Nathaniel W. Alcock, Karen H. Bryars, and Paul G. Pringle *,† Department of Chemistry, University of Warwick, Coventry CV47AZ

The platinacycles [Pt(C₆H₄CH₂C₆H₄)L₂] (1a)–(1h) [L = PEt₃, PMe₃, PMe₂Ph, PMePh₂, or PPh₃; L₂ = cyclo-octa-1,5-diene(cod), Ph,PCH,CH,PPh,, or Ph,PCH,PPh, have been made and characterised by ¹H, ¹³C, ³¹P, and ¹⁹⁵Pt n.m.r. spectroscopy. The crystal structure of (**1a**; L = PEt₂) has been determined, showing that the platinacycle has a boat conformation with a substantial dihedral angle (105.3°) between the aromatic rings. The boat conformation metallacyclic ring in complex (1a) is rigid on the n.m.r. time-scale up to at least 100 °C in dimethyl sulphoxide. The platinum(IV) complex $[Pt(C_{e}H_{4}CH_{2}C_{e}H_{4})I_{2}(PEt_{3})_{2}]$ (2) has been made by oxidative addition of I₂ to (1a). Its crystal structure also shows a boat conformation, but the ring is very much flatter (dihedral angle 151.2°), and the octahedral geometry at Pt causes one PEt, group to lie beneath the platinacycle. Complex (2) is fluxional at ambient temperatures due to rapid ring inversion but this can be frozen out at low temperatures and ΔG^{\ddagger} of 41 kJ mol⁻¹ estimated for the inversion process at T_c. Mean bond distances are: Pt-P 2.323(10) (1a), 2.386(3) (2), Pt-I 2.785(20) (2), Pt-C 2.05(1) (1a), 2.08(1) Å (2). Both crystals are monoclinic, space groups $P2_1/n$ and $P2_1/c$: (1a), a = 10.748(2), b = 10.748(2)15.259(4), c = 14.885(4) Å, and $\beta = 90.77(2)^\circ$; (2), a = 17.375(5), b = 9.681(3), c = 19.192(5) Å, and $\beta = 120.72(2)^\circ$. For (1a), R = 0.048 for 2 725 observed diffractometer collected reflections $[1/\sigma(1) > 3.0]$, and for (2), R = 0.053 for 3 311 observed reflections.

(

Metallacyclic chemistry is a topic of great interest in organometallic chemistry.^{1,2} In comparison to four- and five-membered metallacycles, six-membered metallacycles have been little studied. As part of a general study³ of the conformations of six-membered metallacycles, we report here our results with unsaturated 9,10-dihydroplatina-anthracenes. Recently 9,10dihydrometalla-anthracenes have been reported⁴ with Hf, Ti, and Co.

Results and Discussion

The 9,10-dihydroplatina-anthracenes (1a)-(1e) are air-stable solids made by treatment of [PtCl₂(PR₃)₂] with 2,2'-dilithiodiphenylmethane, and fully characterised by a combination of elemental analysis and n.m.r. spectroscopy (see Tables 1-4). The X-ray crystal structure of (1a) was carried out in order to determine the conformation of the metallacycle.

X-Ray Crystal Structure of [Pt(C₆H₄CH₂C₆H₄)(PEt₃)₂] (1a).—Selected bond lengths and angles are listed in Table 5 and the numbering scheme for the molecule is shown in Figure 1. In compound (1a) the square planar geometry around the platinum atom is slightly distorted. The six-membered ring containing the platinum atom adopts a boat conformation as shown in Figure 1.

The aromatic rings defined by C(1), C(2), C(3), C(4), C(14), C(13) (plane 1) and C(5), C(6), C(7), C(8), C(12), C(11) (plane 2) are inclined at an angle of 105.3°. The molecule thus consists of two separate halves hinged about the axis Pt-C(10). However neither Pt nor C(10) lies precisely on planes 1 and 2, being displaced by 0.13 and 0.23 Å to opposite sides. The trigonal geometries around C(12) and C(13) are also distorted; the angles Pt-C(12)-C(8) and Pt-C(13)-C(1) are 127.4(8)° and 127.5(8)° respectively. The dihedral angle of 110.5° in the PtC, ring itself between the planes through atoms Pt, C(10), C(11), C(12) and atoms Pt, C(13), C(14), C(10) signifies a large degree of ring folding and indicates that the boat conformation is

(1a) L = PEt ₃	(1e)L = PPh ₃
(1b) L = PMe ₃	(1f) $L_2 = Ph_2PCH_2CH_2PPh_2(dppe)$
(1c) L = PMe ₂ Ph	(1g) $L_2 = Ph_2PCH_2PPh_2$ (dppm)
(1d) L = PMePh ₂	(1h) $L_2 = C_8 H_{12}$ (cod)

highly puckered. It is the smallest dihedral angle reported for a 9.10-dihydroanthracene compound.

The ¹H n.m.r. spectrum of compound (1a) showed two sharp signals for the CH₂ of the metallacycle indicating that the ring was rigid on the n.m.r. time-scale (see Figure 2). The signal with the larger coupling to platinum was assigned to the equatorial proton on the assumption that this coupling constant is a function of the dihedral angle (*i.e.* a Karplus-type relationship). The ${}^{31}P{}^{1}H$ n.m.r. spectrum of (1a) was a singlet with ${}^{195}Pt$

[†] Present address: School of Chemistry, University of Bristol, Bristol **BS1 1TS.**

[‡] Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1990, Issue 1, pp. xix--xxii.

	Analysis			
Compound	C	Н		
(1a)	50.60 (50.25)	6.65 (6.75)		
(1b)	43.90 (44.40)	3.70 (3.50)		
(lc)	54.50 (53.65)	4.45 (5.05)		
(1e)	66.20 (66.45)	4.70 (4.55)		
(1f)	54.70 (53.70)	4.45 (4.70)		
(2)	35.55 (35.25)	4.70 (4.75)		

* Calculated values are given in parentheses.

Table 2. ³¹P-{¹H}^a and ¹⁹⁵Pt-{¹H}^b n.m.r. data

Compound	δ(³¹ P)	$^{1}J(PtP)$	δ(¹⁹⁵ Pt)
(1a)	4.3	1 833	- 52.2
(1b)	-26.1	1 779	6.6
(1c)	-13.1	1 845	30.0
(1d)	3.8	1.856	28.9
(1e)	22.9	1 890	- 29.7
(1g)	44.9	1 818	
(1 b)	-33.1	1 466	
(2)	20.0	1 782	847.2
()	-17.9°	1 734	
	18.1	1 779	

^a Spectra (162 MHz) measured in CDCl₃ at +21 °C. Chemical shifts (δ) in p.p.m. (±0.1) to high frequency of 85% H₃PO₄. Coupling constants (*J*) in Hz (±3). ^b Spectra (85.6 MHz) measured in CDCl₃ at ambient temperature. Chemical shift (δ) in p.p.m. to high frequency of Ξ (Pt) 21.4 MHz. ^c At -95 °C in CD₂Cl₂.

