Reactions of Isocyanide Complexes of Palladium(II) and Platinum(II) with Azetidine: Synthesis of Acyclic Diaminocarbene Derivatives and X-Ray Structure of [PdCl(PMe₂Ph)($CH_2CH_2CH_2NH$){ $C(NCH_2CH_2CH_2)NHC_6H_4OMe-p$ }]Cl·CH₂Cl₂†

Roberta Bertani and Mirto Mozzon

Centro di Chimica Metallorganica degli Elementi di Transizione, C.N.R., Via F. Marzolo 9, 35131 Padova, Italy Franco Benetollo

Istituto di Chimica e Tecnologia dei Radioelementi, C.N.R. Corso Stati Uniti, 4, 35020 Padova, Italy Gabriella Bombieri

Istituto di Chimica Farmaceutica e Tossicologia, Universita' di Milano, Viale Abruzzi, 42, 20131 Milano, Italy Rino A. Michelin*

Istituto di Chimica Industriale, Facolta' di Ingegneria, Universita' di Padova, Via F. Marzolo, 9, 35131 Padova, Italy

Azetidine reacts in tetrahydrofuran (thf) at room temperature or below with the co-ordinated RNC ligand in each of the neutral cis-[MCl₂(PPh₃)(CNR)] [M = Pd or Pt; R = C₆H₄OMe-p or Bu^t) and cationic trans-[MCI(PPh_a)₂(CNC₆H₄OMe-p)]BF₄ (M = Pd or Pt) complexes to form the corresponding derivatives containing the acyclic diaminocarbene molety $M-C(NCH_2CH_2CH_2)NHR$. Azetidine reacts also with the bis(isocyanide) complexes cis-[PdCl₂(CNR)₂] (R = Bu^t or C₆H₄OMe-p) converting one (R = Bu^t) or two (R = C₆H₄OMe-p) isocyanide ligands into acyclic carbenes. The isocyanide complexes cis-[MCl₂(PMe₂Ph)(CNC₆H₄OMe-p)] (M = Pd or Pt) react in thf with 2 equivalents of azetidine to afford the cationic acyclic diaminocarbene complexes [MCI-(PMe₂Ph)(ĊH₂CH₂CH₂NH){C(NCH₂CH₂CH₂)NHC₆H₄OMe-*p*}]Cl containing a metal-co-ordinated azetidine ligand. In contrast to the reactions of the three-membered heterocycle aziridine with isocyanide ligands which lead to five-membered cyclic carbenes, the corresponding reactions of azetidine give no evidence of six-membered diaminocarbenes. The carbene complexes have been characterized by their elemental analyses, i.r., ¹H, and ³¹P n.m.r. spectra and in a few cases by their ¹³C n.m.r. and mass spectra. The structure of [PdCl(PMe₃Ph) (CH₃CH₃CH₃CH₃NH){C(NCH₃CH₃CH₃)NH- $C_{6}H_{4}OMe_{P}$ Cl·CH₂Cl₂ was determined by X-ray diffraction: space group P2₁/n, a = 24.849(4), b = 10.174(2), c = 11.895(2) Å, $\beta = 91.85(3)^\circ, R = 0.054$ (R' = 0.059) for 3 734 observed reflections. The geometry around Pd is a distorted square with the diaminocarbene ligand trans to chloride. The Pd–C(sp^2) distance is 1.990(6) Å and the bond lengths within the carbenoid system indicate extensive electronic delocalization.

Electrophilic isocyanide ligands in certain transition-metal complexes can be converted into cyclic carbenes by different synthetic procedures.¹⁻⁴ Recently we reported that the highly strained three-membered heterocycles YCH_2CH_2 (Y = NH, S, or O) undergo spontaneous (Y = NH or S) or Cl⁻-catalyzed (Y = O) ring opening upon attack on Pt^{II}- and Pd^{II}-coordinated isocyanide ligands to afford five-membered cyclic diamino-, aminothio-, and amino-oxocarbenes.⁵ The reactions have been shown to be influenced either by the nucleophilicity of the entering heterocycle or both the nature of the isocyanide and the metal centre. Aziridine proved to be the most reactive among the three-membered heterocycles investigated.

Closely related to this class of organic nucleophiles, the fourmembered ring of azetidine $HNCH_2CH_2CH_2$ is known to be less strained than aziridine and, consequently, the ring opening of azetidine occurs much less easily than that of aziridine.⁶ On the other hand, azetidine is a stronger nucleophile ($pK_a = 11.2$) compared to aziridine ($pK_a = 8.4$) suggesting that it would react faster than aziridine with metal-activated isocyanide ligands.⁷ Should azetidine behave like aziridine, six-membered cyclic diaminocarbenes will form upon reaction with isocyanides.

Here we report on the reactions of a number of isocyanide

complexes of Pd^{II} and Pt^{II} with azetidine and discuss the spectroscopic and structural characterization of the new carbene compounds formed.

Experimental

General.—All reactions were carried out in oven-dried glassware under a nitrogen atmosphere. Tetrahydrofuran (thf) was distilled from solutions of sodium-benzophenone. All other solvents were of reagent-grade purity and used without further purification. The ¹H and ¹³C n.m.r. spectra of the complexes were obtained on a Bruker AM-400 spectrometer, ³¹P n.m.r. spectra on a Varian FT-80A spectrometer, i.r. spectra on a Perkin-Elmer 983 spectrophotometer, and fast atom bombardment (f.a.b.) mass spectra on a VG ZAB 2F instrument operating with a xenon-atom beam energy of 8 keV (1.28 × 10⁻¹⁶ J). Melting points (uncorrected) of the compounds were determined in air on a hot-plate apparatus. Elemental analyses were performed by the Department of Analytical

[†] Azetidine[azetidin-1-yl(p-methoxyanilino)methylene]chloro(dimethylphenylphosphine)palladium chloride-dichloromethane(1/1).

Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1990, Issue 1, pp. xix-xxii.

Chemistry of the University of Padua. Azetidine, thietane, and oxetane were commercially available products used as received.

Starting Complexes.—The starting isocyanide complexes were prepared according to literature procedures which are outlined in refs. 5 and 8.

cis-[PdCl₂(PPh₃){C(NCH₂CH₂CH₂)NHC₆H₄OMe-*p*}] (1).—To a suspension of cis-[PdCl₂(PPh₃)(CNC₆H₄OMe*p*)] (0.330 g, 0.57 mmol) in thf (10 cm³) was added azetidine (0.058 cm³, 0.86 mmol) and the reaction mixture stirred at 0 °C to give a clear solution. The stirring was then continued while the temperature of the bath was allowed to rise slowly to room temperature. After 10 min, an i.r. spectrum of the solution did not reveal any band at 2 215 cm⁻¹ due to v(C=N) of the starting isocyanide complex but showed the v(C=N) at 1 562 cm⁻¹ of the carbene complex. The stirring was then prolonged for 10 h. The white precipitate formed during this time was filtered off, washed with n-hexane (3 × 5 cm³), and dried under vacuum. The product was recrystallized from CH₂Cl₂-n-hexane. Yield 0.358 g (98%).

