Reactivity of $\left[\mathrm{Pt}\left(\mathrm{CH}_{2} \mathrm{X}\right)_{2}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}-P P^{\prime}\right)\right](\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$, or I): Four- to Five-membered Ring Expansions. Crystal Structure of [Bis(diphenylphosphino)-methane-PP']bis(chloromethyl)platinum(II) *

Nathaniel W. Alcock
Department of Chemistry, University of Warwick, Coventry CV4 7AL
Paul G. Pringle
School of Chemistry, University of Bristol, Bristol BS8 1 TS
Paola Bergamini, Silvana Sostero, and Orazio Traverso
Dipartimento di Chimica, Università di Ferrara, 44100 Ferrara, Italy

Abstract

Addition of $\mathrm{CH}_{2} \mathrm{~N}_{2}$ to the chelates [$\mathrm{PtX} \mathrm{X}_{2}\left(\mathrm{dppm}-P P^{\prime}\right)$] $\left(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}\right.$, or I; dppm $\left.=\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}\right)$ gives the complexes $\left[\mathrm{Pt}\left(\mathrm{CH}_{2} \mathrm{X}\right)_{2}\left(\mathrm{dppm}-P P^{\prime}\right)\right](2 \mathrm{a})-(2 \mathrm{c})$ which have been fully characterised. The X-ray crystal structure of $\left[\mathrm{Pt}\left(\mathrm{CH}_{2} \mathrm{Cl}\right)_{2}\left(\mathrm{dppm}-P P^{\prime}\right)\right](2 \mathrm{a})$ has been determined in confirmation of its chemical identity (orthorhombic, space group Pbca, $R=0.053$ for 2499 observed reflections $[I / \sigma(I) \geqslant 2.0]$. Addition of HCl to complex (2a) gives $\left[\mathrm{PtCl}\left(\mathrm{CH}_{2} \mathrm{Cl}\right)\left(\mathrm{dppm}-\mathrm{PP}^{\prime}\right)\right]$ (3). Treatment of (2a) with phosphines or pyridine leads to a ring-expansion reaction to give [$\left.\mathrm{PtL}\left(\mathrm{CH}_{2} \mathrm{Cl}\right)\left(\mathrm{CH}_{2} \mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)\right] \mathrm{Cl}\left[\mathrm{L}=\right.$ pyridine (4a), $\mathrm{PPh}_{3}(4 \mathrm{~b})$, or $\left.\mathrm{PPh}_{2} \mathrm{H}(4 \mathrm{c})\right]$. With dppm, (2a) gives the bis chelate [$\left.\mathrm{Pt}\left(\mathrm{CH}_{2} \mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)_{2}\right] \mathrm{Cl}_{2}$ (5). The mechanism of these ligand-promoted ring expansions is discussed. The products have been fully characterised by a combination of elemental analysis, i.r., ${ }^{1} \mathrm{H}$, and ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectroscopy.

The reactivity of $\left[\mathrm{PtCl}_{2}\left(\mathrm{dppm}-P P^{\prime}\right)\right](1)$ is often very different from other [PtCl_{2} (diphosphine) $]$ complexes because of the ring strain inherent in the four-membered chelate. ${ }^{1}$ Hence (1) readily ring opens at the $\mathrm{Pt}-\mathrm{P}$ bond to give binuclear complexes containing bridging dppm ligands ${ }^{1}$ and recently we have shown that $\mathrm{P}-\mathrm{C}$ cleavage in (1) readily occurs in the presence of hydroxide. ${ }^{2,3}$ In this paper we report a further manifestation of the tendency of (1) to relieve the ring strain: a four- to fivemembered ring expansion which occurs in complexes of the type $\left[\mathrm{Pt}\left(\mathrm{CH}_{2} \mathrm{X}\right)_{2}\left(\mathrm{dppm}-P P^{\prime}\right)\right](\mathbf{2 a})-(2 \mathrm{c})$.

