Synthesis and Characterization of Octamolybdates containing Co-ordinatively Bound Salicylideneiminato and Methioninato (MetO) Ligands. Crystal Structures of $\left[\mathrm{NH}_{3} \mathrm{Pr}_{2}\left[\mathrm{Mo}_{8} \mathrm{O}_{22}(\mathrm{OH})_{4}\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}=\mathrm{NPr}-2\right)_{2}\right] \cdot 6 \mathrm{MeOH}\right.$ and $[\text { Hmorph }]_{4}\left[\mathrm{MO}_{\mathbf{8}} \mathrm{O}_{\mathbf{2 4}}(\mathrm{OH})_{\mathbf{2}}(\mathrm{MetO})_{\mathbf{2}}\right] \cdot \mathbf{4 \mathrm { H } _ { \mathbf { 2 } } \mathrm { O }}(\mathbf{m o r p h}=$ morpholine $) ~ \dagger$

Boris Kamenar,* Branka Korpar-Čolig, Maja Penavić, and Marina Cindrić
Laboratory of General and Inorganic Chemistry, Faculty of Science, University of Zagreb, P.O. Box 153, 41001 Zagreb, Yugoslavia

Abstract

The compound $\left[\mathrm{MoO}_{2}(\mathrm{sal})_{2}\right]$ ($\mathrm{Hsal}=$ salicylaldehyde) reacts with n -propylamine in methanol to give $\left[\mathrm{NH}_{3} \mathrm{Pr}\right]_{2}\left[\mathrm{Mo}_{8} \mathrm{O}_{22}(\mathrm{OH})_{4}\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}=\mathrm{NPr}-2\right)_{2}\right] \cdot 6 \mathrm{MeOH}$ (1). The same complex was obtained by the reaction of ammonium paramolybdate with N-propylsalicylideneimine. The structure determined by X-ray analysis showed that the octamolybdate anion consists of eight condensed octahedra with 16 terminal positions, two of which are occupied by the salicylideneiminato ligands. The reaction of $\mathrm{MoO}_{2} \mathrm{Cl}_{2}$ with methionine yields the neutral complex $\left[\mathrm{Mo}_{8} \mathrm{O}_{20}(\mathrm{OH})_{4}(\mathrm{MetO})_{4}\right]$-solvent (2) (solvent $=\mathrm{H}_{2} \mathrm{O}$ or $\mathrm{MeOH}, \mathrm{MetO}=$ methioninate). If the methanolic solution of (2) is neutralized with morpholine (morph) the anionic complex $[\mathrm{Hmorph}]_{4}\left[\mathrm{Mo}_{8} \mathrm{O}_{24}(\mathrm{OH})_{2}(\mathrm{MetO})_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (3) is obtained. It has been shown by X-ray analysis that the structure of (3) is analogous to that of (1) with two MetO ligands linked to two terminal sites of the $\mathrm{Mo}_{\mathbf{3}} \mathrm{O}_{\mathbf{2 6}}$ core.

Isopolymolybdates containing organic ligands are becoming interesting as models for a better understanding of the interactions between organic substrates and catalytic metal oxide surfaces, ${ }^{1-4}$ and also owing to their photochemical properties in the photo-oxidation processes of organic compounds. ${ }^{5-8}$ In the last ten years several octamolybdates containing oxygenand nitrogen-donating ligands have been prepared and structurally characterized. Most of them have the general formula $\left[\mathrm{Mo}_{8} \mathrm{O}_{26} \mathrm{~L}_{2}\right]^{2 n-4}$ (where n is the formal charge of L) where only two sites of the $\mathrm{Mo}_{8} \mathrm{O}_{\mathbf{2 6}}$ core are occupied by the ligand L [Scheme 1,(A)]. The structures of $\left[\mathrm{NH}_{3} \mathrm{Pr}^{\mathrm{i}}\right]_{6}\left[\mathrm{Mo}_{8} \mathrm{O}_{26}(\mathrm{OH})_{2}\right] \cdot$ $2 \mathrm{H}_{2} \mathrm{O}^{9}$ and $\left[\mathrm{NH}_{4}\right]_{6}\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\left(\mathrm{O}_{2} \mathrm{CH}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}^{10}$ with oxygendonating ligands and $[\mathrm{Hpy}]_{4}\left[\mathrm{Mo}_{8} \mathrm{O}_{26}(\mathrm{py})_{2}\right] \cdot 2 \mathrm{Me}_{2} \mathrm{SO}^{11}$ (py $=$ pyridine) and $\mathrm{K}_{6}\left[\mathrm{Mo}_{8} \mathrm{O}_{26}(\mathrm{NCS})_{2}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}^{12}$ with nitrogendonating ligands are known. The only known exception is the structure of $\mathrm{Na}_{4}\left[\mathrm{Mo}_{8} \mathrm{O}_{24}(\mathrm{OMe})_{4}\right] \cdot 8 \mathrm{MeOH}$ with four coordinated methoxo-groups [Scheme 1, (B)]. ${ }^{13}$ Two methoxogroups are terminal (L) and two bridging (L^{\prime}), the terminal and bridging groups being cis to each other. The terminal methoxogroups are in stereochemically different positions to those of the ligands L in (A). Among different possibilities, these isopolymolybdate anions adopt the $\gamma-\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right]^{4-}$ type structure (proposed as an intermediate in the $\alpha-\rightleftharpoons \beta-\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right]^{4-}$ conversion) but with two additional terminal positions satisfying the six-co-ordination of all molybdenum atoms. ${ }^{14}$ However, such a structure was also described as type II with eight condensed octahedra and 16 terminal positions. ${ }^{15}$
The present paper deals with the syntheses of three other examples of substituted octamolybdates: $\left[\mathrm{NH}_{3} \mathrm{Pr}\right]_{2}\left[\mathrm{H}_{4} \mathrm{Mo}_{8}-\right.$ $\left.\mathrm{O}_{26}\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}=\mathrm{NPr}-2\right)_{2}\right] \cdot 6 \mathrm{MeOH} \quad\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}=\mathrm{NPr}-2=\right.$ N-propylsalicylideneiminate) (1), $\mathrm{H}_{4}\left[\mathrm{Mo}_{8} \mathrm{O}_{24}(\mathrm{MetO})_{4}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (MetO $=$ methioninate) (2), and $[\mathrm{Hmorph}]_{4}\left[\mathrm{H}_{2} \mathrm{Mo}_{8} \mathrm{O}_{26}{ }^{-}\right.$ $\left.(\mathrm{MetO})_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (morph $=$ morpholine) (3). In an attempt to prepare better crystals of (2) by substituting methanol for water as solvent the analogous solvate $\mathrm{H}_{4}\left[\mathrm{Mo}_{8} \mathrm{O}_{24}(\mathrm{MetO})_{4}\right]$. 8 MeOH (2a) was obtained. The X-ray structure analysis of (1) and (3) shows that in both cases salicylideneiminato- and methioninato-oxygens are the stronger donors so that Mo-O but not Mo-N or Mo-S bonds are formed. Up to now we have not been able to prepare crystals of (2) and (2a) suitable for