Figure 1. Molecular structure of complex (1a) showing the atomic numbering scheme

satellites and the ¹³C-{¹H} n.m.r. spectrum showed a single resonance assignable to the CH₂ of the PEt₃ ligands. However there are two ¹H n.m.r. signals associated with the CH₂ of the PEt₃ ligands and correlation spectroscopy (COSY) showed that these were coupled to each other. Hence the CH₂ protons of the PEt₃ are diastereotopic which is consistent with a boat conformation of the ring and provides further evidence that the ring is rigid on the n.m.r. time-scale. The ¹H, ³¹P-{¹H}, and ¹³C-{¹H} n.m.r. spectra for the other metallacycles (**1b**)-(**1e**) are similar to those of (1a), showing that the rings are rigid in all of these compounds; two signals are observed in the ¹H and the ¹³C-{¹H} n.m.r. spectra for the diastereotopic CH₃ groups of the PMe₂Ph ligands in (1c).

The ring in compound (1a) remained rigid on the n.m.r. time-scale even at 100 °C, as shown by ¹H n.m.r. (90 MHz) spectroscopy in dimethyl sulphoxide (dmso); above this temperature, decomposition occurred. The behaviour of these metallacycles should be contrasted with that of the parent hydrocarbon 9,10-dihydroanthracene⁵ which undergoes rapid ring inversion of the n.m.r. time-scale at -60 °C (60 MHz). The rigidity of the metallacycles is therefore due to the PtL₂ moiety.

The conformation of the ring in (1a) is doubtless influenced by the constraints imposed by the square-planar platinum atom. In addition the phosphine ligands interfere sterically with the peri protons of the aromatic rings. For the metallacycle to invert it must pass through a planar transition state which would necessarily bring the peri protons and ligand protons very close together. It is therefore most likely that this steric hindrance is responsible for the high activation energy to ring inversion. We reasoned that by reducing the steric demands of the ancillary ligands on platinum we could reduce the energy barrier to inversion. Complexes (1f)-(1h) containing less sterically demanding, chelating ligands were made. At ambient temperatures, the dppe complex (1f) was still rigid on the n.m.r. time-scale but the dppm complex (1g) and the cyclo-octa-1,5-diene(cod) complex (1h) both showed a single ring CH_2 signal, indicating that ring inversion was taking place.

It was of interest to investigate the effect an octahedral metal centre would have on the conformation of the ring. Complex (1a) readily adds I_2 to give the platinum(IV) complex (2) which has been fully characterised (see Tables 1-3).

X-Ray Crystal Structure of [Pt(C₆H₄CH₂C₆H₄)I₂(PEt₃)₂] (2).-Selected bond lengths and angles are listed in Table 5 and the numbering scheme for the molecule is shown in Figure 3. In the platinum(IV) compound (2) the octahedral geometry around the platinum atom is slightly distorted. It can be seen from Figure 3 that the two iodine ligands are mutually cis and the two triethylphosphine ligands are trans to each other. The conformation of the six-membered platinacyclic ring is also a boat, though more flattened than in the platinum(II) compound (1a) (Figure 1). The aromatic rings defined by C(1), C(2), C(3), C(4), C(14), C(13) and C(5), C(6), C(7), C(8), C(12), C(11) (plane 3) are mutually inclined at an angle of 151.2°, close to the dihedral angle of 145° in 9,10-dihydroanthracene. The Pt atom and C(10) are above and below the planes by 0.06 and 0.11 Å. The trigonal geometries around C(12) and C(13) are again distorted, with angles Pt-C(12)-C(11) and Pt-C(13)-C(14) 123.1(13) and 122.6(11)° respectively.

Clearly the positioning of the phosphine above and below the ring leads to the observed flattening. However it is not immediately clear why the phosphine ligands should rearrange to the *trans* positions on oxidative addition of iodine. Possibly the electronic effects are more favourable in this than in either of the other two isomers or it may be that steric interactions between the peri protons on the aromatic rings of the 9,10-dihydroanthracene moiety are minimised when the iodine ligands are *trans* to it.

The boat conformation of the ring in compound (2) renders the ring CH₂ protons inequivalent and also the two phosphine ligands inequivalent. However the ¹H n.m.r. signal for the ring CH₂ is a singlet at ambient temperatures as is the ³¹P-{¹H} n.m.r. signal for the phosphines; hence ring inversion is rapid on the n.m.r. time-scale at ambient temperatures. At -95 °C two ³¹P signals are clearly resolved (see Table 2 for the data) and

σ
Ξ.
÷.
÷
8
ċ
=
E
0
5
Ľ
Δ.
_
en l
d)
-
_98

Compound	δ(H ¹)	⁴ <i>J</i> (PtH ¹)	δ(H ²)	⁴ J(PtH ²)	${}_{2}H_{1}H_{2}$	8(H ³ , H ⁴ , H ⁵ , H ⁶)	<pre></pre>
(1a)	4.25	16.4	3.34	5.5	12.36	6.70-6.75 (4 H, m), 6.95 [2 H, m, $J(PH) = 18.0, J(PH) = 6.2$], 7.37 [2 H, m, $I(PH) + -5.701$	1.00 [18 H, m, J(PH) = 13.2], 1.52 (6 H, m), 1.75 (6 H, m)
(1b)	4.14	16 ^b	3.37	66	12.50	6.74 (4 H, m), 7.03 (2 H, m), 7.41 [2 H, m, J/PtH) = 57.21	1.34 [18 H, m, J(PH) = 7.9, J(PtH) = 20.11
(1c)	4.34	16*	3.49	66	12.54	6.73 (2 H, m), 6.80 (2 H, m) 7.14 [2 H, m, J(PH) = 7.3, J(PtH) = 16.9], 7.30-7.42 (2 H, m)	1.18 $[6 \text{ H}, \text{m}, J(\text{PH}) = 7.8, J(\text{PH}) = 7.6, J(2) = 1.46 [6 \text{ H}, \text{m}, J(\text{PH}) = 7.6, J(\text{PH}) = 19.2], 7.30-7.42 (6 \text{ H}, \text{m}), 7.61 (4 \text{ m}) = 19.2]$
(1 d)	4.27	16.4	1.42	6.4	12.62	6.246.40 (2 H, m), 6.546.68 (2 H, m), 6.786.92 (2 H, m), 7.107.48 (2 H m)	1.36 [6 H, m, J(PH) = 8.8, J(PtH) = 1.36 [9.8], 7.10-7.48 (20 H, m)
(1 e)	4.55	15.4	3.49	6 ه	12.68	G(2,2) H, m), 6.43 (2 H, m), 6.75 [2 H, m, J(PtH) = 64.1], 6.95 [2 H, m, J(PH) = 7.3, J(PH) = 18.01	7.04 (12 Н, m), 7.16 (6 Н, m), 7.27 (12 Н, m)
(1f)	3.85	Not resolved	3.85	Not resolved	l	6.95-7.64 (8 H, m)	2.53 (8 H, br s), 5.31 [4 H, t, <i>J</i> (PtH) = 39.11
(1g)	4.28	Not resolved	3.38	Not resolved	12.50	6.41 (2 H, m), 6.79 (2 H, m), 6.95 (2 H, m), 7.10–7.86 (2 H, m)	2.08 (4 Н, m), 7.10—7.86 (20 Н, m)
(1h)	4.01	Not resolved	4.01	Not resolved		6.58 (2 H, m), 6.82 (2 H, m), 7.05 (2 H, m), 7.10–7.80 (2 H, m)	4.35 (2 H, m, $J(PH) = 9.2$, $J(PtH) = 22.41$, $7.10-7.80$ (20 H, m)
(3)	4.19	9.4 b	4.19	9.4 %	ł	6.76—7.28 (6 H, m), 8.85 [2 H, m, J(PtH) = 52.5]	0.82 (18 H, m), 2.18 (12 H, m)

nglet, 5, Ţ. ۵ Σ, ^a Spectra (400 MHz) measured in $[{}^{2}H_{6}]$ benzene at +21 °C. t = virtual triplet, and m = multiplet. ^b Not fully resolved.