Results and Discussion

McCrindle et al. ${ }^{4,5}$ have reported the preparation of complexes of the type $\left[\mathrm{Pt}\left(\mathrm{CH}_{2} \mathrm{Cl}\right)_{2}\left(\mathrm{PR}_{3}\right)_{2}\right]$ by the addition of an excess of $\mathrm{CH}_{2} \mathrm{~N}_{2}$ to the corresponding $\left[\mathrm{PtCl}_{2}\left(\mathrm{PR}_{3}\right)_{2}\right]$. In a similar manner, we have made the corresponding dppm complexes (2a)-(2c) and characterised them by elemental analysis, ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ n.m.r. spectroscopy (see Tables $1-3$), and the crystal structure of (2a). The complex $\left[\mathrm{PtCl}\left(\mathrm{CH}_{2} \mathrm{Cl}\right)\left(\mathrm{dppm}-P P^{\prime}\right)\right](3)$ was sometimes observed to contaminate the product (2a) but (3) was readily removed by recrystallisation; a convenient synthesis of (3) is by addition of 1 equivalent of HCl to (2a).

X-Ray Crystal Structure of Complex (2a).-The structure of complex (2a) (Figure, Tables 4 and 5) was undertaken primarily to confirm its chemical composition. The four-membered ring is clearly strained, with a $\mathrm{P}-\mathrm{Pt}-\mathrm{P}$ angle of only $73.4(1)^{\circ}$; repulsion between P and C is presumably responsible for the small $\mathrm{C}-\mathrm{Pt}-\mathrm{C}$ angle $\left[84.2(4)^{\circ}\right]$. Both Cl atoms lie in the PtP_{2} plane, perhaps as a result of van der Waals attraction to the phenyl group. No structures have been reported for other complexes containing terminal $\mathrm{PtCH}_{2} \mathrm{Cl}$ groups to show whether this orientation is normal.

Reactivity of Complexes (2a)-(2c).-The complexes (2a)(2c) are stable in the solid state but in solution they decompose slowly to a mixture of (1a)-(1c) and (3a)-(3c). The stability in solution is observed to be (2c) $<\mathbf{(2 b}$) $<(\mathbf{2 a})$. If CDCl_{3} solutions of the di-iodo complex (2c) are irradiated ($\lambda>320$

Table 1. Elemental analyses (\%)

Complex	C	H
(2a)	$47.80(47.80)$	$3.85(3.85)$
(2b)	$42.20(42.25)$	$3.30(3.40)$
(2c)	$38.05(37.65)$	$3.05(3.05)$
(4a)	$49.30(50.70)$	$4.20(4.10)$
(4b)	$57.60(57.45)$	$4.30(4.40)$
(4c) $\cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$	$52.05(52.25)$	$4.05(4.20)$
$(\mathbf{5}) \cdot 1.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$	$54.10(54.00)$	$4.35(4.30)$

* N 1.45 (1.85\%).
nm) decomposition to (1a) occurs rapidly (less than 10 min) and ethylene is detected by gas chromatography as a major product; the fate of the iodine ligands has not been determined.

When CDCl_{3} solutions of (2a) are treated with neutral ligands, L , a ring expansion occurs to give the cationic products (4a)-(4c) containing a novel phosphine-phosphorus ylide ligand. Their structures are assigned from elemental analysis, ${ }^{1} \mathrm{H}$ and particularly ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectroscopy (see Tables $1-3$). For example the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum of (4b) is an AMX pattern with associated ${ }^{195} \mathrm{Pt}$ satellites; the magnitudes of $J(\mathrm{PP})$ and $J(\mathrm{PtP})$ enable unambiguous assignments of the signals.

The bis(chloromethyl) complex (2a) reacts rapidly with 1 equivalent of dppm to give the bis chelate (5a). The structure is based on the highly symmetrical ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ n.m.r. spectrum, and the observation of two ${ }^{1} \mathrm{H}$ n.m.r. signals in the ratio $1: 1$, assigned to the $\mathrm{PCH}_{2} \mathrm{P}$ and the $\mathrm{PCH}_{2} \mathrm{Pt}$ protons (see Tables $1-3)$.