Scheme 1.
structure analysis. The structures of (1) and (3) are of type (A), those of (2) and (2a) presumably of type (B) (Scheme 1).

The hydrogen-atom positions in all such anions could not be deduced exactly, but for charge neutrality the protons must be attached to the $\mathrm{Mo}_{8} \mathrm{O}_{26}$ groups. Since all terminal $\mathrm{Mo}-\mathrm{O}$ bond lengths are about $1.70 \AA$. corresponding to $\mathrm{Mo}=\mathrm{O}$ double bonds, it seems most probable that once the positions L (and L^{\prime}) have been occupied by the ligands OR the protons are bonded to the doubly bridging atoms $\mathrm{O}(8), \mathrm{O}(9)$ [if not occupied by $\left.\mathrm{L}^{\prime}\right]$, and $\mathrm{O}(10)$. Such Mo-OH bonding with corresponding lengthening of the molybdenum-oxygen bond was found, for example, in the structures of $\left[\mathrm{NH}_{3} \mathrm{Pr}^{\mathrm{i}}\right]_{6}\left[\mathrm{Mo}_{8} \mathrm{O}_{26}(\mathrm{OH})_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}^{9}$ and $\left[\mathrm{NBu}_{4}^{\mathrm{n}}\right]_{3}\left[\mathrm{Mo}_{4} \mathrm{O}_{12}(\mathrm{OH})\left(\mathrm{O}_{2} \mathrm{CH}_{2}\right)\right] .{ }^{16}$ Consequently, the compounds described here are best formulated as: $\left[\mathrm{NH}_{3} \mathrm{Pr}\right]_{2}-$ $\left[\mathrm{Mo}_{8} \mathrm{O}_{22}(\mathrm{OH})_{4}\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}=\mathrm{NPr}-2\right)_{2}\right] \cdot 6 \mathrm{MeOH}(1), \quad\left[\mathrm{Mo}_{8}{ }^{-}\right.$ $\left.\mathrm{O}_{20}(\mathrm{OH})_{4}(\mathrm{MetO})_{4}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (2), $[\mathrm{Hmorph}]_{4}\left[\mathrm{Mo}_{8} \mathrm{O}_{24}(\mathrm{OH})_{2}-\right.$ (MetO) $\left.2_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (3) and the methanol solvate (2a) analogously to (2).

Experimental

Materials.-The compounds $\mathrm{MoO}_{2} \mathrm{Cl}_{2}$ and $\left[\mathrm{MoO}_{2}(\mathrm{sal})_{2}\right]$ (Hsal = salicylaldehyde) were prepared by methods described

[^0]in the literature. ${ }^{17,18}$ All other reagents commercially available were of reagent grade.

Apparatus.-Infrared spectra were recorded in the range of $4000-200 \mathrm{~cm}^{-1}$ on a Perkin-Elmer 580B spectrophotometer using KBr pellets. Powder diffraction diagrams were obtained using a General Electric XRD-5 diffractometer.

