Crystallographic Characterization of the Polyoxotungstate $\left[\mathrm{Eu}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\left(\mathrm{SbW}_{9} \mathrm{O}_{33}\right)\left(\mathrm{W}_{5} \mathrm{O}_{18}\right)_{3}\right]^{18-}$ and Energy Transfer in its Crystalline Lattices \dagger

Toshihiro Yamase,* Haruo Naruke, and Yoh Sasaki
Research Laboratory of Resources Utilization, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 227, Japan

The potassium salt of the new mixed-polyoxotungstate anion $\left[\mathrm{Eu}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\left(\mathrm{SbW}_{9} \mathrm{O}_{33}\right)\left(\mathrm{W}_{5} \mathrm{O}_{18}\right)_{3}\right]^{18-}$ (1) has been prepared from $\mathrm{WO}_{3}, \mathrm{Sb}_{2} \mathrm{O}_{3}, \mathrm{Eu}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, and KOH in water and isolated in crystalline form as $\mathrm{K}_{15} \mathrm{H}_{3}\left[\mathrm{Eu}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\left(\mathrm{SbW}_{9} \mathrm{O}_{33}\right)\left(\mathrm{W}_{5} \mathrm{O}_{18}\right)_{3}\right] \cdot 25.5 \mathrm{H}_{2} \mathrm{O}$. It crystallizes in the monoclinic space group $C 2 / m$, with $a=30.250(7), b=18.568(5), c=22.101$ (6) $A, \beta=109.19(8)^{\circ}$, and $Z=4$. A central $E u_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$ core is co-ordinated by a B -type $\alpha-\mathrm{SbW}_{9} \mathrm{O}_{33}$ unit and three $\mathrm{W}_{5} \mathrm{O}_{18}$ units with tetrahedral conformation. Each Eu ${ }^{3+}$ in the core exhibits eight-co-ordination by oxygen atoms belonging to $\mathrm{H}_{2} \mathrm{O}, \mathrm{SbW}_{5} \mathrm{O}_{33}$, and $\mathrm{W}_{5} \mathrm{O}_{18}$ units. The intramolecular energy transfer from the $\mathrm{O} \rightarrow \mathrm{W}$ charge-transfer levels for the polyoxotungstate crystalline lattices to the emitting ${ }^{5} D_{0}$ level of Eu^{3+} takes place efficiently at least over $6.9 \AA$ which is the largest distance between W and Eu atoms in the anion. A comparison of the lifetime and quantum yield of the emission among (1), $\left[\mathrm{Eu}\left(\mathrm{W}_{5} \mathrm{O}_{18}\right)_{2}\right]^{9-}$, and $\left[\mathrm{Eu}\left(\mathrm{SiW}_{11} \mathrm{O}_{39}\right)_{2}\right]^{13-}$ indicates that the hopping of a $d^{\prime \prime}$ electron between WO_{6} octahedra is the predominant deactivation channel of the $\mathrm{O} \rightarrow \mathrm{W}$ charge-transfer levels, which reduces drastically the communication with the excited levels of Eu^{3+}.

Upon photoexcitation of the ligand-to-metal charge-transfer (l.m.c.t.) bands of polyoxometalates, an electron is transferred to an orbital of d character at higher energy simultaneously with the creation of a vacancy in an oxygen orbital of $2 p$ character at low energy. In the solid-state photochemistry of alkylammonium polyoxomolybdates the presence of a peculiar type of perturbation of the $\mathrm{O} \rightarrow$ Mo l.m.c.t. states [equation (1)] has been demonstrated, ${ }^{1-6}$ in which photoexcitation of the $\mathrm{O} \rightarrow$ Mo

(1)
1.m.c.t. band induces transfer of a hydrogen-bonding proton from an alkylammonium nitrogen to a bridging oxygen atom at the photoreducible site in the edge-shared MoO_{6} octahedral lattice. This is followed by interaction of the electron in the highenergy d-type level with the proton. Simultaneous interaction of the hole with non-bonding electrons at the amino nitrogen atom leads to formation of a charge-transfer complex (I). This complex refiects the charge separation between the electron and the hole which are localized at the MoO_{6} octahedron in the polyoxomolybdate lattice. The extent of delocalization of the d^{1} electron has been related to the $\mathrm{M}-\mathrm{O}-\mathrm{M}$ bond angle associated with the $d_{n}-p_{\pi}-d_{\pi}$ orbital mixing in the polyoxometalates. ${ }^{7-11}$ In edge-shared MoO_{6} octahedral lattices with Mo-O-Mo bond angles of $87-118^{\circ}$ the d^{1} electron is almost localized at a single MoO_{6} octahedron site. ${ }^{1,5,6}$ On the other hand, in the Keggin framework with corner-sharing linking of different $\mathrm{M}_{3} \mathrm{O}_{13}$ groups, thermally activated electron-hopping delocalization occurs between corner-shared MO_{6} octahedra with M-O-M bond angles of $142-155^{\circ} .^{7-9}$ Furthermore, electron delocalization due to perfect orbital mixing takes place in the $\mathrm{W}_{10} \mathrm{O}_{32}$ lattice with approximately linear configurations ($\mathrm{W}-\mathrm{O}-\mathrm{W}{ }_{10} 176-177^{\circ}$) for the corner-shared WO_{6} octahedra. ${ }^{10,11}$