Two possible mechanisms which may explain the ligandpromoted PPh_{2} migration from Pt to CH_{2} in the above reactions are shown in Schemes 1 and 2. In mechanism A an ylide complex is formed [step (i)] followed by migration of the PPh_{2} to the CH_{2} with concomitant migration of the ligand to Pt

[^0]Table 2. Phosophorus-31 n.m.r. data*

Complex	$\delta\left(\mathrm{P}_{\mathrm{A}}\right)$	${ }^{1} \mathrm{~J}\left(\mathrm{PtP}_{\mathrm{A}}\right)$	$\delta\left(\mathrm{P}_{\mathrm{B}}\right)$	${ }^{1} J\left(\mathrm{PtP}_{\mathrm{B}}\right)$	$J\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{B}}\right)$	$\delta\left(P_{c}\right)$	${ }^{1} J\left(\mathrm{PtP}_{\mathrm{C}}\right)$	$J\left(\mathbf{P}_{\mathbf{A}} \mathbf{P}_{\mathbf{C}}\right)$	$J\left(\mathrm{P}_{\mathrm{B}} \mathrm{P}_{\mathrm{C}}\right)$
(2a)	-33.8	1636							
(2b)	-34.6	1631							
(2c)	-35.1	1643							
(4a)	9.8	2280	45.4	56	66				
(4b)	16.4	1884	44.1	50	61	22.3	2600	15	5
(4c)	15.8	1730	45.9	46	66	-5.6	2540	18	5
(5)	15.5	2350	45.6	42	54				

* Spectra measured at 36.4 MHz in CDCl_{3}. Chemical shift (δ) to high frequency of $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ in p.p.m. (± 0.1) and coupling constants (J) in $\mathrm{Hz}(\pm 3)$.

Table 3. Proton n.m.r. data* $(J / H z)$

Complex	$\delta\left(\mathrm{PCH}_{2} \mathrm{P}\right)$	$J(\mathrm{PtH})$	$J(\mathrm{PH})$	$\delta\left(\mathrm{PtCH}_{2} \mathrm{X}\right)$	$J(\mathrm{PtH})$	$J(\mathrm{PH})$	$\delta\left(\mathrm{PtCH}_{2} \mathrm{P}\right)$	$J(\mathrm{PtH})$	$J(\mathrm{PH})$
(2a)	4.4	29.7	9.5	4.3	48.6	7.2			
(2b)	4.2	33.5	9.5	3.9	40.0	4.3			
(2c)	4.2	36.0	9.0	3.2	36.0	8.0			
(4a)	3.7	21.0	9.4	5.2	73.0	9.0	2.8	91.4	$10,2.7$
(4b)	4.4	21.0	12.0	3.7	46.0	$9.8,2.0$	3.0	72.0	$10,10,3.4$
(5)	4.5	22.0	11.0	3.6	68.0				

* Spectra measured at 80 MHz in CDCl_{3}. Chemical shifts (δ) to high frequency of SiMe_{4} in p.p.m. (± 0.05), and coupling constants (J) in $\mathrm{Hz}(\pm 0.1)$.

(1a) Cl
(1b) Br
(1c) I

(2a) Cl
(2b) Br
(2c) I

Figure. View of complex (2a) showing the atomic numbering
The ring expansions described above are peculiar to dppm chelates since analogous dppe chelates behave differently. ${ }^{5}$ The driving force for the reaction is most probably relief of ring strain. The final result is the insertion of CH_{2} into the $\mathrm{Pt}-\mathrm{P}$ bond to give a new class of ligand.