In a separate experiment this compound was prepared by adding cis-[PdCl₂(PPh₃)(CNC₆H₄OMe-p)](0.660 g, 1.14 mmol) to a stirred solution of [NH₃(CH₂CH₂CH₂Cl)]Cl (0.212 g, 2.28 mmol) previously treated with a 1.5 mol dm⁻³ n-hexane solution of LiBuⁿ (1.6 cm³, 2.5 mmol) at 0 °C in thf (20 cm³). The reaction mixture was allowed to reach room temperature, giving a clear solution. After 1 h a white product started to precipitate. After 12 h it was filtered off, washed with n-hexane, and recrystallized from CH₂Cl₂-n-hexane. Yield 0.215 g (30%).

cis-[PdCl₂(PPh₃){C($NCH_2CH_2CH_2$)NHBu^t}] (2).—This compound was prepared as described for (1) starting from cis-[PdCl₂(PPh₃)(CNBu^t)] (0.325 g, 0.62 mmol) and azetidine (0.050 cm³, 0.74 mmol) in thf (10 cm³). An i.r. spectrum of the solution recorded after 15 min did not show v(C=N) at 2 229 cm⁻¹ of the starting isocyanide complex but the presence of v(C=N) at 1 560 cm⁻¹ of the carbene complex. Yield 0.223 g (62%).

cis-[PtCl₂(PPh₃){C(NCH₂CH₂CH₂)NHC₆H₄OMe-*p*}] (3).—This compound was prepared as described for (1) starting from cis-[PtCl₂(PPh₃)(CNC₆H₄OMe-*p*)] (0.308 g, 0.46 mmol) and azetidine (0.038 cm³, 0.56 mmol) in thf (10 cm³). After 5 h an i.r. spectrum of the solution showed that almost all the starting complex had reacted and the carbene complex was formed, as indicated by the absence of v(C=N) at 2 206 cm⁻¹ and the presence of v(C=N) at 1 559 cm⁻¹. Yield 0.200 g (60%). Mass spectrum [*m*/*z* (relative intensity, probable assignment)]: 718(1.5, *M*⁺), 683(16.6, [*M*-Cl]⁺), 648(39.3, [*M*-2Cl]⁺), 456(11.3, [*M*-PPh₃]⁺), 386(11.4, [Pt{C(NCH₂CH₂CH₂)NHC₆H₄OMe}]⁺), 328{3.0, [Pt(CNC₆H₄OMe)]⁺}, 183(100.0, C₁₂H₈P⁺).

cis-[PtCl₂(PPh₃){C($^{\rm N}CH_2CH_2CH_2$)NHBu^t}] (4).—This compound was prepared as described for (1) starting from cis-[PtCl₂(PPh₃)(CNBu^t)] (0.611 g, 1.0 mmol) in thf (20 cm³) and azetidine (0.090 cm³, 1.33 mmol). After 8 h of reaction an i.r. spectrum of the solution did not show the v(C=N) stretching of the starting isocyanide at 2 219 cm⁻¹, while v(C=N) at 1 562 cm⁻¹ of the carbene complex was present. Yield 0.567 g (85%).

trans-[PdCl(PPh₃)₂{C(NCH₂CH₂CH₂)NHC₆H₄OMe-*p*}]-BF₄ (5).—This compound was prepared as described for (1) starting from trans-[PdCl(PPh₃)₂(CNC₆H₄OMe-*p*)]BF₄ (0.305 g, 0.34 mmol) and azetidine (0.028 cm³, 0.41 mmol) in thf (15 cm³). An i.r. spectrum of the solution run after 15 min did not

reveal any v(C=N) at 2 210 cm⁻¹, but showed v(C=N) at 1 563 cm⁻¹ of the final product. Yield 0.256 g (80%).

trans-[PtCl(PPh₃)₂{C($^{\rm N}CH_2CH_2CH_2$)NHC₆H₄OMe-*p*}]-BF₄ (6).—This compound was prepared as described for (1) starting from trans-[PtCl(PPh₃)₂(CNC₆H₄OMe-*p*)]BF₄ (0.325 g, 0.33 mmol) and azetidine (0.033 cm³, 0.49 mmol) in thf (15 cm³). An i.r. spectrum of the solution taken after 5 h did not display v(C=N) at 2 207 cm⁻¹, but showed v(C=N) at 1 562 cm⁻¹ of the final product. Yield 0.214 g (63%).

cis-[PdCl₂(CNBuⁱ){C($^{N}CH_{2}CH_{2}CH_{2}$)NHBuⁱ}] (7).—To a solution of cis-[PdCl₂(CNBuⁱ)₂] (0.115 g, 0.44 mmol) in thf (10 cm³) was added azetidine (0.065 cm³, 0.96 mmol) at 0 °C. A white precipitate immediately formed. An i.r. spectrum of the solution showed the presence of only one v(C=N) absorption at 2 209 cm⁻¹ while the starting bis(isocyanide) complex showed v(C=N) at 2 230 and 2 247 cm⁻¹ in thf solvent. An absorption of medium intensity at 1 562 cm⁻¹ corresponding to v(C=N) was also observed. The ice-bath was removed and stirring was continued for 10 h. The solid product was filtered off, washed with n-hexane (2 × 5 cm³), and dried under vacuum. It was redissolved in CH₂Cl₂–MeOH and precipitated with n-hexane-acetone. Yield 0.151 g (86%).

trans-[PdCl₂{C(NCH₂CH₂CH₂)NHC₆H₄OMe-p]₂] (8).— This compound was prepared as described for (7) starting from *cis*-[PdCl₂(CNC₆H₄OMe-p)₂] (0.333 g, 0.75 mmol) and azetidine (0.112 cm³, 1.65 mmol) in thf (10 cm³). After 30 min an i.r. spectrum of the solution showed the presence of only one v(C=N) absorption at 2 213 cm⁻¹ together with a band at 1 562 cm⁻¹ corresponding to v(C=N). Stirring was continued until no band at 2 213 cm⁻¹ was present (*ca.* 6 h). Yield 0.350 g (83%). Mass spectrum [*m*/*z* (relative intensity, probable assignment)]: 575(1.0, *M*⁺), 522(2.5, [*M*-Cl]⁺), 487(4.7, [*M*-2Cl]⁺), 296(6.5, [Pd{C(NCH₂CH₂CH₂)NHC₆H₄MeO}]⁺, 239{2.0, [Pd(CNC₆H₄OMe)]⁺}, and 183(100.0, C₁₂H₈P⁺).

[MCl(PMe₂Ph)(CH₂CH₂CH₂CH₂NH){C(NCH₂CH₂CH₂)NH-C₆H₄OMe-*p*}]Cl [M = Pd (9) or Pt (10)].—These compounds were prepared similarly as described for (1) starting from *cis*-[MCl₂(PMe₂Ph)(CNC₆H₄OMe-*p*)] (0.5 mmol) and azetidine (0.067 cm³, 1 mmol) in thf (30 cm³) at 0 °C. The products were washed with acetone and recrystallized from CH₂Cl₂-Et₂O: (9), yield 0.210 g (75%); (10), yield 0.229 g (71%).

trans-[PtBr(PPh₃)₂{C(NCH₂CH₂CH₂)NHC₆H₄OMe-p}]-BF₄ (11).—The complex trans-[PtCl(PPh₃)₂(CNC₆H₄OMe-p)]BF₄ (0.633 g, 0.65 mmol) was added to a stirred solution of [NH₃(CH₂CH₂CH₂Br)]Br (0.143 g, 0.65 mmol) previously treated with azetidine (0.037 g, 0.65 mmol) at 0 °C in thf (20 cm³). The reaction mixture was allowed to reach room temperature, giving a clear solution, and then a second equimolar amount of azetidine was added. After 3 h a white product started to precipitate. After 20 h it was filtered off, washed with n-hexane, and recrystallized from CH₂Cl₂-n-hexane. Yield 0.228 g (32%).