Preparation of the Compounds. $-\left[\mathrm{NH}_{3} \mathrm{Pr}_{2}\left[\mathrm{Mo}_{8} \mathrm{O}_{22}(\mathrm{OH})_{4}-\right.\right.$ $\left.\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}=\mathrm{NPr}-2\right)_{2}\right] \cdot 6 \mathrm{MeOH}$ (1). To a methanolic suspension $\left(50 \mathrm{~cm}^{3}\right)$ of $\left[\mathrm{MoO}_{2}(\mathrm{sal})_{2}\right](1.25 \mathrm{~g}, 3.38 \mathrm{mmol})$ was added n -propylamine $\left(0.82 \mathrm{~cm}^{3}, 10 \mathrm{mmol}\right)$ and the mixture heated under reflux for 30 min . After standing for 10 d at room temperature the pale yellow crystalline product $(0.43 \mathrm{~g}, 55.8 \%$) was filtered off and washed with methanol (Found: C, 21.25; $\mathrm{H}, 3.95$; Mo, 42.20; $\mathrm{N}, 3.00 . \mathrm{C}_{32} \mathrm{H}_{72} \mathrm{Mo}_{8} \mathrm{~N}_{4} \mathrm{O}_{34}$ requires C , 21.05 ; H, 4.00 ; Mo, 42.05 ; N, 3.05%). I.r. spectrum: 3520 m br , $3180 \mathrm{~m}, 3058 \mathrm{w}, 2978 \mathrm{~m}, 2940 \mathrm{vw}, 2882 \mathrm{vw}, 1662 \mathrm{vs}, 1608 \mathrm{vs}$, $1550 \mathrm{~m}, 1505 \mathrm{w}, 1478 \mathrm{vs}, 1458 \mathrm{vw}, 1396 \mathrm{w}, 1365 \mathrm{vw}, 1340 \mathrm{w}$, $1285 \mathrm{vs}, 1238 \mathrm{~m}, 1215 \mathrm{~m}, 1165 \mathrm{~s}, 1152 \mathrm{~s}, 1120 \mathrm{vw}, 1063 \mathrm{vw}$, $1045 \mathrm{w}, 1020 \mathrm{vw}, 945 \mathrm{vs}, 908 \mathrm{vs}, 885(\mathrm{sh}), 850 \mathrm{vs}, 792(\mathrm{sh}), 758 \mathrm{vw}$, $690 \mathrm{vs}, 623 \mathrm{~m}, 582 \mathrm{~m}, 557 \mathrm{~m}, 526 \mathrm{vw}, 490 \mathrm{vw}, 450 \mathrm{w}, 412 \mathrm{w}$, 380 m , and $340 \mathrm{w} \mathrm{cm}^{-1}$. Alternatively the same compound was obtained when a freshly prepared methanolic solution ($15 \mathrm{~cm}^{3}$) of N-propylsalicylideneimine $(3.68 \mathrm{~g}, 22.5 \mathrm{mmol})$ was added to a water solution ($20 \mathrm{~cm}^{3}$) of ammonium paramolybdate, $\left[\mathrm{NH}_{4}\right]_{6}\left[\mathrm{Mo}_{7} \mathrm{O}_{24}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O},(1.58 \mathrm{~g}, 1.28 \mathrm{mmol})$, the resulting solution acidified by concentrated $\mathrm{HCl}\left(1.25 \mathrm{~cm}^{3}\right)$ and heated as mentioned above. Methanol ($c a .10 \mathrm{~cm}^{3}$) was added to the resulting oily residue and after standing overnight pale yellow crystals were obtained. They were filtered off, washed with water-methanol ($1: 1$) and dried invacuo ($1.8 \mathrm{~g}, 88.2 \%$) (Found: C, $21.15 ; \mathbf{H}, 4.15$; Mo, 42.25 ; N, 3.20%).
$\left[\mathrm{Mo}_{8} \mathrm{O}_{20}(\mathrm{OH})_{4}(\mathrm{MetO})_{4}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (2). To a water solution $\left(30 \mathrm{~cm}^{3}\right)$ of $\mathrm{MoO}_{2} \mathrm{Cl}_{2}(1.2 \mathrm{~g}, 6 \mathrm{mmol})$ a water solution $\left(20 \mathrm{~cm}^{3}\right)$ of methionine ($1.8 \mathrm{~g}, 12 \mathrm{mmol}$) was added dropwise at room temperature. The white precipitate ($0.56 \mathrm{~g}, 40.9 \%$) was washed with distilled water and ethanol (Found: C, 13.30; H, 2.65; Mo, 42.00; $\mathrm{N}, 2.95$; $\mathrm{S}, 7.20 . \mathrm{C}_{20} \mathrm{H}_{52} \mathrm{Mo}_{8} \mathrm{~N}_{4} \mathrm{O}_{36} \mathrm{~S}_{4}$ requires C, 13.20 ; $\mathrm{H}, 2.90$; Mo, 42.15 ; N, 3.10 ; S, 7.05%). I.r. spectrum: 3450 m br , $3145 \mathrm{vw}, 3070 \mathrm{vw}, 2925 \mathrm{vw}, 1735 \mathrm{vw}, 1612 \mathrm{vs}, 1508 \mathrm{~s}, 1440 \mathrm{vw}$, $1430 \mathrm{~s}, 1360 \mathrm{~m}, 1338 \mathrm{~m}, 1320$ (sh), $1282 \mathrm{vw}, 1252 \mathrm{w}, 1196 \mathrm{w}$, 1180 (sh), $1150 \mathrm{~m}, 1105 \mathrm{vw}, 1073 \mathrm{vw}, 1020$ (sh), 1003 vw , 970 (sh), $950 \mathrm{vs}, 918 \mathrm{vs}, 898(\mathrm{sh}), 767 \mathrm{~m}, 675 \mathrm{vw}, 670 \mathrm{vw}, 550 \mathrm{vs}$ br, $420 \mathrm{vw}, 385 \mathrm{vw}$, and $355 \mathrm{~m} \mathrm{br} \mathrm{cm}{ }^{-1}$.
$\left[\mathrm{Mo}_{8} \mathrm{O}_{20}(\mathrm{OH})_{4}(\mathrm{MetO})_{4}\right] \cdot 8 \mathrm{MeOH}$ (2a). To a methanolic solution ($25 \mathrm{~cm}^{3}$) of $\mathrm{MoO}_{2} \mathrm{Cl}_{2}(1 \mathrm{~g}, 5 \mathrm{mmol})$ was added methionine ($1.5 \mathrm{~g}, 10 \mathrm{mmol}$) at room temperature. The pale yellow solution was warmed at $60^{\circ} \mathrm{C}$ for 2 h . Slow cooling gave a white precipitate ($0.5 \mathrm{~g}, 39.7 \%$) (Found: C, 16.85 ; H, 2.95 ; $\mathrm{Mo}, 38.10 ; \mathrm{N}, 2.80 ; \mathrm{S}, 7.00 . \mathrm{C}_{28} \mathrm{H}_{76} \mathrm{Mo}_{8} \mathrm{~N}_{4} \mathrm{O}_{40} \mathrm{~S}_{4}$ requires C, $16.80 ; \mathrm{H}, 3.80 ; \mathrm{Mo}, 38.30 ; \mathrm{N}, 2.80 ;$ S, 6.40%). I.r. spectrum: 3430 m br, $3115 \mathrm{vw}, 3040 \mathrm{vw}, 2920 \mathrm{w}, 2825 \mathrm{vw}, 2610 \mathrm{vw}$, $1735 \mathrm{vw}, 1620 \mathrm{vs}, 1598 \mathrm{vs}, 1505 \mathrm{~s}, 1432 \mathrm{~s}, 1425 \mathrm{~s}, 1342 \mathrm{~m}$, $1318 \mathrm{vw}, 1282 \mathrm{vw}, 1245 \mathrm{w}, 1190 \mathrm{~m}, 1150 \mathrm{w}$ br, $1068 \mathrm{w}, 995 \mathrm{~s}$, $942 \mathrm{vs}, 905 \mathrm{vs}, 880 \mathrm{~m}, 755 \mathrm{vs}, 670(\mathrm{sh}), 622 \mathrm{w}, 570 \mathrm{~m}, 515 \mathrm{~m}, 495 \mathrm{w}$, 380 w , and $320 \mathrm{~m} \mathrm{~cm}^{-1}$.
$[\mathrm{HMorph}]_{4}\left[\mathrm{Mo}_{8} \mathrm{O}_{24}(\mathrm{OH})_{2}(\mathrm{MetO})_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}(3)$. A solution of $\mathrm{MoO}_{2} \mathrm{Cl}_{2}(1 \mathrm{~g}, 5 \mathrm{mmol})$ and methionine $(0.19 \mathrm{~g}, 1.27 \mathrm{mmol})$ in methanol ($40 \mathrm{~cm}^{3}$) was neutralized by a methanolic solution of morpholine (10%) to the pH 6 . The white precipitate $(1.0 \mathrm{~g}$, 83.3%) was filtered off and washed with methanol. Crystals suitable for X-ray work were obtained by recrystallization from water (Found: C, 16.30; H, 3.45; Mo, 40.45; N, 4.50; S, 3.10. $\mathrm{C}_{26} \mathrm{H}_{70} \mathrm{Mo}_{8} \mathrm{~N}_{6} \mathrm{O}_{38} \mathrm{~S}_{2}$ requires C, $16.40 ; \mathrm{H}, 3.70 ; \mathrm{Mo}, 40.25 ; \mathrm{N}$, 4.40 ; S, 3.35%). I.r. spectrum: 3450 m br, $2955 \mathrm{w}, 2920 \mathrm{w}, 2730 \mathrm{w}$, $2625 \mathrm{vw}, 2100 \mathrm{~m}, 1655 \mathrm{~m}, 1620 \mathrm{~s} \mathrm{br}, 1584 \mathrm{vs}, 1518 \mathrm{~m}, 1448 \mathrm{w}$, $1417 \mathrm{vs}, 1345 \mathrm{vs}, 1315$ (sh), $1280 \mathrm{~s}, 1240 \mathrm{vw}, 1225 \mathrm{~m}, 1165 \mathrm{~m}$,
$1105 \mathrm{~m}, 1082 \mathrm{~m}, 1045 \mathrm{~m}, 1012$ (sh), $1002 \mathrm{w}, 932 \mathrm{~s}, 875 \mathrm{~m}, 825$ (sh), $782 \mathrm{~m}, 758 \mathrm{w}, 720 \mathrm{vw}, 710 \mathrm{w}, 688 \mathrm{~m}, 678 \mathrm{vw}, 652 \mathrm{w}, 555 \mathrm{~s}, 502 \mathrm{~m}$, $440 \mathrm{~s}, 380 \mathrm{~s}$, and $330 \mathrm{~s} \mathrm{~cm}^{-1}$.