Compound	δ(C ¹)	$^{1}J(\mathbf{C}^{1}\mathbf{Pt})$	$^{2}J(\mathbf{C}^{1}\mathbf{P})$	$\delta(C^2 - C^6)$	δ(C ⁷)	$^{3}J(C^{7}Pt)$
(1a)	161.5	806.5	116.7	121.5 (s), 123.3 [t, $J(CPt) = 60.9$], 125.3 [t, $J(CPt) = 34.8$], 137.3 [t, $J(CPt) = 7.4$ Hz], 147.5 (c)	51.6	138.4
(1 b)	159.9	799.9	120.7	(3) 122.1 (s), 123.3 [t, $J(CPt) = 60.3$], 125.4 [t, J(CPt) = 34.3], 138.1 [t, $J(CPt) = 8.90$], 146.8 (c)	51.8	136.6
(1c)	159.7	813.7	119.4	J(CPt) = 34.21, 138.3 (br. s) 146.29 (s)	52.0	135.0
(1d)	159.7	812.9	119.9	122.2 (s), 123.5 [t, $J(CPt) = 59.9$], 125.4 [t, $J(CPt) = 34.6$], 138.3 [t, $J(CPt) = 9.8$], 146.3 (s)	51.9	137.5
(1e)	159.0	850.3	114.4	121.4 (s), 123.7 [t, $J(CPt) = 66.2$], 124.8 [t, $J(CPt) = 37.9$], 139.2 [t, $J(CPt) = 9.9$], 145.4 (br	52.1	138.1
(1f)	153.6	Not resolved		124.2 (s), 125.7 [t, $J(CPt) = 65.5$], 126.5 [t, $J(CPt) = 49.2$], 134.6 (s), 142.3 (s)	51.1	144.8
(2)	146.1	Not resolved	-	125.9 [t, $J(CPt) = 45.9$], 126.4 (s), 128.2 [t, $J(CPt) = 33.8$], 137.0 (s), 143.7 (s)	50.3	61.1

Table 4. ¹³C-{¹H} N.m.r.* data for the metallacycle carbons

* Spectra (100.6 MHz) measured in CDCl₃ at ambient temperature. Chemical shifts (δ) in p.p.m. (\pm 0.1) relative to SiMe₄. Coupling constants (J) in Hz (\pm 0.1).

Figure 2. Proton n.m.r. spectrum of complex (1a): x = unidentified impurity

from an estimate of the coalescence temperature the activation energy ΔG^{\ddagger} for inversion can be estimated to be 41 kJ mol⁻¹; this can be compared with $\Delta G^{\ddagger} > 70$ kJ mol⁻¹ for the platinum(II) complex (1a) and $\Delta G^{\ddagger} < 30$ kJ mol⁻¹ for the parent dihydroanthracene.⁶

It was of interest to see if a platina-anthracene related to the recently reported ⁷ rhenaphenanthrene or osmabenzene⁸ could be generated from complex (1a). However, all our attempts to abstract a hydrogen from (1a) as H⁺ [by treating (1a) with NEt₃, LiN(SiMe₃)₂, or LiBu¹] or as H⁻ [by treating (1a) with Ph₃CBF₄] failed. It was possible that this failure was due to the steric interactions making planarity for the metallacycle highly energetic (see above). It was hoped that the platinum(IV) complex (2), which has a much flatter ring, would not have such problems and that elimination of HI would be energetically favourable. However our attempts to deprotonate (2) with a range of bases [NEt₃, proton sponge, or LiN(SiMe₃)₂] lead to reductive elimination of I₂, and (1a) was the sole product detected by ³¹P-{¹H} n.m.r. spectroscopy.

Finally it is interesting to contrast the effect of platinum(II) on the conformational mobility of six-membered rings. We previously reported ³ very low energy barriers to ring inversion of saturated platinacyclohexanes whereas in this paper we report extremely high energy barriers to ring inversion of unsaturated platinacyclohexadienes.

Figure 3. Molecular structure of complex (2) showing the atomic numbering scheme

Table 5. Bond distances (Å) and bond angles (°)