Crystal Structure Analysis of Complex (9)•CH₂Cl₂.--C₂₂H₃₂Cl₂N₃OPPd•CH₂Cl₂, M = 647.73, monoclinic, a = 24.849(4), b = 10.174(2), c = 11.895(2) Å, $\beta = 91.85(3)^{\circ}$, U = 3005.6(9) Å³, space group $P2_1/n$, Z = 4, $D_c = 1.43$ g cm⁻³, crystal size 0.18 × 0.20 × 0.24 mm, μ (Mo- K_{α}) = 9.5 cm⁻¹.

 θ —2 θ Scan, 2 $\theta_{max.} = 50.6354$ Reflections were measured, with a Philips PW1100 diffractometer, using Mo- K_{α} radiation (graphite monochromator); 3734 observed reflections with $I \ge 3\sigma(I)$. The intensity data were corrected for Lorentz

polarization effects but not for absorption. The structure was solved by the heavy-atom method and refined by full-matrix least squares. All non-hydrogen atoms were refined anisotropically. The hydrogen atoms were detected from difference maps, but they were introduced in calculated positions ($d_{C-H} = 0.95$ Å and $U_{iso} = 0.07$ Å²) except those of NH groups which were refined isotropically. All the calculations were performed by using the program SHELX 76;⁹ PLUTO¹⁰ and ORTEP¹¹ were used for drawings. Scattering factor data were taken from ref. 12. The final *R*, *R'* values were 0.054, 0.059 respectively, with weights of $w = 1/[\sigma^2 F_o + 0.002\ 2331 F_o^2]$; goodness of fit S = 1.26. The final atomic positional parameters are given in Table 4.

Additional material available from the Cambridge Crystallographic Data Centre comprises H-atom co-ordinates, thermal parameters, and remaining bond distances and angles.

Results and Discussion

Synthesis and Characterization of the Compounds.—The isocyanide ligands and their metal complexes which have been

investigated in this work are shown in equations (1)—(4). These isocyanide complexes have been previously reported ^{5,13} to display values of $\Delta v = v(C\equiv N)_{co-ord} - v(C\equiv N)_{free} > 70 \text{ cm}^{-1}$ indicating that the isocyanide carbon is a potentially reactive electrophilic centre¹⁴ towards nucleophiles to give carbene complexes.⁷

Azetidine (1.2-1.5 equiv.) reacts in thf with the RNC ligand in each of the neutral and cationic isocyanide complexes shown in equations (1) and (2) to afford the diaminocarbene complexes (1)-(4) and (5) and (6), respectively.

The bis(isocyanide) complexes cis-[PdCl₂(CNBu¹)₂] and cis-[PdCl₂(CNC₆H₄OMe-p)₂] react with 2 equivalents of azetidine under experimental conditions analogous to those used for the monoisocyanide derivatives [equations (3a) and (3b)].

These reactions proceed differently depending on the nature of the RNC ligand. When R = Bu' only one isocyanide ligand is converted into a carbene group by reaction with azetidine [compound (7), equation (3a)]. On the other hand, when $R = C_6H_4OMe_p$, the reaction proceeds stepwise through the rapid formation of a monocarbeneisocyanide complex, which

$$\mathbf{R} = \mathbf{C}_6 \mathbf{H}_4 \mathbf{OM} \mathbf{e} - \mathbf{p}$$

is slowly converted into the final bis(carbene) product (8) [equation (3b)]. The intermediate mixed carbeneisocyanide complex was not isolated from the reaction mixture, but was detected in solution (see Experimental section).

The observed trend in reactivity of isocyanide ligands with azetidine agrees well with the generally observed higher reactivity of aryl isocyanides with respect to alkyl analogues⁷ and also parallels that found for the analogous reactions with aziridine.⁵

Finally, the neutral isocyanide complexes cis-[MCl₂-(PMe₂Ph)(CNC₆H₄OMe-p)] (M = Pd or Pt) react in thf with 2 equivalents of azetidine affording the cationic acyclic diaminocarbene complexes (9) and (10) according to equation (4). In these reactions, azetidine displaces a chloride ion from the metal to give cationic derivatives containing a co-ordinated azetidine ligand.

In contrast to the reactions of the three-membered heterocycles thi-irane and oxirane with isocyanides, the fourmembered heterocycle $YCH_2CH_2CH_2$ (Y = S, thietane; Y = O, oxetane) either alone or in the presence of Cl⁻ ions fails to convert the isocyanide group in complexes of Pd^{II} and Pt^{II} into the aminothio- and amino-oxy-carbene ligand, respectively.

Complexes (1)—(10) are isolated from the reaction mixture as white, air-stable solids, soluble in CH_2Cl_2 but insoluble in Et_2O and n-hexane. They gave satisfactory C, H, and N elemental analyses (Table 1) and were characterized by i.r. (Table 1), ¹H and ³¹P n.m.r. (Table 2) spectroscopy. Furthermore compound (9) was structurally characterized by an X-ray diffraction study, and for complexes (1), (9), and (10) the ¹³C n.m.r. spectra are reported (Table 3).

The i.r. spectra (Nujol mull) show v(C=N) as a strong absorption in the range 1 552—1 568 cm⁻¹ and medium to strong (NH) absorptions in the range 3 178—3 389 cm⁻¹ as also found for complexes of Pd^{II} and Pt^{II} with cyclic^{4b,5} and acyclic diaminocarbenes.¹⁵ The presence of two medium-to-weak (MCl) bands in the range 284—326 cm⁻¹ is indicative of a *cis* stereogeometry for complexes (1)—(4) and (7).^{5,14} The *trans* geometry of complexes (5) and (6) has been confirmed by their ³¹ P n.m.r. spectra.

The ³¹ P n.m.r. spectra indicate the presence of two diastereoisomeric forms in *ca.* 1.5:1 ratio for compound (9) and 3.5:1ratio for (10) based on integration of the signals. The two isomers may arise from different spatial arrangements of the two methyl groups of the co-ordinated PMe₂Ph ligand due to restricted rotation either about the metal-phosphorus bond or the metal-carbene bond.

The protons of the diaminocarbene complexes (1)—(8) display ABCDEF-type ¹H n.m.r. spectra at 400 MHz.

Compound (1) shows four separate multiplets in the range δ 4.91—3.43, one for each proton of the two NCH₂ groups and a complex multiplet centred at δ 2.14 for the CH₂ protons. Each NCH signal (see Table 2) is a doublet ($J_{gem} = 9.3$ Hz) split by coupling with the vicinal *cis* proton [$J(H^2H^4) = J(H^6H^4) = 9.3$ Hz; for proton labelling see Table 2] and by the vicinal *trans* proton [$J(H^2H^3) = J(H^6H^3) = 6.2$ Hz]. The J values were obtained by iterative computer modifications of relevant coupling constants leading to a good simulated spectrum. With

the aid of double-resonance experiments it was possible to identify the geminal protons. Irradiation of the signal at δ 4.91 led only to a sharpening of the signal at δ 4.17, and irradiation of the signal at δ 3.98 results again in a sharpening of the signal at δ 3.43.