X-Ray Structure Determination.-Data collection was carried out on a Philips PW 1100 diffractometer with a graphite monochromator and $\mathrm{Cu}-K_{\alpha}$ radiation for compound (1) and Mo- K_{α} radiation for (3). Crystal fragments of maximum dimensions 0.2 mm were selected and used for intensity measurements. The lattice parameters were determined from 16 reflections in the range $10<\theta<12^{\circ}$ for (1) and from 19 reflections in the range $5<\theta<12^{\circ}$ for (3).

Crystal data. $\mathrm{C}_{32} \mathrm{H}_{72} \mathrm{Mo}_{8} \mathrm{~N}_{4} \mathrm{O}_{34}$, (1), $M=1824.48$, triclinic, space group $P \bar{I}, a=12.497(2), b=12.269(3), c=10.483(3) \AA$, $\alpha=85.83(1), \quad \beta=99.17(1), \quad \gamma=96.25(2)^{\circ}, \quad U=1574.8 \AA^{3}$, $D_{\mathrm{m}}=1.94 \mathrm{~g} \mathrm{~cm}^{-3}$ (pycnometrically), $Z=1, D_{\mathrm{c}}=1.924 \mathrm{~g} \mathrm{~cm}^{-3}$, $F(000)=900, \quad \lambda\left(\mathrm{Cu}-K_{\alpha}\right)=1.54178 \quad \AA, \quad \mu\left(\mathrm{Cu}-K_{\alpha}\right)=140.1$ cm^{-1}.
$\mathrm{C}_{26} \mathrm{H}_{70} \mathrm{Mo}_{8} \mathrm{~N}_{6} \mathrm{O}_{38} \mathrm{~S}_{2}$, (3). $\quad M=1906.52$, triclinic, space group $P \overline{\mathrm{I}}, a=12.144(2), b=12.062(3), c=10.217(3) \AA, \alpha=$ 90.48(3), $\beta=94.91(4), \gamma=109.90(2)^{\circ}, U=1400.9 \AA^{3}, D_{\mathrm{m}}=$ $2.13 \mathrm{~g} \mathrm{~cm}^{-3}$ (pycnometrically), $Z=1, D_{\mathrm{c}}=2.260 \mathrm{~g} \mathrm{~cm}^{-3}$, $F(000)=940, \quad \lambda\left(\mathrm{Mo}-K_{\alpha}\right)=0.71069 \quad \AA, \quad \mu\left(\mathrm{Mo}-K_{\alpha}\right)=18.8$ cm^{-1}.