$\begin{split} P_{1}P_{1}(1) & 2.323(3) & P_{1}P_{1}(2) & 2.303(3) & C(1)-C(10) & 1.511(17) & C(10)-C(14) & 1.512(14) \\ P_{1}-C(13) & 1.801(11) & P_{1}(1-C(17) & 1.799(13) & C(4)-C(3) & 1.348(17) & C(10)-C(14) & 1.512(14) \\ P_{1}(1-C(15) & 1.801(11) & P_{1}(1-C(17) & 1.799(13) & C(4)-C(3) & 1.348(17) & C(10)-C(13) & 1.399(15) \\ P_{1}(1-C(15) & 1.810(11) & P_{1}(1-C(17) & 1.393(13) & C(2)-C(16) & 1.530(18) & C(17)-C(18) & 1.510(19) \\ P_{1}(1-C(15) & 1.378(11) & C(12)-C(11) & 1.383(115) & C(19)-C(20) & 1.498(16) & C(12)-C(26) & 1.516(19) \\ C_{1}(2)-C_{1}(8) & 1.356(19) & C_{1}(5)-C_{1}(11) & 1.382(17) & C_{1}(2)-C_{1}(2) & 1.236(11) & C_{1}(2)-C_{1}(2) & 1.476(22) \\ C_{1}(6)-C_{1}(5) & 1.360(19) & C_{1}(5)-C_{1}(11) & 1.382(17) & C_{2}(2)-C_{2}(2) & 1.519(16) \\ C_{1}(6)-C_{1}(5) & 1.23(4) & P_{1}(-P_{1}-C_{1}(13) & 1.884(15) & C_{1}(1)-C_{1}(10) & C_{1}(1)-C_{1}(10) & C_{1}(5)-C_{1}(1)-C_{1}(10) & 1.201(11) \\ P_{1}(2)-P_{1}-C_{1}(12) & 11.23(3) & P_{1}(1)-P_{1}-C_{1}(13) & 1.68(13) & C_{1}(1)-C_{1}(10) & C_{1}(5)-C_{1}(1)-C_{1}(10) & 1.201(10) \\ P_{1}(2)-P_{1}-C_{1}(12) & 11.23(4) & P_{1}-P_{1}(-C_{1}(19) & 1.214(4) & C_{1}(1)-C_{1}(10) & C_{1}(1)-C_{1}(10) & C_{1}(4)-C_{1}(13) & 1.201(11) \\ P_{1}-P_{1}(1)-C_{1}(19) & 1.23(5) & C_{1}(1)-P_{1}(1) & 1.164(10) & C_{1}(1)-C_{1}(10) & C_{1}(1)-C_{1}(10) & 1.201(10) \\ C_{1}(5)-P_{1}(1)-C_{1}(19) & 1.23(5) & C_{1}(1)-P_{1}(1) & 1.164(10) & C_{1}(1)-C_{1}(10) & C_{1}(1)-C_{1}(10) & 1.221(11) \\ P_{1}-P_{2}(1)-C_{2}(13) & 1.164(15) & P_{1}-C_{1}(1) & 1.101(10) & P_{1}-C_{1}(1)-C_{1}(1) & 1.23(11) \\ C_{1}(1)-P_{1}-C_{1}(13) & 1.23(10) & P_{1}-C_{1}(2)-C_{2}(1) & 1.23(10) & P_{1}-C_{1}(1)-C_{1}(1) & 1.23(12) & C_{1}(1) & 1.23(12) \\ C_{1}(1)-P_{1}-C_{2}(23) & 1.054(6) & P_{1}-C_{2}(23) & 1.054(6) & P_{1}-C_{2}(23) & 1.054(6) & P_{2}-C_{2}(23) & 1.054(6) & P_{$	$(a) \left[Pt(C_6H_4CH_2C_6H_4CH_4CH_4CH_4CH_4CH_4CH_4CH_4CH_4CH_4C$	$H_4)(PEt_3)_2](1a)$)					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	PtP(1)	2.323(3)	PtP(2)	2.303(3)	C(11)-C(10)	1.531(17)	C(10)-C(14)	1.512(14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PtC(12)	2.062(11)	PtC(13)	2.038(11)	C(14)-C(4)	1.348(17)	C(14) - C(13)	1.415(15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P(1)-C(15)	1.801(11)	P(1)-C(17)	1.799(13)	C(4) - C(3)	1.374(20)	C(3) - C(2)	1.363(19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P(1)-C(19)	1.810(12)	P(2)-C(21)	1.835(13)	C(2)-C(1)	1.380(18)	C(1) - C(13)	1.399(15)
$ \begin{array}{c} C(12)-C(8) & (1.378(17) & C(12)-C(11) & 1.384(15) & C(19)-C(20) & 1.498(16) & C(21)-C(22) & 1.576(22) \\ C(8)-C(7) & 1.384(18) & C(7)-C(6) & 1.355(19) & C(23)-C(24) & 1.500(23) & C(25)-C(26) & 1.519(16) \\ C(5)-C(11) & 1.382(17) & C(12)-C(11) & 1.150(10) & C(5)-C(11)-C(10) & 121.3(11) \\ P(2)-P1-C(12) & 172.5(3) & P(1)-P1-C(12) & 88.1(3) & C(6)-C(5)-C(11) & 117.6(10) & C(5)-C(11)-C(10) & 120.7(10) \\ P(2)-P1-C(13) & 91.6(3) & C(12)-P1-C(13) & 81.3(4) & C(11)-C(10) - C(14) & 107.5(9) & C(10)-C(14)-C(14) & 120.7(10) \\ P(2)-P1-C(15) & 112.7(4) & P1-P(1)-C(17) & 114.1(4) & C(10)-C(14) & (17.5(9) & C(10)-C(14)-C(13) & 121.9(11) \\ C(15)-P(1)-C(17) & 112.6(6) & P1-P(1)-C(19) & 101.3(5) & C(3)-C(2)-C(11) & 120.2(12) & C(2)-C(1)-C(13) & 122.1(11) \\ P(-P(2)-C(21) & 112.6(5) & P1-P(2)-C(23) & 116.4(5) & P1-C(13)-C(1) & 115.1(10) & P(1)-C(15)-C(16) & 113.9(1) \\ C(21)-P(2)-C(22) & 105.6(7) & P1-P(2)-C(23) & 116.4(5) & P1-C(13)-C(1) & 115.1(10) & P(1)-C(15)-C(16) & 113.9(1) \\ C(21)-P(2)-C(23) & 105.6(7) & P1-P(2)-C(23) & 109.9(6) & P(1)-C(1)-C(14) & 115.1(10) & P(1)-C(15)-C(16) & 113.9(9) \\ C(21)-P(2)-C(23) & 105.6(7) & P1-P(2)-C(25) & 100.9(6) & P(1)-C(1)-C(12) & 115.1(10) & P(1)-C(15)-C(16) & 113.9(9) \\ C(21)-P(2)-C(23) & 103.6(6) & C(23)-P(2)-C(25) & 100.9(6) & P(1)-C(1)-C(2) & 112.5(1) & P(1)-C(19)-C(20) & 118.8(9) \\ P(-C(12)-C(11) & 116.4(10) & C(12)-C(8)-C(7) & 122.2(12) & 22.5(12) & P(2)-C(23)-C(24) & 114.8(14) \\ C(8)-C(7)-C(6) & 119.2(12) & C(7)-C(6)-C(5) & 120.2(12) & C(2) & -C(2) & -C($	P(2)-C(23)	1.797(15)	P(2)-C(25)	1.825(11)	C(15)-C(16)	1.523(20)	$\hat{C}(17) - \hat{C}(18)$	1.510(19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(12)-C(8)	1.378(17)	C(12)-C(11)	1.384(15)	C(19)-C(20)	1.498(16)	C(21) - C(22)	1.476(22)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(8) - C(7)	1.384(18)	C(7)-C(6)	1.355(19)	C(23)-C(24)	1.500(23)	C(25)-C(26)	1.519(16)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(6)-C(5)	1.360(19)	C(5)-C(11)	1.382(17)				