Compounds (2)—(4) show six separate signals one for each proton of the azetidine ring. For these complexes it is observed that the four NCH₂ resonances fall in the ranges δ 4.75—2.99, 4.70—3.46, and 4.18—2.65, respectively. Also for compound (2), double-resonance experiments were carried out to identify the geminal protons. Irradiation of the signal at δ 4.75 leads to a sharpening of the resonance at δ 3.94. Similarly, irradiation of the signal at δ 3.70 results in a sharpening of the multiplet at δ 2.99. Also for (2)—(4), iterative computer modifications led to good simulated spectra with J(HH) values reported in Table 2. The observed coupling constants are in good agreement with those reported for metal-free azetidine.⁶

All the other complexes reported in this work display different ¹ H n.m.r. patterns. Thus complexes (5)—(7) show only three signals for the NCH₂ protons with integration ratios of 1:1:2 in the ranges δ 3.84—3.24, 3.77—3.22, and 4.91—4.03, respectively. Compound (8) shows only two signals integrating 1:1 for the NCH₂ protons at δ 4.49 and 3.48.

The two protons of the central CH_2 group of azetidine always appear upfield with respect to the NCH₂ resonances (δ 2.65–1.56).

The ¹H n.m.r. spectra at 400 MHz of compounds (9) and (10) display complex multiplets due to NCH₂ resonances of the carbene and of the metal-co-ordinated azetidine in the range δ 4.42—3.92. The central CH₂ protons of the carbene-bound azetidine appear as quintets at δ 2.61 and 2.28 for (9) and 2.65 and 2.00 for (10) while the central CH₂ protons of the metal-co-ordinated azetidine appear as two broad multiplets at δ 2.38 and 2.10 for (9) and as a broad multiplet at 2.31 for (10). The presence of two diastereoisomers for (9) and (10) is confirmed by the pattern of the methyl groups of PMe₂Ph. Each diastereoisomer gives rise to a doublet of doublets for the methyl resonance by coupling with the phosphorus atom of the phosphine ligand (Table 2).

Finally, the NH resonances of the carbene ligand of complexes (1)—(10) appear as broad signals in the range δ 5.04— 7.72. The observed ³J(PtH) coupling constant values (ca. 90 Hz) in the ¹H n.m.r. spectra of compounds (3), (4), and (10) are in agreement with those previously reported for carbene complexes showing the NH proton *trans* to the platinum(II) centre.¹⁶ The magnitude of ³J(PtH) confirms that the carbene complexes are acyclic, since a cyclic carbene would have the amino proton *cis* to the metal and, consequently, it would display a lower ³J(PtH) value.¹⁶

The aminocarbene proton does not undergo H/D exchange with D_2O in CD_2Cl_2 solvent. Furthermore, attempts to deprotonate the carbene nitrogens in complexes (1), (3), (5), and (6) with LiBuⁿ (1.2 equivalents) were unsuccessful, the starting material being recovered unchanged after 12 h of stirring in thf at room temperature. The lack of reactivity of the NH proton in such complexes contrasts with that reported for the carbene complexes *trans*-[MBr(PPh₃)₂-

Table 1. Analytical data and characteristic i.r. bands for the complexes (1)-(11)

	An	Analyses ^a /%			I.r. ^c /cm ⁻¹		
Compound		Н	N	M.p. ^{<i>b</i>} / °C	v(C=N)	v(NH)	v(M-Cl)
(1) cis -[PdCl ₂ (PPh ₃){C(NCH ₂ CH ₂ CH ₂)NHC ₆ H ₄ OMe- <i>p</i> }]•0.7CH ₂ Cl ₂	51.75	4.45	4.05	228-231	1 560s	3 222m	290w, 313w
	(51.75)	(4.45)	(4.05)				
(2) $cis-[PdCl_2(PPh_3){C(NCH_2CH_2CH_2)NHBu'}]$	52.85	5.40	4.75	219220	1 560s	3 239m	295w, 311w
	(53.85)	(5.40)	(4.85)				,
(3) $cis-[PtCl_2(PPh_3)]{C(NCH_2CH_2CH_2)NHC_6H_4OMe-p}]{0.5CH_2Cl_2}$	46.75	3.95	3.50	246-247	1 552s	3 249m	284w, 309w
	(46.55)	(3.95)	(3.70)				,
(4) $cis[PtCl_2(PPh_3){C(NCH_2CH_2CH_2)NHBu^t}]$	45.75	4.95	4.20	193	1 558s	3 265m	290w, 316w
	(46.70)	(4.65)	(4.20)				,
(5) trans-[PdCl(PPh ₃) ₂ {C(NCH ₂ CH ₂ CH ₂)NHC ₆ H ₄ OMe- p }]BF ₄	` 59.55	4.80	2.90	168-170	1 564s	3 264m	274m
	(59.85)	(4.70)	(2.95)				
(6) trans-[PtCl(PPh ₃) ₂ {C(NCH ₂ CH ₂ CH ₂)NHC ₆ H ₄ OMe- p }]BF ₄	55.20	4.40	2.65	220-221	1 565s	3 290m	311m
	(55.30)	(4.30)	(2.70)				
(7) cis -[PdCl ₂ (CNBu ⁴){C(NCH ₂ CH ₂ CH ₂)NHBu ⁴ }]·CH ₂ Cl ₂	34.55	5.65	8.70	300	1 568s	3 178m	297w. 326w ^d
	(34.60)	(5.60)	(8.65)				
(8) trans-[PdCl ₂ {C(NCH ₂ CH ₂ CH ₂)NHC ₆ H ₄ OMe- p }]	47.30	5.10	9.80	223225	1 561s	3 183m	272w
	(47.35)	(5.05)	(10.05)				
(9) $[PdCl(PMe_2Ph)(CH_2CH_2CH_3NH)(C(NCH_2CH_2CH_3)NHC_6H_4-$	46.25	5.40	` 7.15´	138-139	1 563s	3 340m ^e	277m
OMe- <i>p</i> }]Cl	(46.95)	(5.75)	(7.45)				
(10) [PtCl(PMe ₂ Ph)(CH ₂ CH ₂ CH ₂ NH){C(NCH ₂ CH ₂ CH ₂)NHC ₆ H ₄ -	39.35	4.95	6.15	155-156	1 560s	3 389m	285m
OMe- <i>p</i> }]Cl	(40.55)	(4.75)	(5.85)				
(11) trans-[PtBr(PPh_3)_{2}(NCH_{2}CH_{2}CH_{2})NHC_{6}H_{4}OMe_{p}]BF_{4}	52.05	4.15	2.55	195197	1 562s	3 281m	
	(52.45)	(4.10)	(2.60)				

^{*a*} Calculated values in parentheses. ^{*b*} All complexes decompose on melting. ^{*c*} Nujol mull; s = strong, m = medium, and w = weak. ^{*d*} v(C=N) 2 231s cm⁻¹. ^{*e*} In CH₂Cl₂ solution.