Intensities were measured using the $\omega-2 \theta$ scan method with a scan speed of $0.04^{\circ} \mathrm{s}^{-1}$ and scan width 1.60°, between 3 and 70°, yielding 5099 independent reflections for compound (1), 4889 of which were above background $[I>3 \sigma(I)]$, and between 2 and $28^{\circ} \theta$ yielding 5484 independent reflections for (3), 4914 of which were above background $[I>3 \sigma(I)]$. Because of crystal decomposition the intensity data for (3) were collected from two different crystals mounted in a capillary tube. Three standard reflections were measured every 2 h and their changes used to bring the reflections to a common scale. The data were rescaled, and corrected for Lorentz and polarization factors but not for absorption. Solution of the structures was achieved by the heavy-atom method through Patterson and Fourier maps. Refinement of the scale factors, positional and anisotropic thermal parameters for non-hydrogen atoms converged to give a final conventional agreement index R of $0.052\left(R^{\prime}=0.059\right)$ for (1) and $0.072\left(R^{\prime}=0.071\right)$ for (3). The structures were refined by a block-matrix least-squares procedure, minimizing the function $\Sigma w\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2}$ with $w=$ $1 /\left[\sigma^{2}\left(F_{0}\right)+0.005 \quad 514\left|F_{0}\right|^{2}\right]$ for (1) and $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}\right)+\right.$ $0.010542\left|F_{\mathrm{o}}\right|^{2}$] for (3). Hydrogen-atom positions were not discernible from electron-density difference maps; those belonging to the cations and organic ligands were generated at geometrically fixed positions.

The atomic scattering factors and anomalous dispersion corrections for all non-hydrogen atoms were taken from the literature. ${ }^{19,20}$ Calculations were made on the UNIVAC 1110 computer of the University Computing Centre in Zagreb using the SHELX program system. ${ }^{21}$ Final atomic co-ordinates for the compounds are listed in Tables 1 and 2.

Additional material available from the Cambridge Crystallographic Data Centre comprises H-atom co-ordinates, thermal parameters, and remaining bond lengths and angles.

Results and Discussion

All our attempts to prepare $\left[\mathrm{MoO}_{2}\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}=\mathrm{NPr}-2\right)_{2}\right]$ as described in the literature by treating $\left[\mathrm{MoO}_{2}(\mathrm{sal})_{2}\right]$ with n-propylamine or ammonium paramolybdate with N-propylsalicylideneimine were unsuccessful. ${ }^{18}$ Instead we always obtained a pale yellow crystalline product (1) soluble in hot methanol as shown in Scheme 2. The reaction of $\mathrm{MoO}_{2} \mathrm{Cl}_{2}$ with methionine in water yielded a white crystalline precipitate (2) insoluble in common organic solvents (Scheme 3).

Scheme 2. (i) Solvent $=\mathrm{MeOH}$; (ii) solvent $=$ water - methanol

Scheme 3. (i) Solvent = water or MeOH; (ii) solvent $=\mathrm{MeOH}$, morpholine was added to pH 6

Figure 1. Structure of the anion of compound (1), $\left[\mathrm{Mo}_{8} \mathrm{O}_{22}(\mathrm{OH})_{4}{ }^{-}\right.$ $\left.\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}=\mathrm{NPr}-2\right)_{2}\right]^{2-}$, viewed along the c axis, with the atom labelling scheme

The product was a tetrahydrate, but if water was replaced by methanol as a solvent the corresponding solvate (2a) was formed. Neutralization of the methanolic solution with morpholine led to the formation of a white crystalline product (3).

The i.r. spectra of all the complexes, hydrates and alcoholates, exhibit absorbances in the $700-950 \mathrm{~cm}^{-1}$ region characteristic of the presence of both terminal and bridging oxo groups, as

Figure 2. Structure of the anion of compound (3), $\left[\mathrm{Mo}_{8} \mathrm{O}_{24}(\mathrm{OH})_{2^{-}}\right.$ $\left.(\mathrm{MetO})_{2}\right]^{4-}$, viewed along the c axis, with the atom labelling scheme
well as a band at $1662 \mathrm{~cm}^{-1}$ for (1) which could be assigned to the non-co-ordinated $\mathrm{C}=\mathrm{N}$ group of the salicylideneiminate ligand, and at about 1400 and 1600 and $3100 \mathrm{~cm}^{-1}$ for (2) and (2a) corresponding to the COO and $\mathrm{N}-\mathrm{H}$ stretch of the coordinated methionine. The elemental analysis data suggested a stoicheiometry of the octamolybdates with two co-ordinated salicylideneiminato [in (1)] and either two [in (3)] or four [in (2) and (2a)] co-ordinated methioninato ligands. The i.r. spectrum as well as the X-ray powder diffraction diagram of (2) was identical to those of the molybdenum complex described earlier as $\mathrm{Mo}_{2} \mathrm{O}_{7} \mathrm{H}_{3}\left(\right.$ MetO), ${ }^{22}$ confirming that the neutral complexes (2) and (2a) contain four methionines attached to the octamolybdate units. They do not crystallize well as does the anionic complex (3).