Experimental

Diazomethane was prepared from N-methyl- N-nitrosourea and potassium hydroxide, following published procedures. ${ }^{8}$ The starting material (1a) was prepared as previously reported. ${ }^{9}$

Preparation of $\left[\mathrm{Pt}\left(\mathrm{CH}_{2} \mathrm{X}\right)_{2}\left(\mathrm{dppm}-P P^{\prime}\right)\right](\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$, or I$)$.The complex $\left[\mathrm{PtX}_{2}\left(\mathrm{dppm}-P P^{\prime}\right)\right][\mathrm{X}=\mathrm{Cl}(1 \mathrm{a}), \mathrm{Br}(\mathbf{1 b})$, or I (1c)] (1.5 mmol) was suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(200 \mathrm{~cm}^{3}\right)$ in a beaker in air. A solution containing a large excess (≈ 50 equiv.) of $\mathrm{CH}_{2} \mathrm{~N}_{2}$ in $\mathrm{Et}_{2} \mathrm{O}$ was slowly added to the suspension at $0^{\circ} \mathrm{C}$ with vigorous stirring. After 8 h the solvent was evaporated in vacuo and the yellow solid residue was washed with diethyl ether $\left(20 \mathrm{~cm}^{3}\right)$ and water $\left(20 \mathrm{~cm}^{3}\right)$, to give a white solid. The yields were $77(\mathrm{X}=\mathrm{Cl}), 65(\mathrm{X}=\mathrm{Br})$, and $84 \%(\mathrm{X}=\mathrm{I})$.

Preparation of $\left[\mathrm{Pt}\left(\mathrm{CH}_{2} \mathrm{Cl}\right)(\mathrm{py})\left(\mathrm{CH}_{2} \mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)\right] \mathrm{Cl}$ (4a).-Complex (2 a) $(100 \mathrm{mg}, 0.147 \mathrm{mmol})$ was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ and pyridine $\left(0.1 \mathrm{~cm}^{3}\right)$ was added. The yellow solution was stirred for 2 h at room temperature, then

Scheme 1. Mechanism A; $L=\mathrm{PPh}_{3}, \mathrm{PPh}_{2} \mathrm{H}$, or pyridine

Scheme 2. Mechanism $\mathrm{B} ; \mathrm{L}=\mathrm{PPh}_{3}, \mathrm{PPh}_{2} \mathrm{H}$, or pyridine

Table 4. Atom co-ordinates ($\times 10^{4}$) for complex (2a)

Atom	x	y	z
Pt	$1427.0(2)$	$5413.8(3)$	$6150.4(2)$
$\mathrm{Cl}(1)$	$-281(2)$	$5512(3)$	$6965(2)$
$\mathrm{C}(1)$	$203(5)$	$5465(8)$	$6199(5)$
$\mathrm{Cl}(2)$	$1989(2)$	$5080(3)$	$4615(2)$
$\mathrm{C}(2)$	$1243(5)$	$5418(7)$	$5142(4)$
$\mathrm{P}(1)$	$2783.8(14)$	$5345.6(23)$	$6209.8(14)$
$\mathrm{P}(2)$	$1745.2(15)$	$5424.7(25)$	$7238.4(14)$
$\mathrm{C}(3)$	$2814(5)$	$5185(7)$	$7104(4)$
$\mathrm{C}(111)$	$3375(5)$	$4448(7)$	$5845(4)$
$\mathrm{C}(112)$	$3823(6)$	$4603(8)$	$5292(5)$
$\mathrm{C}(113)$	$4240(6)$	$3927(8)$	$5005(6)$
$\mathrm{C}(114)$	$4181(7)$	$3069(8)$	$5238(6)$
$\mathrm{C}(115)$	$3721(7)$	$2917(8)$	$5776(6)$
$\mathrm{C}(116)$	$3321(5)$	$3593(7)$	$6080(5)$
$\mathrm{C}(121)$	$3361(5)$	$6341(7)$	$6057(5)$
$\mathrm{C}(122)$	$4082(6)$	$6495(8)$	$6330(5)$
$\mathrm{C}(123)$	$4495(9)$	$7251(10)$	$6193(7)$
$\mathrm{C}(124)$	$4216(7)$	$7862(7)$	$5766(7)$
$\mathrm{C}(125)$	$3504(8)$	$7720(9)$	$5474(8)$
$\mathrm{C}(126)$	$3075(7)$	$6949(7)$	$5601(6)$
$\mathrm{C}(211)$	$1379(6)$	$4542(9)$	$7764(5)$
$\mathrm{C}(212)$	$1321(7)$	$3687(8)$	$7502(6)$
$\mathrm{C}(213)$	$1033(6)$	$2987(8)$	$7858(6)$
$\mathrm{C}(214)$	$788(7)$	$3113(8)$	$8477(5)$
$\mathrm{C}(215)$	$845(8)$	$3932(9)$	$8745(6)$
$\mathrm{C}(216)$	$1130(7)$	$4639(10)$	$8389(6)$
$\mathrm{C}(221)$	$1701(6)$	$6462(8)$	$7698(5)$
$\mathrm{C}(222)$	$1218(6)$	$7133(7)$	$7478(6)$
$\mathrm{C}(223)$	$1189(8)$	$7951(9)$	$7814(7)$
$\mathrm{C}(224)$	$1638(9)$	$8077(11)$	$8361(9)$
$\mathrm{C}(225)$	$2101(8)$	$7397(11)$	$8589(8)$
$\mathrm{C}(226)$	$2144(7)$	$6607(8)$	$8261(5)$

