)$	$1384(3)$	C(13)	2 917(6)	$5017(6)$	5 372(4)
C(113)	2547 (6)	$8844(5)$	1 122(4)	C(14)	2 906(7)	4 420(6)	$5970(4)$
C(114)	3 439(7)	8329 (6)	767(4)	C(15)	3 485(6)	3 439(6)	6 036(4)
C(115)	3 500(6)	7 279(6)	675(4)	C(16)	4 098(6)	3 034(5)	5 484(3)
C(116)	2671 (6)	$6758(4)$	932(3)	C(17)	$4100(6)$	3 610(5)	$4885(3)$
C(121)	-678(5)	$7435(4)$	1610 (3)	C(18)	3 446(9)	$2754(9)$	$6671(4)$
C(122)	-929(6)	$8118(5)$	$2139(4)$	C(31)	6 534(6)	3 075(6)	$2369(4)$
C(123)	-2 036(8)	$8783(6)$	$2062(5)$	C(32)	5 908(6)	3 107(6)	2 950(4)
C(124)	-2 890(7)	$8774(7)$	$1462(5)$	C(33)	$5730(6)$	2 104(6)	$3089(4)$
C(125)	-2655(7)	8 103(7)	939(5)	C(34)	6 248(7)	$1462(6)$	$2611(5)$
C(126)	-1547(6)	$7423(5)$	$1004(4)$	C(35)	6770 (6)	2061(10)	2168 (5)
C(211)	-761(4)	4 598(4)	$1922(3)$	C	$8959(14)$	-867(14)	4 314(11)
C(212)	-942(6)	3 934(5)	$1357(3)$	$\mathrm{Cl}(1)$	7 647(6)	-56(4)	$4031(3)$
C(213)	-2066(7)	$4058(7)$	898(4)	$\mathrm{Cl}(2)$	10 231(6)	-529(4)	3 988(4)

Acknowledgements

We thank the S.E.R.C. for support via a research studentship (to J. G. L-S.).

References

1 (a) S. B. Colbran, B. F. G. Johnson, J. Lewis, and R. M. Sorrell, J. Organomet. Chem., 1985, 296, C1; (b) R. J. Haines, N. D. C. T. Steen, and R. B. English, J. Chem. Soc., Dalton Trans., 1984, 515; (c) A. M. Arif, R. A. Jones, S. T. Schwab, and B. R. Wittlesey, J. Am. Chem. Soc., 1986, 108, 1703; (d) A. D. Harley, R. R. Whittle, and G. L. Geoffroy, Organometallics, 1986, 5, 1283; (e) A. D. Horton, M. J. Mays, and P. R. Raithby, J. Chem. Soc., Dalton Trans., 1987, 1557; (f) W. E. Buro, M. H. Chisholm, K. Folting, B. W. Eichhorn, and J. C. Huffman, J. Chem. Soc., Chem Commun., 1987, 845.
2 (a) J. C. Jeffery and J. G. Lawrence-Smith, J. Organomet. Chem., 1985, 280, C34; (b) P. Dunn, J. C. Jeffery, and P. Sherwood, ibid., 1986, 311, C55; (c) M. R. Bradford, J. C. Jeffery, K. M. Johnson, and S. E. Phillips, ibid., 1989, 362, 205.

3 J. C. Jeffery and J. G. Lawrence-Smith, J. Chem. Soc., Chem Commun., (a) 1985, 275; (b) ibid., 1986, 17.
4 L. Busetto, J. C. Jeffery, R. M. Mills, F. G. A. Stone, M. J. Went, and P. Woodward, J. Chem. Soc., Dalton Trans., 1983, 101.

5 G. L. Geoffroy, W. C. Mercer, R. R. Whittle, L. Markó, and S. Vastag, Inorg. Chem., 1985, 24, 3771.
6 J. T. Park, J. R. Shapley, M. R. Churchill, and C. Bueno, Inorg. Chem., 1983, 22, 1579.

7 W. K. Wong, K. W. Chiu, G. Wilkinson, A. M. R. Galas, M. B. Hursthouse, and M. Thornton-Pett, J. Chem. Soc., Dalton Trans., 1983, 1557; 1981, 2496.
8 P. Braunstein, D. Matt, O. Bars, M. Louër, D. Grandjean, J. Fischer, and A. Mitschler, J. Organomet. Chem., 1981, 213, 79.
9 R. Mason and J. A. Zubieta, J. Organomet. Chem., 1974, 66, 279.
10 Y-F. Yu, J. Gallucci, and A. Wojcicki, J. Am. Chem. Soc., 1983, 105, 4826.

11 T. Adatia, K. Henrick, A. D. Horton, M. J. Mays, and M. McPartlin, J. Chem. Soc., Chem. Commun., 1986, 1206.

12 J. C. Jeffery, A. G. Orpen, F. G. A. Stone, and M. J. Went, J. Chem. Soc., Dalton Trans., 1986, 173.
13 R. P. Rosen, J. B. Hoke, R. R. Whittle, G. L. Geoffroy, J. P. Hutchinson, and J. A. Zubieta, Organometallics, 1984, 3, 846.
14 T. S. Targos, G. L. Geoffroy, and A. L. Rheingold, J. Organomet. Chem., 1986, 299, 223.
15 J. R. Shapley, J. T. Park, M. R. Churchill, J. W. Ziller, and L. R. Beanan, J. Am. Chem. Soc., 1984, 106, 1144; M. R. Churchill, J. W. Ziller, and L. R. Beanan, J. Organomet. Chem., 1985, 287, 235; M. R. Churchill and Y-J. Li, ibid., 1985, 294, 367; 1985, 291, 61.
16 G. M. Sheldrick, SHELXTL programs for use with a Nicolet X-ray System, Cambridge, 1976; updated Göttingen, 1981.
17 'International Tables for X-Ray Crystallography,' Kynoch Press, Birmingham, 1974, vol. 4.

[^0]: \dagger Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1990, Issue 1, pp. xix-xxii.