The structures of compounds (1) and (3) are shown in Figures 1 and 2 respectively. Selected bond lengths and angles are listed in Table 3. In both structures, with salicylideneimine and methionine, the polymolybdate anions consist of eight centrosymmetrically condensed edge-sharing octahedra. They belong to the proposed $\gamma-\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right]^{4-}$ type but with two additional terminal positions, thus satisfying the octahedral co-ordination of all eight molybdenum atoms. ${ }^{14}$ Ideally such an arrangement might be considered as comprising cubic close-

Table 1. Fractional atomic co-ordinates ($\times 10^{4}, \times 10^{5}$ for Mo) for $\left[\mathrm{NH}_{3} \mathrm{Pr}_{2}\left[\mathrm{Mo}_{8} \mathrm{O}_{22}(\mathrm{OH})_{4}\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{CH}=\mathrm{NPr}-2\right)_{2}\right] \cdot 6 \mathrm{MeOH}\right.$ (1) with estimated standard deviations (e.s.d.s) in parentheses

Atom	x	y	z	Atom	x	y	z
Mo(1)	$60157(4)$	10 535(4)	3 522(1)	C(3)	$9982(7)$	2 956(7)	-3 421(10)
Mo(2)	56 978(4)	21 838(4)	-26 905(5)	C(4)	9 693(9)	3 555(9)	-4 565(10)
Mo(3)	$35886(4)$	7 515(4)	16 459(5)	C(5)	8 627(9)	3 787(9)	-4 863(11)
Mo(4)	36 381(4)	21 944(4)	-10 848(5)	C(6)	$7851(7)$	3 386(8)	-4 087(10)
O(1)	$7367(5)$	$1398(6)$	773(7)	C(7)	9 674(6)	$1989(7)$	-1415(10)
$\mathrm{O}(2)$	5 685(7)	3 573(6)	-2935(8)	C(8)	9 686(7)	$1113(8)$	755(10)
O(3)	5 708(6)	1 692(6)	-4 167(7)	C(9)	$9876(9)$	$1888(10)$	1793 (11)
$\mathrm{O}(4)$	2 208(6)	454(6)	$1325(8)$	C(10)	10770 (10)	$2822(11)$	1 601(16)
O(5)	3 860(7)	960(6)	3 246(8)	N(1)	9 162(6)	1 621(5)	-481(8)
O(6)	2 296(6)	1766 (7)	- 1511 (8)	O(15)	3 686(5)	-43(5)	5 800(6)
O(7)	3 747(7)	3 590(6)	-1 331(8)	O(16)	4 846(6)	$6132(5)$	8 185(7)
$\mathrm{O}(8)$	5 498(5)	$1113(5)$	$1795(7)$	O(17)	2 642(14)	3860 (18)	$5775(27)$
O(9)	4 159(5)	$1788(5)$	-2603(7)	C(14)	4389 (14)	6 352(13)	$6839(16)$
$\mathrm{O}(10)$	3 711(5)	2 188(5)	807(7)	C(15)	2 641(8)	-742(8)	5750 (11)
$\mathrm{O}(11)$	$6021(5)$	726(5)	- 1628 (6)	C(16)	3 181(17)	$3752(20)$	$4757(32)$
$\mathrm{O}(12)$	5 555(5)	$2334(5)$	- 580(6)	C(11)	1 549(12)	5 144(14)	-1415(13)
$\mathrm{O}(13)$	4 076(5)	538(5)	-289(6)	C(12)	$1779(9)$	5 566(10)	-73(12)
$\mathrm{O}(14)$	$7415(4)$	2 380(4)	-2 167(5)	C(13)	2 652(8)	5 040(8)	803(10)
C(1)	8 124(6)	$2759(6)$	-2927(8)	N(2)	3 772(6)	$5351(5)$	421(7)
C(2)	$9248(6)$	2 573(7)	-2 603(9)				

Table 2. Fractional atomic co-ordinates $\left(\times 10^{4}, \times 10^{5}\right.$ for Mo$)$ for $[\mathrm{Hmorph}]_{4}\left[\mathrm{Mo}_{8} \mathrm{O}_{24}(\mathrm{OH})_{2}(\mathrm{MetO})_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}(3)$ with e.s.d.s in parentheses