Table 5. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{Pt}-\mathrm{P}(1)$	$2.296(2)$	$\mathrm{P}(1)-\mathrm{C}(3)$	$1.843(9)$
$\mathrm{Pt}-\mathrm{P}(2)$	$2.286(3)$	$\mathrm{P}(2)-\mathrm{C}(3)$	$1.859(9)$
$\mathrm{Pt}-\mathrm{C}(1)$	$2.069(8)$	$\mathrm{C}(1)-\mathrm{Cl}(1)$	$1.765(10)$
$\mathrm{Pt}-\mathrm{C}(2)$	$2.082(9)$	$\mathrm{C}(2)-\mathrm{Cl}(2)$	$1.733(9)$
$\mathrm{P}(1)-\mathrm{Pt}-\mathrm{P}(2)$	$73.4(1)$	$\mathrm{P}(2)-\mathrm{Pt}-\mathrm{C}(1)$	$100.8(3)$
$\mathrm{P}(1)-\mathrm{C}(3)-\mathrm{P}(2)$	$95.4(4)$	$\mathrm{C}(1)-\mathrm{Pt}-\mathrm{C}(2)$	$84.2(4)$
$\mathrm{P}(1)-\mathrm{Pt}-\mathrm{C}(2)$	$101.6(2)$		

evaporated to low volume and n-hexane $\left(10 \mathrm{~cm}^{3}\right)$ slowly added. The off-white precipitate was filtered off and washed with n -hexane; yield $83 \mathrm{mg}(75 \%)$.

The complexes (4b), (4c), and (5) were made similarly; (4b) was obtained in 84% yield after recrystallisation from CHCl_{3} and $\mathrm{Et}_{2} \mathrm{O}(4 \mathrm{c})$ in 64% yield by precipitation from a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution with $\mathrm{Et}_{2} \mathrm{O}$, and (5) in 86% yield.

Crystal Structure Determination of Complex (2a).-Crystal data. $\mathrm{C}_{2}{ }_{7} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{Pt}, M=616.5$, orthorhombic, space group Pbca, $a=16.881(4), b=14.924(4), \quad c=20.425(4) \AA, \quad U=$ $5146(2) \AA^{3}, Z=8, D_{\mathrm{c}}=1.59 \mathrm{~g} \mathrm{~cm}^{-3}$, Mo- K_{α} radiation, $\lambda=$ $0.71069 \AA, \mu\left(\mathrm{Mo}-K_{\alpha}\right)=60.8 \mathrm{~cm}^{-1}, T=293 \mathrm{~K}, \quad F(000)=$ 2400.