Table 2. Proton^{*a*} and ${}^{31}P{-}{{}^{1}H}^{b}$ n.m.r. data for the carbene complexes

Compound	$\delta(\text{NCH}_2)^c$	δ(CH ₂)	δ(NH)	δ(Other)	δ(Ρ)
(1)	4.91(m), 4.17(m), 3.98(m), 3.43(m)	2.14(m)	6.53(br)	$3.84(s)^d$	26.76(s)
(2)	4.75(m), 3.94(m), 3.70(m), 2.99(m)	2.19(m), 1.66(m)	7.72(br)	$1.53(s)^{e}$	24.69(s)
(3)	4.70(m), 4.16(m), 3.89(m), 3.46(m)	2.23(m), 2.11(m)	6.35(br), ³ J (PtH) 90	$3.84(s)^d$	8.48(s), J(PtP) 4 080
(4)	4.18(m), 3.66(m), 3.04(m), 2.65(m)	2.35(m), 2.18(m)	5.14(br), ³ J (PtH) 99	$1.38(s)^{e}$	6.48(s), ¹ $J(PtP)$ 3 425
(5)	3.84(m), 3.66(m), 3.24(m)	1.80(m), 1.57(m)	7.68(br)	$3.77(s)^d$	20.77(s)
(6)	3.77(m), 3.65(m), 3.22(m)	1.56(m)	7.66(br)	$3.79(s)^d$	17.11(s), ¹ J(PtP) 2 654
(7)	4.91(m), 4.42(m), 4.03(m)	2.44(m)	5.04(br)	$1.64(s)^{e}, 1.51(s)^{e}$	
(8)	4.49(m), 3.48(m)	1.92(m)	7.55(br)	$3.81(s)^d$	
(9)	$4.15(m), 4.37(m)^{f}, 4.27(m)^{f}$	2.61(qnt), 2.28(qnt)	6.60(br), 6.39(br) ^g	$3.81(s)^d$, $3.78(s)^{d,g}$	$2.48(s)^{g}$, $1.28(s)$
		$2.38(m)^{f}$, $2.10(m)^{f}$	8.06(d), ³ <i>J</i> (HP) 8.4 ^{<i>f</i>} 7.94 <i>J</i> .9 ³ <i>I</i> (HP) 8.9	$1.52(d), {}^{2}J(HP) 11.1 {}^{g,h},$ 1 43(d) ${}^{2}I(HP) 11.1 {}^{g,h},$	
			,.,, y (III) 0.9	$1.43(d), 3(HI) 11.1^{h}$	
				$1.38(d), {}^{2}J(HP) 11.8^{h}$	
(10)	4.21(m), 4.05(m)	2.65(qnt), 2.00(qnt)	7.67(br), ³ J(PtH) 98	$3.78(s)^d$, $3.77(s)^{d,g}$	-19.83^{g} , ¹ J(PtP) 3 260
	$4.42(m)^f$, $4.29(m)^f$, $3.92(m)^f$	$2.31(m)^{f}$	$7.81(d)^{f}$, ${}^{3}J(HP)$ $8.0, {}^{2}J(PtH)$ 80	1.54(d), ${}^{2}J(HP) 11.0^{g,h}$, 1.50(d), ${}^{2}J(HP) 11.1^{g,h}$	-18.54, ¹ J(PtP) 3 897
			,	1.64(d), ${}^{2}J(HP)$ 11.4 ^{<i>h</i>,<i>i</i>}	
(11)	3.86(t), 3.27(t)	1.62(qnt), ³ <i>J</i> (HH) 7.6	7.86(s), ³ J(PtH) 92	3.86(s) ^d	15.44, ¹ J(PtP) 2 632

^{*a*} Spectra in CD₂Cl₂; proton chemical shifts are reported with reference to SiMe₄ by taking the chemical shift of CD₂Cl₂ as +5.32; J in Hz; s = singlet, t = triplet, qnt = quintet, m = multiplet, br = broad. ^{*b*} In CD₂Cl₂; 85% H₃PO₄ as external reference. ^{*c*} The following coupling constants were obtained from iterative computer modifications of relevant coupling constants leading to a good simulated spectrum: for (1), $J_{gem} = J(H^2H^4) = J(H^6H^4) = 9.3$; $J(H^2H^3) = J(H^6H^3) = 6.2$; for (2), $J_{gem} = J(H^2H^4) = J(H^6H^4) = 9.0$; $J(H^2H^3) = J(H^6H^3) = 6.5$; for (3), $J_{gem} = J(H^2H^4) = J(H^6H^4) = 9.2$; $J(H^2H^3) = J(H^6H^3) = 6.1$; for (4), $J_{gem} = J(H^2H^4) = J(H^6H^4) = 8.9$; $J(H^2H^3) = J(H^6H^3) = 6.8$ Hz. ^{*a*} δ (OMe). ^{*c*} δ (Bu'). ^{*f*} Protons of metal-coordinated azetidine. ^{*a*} More abundant isomer. ^{*h*} δ (PMe). ^{*i*} The second signal of PMe is partially masked by the signal at δ 1.50.

Compound	C _{carbene}	C ₆ H ₄	OMe	NCH ₂	CH ₂	РМе
(1)	187.2(d)	158.2, 134.7, 132.6, 131.7	55.8	55.4	15.7	
(9) ^b	² J(PC) 3.8 192.3(d), ^b	128.7, 128.6, 125.4, 114.1 157.7, 130.8, 130.3, 128.7,	55.7	54.9, 54.2		14.6(d),
	$^{2}J(PC)$ 5.9;	128.6, 124.6, 124.2, 114.1		52.5(d), ^c 3 <i>I</i> (PC) 26.0	23.3, ^c 4 <i>I</i> (PC) 3.8 ^c	¹ J(PC) 35.0; 14 3(d)
	$^{2}J(PC)$ 6.1			51.9(d), ^c	15.9	$^{1}J(PC)$ 32.8
(10) ^{<i>b</i>}	170.0(d), $^{2}I(PC) 7.7$	157.9, 134.0, 131.1, 131.0, 130.0, 128.5, 125.7, 113.8	55.7	55.3, 54.2 52.5(d).6	23.2.5	
	$^{1}J(PtC) 1 371$	1500, 1203, 1251, 11510		³ J(PC) 23.5, 52.1(d), ^c ³ I(PC) 23.0	⁴ J(PC) 2.5 15.3	13.7(d), ¹ <i>J</i> (PC) 42.9
(11)	174.9, ² <i>J</i> (PC) 7.5, ¹ <i>J</i> (PtC) 1 534	158.3, 134.9, 132.1, 129.0, 128.9, 124.1, 114.0	55.8	55.1 52.3	14.5	

Table 3. Carbon-13 n.m.r. spectral data for complexes (1) and (9)-(11)^a

^a Spectra run in CD_2Cl_2 as solvent; chemical shifts reported with reference to SiMe₄ by taking the chemical shift of CD_2Cl_2 as +53.8 p.p.m.; J in Hz. ^b Resonances refer to the more abundant isomer. ^c CH_2 protons of azetidine co-ordinated to the metal.