Atom	x	y	z	Atom	x	y	z
$\mathrm{Mo}(1)$	$47332(4)$	$2455(5)$	$65745(5)$	$\mathrm{C}(2)$	$2740(6)$	$-2457(6)$	$10063(7)$
$\mathrm{Mo}(2)$	$58897(5)$	$-17035(5)$	$78763(6)$	N	$2777(5)$	$-1224(5)$	$9844(7)$
$\mathrm{Mo}(3)$	$67221(5)$	$23291(5)$	$48129(6)$	$\mathrm{C}(3)$	$1729(6)$	$-3323(7)$	$9158(8)$
$\mathrm{Mo}(4)$	$77360(5)$	$6250(5)$	$66233(6)$	$\mathrm{C}(4)$	$1701(8)$	$-4582(7)$	$9136(10)$
$\mathrm{O}(1)$	$3667(4)$	$127(5)$	$7616(5)$	S	$393(2)$	$-5638(2)$	$8323(3)$
$\mathrm{O}(2)$	$6705(5)$	$-1378(5)$	$9355(5)$	$\mathrm{C}(5)$	$614(11)$	$-5458(10)$	$6618(12)$
$\mathrm{O}(3)$	$5580(5)$	$-3177(5)$	$7614(6)$	$\mathrm{N}(1)$	$-609(4)$	$982(5)$	$1196(6)$
$\mathrm{O}(4)$	$7807(5)$	$2488(5)$	$3801(6)$	$\mathrm{C}(6)$	$-477(7)$	$928(5)$	$2615(9)$
$\mathrm{O}(5)$	$6642(5)$	$3709(5)$	$5020(6)$	$\mathrm{C}(7)$	$249(7)$	$2084(9)$	$3270(8)$
$\mathrm{O}(6)$	$8690(5)$	$631(5)$	$5482(6)$	$\mathrm{O}(16)$	$1422(6)$	$2516(9)$	$2725(7)$
$\mathrm{O}(7)$	$8570(5)$	$932(5)$	$8089(6)$	$\mathrm{C}(8)$	$1266(7)$	$2541(7)$	$1239(8)$
$\mathrm{O}(8)$	$5203(4)$	$1751(4)$	$6238(5)$	$\mathrm{C}(9)$	$513(7)$	$1364(7)$	$692(8)$
$\mathrm{O}(9)$	$7086(4)$	$-1122(4)$	$6740(5)$	$\mathrm{N}(2)$	$7607(5)$	$6967(6)$	$4484(7)$
$\mathrm{O}(10)$	$7565(4)$	$2145(4)$	$6415(5)$	$\mathrm{C}(10)$	$6366(8)$	$6459(6)$	$4444(10)$
$\mathrm{O}(11)$	$4629(4)$	$-1552(4)$	$6416(5)$	$\mathrm{C}(11)$	$5846(8)$	$6105(9)$	$3065(11)$
$\mathrm{O}(12)$	$6048(4)$	$198(4)$	$7688(4)$	$\mathrm{O}(17)$	$6194(7)$	$7153(9)$	$2241(8)$
$\mathrm{O}(13)$	$6196(4)$	$379(4)$	$5089(5)$	$\mathrm{C}(12)$	$7451(9)$	$7714(7)$	$2321(11)$
$\mathrm{O}(14)$	$4403(4)$	$-1823(5)$	$8890(5)$	$\mathrm{C}(13)$	$7939(9)$	$7998(9)$	$3716(11)$
$\mathrm{O}(15)$	$4289(5)$	$-3255(5)$	$10292(6)$	$\mathrm{O}(18)$	$6277(5)$	$5769(9)$	$-93(7)$
$\mathrm{C}(1)$	$3921(6)$	$-2536(6)$	$9767(7)$	$\mathrm{O}(19)$	$2287(14)$	$4952(9)$	$2800(11)$

packed oxygen atoms with molybdenum atoms occupying octahedral sites. Alternatively, the octamolybdate octahedra with 16 terminal positions belong to type II^{15} first observed in the crystal structure of $\left[\mathrm{NH}_{3} \mathrm{Pr}^{\mathrm{i}}\right]_{6}\left[\mathrm{Mo}_{8} \mathrm{O}_{26}(\mathrm{OH})_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O} .{ }^{9}$ Of the 16 terminal positions, 14 are occupied by oxo-oxygen and two by salicylideneiminato- or methioninato-oxygen atoms. In compound (1) the $\mathrm{Mo}=\mathrm{O}$ bond lengths range from 1.690 (8) to $1.709(7) \AA$, those in (3) from $1.698(5)$ to $1.715(6) \AA$. These values agree very well with those found in most structures with molybdenum-oxygen double bonds. ${ }^{23,24}$ Of the remaining 12 oxygen atoms, six $[O(8), O(9), O(10)$, and their centrosymmetric pairs] bridge two Mo atoms, four [$\mathrm{O}(11), \mathrm{O}(12)$, and their centrosymmetric pairs] bridge three Mo atoms, while two [$\mathrm{O}(13)$ and centrosymmetric $\left.\mathrm{O}\left(13^{\prime}\right)\right]$ bridge four Mo atoms. As a consequence of such bridging systems within the octamolybdates, the Mo-O distances are significantly different: in the single bridges Mo-O-Mo they vary from 1.746(8) to $2.361(6) \AA$ in (1) and from 1.755(5) to $2.368(5) \AA$ in (3), in the triply-bridging $\mathrm{Mo}_{3} \mathrm{O}$ core from 1.884(6) to 2.360(6) \AA in (1) and from 1.879 (5) to $2.308(5) \AA$ in (3), and finally in the $\mathrm{Mo}_{4} \mathrm{O}$ core
from 1.949(6) to 2.437(6) \AA in (1) and from $1.950(5)$ to $2.399(5) \AA$ in (3). The most significant lengthenings of the Mo-O bonds occur in the case of $\mathrm{Mo}(1)-\mathrm{O}(13)[2.437(6)$ in (1) and $2.399(5) \AA$ in (3)], $\mathrm{Mo}(2)-\mathrm{O}(12)$ [2.270(7) and 2.247(5) \AA], $\mathrm{Mo}(3)-\mathrm{O}(8)$ $[2.361(6)$ and $2.368(5) \AA]$ and $\mathrm{Mo}(3)-\mathrm{O}(13)$ [2.249(7) and $2.245(5) \AA], \operatorname{Mo}(4)-\mathrm{O}(12)[2.360(6)$ and $2.308(5) \AA]$ and $\mathrm{Mo}(4)-\mathrm{O}(13)[2.231(6)$ and $2.271(5) \AA]$ and are due to the trans influence of the terminal oxo-oxygen atoms. The bond lengths Mo-OR between molybdenum and oxygen atoms from salicylideneiminato and methioninato ligands are equal [$2.120(5)$ and $2.121(6) \AA$] and correspond to a Mo-O single bond. ${ }^{23}$ Thus the surroundings of the molybdenum atoms are different: Mo(1), one terminal oxo, O_{6}; one $\mu-\mathrm{O}$, two $\mu_{3}-\mathrm{O}$, and two $\mu_{4}-\mathrm{O} ; \mathrm{Mo}(2)$, three O_{t} (one from the ligand), one $\mu-\mathrm{O}$, and two $\mu_{3}-\mathrm{O} ; \mathrm{Mo}(3)$ and $\mathrm{Mo}(4)$, each two O_{t}, two $\mu-\mathrm{O}$, one $\mu_{3}-\mathrm{O}$, and one $\mu_{4}-\mathrm{O}$ atom. The bond lengths and angles in the salicylideneiminato and methioninato ligands have the expected values.