$\begin{split} &P(2)=P_1-C(12) & 172.5(3) & P(1)=P_1-C(13) & 168.7(3) & C(12)=C(1)=C(10) & 117.6(10) & C(3)=C(1)=C(10) & 120.7(10) \\ &P(2)=P_1-C(13) & 91.6(3) & C(12)=P_1-C(13) & 81.3(4) & C(11)=C(10)=C(14) & 107.5(9) & C(10)=C(14)=C(4) & 122.1(11) \\ &P(1)=P(1)=C(15) & 112.7(4) & P_1=P(1)=C(17) & 114.1(4) & C(10)=C(14)=C(13) & 115.0(10) & C(4)=C(14)=C(14) & 122.1(11) \\ &C(15)=P(1)=C(17) & 102.2(6) & P_1=P(1)=C(17) & 114.1(4) & C(10)=C(14)=C(13) & 112.1(12) & C(4)=C(14)=C(14) & 212.1(11) \\ &P(1)=P(1)=C(17) & 102.2(5) & C(1)=P(1)=C(19) & 101.3(5) & C(3)=C(2)=C(1) & 112.0(2) & C(3)=C(2)=C(2) & 119.3(12) \\ &C(15)=P(1)=C(17) & 112.0(5) & P_1=P(2)=C(25) & 119.8(4) & P_1=C(13)=C(1) & 115.1(10) & P(1)=C(13)=C(1) & 127.8(8) \\ &C(21)=P(2)=C(23) & 105.6(7) & P_1=P(2)=C(25) & 110.8(4) & P_1=C(13)=C(1) & 115.1(10) & P(1)=C(15)=C(16) & 113.9(9) \\ &C(21)=P(2)=C(23) & 105.6(7) & P_1=P(2)=C(25) & 100.9(6) & P(1)=C(17)=C(18) & 115.1(10) & P(1)=C(15)=C(16) & 113.9(9) \\ &P_1=C(12)=C(8) & 127.4(8) & P_1=C(12)=C(11) & 116.2(8) & P(2)=C(21)=C(22) & 125.2(12) & P(2)=C(23)=C(24) & 114.5(11) \\ &C(8)=C(17)=C(16) & 119.2(12) & C(7)=C(6)=C(5) & 120.2(12) & & & & & & & & & & & & & & & & & & &$	P(1)-Pt-P(2)	98.8(1)	P(1) - Pt - C(12)	88.1(3)	C(6)-C(5)-C(11)	120.1(11)	C(12)-C(11)-C(5)	121.3(11)
$\begin{split} &P(2)=P_{1}-C(13) & 91.6(3) & C(12)=P_{1}-C(13) & 81.3(4) & C(11)-C(10)-C(14) & 107.5(9) & C(10)-C(14)-C(13) & 122.1(11) \\ &P_{1}-P(1)-C(15) & 112.7(4) & P_{1}-P(1)-C(17) & 114.1(4) & C(10)-C(14)-C(13) & 116.0(10) & C(4)-C(4)-C(13) & 112.1(12) \\ &C(15)-P(1)-C(17) & 102.2(6) & P_{1}-P(1)-C(19) & 121.6(4) & C(14)-C(13) & 112.1.(12) & C(4)-C(13)-C(1) & 113.1(2) \\ &C(15)-P(1)-C(17) & 102.2(5) & C(17)-P(1)-C(19) & 121.6(4) & C(14)-C(13) & 122.1(11) & C(4)-C(2)-C(2) & 112.2.1(11) \\ &P_{1}-P(2)-C(21) & 112.0(5) & P_{1}-P(2)-C(25) & 119.8(4) & C(14)-C(13)-C(1) & 115.1(10) & P(1)-C(15)-C(16) & 113.9(9) \\ &C(21)-P(2)-C(23) & 105.6(7) & P_{1}-P(2)-C(25) & 100.9(6) & P(1)-C(17)-C(18) & 115.1(10) & P(1)-C(15)-C(16) & 113.9(9) \\ &C(21)-P(2)-C(28) & 127.4(8) & P_{1}-C(12)-C(11) & 116.2(8) & P(2)-C(21)-C(22) & 122.5(12) & P(2)-C(23) & 116.4(8) \\ &P_{1}-C(12)-C(16) & 119.2(12) & C(7)-C(6)-C(5) & 122.2(1) & P(2)-C(25)-C(26) & 115.4(8) \\ &P_{1}-C(12)-C(16) & 119.2(12) & C(7)-C(6)-C(5) & 120.2(12) & P(2)-C(25) & C(14)-C(13) & 1.45(11) \\ &P_{1}-P(1) & 2.381(3) & P_{1}-P(2) & 2.391(3) & C(11)-C(10) & 1.533(27) & C(10)-C(14) & 1.469(22) \\ &P_{1}-C(12) & 2.093(15) & P_{1}-C(13) & 2.078(14) & C(4)-C(3) & 1.346(27) & C(3)-C(13) & 1.424(17) \\ &P_{1}-P(1) & 2.381(3) & P_{1}-P(2) & 2.391(3) & C(15)-C(16) & 1.490(28) & C(17)-C(18) & 1.496(19) \\ &P_{1}-C(12) & 2.093(15) & P_{1}-C(13) & 2.078(14) & C(15)-C(16) & 1.490(28) & C(17)-C(18) & 1.496(19) \\ &P_{1}-P_{2}-C(23) & 1.837(17) & P(2)-C(22) & 1.821(16) & C(2)-C(1) & 1.236(28) & C(17)-C(18) & 1.496(19) \\ &P_{1}-P_{2}-C(13) & 1.38(24) & C(7)-C(6) & 1.380(27) & C(15)-C(16) & 1.490(28) & C(17)-C(18) & 1.496(19) \\ &P_{1}-P_{2}-C(23) & 1.837(17) & P(2)-C(23) & 1.838(17) & C(19)-C(20) & 1.535(28) & C(21)-C(22) & 1.544(20) \\ &C(12)-C(8) & 1.366(26) & C(12)-C(11) & 1.380(17) & C(19)-C(10) & 1.238(12) & C(10)-C(14) & 1.426(24) \\ &C(1)-C(13) & 1.496(19) & C(1)-P_{1}-P_{1}-P_{1}) & 2.33(10) & C(1)-C(16) & 1.490(28) & C(1)-C(18) & 1.496(19) \\ &C(12)-P_{1}-P_{1}) & S(13) & P_{1}-P_{1}-P_{2}) & S(13) $	P(2) - Pt - C(12)	172.5(3)	P(1) - Pt - C(13)	168.7(3)	C(12)-C(11)-C(10)	117.6(10)	C(5)-C(11)-C(10)	120.7(10)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	P(2) - Pt - C(13)	91.6(3)	C(12) - Pt - C(13)	81.3(4)	C(11)-C(10)-C(14)	107.5(9)	C(10)-C(14)-C(4)	122 1(11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Pt-P(1)-C(15)	112.7(4)	Pt - P(1) - C(17)	114.1(4)	C(10)-C(14)-C(13)	1160(10)	C(4)-C(14)-C(13)	121 9(11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(15) - P(1) - C(17)	102.2(6)	Pt-P(1)-C(19)	121.6(4)	C(14)-C(4)-C(3)	1211(12)	C(4)-C(3)-C(2)	1193(12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(15) - P(1) - C(19)	102.5(5)	C(17) - P(1) - C(19)	101.3(5)	C(3)-C(2)-C(1)	1202(12)	C(2)-C(1)-C(13)	122 1(11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Pt-P(2)-C(21)	112.0(5)	$P_{t-P(2)-C(23)}$	116.4(5)	$P_{t-C(13)-C(14)}$	117.4(7)	$P_{t-C(13)-C(1)}$	127 5(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(21) - P(2) - C(23)	105.6(7)	Pt-P(2)-C(25)	119.8(4)	C(14)-C(13)-C(1)	1151(10)	P(1)-C(15)-C(16)	1139(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(21) - P(2) - C(25)	100.0(6)	C(23) - P(2) - C(25)	100.9(6)	P(1)-C(17)-C(18)	115 1(10)	P(1)-C(19)-C(20)	118 8(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$P_{t-C(12)-C(8)}$	127.4(8)	$P_{t-C(12)-C(11)}$	116 2(8)	P(2) - C(21) - C(22)	122 5(12)	P(2) - C(23) - C(24)	110.0(2) 114 5(11)