$$cis - (Ph_3P)Cl_2Pd(CNR) \xrightarrow{(i),(ii)} cis - (Ph_3P)Cl_2Pd = C (a)$$

+ unidentified products

$$trans - \left[Pt Br(PPh_3)_2(CNR) \right] BF_4 \xrightarrow{(ii), (iii)} trans - \left[(Ph_3P)_2 Br Pt = C \left[NH \right] BF_4 (b) \right] BF_4 (b)$$

+ unidentified products

+ unidentified products

Scheme. $R = C_6H_4OMe-p$. (i) $[NH_3(CH_2CH_2CH_2CI)]CI + LiBu$; (ii) thf, 0 °C; (iii) $[NH_3(CH_2CH_2CH_2Br)]Br + azetidine$; (iv) $[NH_3(CH_2CH_2CH_2Br)]Br + LiBu$

 $\{CN(R)CH_2CH_2NH\}$]BF₄ (M = Pd or Pt, R = aryl)^{4b} and [Fe(η -C₅H₅)(CO)₂(COCH₂CH₂NH)],¹⁷ which are readily deprotonated by LiBuⁿ or NaH to give the imino complexes M-

 $\dot{C}N(R)CH_2CH_2\dot{N}$: and $M-\dot{C}OCH_2CH_2\dot{N}$; respectively, whose nitrogens react with electrophiles.

The 13 C n.m.r. spectra (Table 3) of complexes (1), (9), and (10) show the carbon earbon signals in the range 170.0—192.9

p.p.m., as expected for diaminocarbene compounds of Pt^{II} and Pd^{II 18} with a coupling constant ¹ J(PtC) = 1 371 Hz for (10). The NCH₂ resonances of the *carbene*-bound azetidine appear in the range 54.2—55.4 p.p.m. and the assignments have been confirmed by comparison of the ¹³C-{¹H} with the corresponding coupled ¹³C spectra. The assignment of the NCH₂ signals of the *metal*-co-ordinated azetidine is based on the presence of ³J(PC)(26 and 23 Hz, see Table 3) for (9) and (10); ³J(PC) are generally larger than ²J(PC).¹⁹

Figure 1. Perspective view of the asymmetric unit of complex (9). The ellipsoidal boundaries are at the 40% probability level

Spectroscopic and structural data (see below) indicate that the reactions of azetidine with isocyanide complexes of Pd^{II} and Pt^{II} lead to the formation of acyclic carbene derivatives, with no evidence of cyclic species. Attempts to synthesize six-membered cyclic carbenes are summarized in the Scheme.

The reactions (a)—(c) take advantage of similar reactions reported for 3-halogenopropylammonium salts and a base with carbonyl ligands to give six-membered cyclic carbenes.²⁰ As for isocyanide ligands, the reactions (a)—(c) lead to a poorly defined mixture of products, consisting mostly of the acyclic carbene derivatives. Thus, the spectral data for the carbene products derived from reactions (a) and (b) show that these complexes are acyclic as compared with the spectroscopic data for compounds (1) and (6). In one case (c) only, the observed coupling of the aminocarbene proton with ¹⁹⁵Pt [³ J(PtH) 46.4 Hz]¹⁶ suggests that a cyclic carbene derivative could have been formed together with the acyclic parent complex [³ J(PtH) 95.0 Hz].

As for the mechanism of reactions (1)—(4), it is likely that they proceed by nucleophilic attack of azetidine on the isocyanide carbon and subsequent NH transfer to the imino nitrogen as proposed in several mechanistic studies of nucleophilic attack of anilines on co-ordinated isocyanides.⁷

Structure of Complex (9)·CH₂Cl₂.—The structure consists of [PdCl(PMe₂Ph)(CH₂CH₂CH₂NH){C(NCH₂CH₂CH₂)NH-C₆H₄OMe-*p*]⁺ cation and Cl⁻anion units and CH₂Cl₂ solvent molecules. The co-ordination geometry around Pd^{II} is a distorted square. (The deviations from the best mean plane through the co-ordinated atoms are P -0.004(2), Cl(1) 0.006(2), C(1) 0.063(6), and N(3) -0.046(6) Å with the Pd atom 0.0492(6) Å from this plane.) The diaminocarbene ligand bound to Pd *via* C(1) is *trans* to chloride: the co-ordination is completed by one phosphorus atom from PMe₂Ph and the azetidine nitrogen.

A perspective view of the complex cation showing its conformation and the atom numbering scheme is displayed in Figure 1, while significant bond distances and angles are in

Figure 2. Cell contents of complex (9) viewed down b

Table 5. The Cl(1)-Pd-C(1) angle is $179.0(2)^{\circ}$ while P-Pd-N(3) is 175.8(2)°. This bending is related to the steric bulk of the carbenoid ligand which is strongly bound to palladium(II) [Pd-C(1) 1.990(6) Å]. This is readily apparent by comparison with the expected $Pd-C(sp^2)$ distance of 2.05 Å based on the sum of the σ covalent radii {1.31 (Pd^{II}) + 0.74 Å [C(sp²)]}.²¹ The Pd-C(carbene) bond length is also comparable to the corresponding distance for the diaminocarbene ligand in $[PdCl{C(NEt_2)NHMe}{Et_2NCH_2CH_2C(O)}]$ [2.010(5) and 2.020(5) Å for two independent molecules],²² where the carbene moiety is *trans* to the amino nitrogen of the bidentate β aminoacyl ligand. In addition it is in agreement with the Pd-C(carbene) bond lengths of 1.953(8) and 1.972(10) Å reported for the methylamino(methoxy)carbene ligands in cis-dichlorobis[methylamino(methoxy)carbene]palladium.² where the two carbenes are trans to chlorides as in the present structure, and is within the range of 1.95-2.08 Å observed in a variety of platinum diaminocarbene complexes.46,24 In the acyclic carbene ligand the C(1)-N(1) bond length [1.334(8) Å] is significantly longer than the C(1)-N(2) bond length [1.298(8)] Å] and the N(2)-C(23) and N(2)-C(25) bond lengths of 1.465(9) and 1.475(9) Å, respectively, are shorter than N(3)-C(22) [1.520(9) Å] and N(3)-C(20) [1.507(9) Å] in the azetidine directly bound to the metal atom. This suggests that some degree of electron delocalization is extended also to the N(2)-C(23) and N(2)-C(25) bonds. However, the most

Table 4.	Atomic	co-ordinates	(×10 ⁴)	of	complex	(9)	with	estimated
standard	deviatio	ns (e.s.d.s) in	parenthe	eses	5			