The relative values of the $\mathrm{Mo}-\mathrm{OR}$ bond strengths $s_{\mathrm{MO}-\mathrm{O}}=$ ($\left.d_{\mathrm{Mo}-\mathrm{O}} / 1.882\right)^{-6.0}$, where d is the bond length in $\AA,{ }^{25}$ are the

Table 3. Selected bond lengths (\AA) and angles $\left(^{\circ}\right)$ in compounds (1) and (3) with e.s.d.s in parentheses

* Primed atoms are related by the symmetry element $1-x,-y,-z$ for compound (1) and $1-x,-y, 1-z$ for compound (3).
same 0.49 for both structures. This is very close to 0.51 , the value found for the structure of $\left[\mathrm{NH}_{4}\right]_{6}\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\left(\mathrm{O}_{2} \mathrm{CH}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O},{ }^{10}$ but considerably smaller than 0.76 found for $\left[\mathrm{NH}_{3} \mathrm{Pr}^{i}\right]_{6}-$ $\left[\mathrm{Mo}_{8} \mathrm{O}_{26}(\mathrm{OH})_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}^{9}$ and 0.92 for $\mathrm{Na}_{4}\left[\mathrm{Mo}_{8} \mathrm{O}_{24}(\mathrm{OMe})_{4}\right] \cdot$ $8 \mathrm{MeOH}^{13}$ [taking into account only the Mo-OMe terminal bond length], although all oxygen-bound ligands in these structures carry the same formal negative charge. Such different values of s most probably indicate different amounts of electrostatic charge concentrated at the ligand oxygen atoms. ${ }^{11}$ Nevertheless, the weak Mo-OR interactions are compensated within $\mathbf{M o (2) ~ o c t a h e d r a ~ i n ~ b o t h ~ s t r u c t u r e s ~ b y ~ s o m e ~ o t h e r ~ s t r o n g ~}$ Mo-O bonds so that the sums of the bond strengths $\Sigma s_{\mathrm{Mo}-\mathrm{O}}$, corresponding to the bond orders of molybdenum in the MoO_{6}
octahedra, amount to 5.80 and 6.02 (in valence units) for the structures of (1) and (3) respectively.

Acknowledgements

We thank Professor Drago Grdenic for helpful discussion and Miss Josipa Smaguc for technical assistance. This work was supported by the Federal (Belgrade) and Republican (Zagreb) Foundations for Scientific Research.

References

1 E. M. McCarron III and A. W. Sleight, Polyhedron, 1986, 5, 129 and refs. therein.

2 T-C. Hsieh, S. N. Shaikh, and J. Zubieta, Inorg. Chem., 1987, $26,4079$.
3 S. Liu, S. N. Shaikh, and J. Zubieta, Inorg. Chem., 1987, 26, 4303.
4 S. Liu, S. N. Shaikh, and J. Zubieta, Inorg. Chem., 1988, 27, 3064.
5 P. K. Bharadwaj, Y. Ohashi, Y. Sasada, Y. Sasaki, and T. Yamase, Acta Crystallogr., Sect. C, 1984, 40, 48.
6 T. Yamase, J. Chem. Soc., Dalton Trans., 1985, 2585.
7 T. Yamase, Polyhedron, 1986, 5, 79.
8 M. M. Williamson, D. A. Bouchard, and C. L. Hill, Inorg. Chem., 1987, 26, 1436.
9 M. Isobe, F. Marumo, T. Yamase, and T. Ikawa, Acta Crystallogr., Sect. B, 1978, 34, 2728.
10 R. D. Adams, W. G. Klemperer, and R-S. Liu, J. Chem. Soc., Chem. Commun., 1979, 256.
11 E. M. McCarron III, J. F. Whitney, and D. B. Chase, Inorg. Chem., 1984, 23, 3275.
12 B. Kamenar, M. Penavić, and B. Marković, Acta Crystallogr., Sect. C, 1988, 44, 1521.
13 E. M. McCarron III and R. L. Harlow I, J. Am. Chem. Soc., 1983, 105, 6179.
14 W. G. Klemperer and W. Shum, J. Am. Chem. Soc., 1976, 98, 8291.

15 A. J. Wilson, V. McKee, B. R. Penfold, and C. J. Wilkins, Acta Crystallogr., Sect. C, 1984, 40, 2027.
16 V. W. Day, M. F. Fredrich, W. G. Klemperer, and R-S. Liu, J. Am. Chem. Soc., 1979, 101, 491.
17 R. L. Graham and L. G. Helper, J. Phys. Chem., 1959, 63, 723.
18 K. Yamanouchi and S. Yamada, Inorg. Chim. Acta, 1974, 9, 83.
19 J. A. Ibers and W. C. Hamilton (eds.), 'International Tables for X-Ray Crystallography,' Kynoch Press, Birmingham, 1974, vol. 4.
20 T. Cromer and D. Liberman, J. Chem. Phys., 1970, 53, 1891.
21 G. M. Sheldrick, SHELX 76 Program for Crystal Structure Determination and Refinement, University of Cambridge, 1976.
22 H. Eguchi, T. Takeuchi, A. Ouchi, and A. Furnhashi, Bull. Chem. Soc. Jpn., 1969, 42, 3585.
23 F. A. Schröder, Acta Crystallogr., Sect. B, 1975, 31, 2294.
24 F. A. Schröder, Z. Naturforsch., Teil B, 1975, 30, 638.
25 J. C. J. Bart and V. Ragaini, Inorg. Chim. Acta, 1979, 36, 261 and refs. therein.

[^0]: \dagger Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1990, Issue 1, 'pp. xix-xxii.