$\begin{array}{cccc} C(8)-C(7)-C(6) & 119.2(12) & C(7)-C(6)-C(5) & 120.2(12) & 119.1(13) & 119.2(12) & C(7)-C(6)-C(5) & 120.2(12) & 119.1(10) & 119.2(12) & C(7)-C(6)-C(5) & 120.2(12) & 119.1(10) & 119.2(12) & C(7)-C(6)-C(5) & 120.2(12) & 119.1(10) & 119.2(12) & C(7)-C(6)-C(5) & 120.2(12) & 1.212(10) & C(12)-C(11) & 123.1(13) & C(8)-C(12)-C(11) & 117.5(15) & 1.2(12)-Pt-P(1) & 81.4(10) & P(1)-Pt-P(2) & 178.2(10) & C(7)-C(6)-C(5) & 118.4(18) & C(6)-C(5)-C(11) & 123.1(5) & C(8)-C(7)-C(6) & 120.6(17) & 121.9(14) & C(8)-C(7)-C(6) & 120.6(17) & 122.9(15) & 116.1(4) & C(12)-Pt-P(1) & 90.6(10) & Pt-C(12)-C(11) & 123.1(13) & C(8)-C(12)-C(11) & 117.5(15) & 1(1)-Pt-P(1) & 90.6(10) & Pt-C(12)-C(11) & 123.1(13) & C(8)-C(12)-C(11) & 117.5(15) & 1(1)-Pt-P(1) & 90.3(10) & C(12)-C(8)-C(7) & 118.4(18) & C(6)-C(5)-C(11) & 122.3(15) & 1(1)-Pt-C(12) & 92.3(2) & C(7)-C(6)-C(5) & 118.4(18) & C(6)-C(5)-C(11) & 122.3(15) & 1(1)-Pt-C(12) & 92.7(3) & P(2)-Pt-C(12) & 92.3(4) & C(12)-C(11)-C(10) & 116.4(12) & C(11)-C(10) & 124.1(15) & 1(1)-Pt-C(12) & 92.7(3) & P(2)-Pt-C(12) & 87.6(3) & C(10)-C(14) & 117.8(11) & 1(1)-Pt-C(13) & 90.7(3) & P(2)-Pt-C(13) & 87.6(3) & C(4)-C(13)-C(10) & 116.4(12) & C(11)-C(10) & 124.1(15) & 1(1)-Pt-C(13) & 91.9(6) & Pt-P(1)-C(17) & 116.1(4) & C(4)-C(3) & 122.6(11) & P(1)-C(17)-C(14) & 122.6(11) & P(1)-C(17)-C(14) & 122.6(11) & P(1)-C(17)-C(14) & 122.6(11) & P(1)-C(17)-C(14) & 122.6(11) & P(1)-C(17)-C(18) & 116.1(14) & C(12)-P(1)-C(13) & 124.0(13) & C(10)-C(14)-C(14) & 12$	C(8)-C(12)-C(11)	116.4(10)	C(12) - C(8) - C(7)	122.5(11)	P(2)-C(25)-C(26)	115 4(8)	$1(2) \circ (23) \circ (24)$	114.5(11)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	C(8)-C(7)-C(6)	119.2(12)	C(7)-C(6)-C(5)	120.2(12)	1(2) 0(20) 0(20)	115. ((6)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(b) [Pt($C_6H_4CH_2C_6H_4$	$I_4 I_2 (PEt_3)_2] (2$?)					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$P_{t-I(1)}$	2 755(1)	Pt-I(2)	2 814(1)	C(6) - C(5)	1 327(20)	C(5) - C(11)	1 415(26)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\mathbf{Pt}_{\mathbf{P}}(1)$	2.755(1) 2.381(3)	Pt - P(2)	2.01(1) 2.391(3)	C(1) - C(10)	1 533(27)	C(10) - C(14)	1.413(20) 1.460(22)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Pt = C(12)	2.093(15)	Pt = C(13)	2.078(14)	C(14) - C(4)	1.503(27)	C(14) - C(13)	1.407(22) 1.424(17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P(1) - C(15)	1 817(19)	P(1) = C(17)	1 804(15)	C(4) - C(3)	1.302(23) 1.346(27)	C(3) - C(2)	1.328(23)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P(1)-C(19)	1.826(16)	P(2) - C(21)	1.801(15)	C(2)-C(1)	1.346(24)	C(1) - C(13)	1.326(23) 1.426(21)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P(2) - C(23)	1.820(10) 1.837(17)	P(2) - C(25)	1.821(19)	C(15) - C(16)	1 490(28)	C(17) - C(18)	1 496(19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(12) - C(8)	1.366(26)	C(12)-C(11)	1.380(17)	C(19) - C(20)	1.535(28)	C(21) - C(22)	1.490(19) 1 544(20)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(8) - C(7)	1.381(24)	C(7)-C(6)	1 368(23)	C(23)-C(24)	1 528(24)	C(25) - C(26)	1.544(20) 1.614(25)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		1.501(21)		1.500(25)	0(23) 0(21)	1.520(21)	0(23) 0(23)	1.01 ((23)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	I(1)-Pt-I(2)	81.9(10)	I(1) - Pt - P(1)	90.6(10)	Pt-C(12)-C(11)	123.1(13)	C(8)-C(12)-C(11)	117.5(15)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	I(2) - Pt - P(1)	87.4(10)	I(1)-Pt-P(2)	90.3(10)	C(12)-C(8)-C(7)	121.9(14)	C(8)-C(7)-C(6)	120.6(17)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	I(2) - Pt - P(2)	94.3(10)	P(1) - Pt - P(2)	178.2(10)	C(7)-C(6)-C(5)	118.4(18)	C(6)-C(5)-C(11)	122.3(15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I(1)-Pt-C(12)	173.2(4)	I(2) - Pt - C(12)	92.3(4)	C(12)-C(11)-C(5)	119.2(17)	C(12)-C(11)-C(10)	124.1(15)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	P(1)-Pt-C(12)	92.7(3)	P(2)-Pt-C(12)	86.6(3)	C(5)-C(11)-C(10)	116.4(12)	C(11)-C(10)-C(14)	117.8(11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I(1)-Pt-C(13)	94.0(4)	I(2) - Pt - C(13)	175.5(4)	C(10)-C(14)-C(4)	119.3(12)	C(10)-C(14)-C(13)	124.6(14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P(1)-Pt-C(13)	90.7(3)	P(2)-Pt-C(13)	87.6(3)	C(4)-C(14)-C(13)	116.1(14)	C(14)-C(4)-C(3)	124.0(13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(12)-Pt-C(13)	91.9(6)	Pt-P(1)-C(15)	116.1(4)	C(4)-C(3)-C(2)	119.1(17)	C(3)-C(2)-C(1)	121.4(16)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Pt-P(1)-C(17)	116.1(4)	C(15)-P(1)-C(17)	101.4(8)	C(2)-C(1)-C(13)	122.5(12)	Pt-C(13)-C(14)	122.6(11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Pt-P(1)-C(19)	115.1(6)	C(15)-P(1)-C(19)	101.5(8)	Pt-C(13)-C(1)	120.5(9)	C(14)-C(13)-C(1)	116.7(13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(17)-P(1)-C(19)	104.7(7)	Pt-P(2)-C(21)	115.8(6)	P(1)-C(15)-C(16)	118.2(10)	P(1)-C(17)-C(18)	116.1(10)
Pt-P(2)-C(25) 115.5(4) C(21)-P(2)-C(25) 105.3(8) P(2)-C(23)-C(24) 114.8(14) P(2)-C(25)-C(26) 116.1(16) P(2)-C(26) P(2) P(2)-C(26) P(2) P(2) P(2) P(2) P(2) P(2) P(2) P(2	Pt-P(2)-C(23)	116.3(4)	C(21)-P(2)-C(23)	102.8(7)	P(1)-C(19)-C(20)	115.7(10)	P(2)-C(21)-C(22)	114.3(14)
	Pt-P(2)-C(25)	115.5(4)	C(21)-P(2)-C(25)	105.3(8)	P(2)-C(23)-C(24)	114.8(14)	P(2)-C(25)-C(26)	116.1(16)
C(23)-P(2)-C(25) 98.9(8) Pt-C(12)-C(8) 119.2(10)	C(23)-P(2)-C(25)	98.9(8)	Pt-C(12)-C(8)	119.2(10)				