Atom	X/a	Y/b	Z/c
Pd	6 574.8(2)	7 670.9(4)	5 578.4(4)
Р	6 369.5(6)	5 536(1)	5 293(1)
Cl(1)	7 501.1(6)	7 142(2)	5 670(2)
Cl(2)	5 752.2(7)	1 583(2)	5 982(2)
N(3)	6 745(2)	9 654(5)	5 964(5)
H(3)	6 449(28)	10 073(72)	5 949(59)
0	6 408(3)	8 058(7)	318(5)
N(1)	5 515(2)	8 233(5)	4 545(4)
H (1)	5 201(22)	8 282(46)	5 949(59)
N(2)	5 535(2)	8 165(5)	6 447(4)
C(1)	5 792(2)	8 090(6)	5 517(5)
C(5)	5 736(2)	8 229(6)	3 462(5)
C(6)	5 523(3)	7 438(8)	2 622(6)
C(7)	5 750(4)	7 419(9)	1 574(7)
C(8)	6 200(3)	8 186(8)	1 365(6)
C(9)	6 400(3)	8 998(7)	2 200(6)
C(10)	6 165(3)	9 035(7)	3 234(5)
C(11)	6 577(3)	4 887(6)	3 969(5)
C(12)	6 468(4)	3 566(8)	3 695(7)
C(13)	6 619(5)	3 053(9)	2 674(9)
C(14)	6 886(5)	3 850(9)	1 922(9)
C(15)	6 994(4)	5 125(9)	2 193(8)
C(16)	6 842(3)	5 657(7)	3 209(7)
C(17)	6 691(3)	4 486(7)	6 331(6)
C(18)	5 672(3)	5 094(7)	5 355(8)
C(19)	6 879(4)	8 732(9)	113(8)
C(20)	7 145(3)	10 419(7)	5 297(6)
C(21)	7 444(4)	10 828(11)	6 357(8)
C(22)	7 084(3)	9 947(8)	7 020(6)
C(23)	5 737(3)	8 136(9)	7 618(6)
C(24)	5 162(4)	8 452(14)	7 956(8)
C(25)	4 979(3)	8 508(8)	6 729(6)
Cl(3)	839(2)	3 477(4)	4 734(3)
Cl(4)	765(2)	746(5)	4 101(4)
C(26)	1 050(5)	2 247(12)	3 815(10)

prominent electron-delocalization effect is present in the N(1)-C(5) bond length [1.417(8) Å] adjacent to C(1)-N(1)[1.334(8) Å] of the carbenoid moiety. The two azetidine moieties show slightly different conformations, that being more closer to planarity [the deviations from its best mean plane range from -0.020(14) to 0.009(9) Å] which is bound to the carbene ligand [i.e. N(2), C(23), C(24), C(25)], and is also quasicoplanar to the N(1)-C(1)-N(2) plane [dihedral angle 174.4(5)°]. In the other azetidine moiety [i.e. N(3), C(20), C(21), C(22)] the deviations from the best mean plane range from -0.067(11) to 0.036(8) Å indicating a twisted ring conformation. The extensive bonding within the N(1)-C(carbene)-N(2)system may be compared with the values quoted for the diaminocarbene complexes of Pd^{II} (1.294—1.340 Å)^{23,25} and also of Pt^{II} (1.30—1.37 Å).²⁴ The second azetidine, which is characterized by normal values of the bond distances and angles, close to those reported for L-azetidine-2-carboxylic acid²⁶ which has a similar twisted molecular conformation [deviations from the best mean plane range from -0.067(11) to 0.036(8) Å], is quasi-perpendicular to the co-ordination plane [dihedral angle 88.2(3)°].

The phenyl ring of the carbene ligand is rotated with respect to the N(1)–C(1)–N(2) plane by 127.7(5)° (dihedral angle). The Pd–N(3) bond length of 2.109(5) Å observed for azetidine is similar to the Pd–N bond distances of the mutually *trans* β -amino group of the bidentate β -aminoacyl ligand and diethylamino ligand in the compound [PdCl{Et₂NCH₂CH₂-

Pd-P	2.255(2)	Pd-Cl(1)	2.363(2)
Pd-N(3)	2.109(5)	Pd-C(1)	1.990(6)
P-C(11)	1.799(7)	P-C(17)	1.799(8)
P-C(18)	1.795(7)	N(3)-C(20)	1.507(9)
N(3)-C(22)	1.520(9)	O-C(8)	1.37(1)
O-C(19)	1.38(1)	N(1)-C(1)	1.334(8)
N(1)-C(5)	1.417(8)	N(2)-C(1)	1.298(8)
N(2)-C(23)	1.465(9)	N(2) - C(25)	1.475(9)
C(5)-C(6)	1.38(1)	C(5) - C(10)	1.378(9)
C(6)-C(7)	1.38(1)	C(7)-C(8)	1.39(1)
C(8)-C(9)	1.37(1)	C(9)-C(10)	1.38(1)
C(11)-C(12)	1.41(1)	C(11)-C(16)	1.38(1)
C(12)-C(13)	1.39(1)	C(13)-C(14)	1.39(1)
C(14)-C(15)	1.36(1)	C(15)-C(16)	1.39(1)
C(20)-C(21)	1.50(1)	C(21)-C(22)	1.51(1)
C(23) - C(24)	1.53(1)	C(24) - C(25)	1.52(1)
Cl(3)-C(26)	1.75(1)	Cl(4) - C(26)	1.72(1)
	. ,		• • •
N(3)-Pd-C(1)	89.6(2)	Cl(1)-Pd-C(1)	179.0(2)
Cl(1)-Pd-N(3)	91.1(2)	P-Pd-C(1)	89.1(2)
P-Pd-N(3)	175.8(2)	P-Pd-Cl(1)	90.2(1)
Pd-P-C(18)	116.7(2)	Pd-P-C(17)	112.1(3)
Pd-P-C(11)	114.6(2)	C(17) - P - C(18)	103.4(4)
C(11)-P-C(18)	104.4(3)	C(11) - P - C(17)	104.5(3)
Pd-N(3)-C(22)	118.0(4)	Pd-N(3)-C(20)	120.7(4)
C(20) - N(3) - C(22)	88.7(5)	C(8)-O-C(19)	117.3(7)
C(1)-N(1)-C(5)	125.7(5)	C(23)-N(2)-C(25)	94.8(5)
C(1)-N(2)-C(25)	134.3(6)	C(1)-N(2)-C(23)	130.2(6)
N(1)-C(1)-N(2)	118.6(5)	Pd-C(1)-N(2)	119.3(4)
Pd-C(1)-N(1)	122.1(4)	N(1)-C(5)-C(10)	120.2(6)
N(1)-C(5)-C(6)	120.7(6)	C(6)-C(5)-C(10)	119.2(6)
C(5)-C(6)-C(7)	120.2(7)	C(6)-C(7)-C(8)	120.4(8)
O-C(8)-C(7)	116.0(7)	C(7)-C(8)-C(9)	118.8(7)
O-C(8)-C(9)	125.2(7)	C(8)-C(9)-C(10)	120.6(7)
C(5)-C(10)-C(9)	120.8(6)	P-C(11)-C(16)	121.4(5)
P-C(11)-C(12)	119.7(5)	C(12)-C(11)-C(16)	118.9(7)
C(11)-C(12)-C(13)	120.5(8)	C(12)-C(13)-C(14)	119.5(9)
C(13)-C(14)-C(15)	120(1)	C(14)-C(15)-C(16)	121.5(9)
C(11)-C(16)-C(15)	119.8(7)	N(3)-C(20)-C(21)	91.0(6)
C(20)-C(21)-C(22)	89.3(7)	N(3)-C(22)-C(21)	90.4(6)
N(2)-C(23)-C(24)	87.2(6)	C(23)-C(24)-C(25)	90.5(7)
N(2)-C(25)-C(24)	87.4(6)		