Crystals were obtained from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$ as straw-yellow needles. Data were collected with a Syntex $P 2_{1}$ four-circle diffractometer. Maximum 2θ was 50 , with scan range ± 1.0 (2 2) around the $K_{\alpha_{1}}-K_{\alpha_{2}}$ angles, scan speed $2-29^{\circ} \mathrm{min}^{-1}$, depending on the intensity of a 2-s pre-scan; backgrounds were measured at each end of the scan for 0.25 of the scan time. The $h k l$ ranges were $0-20,0-17,0-24$. Three standard reflections were monitored every 200 reflections, and showed a slight decrease
during data collection. The data were rescaled to correct for this. Unit-cell dimensions and standard deviations were obtained by least-squares fit to 15 reflections ($23<2 \theta<25$). Reflections were processed using profile analysis to give 5004 unique reflections; 2499 were considered observed $[\mathrm{I} / \sigma(I) \geqslant 2.0]$ and used in refinement; they were corrected for Lorentz, polarisation and absorption effects, the last by the Gaussian method. Maximum and minimum transmission factors were 0.66 and 0.43 . Crystal dimensions were $0.09 \times 0.10 \times 0.24 \mathrm{~mm}$. Systematic absences: $0 k l, k \neq 2 n ; \mathrm{h} 0 l, l \neq 2 n ; h k 0, h \neq 2 n$, indicating space group Pbca uniquely. The Pt atom was located by the Patterson interpretation section of SHELXTL. ${ }^{10} \mathrm{~A}$ first Fourier synthesis showed the dppm ligand and the $\mathrm{CH}_{2} \mathrm{Cl}$ groups. Anisotropic thermal parameters were used for all non-H atoms. Hydrogen atoms were given fixed isotropic thermal parameters, $U=0.07 \AA^{2}$, and were inserted at calculated positions and not refined. Final refinement was on F by cascaded least-squares methods refining 289 parameters. Largest positive and negative peaks on a final difference Fourier synthesis were of height 1.1 and $-1.0 \mathrm{e}^{-3}$, in the neighbourhood of the Pt .

A weighting scheme of the form $w=1 /\left[\left(\sigma^{2}(F)\right]\right.$ was used and shown to be satisfactory by a weight analysis. Final $R=$ $0.053, R^{\prime}=0.036$. Maximum shift/error in final cycle 0.2 . Computing with SHELXTL on a Data General DG30. Scattering factors in the analytical form and anomalous dispersion factors taken from ref. 11. Final atomic co-ordinates are given in Table 4 and selected bond lengths and angles in Table 5.

Additional material available from the Cambridge Crystallographic Data Centre comprises H -atom co-ordinates, thermal parameters, and remaining bond lengths and angles.

Acknowledgements

We thank NATO for the provision of a travel grant and Johnson Matthey plc for a generous loan of platinum salts.

References

1 R. J. Puddephatt, Chem. Soc. Rev., 1983, 99.
2 N. W. Alcock, P. Bergamini, T. J. Kemp, and P. G. Pringle, J. Chem. Soc., Chem. Commun., 1987, 235.
3 P. Bergamini, T. J. Kemp, P. G. Pringle, S. Sostero, and O. Traverso, J. Chem. Soc., Dalton Trans., 1989, 2017.

4 R. McCrindle, G. J. Arsenault, and R. Farwaha, J Organomet. Chem., 1985, 236, C51.
5 R. McCrindle, G. J. Arsenault, R. Farwaha, M. J. Hampden-Smith, R. E. Rice, and A. M. McLees, J. Chem. Soc., Dalton Trans., 1988, 1773.

6 J. F. Hoover and J. M. Stryker, Organometallics, 1988, 7, 2082.
7 H. Werner, L. Hofmann, W. Paul, and U. Schubert, Organometallics, 1988, 7, 1106 and refs. therein.
8 F. Arndt, Org. Synth., 1943, 2, 165.
9 M. P. Brown, R. J. Puddephatt, M. Rashidi, and K. R. Seddon, J. Chem. Soc., Dalton Trans., 1977, 951.

10 G. M. Sheldrick, SHELXTL, User Manual, Madison, Wisconsin, 1983.

11 'International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, 1974.

[^0]: * Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1990, Issue 1, pp. xix—xxii.