Experimental

2,2'-Dichlorodiphenylmethane was synthesised by reduction⁹ of 2,2'-dichlorodiphenylmethanol.¹⁰

Preparations.—2,2'-Dilithiodiphenylmethane. Lithium flakes (4.0 g, 0.57 mol) were suspended in diethyl ether (75 cm³) in a flask (1 000 cm³) filled with argon. The flask was fitted with a mechanical stirrer and dropping funnel and cooled to 0 °C. A solution of 2,2'-dichlorodiphenylmethane (10.80 g, 0.046 mol) in diethyl ether (125 cm³) was added dropwise over a period of 1 h. The resulting orange suspension was then stirred for 24 h. The reaction mixture was filtered free of the excess of lithium metal. The organolithium concentration was determined by a modification of the double titration method of Gilman and Haubein:¹¹ separate aliquots were quenched with water and successively with 1,2-dibromoethane and water, and titrated against 0.05 mol dm⁻³ hydrochloric acid.

 $[(Pt(C_6H_4CH_2C_6H_4)(PEt_3)_2]$ (1a). A solution of 2,2'-dilithiodiphenylmethane (5 cm³, 0.22 mol dm⁻³ in diethyl-ether, 1.10 mmol) was added dropwise to a stirred suspension of $[PtCl_2(PEt_3)_2]$ (0.374 g, 1.0 mmol) in benzene (25 cm³). The reaction mixture was then stirred for 2 h during which time the suspension had turned bright orange. Water (20 cm³) was then added and the two layers separated. The organic layer was dried over MgSO₄ and then filtered. Removal of the solvent by evaporation under reduced pressure followed by addition of diethyl ether (40 cm³) gave the orange solid product. Recrystallisation from benzene-methanol (1:1 v/v) gave a white air-stable crystalline solid. Yield 0.44 g, 74%. The compound $[Pt(C_6H_4CH_2C_6H_4)(PPh_3)_2]$ (1e) was made similarly in 62% yield.

 $[Pt(C_6H_4CH_2C_6H_4)(PMe_3)_2]$ (1b). A solution of 2,2'-dilithiodiphenylmethane (11 cm³, 0.22 mol dm⁻³ in diethyl ether, 2.2 mmol) was added dropwise to a stirred suspension of $[PtCl_2-(PMe_3)_2]$ (0.90 g, 1.82 mmol) in benzene (40 cm³) cooled to 0 °C. The reaction mixture was then stirred for 2 h and allowed to warm to ambient temperature. The bright yellow mixture was again cooled to 0 °C, water (25 cm³) added, and the two layers Table 6. Crystal data and data collection conditions

Compound	$[Pt(C_6H_4CH_2C_6H_4)(PEt_3)_2]$	$[Pt(C_6H_4CH_2C_6H_4)I_2(PEt_3)_2]$
Formula	CarHap PPt	C ₁ ,H ₁ ,P ₂ Pt
Crystal system	Monoclinic	Monoclinic
Systematic absences	h0l: h + l = 2n + 1	h0l, l = 2n + 1
Systematic accordes	0k0; k = 2n + 1	0k0, k = 2n + 1
Space group	P2./n	P2./c
a/Å	10.748(2)	17.375(5)
ь/Å	15,259(4)	9.681(3)
c/Å	14 885(4)	19,192(5)
B/°	90.77(2)	120.72(2)
I/Δ^3	2 440 9(10)	2,7754(13)
$D/g \text{ cm}^{-3}$	1 60	204
$D_{c/g}$ cm ⁻³	1 53	1.44
7	4	4
$\mu(M_0-K)/cm^{-1}$	61 79	76.41
F(000)	1 191 73	1 615 73
Crystal size/cm	$0.043 \times 0.033 \times 0.048$	
Max and min transmission factors	0.61.0.21	
Scan range about $K = K \sqrt{2}$	-1.05/+1.05	-11/+11
Reflections collected	4 768	5 41 5
Reflections observed $[I/\sigma(I) > 3.0]$	2 725	3 311
Weighting constant: a	0.0079	0.002.92
No of parameters	271	289
	0.0476	00533
R D'	0.0550	0.0581
Max and min on final difference Fourier/e $Å^{-3}$	253 - 195	283 - 212
Max. S/σ (final cycle)	0.38	2.03, -2.12 0 107
wax. 0/0 (miai cycic)	0.50	0.107

separated. The organic layer was dried over MgSO₄ and then filtered. Removal of the solvent by evaporation under reduced pressure followed by addition of diethyl ether (40 cm³) gave the pale brown solid product. Recrystallisation from benzenemethanol (1:1 v/v) gave a white air-stable crystalline solid. Yield 0.59 g, 63%. The following were made similarly: [Pt(C₆H₄CH₂C₆H₄)(PMe₂Ph)₂] (1c) (56%) and [Pt(C₆H₄CH₂C₆H₄)(PMePh₂)₂] (1d) (49%).

[Pt(C₆H₄CH₂C₆H₄)(cod)] (1h). A solution of 2,2'-dilithiodiphenylmethane (9.0 cm³, 0.27 mol dm⁻³ in diethyl ether, 2.4 mmol) was added dropwise to a stirred suspension of [PtCl₂(cod)] (0.8 g, 2.14 mmol) in diethyl ether (40 cm³) cooled to -78 °C. The mixture was then stirred for 2 h. Methanol (20 cm³) was then added and the mixture allowed to warm to ambient temperature over 30 min. The volume was reduced to 10 cm³ by evaporation under reduced pressure. The yellow solid product was filtered off, washed with methanol (25 cm³) and diethyl ether (30 cm³), and dried *in vacuo* over P₂O₅. Yield 1.2 g, 84%.

[Pt($C_6H_4CH_2C_6H_4$)(dppm)] (1g). A solution of bis(diphenylphosphino)methane (0.115 g, 0.30 mmol) in dichloromethane (10 cm³) was added to a stirred solution of [Pt($C_6H_4CH_2C_6-H_4$)(cod)] (0.150 g, 0.32 mmol) in dichloromethane (25 cm³). The mixture was then stirred for 1 h. The solvent was removed by evaporation under reduced pressure. The residue was triturated with diethyl ether (40 cm³) to give the pale yellow solid product. Recrystallisation from benzene–ethanol (1:1 v/v) gave a white solid. Yield 0.20 g, 93%. The compound [Pt($C_6H_4CH_2C_6H_4$)-(dppe)] (1f) was made similarly in 92% yield.

[Pt($C_6H_4CH_2C_6H_4$)I₂(PEt₃)₂] (2). A solution of iodine (2.08 cm³, 0.079 mol dm⁻³ in benzene, 0.165 mmol) diluted with dichloromethane (15 cm³) was added dropwise over 4 h to a stirred solution of [Pt($C_6H_4CH_2C_6H_4$)(PEt₃)₂] (0.10 g, 0.167 mmol) in dichloromethane (40 cm³) cooled to -50 °C under argon. The mixture was then stirred for a further 2 h at -50 °C. The solvent was then removed by evaporation under reduced pressure. Addition of ethanol (40 cm³) gave the yellow

solid product which was filtered off and washed with ethanol (15 cm³). Recrystallisation from benzene-methanol (1:1 v/v) gave a yellow air-stable crystalline solid. Yield 0.132 g, 93%.

X-Ray Crystal Structure Analysis of $[Pt(C_6H_4CH_2C_6H_4)-(PEt_3)_2]$ (1a) and $[Pt(C_6H_4CH_2C_6H_4)I_2(PEt_3)_2]$ (2).—For both compounds data were collected with a Syntex $P2_1$ fourcircle diffractomter for 2 θ in the range 3—50°. Background intensities were measured at each end of the scan for 0.25 s of the scan time. Three standard reflections, monitored every 200 reflections, showed slight changes during data collection; the data were rescaled to correct for this. The density was measured by flotation. Unit-cell dimensions and standard deviations were obtained by least-squares fit to 15 high-angle reflections. Refinement used the observed reflections $[I/\sigma(I) \ge 3.0]$ corrected for Lorentz, polarisation and absorption effects, the last by the Gaussian method. Details for each compound are given in Table 6.