Table 5. Selected bond lengths (Å) and angles (°) with e.s.d.s in

parentheses

C(O){(NHEt₂)] [Pd-N 2.11(1) and 2.09(1) Å, respectively].²⁷ The value of the Pd-Cl(1) distance in complex (9) [2.363(2) Å] is close to the values reported for other palladium(II) complexes having chloro ligands trans to a diaminocarbene moiety (Pd-Cl 2.36-2.39 Å).^{23,28} The Pd-P distance of 2.255(2) Å is comparable to the values of 2.238(1) Å reported for *cis*-dichloro-[2,3-bis(dimethylamino)cycloprop-2-enylidene)](tri-n-butylphosphine)palladium²⁹ and somewhat longer than the value of 2.214(2) Å found for a Pd-P trans to a nitrogen in $[Pd(C_{10}H_8N){Ph_2PC[C(O)OEt][=C(O)NHPh]}]$ $(C_{10})^{-1}$ $H_8N = quinolin-8-ylmethyl)$ ³⁰ In the co-ordination sphere there is a short intramolecular contact between the proton of the azetidine ligand and the palladium [Pd \cdots H(3) 2.57(7) Å] comparable to Pd \cdots H [2.42(8) Å] found in *trans*-[PdCl₂(NHMe₂)₂].³¹ The crystal packing shown in Figure 2 is characterized by the presence of clathrated CH₂Cl₂ solvent molecules and by short intermolecular contacts among the chloride anions and two carbene and azetidine protons ligands which can be considered as hydrogen bonding: N(3)-H(3) 0.85(7), N(3) · · · Cl(2) 3.154(6), H(3) · · · Cl(2) 2.32(7) Å, $\begin{array}{c} N(3)-H(3)\cdots Cl(2) \ 168(6)^\circ; \ N(1)-H(1) \ 0.78(6), \ N(1)\cdots Cl(2^l) \\ (I \ 1-x, \ 1-y, \ 1-z) \ 3.196(5), \ H(1)\cdots Cl(2^l) \ 2.43(5) \ \text{\AA}, \end{array}$ $N(1)-H(1) \cdots Cl(2^{l}) 165(4)^{\circ}$.

Acknowledgements

R. A. M. thanks the Ministero Pubblica Istruzione for financial support.

References

- K. Bartel and W. P. Fehlhammer, Angew. Chem., Int. Ed. Engl., 1974, 13, 599; U. Plaia and W. P. Fehlhammer, J. Am. Chem. Soc., 1985, 107, 2171; W. P. Fehlhammer, K. Bartel, U. Plaia, A. Völkl, and A. T. Liu, Chem. Ber., 1985, 118, 2235.
- 2 R. A. Michelin, G. Facchin, D. Braga, and P. Sabatino, Organometallics, 1986, 5, 2265; R. A. Michelin, M. Mozzon, G. Facchin, D. Braga, and P. Sabatino, J. Chem. Soc., Dalton Trans., 1988, 1803.
- 3 W. P. Fehlhammer, K. Bartel, and W. Petri, J. Organomet. Chem., 1975, 87, C34; K. R. Grundy and W. R. Roper, *ibid.*, 91, C61; Y. Fuchita, K. Hidata, S. Morinaga, and K. Hiraki, *Bull. Chem. Soc.* Jpn., 1981, 54, 800.
- 4 R. A. Michelin, L. Zanotto, D. Braga, P. Sabatino, and R. J. Angelici, *Inorg. Chem.*, 1988, 27, (a) 85, (b) 93.
- 5 R. Bertani, M. Mozzon, and R. A. Michelin, *Inorg. Chem.*, 1988, 27, 2809.
- 6 W. Lwowski, 'Comprehensive Heterocyclic Chemistry,' ed. W. Lwowski, Pergamon, Oxford, vol. 7, part 5, p. 3.
- 7 U. Belluco, R. A. Michelin, P. Uguagliati, and B. Crociani, J. Organomet. Chem., 1983, 250, 565.
- 8 R. A. Michelin, G. Facchin, and P. Uguagliati, *Inorg. Chem.*, 1984, 23, 961.
- 9 G. M. Sheldrick, SHELX 76 program for crystal structure determination, University of Cambridge, 1976.
- 10 W. D. S. Motherwell and W. Clegg, PLUTO 78, Program for plotting molecular crystal structures, University of Cambridge, 1978.
- 11 C. K. Johnson, ORTEP, report ORNL-5138, Oak Ridge National Laboratory, Tennessee, 1976.
- 12 'International Tables for X-Ray Crystallography,' Kynoch Press, Birmingham, 1975, vol. 4.

- 13 R. J. Chatt, R. L. Richards, and G. H. D. Royston, J. Chem. Soc., Dalton Trans., 1978, 1433.
- 14 B. Crociani, T. Boschi, and U. Belluco, *Inorg. Chem.*, 1970, 9, 2021. 15 L. Busetto, A. Palazzi, B. Crociani, U. Belluco, E. M. Badley, B. J. L.
- Kilby, and R. L. Richards, J. Chem. Soc., Dalton Trans., 1973, 1433.
- 16 B. Crociani and R. L. Richards, J. Chem. Soc., Dalton Trans., 1974, 693.
- 17 L. K. Johnson and R. J. Angelici, Inorg. Chem., 1987, 26, 973.
- 18 D. J. Cardin, B. Cetinkaja, E. Cetinkaja, M. F. Lappert, E. W. Randall, and E. Rosemberg, J. Chem. Soc., Dalton Trans., 1973, 1982.
- 19 P. S. Pregosin and R. W. Kunz, 'NMR-16. Basic Principles and Progress. ³¹P and ¹³C NMR of Transition Metal Phosphine Complexes,' Springer, New York, 1979, part E.
- 20 M. M. Singh and R. J. Angelici, Inorg. Chem., 1984, 23, 2691, 2699.
- 21 G. D. Fallon and B. M. Gatehouse, J. Chem. Soc., Dalton Trans., 1974, 1632.
- 22 O. P. Anderson and A. B. Packard, Inorg. Chem., 1978, 17, 1333.
- 23 P. Domiano, A. Musatti, M. Nardelli, and G. Predieri, J. Chem. Soc., Dalton Trans., 1975, 2165.
- 24 U. Schubert, in 'Transition Metal Carbene Complexes,' Verlag Chemie, Weinheim, 1983, p. 73.
- 25 A. Modinos and P. Woodward, J. Chem. Soc., Dalton Trans., 1974, 2065.
- 26 H. B. Berman, E. L. McGandy, J. W. Burgner, and R. L. Vanetten, J. Am. Chem. Soc., 1969, 91, 6177.
- 27 L. S. Hegedus, O. P. Anderson, K. Zetterberg, G. Allen, K. Siirala-Hansen, D. J. Olsen, and A. B. Packard, *Inorg. Chem.*, 1977, 16, 1887.
- 28 W. M. Butler and J. H. Enemark, Inorg. Chem., 1971, 10, 2416.
- 29 R. D. Wilson, Y. Kamitori, H. Ogoshi, Z. I. Yoshida, and J. A. Ibers, J. Organomet. Chem., 1979, 173, 199.
- 30 S. E. Bovaoud, P. Braunstein, D. Grandjean, D. Matt, and D. Nobel, Inorg. Chem., 1988, 27, 2279.
- 31 G. Bombieri, G. Bruno, G. Cum, R. Gallo, and A. Spadaro, Inorg. Chim. Acta, 1984, 86, 121.

Received 16th May 1989; Paper 9/02036E