Heavy atoms were located by Patterson methods and the remaining lighter atoms by successive Fourier synthesis. In general, anisotropic thermal parameters were used for all atoms except hydrogens which were inserted at fixed positions and not refined $(U = 0.07 \text{ Å}^2)$. Methyl groups were treated as rigid CH₃ units with their initial orientation taken from the H-atom peaks on a difference Fourier synthesis. Final refinement of F was by cascaded least-squares methods. A weighting scheme of the form $W = 1/[\sigma^2(F) + gF^2]$ was applied. Computing used SHELXTL¹² on a Data General DG30. Scattering factors in the analytical form and anomalous dispersion factors were taken from ref. 13. Atomic co-ordinates are in Table 7.

Suitable crystals of compound $[Pt(C_6H_4CH_2C_6H_4)(PEt_3)_2]$ were obtained by recrystallisation from benzene-methanol (1:1 v/v). The crystals formed were irregularly shaped colourless plates. Orange-red plate crystals of compound $[Pt(C_6H_4CH_2-C_6H_4)I_2(PEt_3)_2]$ were obtained by recrystallisation from benzene-methanol (1:1 v/v). For $[Pt(C_6H_4CH_2C_6H_4)I_2-$

Table 7. Atom co-ordinates ($\times 10^4$)

Atom	x	у	z	Atom	x	У	z
(a) For c	omplex (1a)			(b) For co	mplex (2)		
Pt	868.2(4)	6 997.2(2)	5 853.5(3)	Pt	2 526.1(3)	7 240.1(5)	5 072.0(3)
P(1)	944(3)	7 832(2)	4 550(2)	I(1)	2 617.7(8)	5 234.3(11)	4 098.7(7)
P(2)	2 424(3)	6 010(2)	5 536(2)	I(2)	2 524.2(8)	4 911.5(11)	5 948.5(7)
C(1)	313(11)	5 618(7)	7 320(8)	$\hat{\mathbf{P}(1)}$	4 115(2)	7 247(4)	5 908(2)
C(2)	261(12)	5 331(8)	8 198(9)	P(2)	932(2)	7 308(4)	4 222(2)
C(3)	511(14)	5 894(9)	8 888(9)	$\mathbf{C}(1)$	2 409(8)	8 635(14)	3 590(8)
C(4)	811(13)	6 749(10)	8 699(9)	C(2)	2 499(9)	9 696(17)	3 121(9)
C(5)	-996(13)	8 914(7)	7 438(8)	C(3)	2 703(10)	10 984(17)	3 394(8)
C(6)	-2 095(13)	9 088(8)	7 010(9)	C(4)	2 869(9)	11 275(14)	4 144(11)
C(7)	- 2 442(12)	8 621(8)	6 274(9)	C(5)	2 442(10)	10 822(15)	6 432(10)
C(8)	-1628(12)	8 009(7)	5 927(8)	C(6)	2 073(10)	10 343(18)	6 842(9)
C(10)	966(11)	8 007(6)	7 627(8)	C(7)	1 837(9)	8 978(15)	6 7 59(7)
C(11)	- 195(11)	8 292(7)	7 095(7)	C(8)	1 966(9)	8 131(15)	6 249(8)
C(12)	-480(11)	7 842(7)	6 312(7)	C(10)	3 094(9)	10 641(14)	5 533(9)
C(13)	646(10)	6 478(7)	7 103(7)	C(11)	2 595(9)	9 974(12)	5 914(9)
C(14)	820(11)	7 045(7)	7 846(7)	C(12)	2 369(8)	8 594(13)	5 841(7)
C(15)	893(12)	8 992(7)	4 769(8)	C(13)	2 580(8)	8 865(12)	4 391(7)
C(16)	2 014(15)	9 334(8)	5 298(10)	C(14)	2 837(8)	10 227(14)	4 706(8)
C(17)	-371(12)	7 682(8)	3 806(8)	C(15)	4 718(9)	8 250(14)	5 539(9)
C(18)	- 525(16)	6 767(9)	3 435(12)	C(16)	4 720(11)	7 743(16)	4 807(11)
C(19)	2 223(11)	7 740(7)	3 777(7)	C(17)	4 660(9)	5 590(15)	6 086(9)
C(20)	2 207(13)	8 292(8)	2 945(8)	C(18)	5 658(9)	5 596(18)	6 613(10)
C(21)	1 995(15)	5 283(9)	4 600(8)	C(19)	4 548(10)	7 980(15)	6 918(8)
C(22)	2 746(18)	4 549(10)	4 343(11)	C(20)	4 439(13)	7 076(17)	7 519(10)
C(23)	3 907(13)	6 466(10)	5 249(10)	C(21)	530(9)	7 309(16)	3 136(8)
C(24)	4 295(16)	7 240(11)	5 807(12)	C(22)	- 529(11)	7 310(19)	2 607(10)
C(25)	2 891(12)	5 199(7)	6 376(7)	C(23)	366(9)	8 800(15)	4 353(9)
C(26)	3 468(14)	5 569(8)	7 232(7)	C(24)	538(10)	10 177(17)	4 066(11)
. /				C(25)	328(10)	5 931(15)	4 386(10)
				C(26)	342(12)	4 439(16)	4 018(12)

 $(PEt_3)_2$ the refinement did not include correction for absorption effects, because the crystal was lost before its dimensions were recorded. In both structures the only substantial peaks on the final difference Fourier syntheses were close to Pt.

Additional material available from the Cambridge Crystallographic Data Centre comprises H-atom co-ordinates and thermal parameters.

Acknowledgements

We would like to thank the S.E.R.C. for an Earmarked Studentship (to K. H. B.) and Johnson Matthey plc for a generous loan of platinum salts.

References

- 1 E. Lindner, Adv. Heterocyclic Chem., 1986, 39, 239 and refs. therein.
- 2 S. D. Chappell and D. J. Cole-Hamilton, Polyhedron, 1982, 1, 739.
- 3 N. W. Alcock, K. H. Bryars, and P. G. Pringle, J. Organomet. Chem., in the press.

- 4 C. A. Mike, T. Nelson, J. Graham, A. W. Crodes, and N. T. Allison, Organometallics, 1988, 7, 2573.
- 5 W. B. Smith and B. A. Shoulders, J. Phys. Chem., 1965, 69, 2022.
- 6 A. L. Ternay and S. A. Evans, J. Org. Chem., 1974, 2941.
- 7 C. A. Mike, R. Feride, and N. T. Allison, Organometallics, 1988, 7, 1457.
- 8 G. Elliott, W. R. Roper, and J. Waters, J. Chem. Soc., Chem. Commun., 1982, 811.
- 9 C. S. Marvel, F. D. Hager, and E. C. Caudle, Org. Synth., 1948, Coll. vol. 1, 224.
- 10 H. L. Haller, P. D. Bartlett, N. L. Drake, M. S. Newman, S. J. Cristol, C. M. Eaker, R. A. Hayes, G. W. Kilmer, B. Magerlein, G. P. Mudler, A. Schneider, and W. Wheatley, J. Am. Chem. Soc., 1945, 67, 1591.
- 11 H. Gilman and A. H. Haubein, J. Am. Chem. Soc., 1944, 66, 1515.
- 12 G. M. Sheldrick, SHELXTL User Manual, Nicolet Instrument Co., Madison, Wisconsin, 1983.
- 13 'International Tables for X-Ray Crystallography,' Kynoch Press, Birmingham, 1974, vol. 4.

Received 12th June 1989; Paper 9/02460C