In the absence of a transferable proton (in the case of alkalimetal salts of polyoxometalates) a recombination between the electron and hole would follow photoexcitation of the $\mathrm{O} \rightarrow \mathrm{M}$ l.m.c.t. band, resulting in no chemical change. However, when there are several energy levels within the $\mathrm{O} \rightarrow \mathrm{M}$ 1.m.c.t. bands, energy transfer occurs from the $\mathrm{O} \rightarrow$ M 1.m.c.t. excited state to these levels. This has been demonstrated for $\left[\mathrm{Eu}\left(\mathrm{W}_{5} \mathrm{O}_{18}\right)_{2}\right]^{9-12-15}$ where photoexcitation of the $\mathrm{O} \rightarrow \mathrm{W}$ l.m.c.t. band leads to energy transfer from $\left[\mathrm{W}_{5} \mathrm{O}_{18}\right]^{6-}$ to Eu^{3+} followed by a characteristic luminescence of Eu^{3+}. Similar behaviour has been reported for $\left[\mathrm{Eu}\left(\mathrm{SiW}_{11} \mathrm{O}_{39}\right)_{2}\right]^{13-}$ and $\left[\mathrm{Eu}\left(\mathrm{P}_{2} \mathrm{~W}_{17} \mathrm{O}_{61}\right)_{2}\right]^{17-}{ }^{13,16}$ From the standpoint of the preparation of other polyoxotungstoeuropates, it is important to note that all of the Eu^{3+} in these polyoxotungstoeuropates achieve eight-co-ordination to the lacunary derivatives of $\mathrm{W}_{6} \mathrm{O}_{19}$, Keggin $\mathrm{SiW}_{12} \mathrm{O}_{40}$, and Dawson $\mathrm{P}_{2} \mathrm{~W}_{18} \mathrm{O}_{62}$ structures. Thus, our interest in energy transfer involving the polyoxotungstate lattice has been focused on the polyoxotungstoeuropate containing trivacant Keggin-structure ligands. Recently, we have isolated a new luminescent polyoxotungstoeuropate complex, $\mathrm{K}_{15} \mathrm{H}_{3}\left[\mathrm{Eu}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\left(\mathrm{SbW}_{9} \mathrm{O}_{33}\right)\left(\mathrm{W}_{5} \mathrm{O}_{18}\right)_{3}\right] \cdot 25.5 \mathrm{H}_{2} \mathrm{O}$ (1), and investigated its luminescence properties, to understand the relaxation process of the $\mathrm{O} \rightarrow \mathrm{M}$ l.m.c.t. excitation in polyoxotungstoeuropate lattices. The structure of the complex has been characterized by single-crystal X-ray diffraction. This study of the intramolecular energy transfer from the $\mathrm{O} \rightarrow$ M l.m.c.t. excited state to Eu^{3+} provides an insight at the molecular level since the polyoxometalates can be regarded as molecular fragments of an infinite metal oxide lattice.

Experimental

Preparation and Chemical Analysis.-All the reagents required for the preparation were used without further purification. The salts $\mathrm{Na}_{9}\left[\mathrm{Eu}\left(\mathrm{W}_{5} \mathrm{O}_{18}\right)_{2}\right] \cdot 18 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{K}_{13}[\mathrm{Eu}-$

[^0]($\left.\left.\mathrm{SiW}_{11} \mathrm{O}_{39}\right)_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$ were prepared as described by Peacock and Weakley. ${ }^{17}$ The complex $\mathrm{K}_{15} \mathrm{H}_{3}\left[\mathrm{Eu}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\left(\mathrm{SbW}_{9} \mathrm{O}_{33}\right)\right.$ $\left.\left(\mathrm{W}_{5} \mathrm{O}_{18}\right)_{3}\right] \cdot 25.5 \mathrm{H}_{2} \mathrm{O}$ (1) was prepared by the following method. Tungsten(vi) oxide (4.0 g) and $\mathrm{KOH}(2.5 \mathrm{~g})$ were dissolved in water ($30 \mathrm{~cm}^{3}$) on warming. Antimony(III) oxide $(0.8 \mathrm{~g})$ and $\mathrm{Eu}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.4-0.5 \mathrm{~g})$ in $12 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HCl}$ ($4.0 \mathrm{~cm}^{3}$) were added dropwise with stirring. The mixture was then kept at room temperature for 30 min , following by filtration. The clear colourless filtrate (at pH 7.4) was kept at $15^{\circ} \mathrm{C}$. Within 3 d white crystals were formed, accompanied by other crystalline phases that are non-luminescent. Luminescent crystals of (1) were removed from the solution under $395-\mathrm{nm}$ light. After alkaline degradation, tungsten and potassium were determined by atomic absorption spectrometry at 400.9 and 766.5 nm , respectively. Antimony ($\mathrm{Sb}^{\text {IIII }}$) was determined by a polarographic method (dropping mercury electrode) in 1 mol $\mathrm{dm}^{-3} \mathrm{NaOH}$ at 1.15 V vs. $\mathrm{Ag}-\mathrm{AgCl}$. Europium was determined by back-titration with MnSO_{4} in the presence of $0.01 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ ethylenediaminetetra-acetate, $\mathrm{NH}_{3}-\mathrm{NH}_{4} \mathrm{Cl}$ buffer (pH 10), and eriochrom black T indicator. ${ }^{17}$ Thermogravimetric analysis (Rigaku, Thermoflex TG-DGC) was used for the determination of water of crystallization (Found: Eu, $6.10 ; \mathrm{K}, 9.65$; $\mathrm{Sb}, 1.25 ; \mathrm{W}, 52.70 ; \mathrm{H}_{2} \mathrm{O}, 4.20$. Calc. for $\mathrm{H}_{60} \mathrm{Eu}_{3} \mathrm{~K}_{15} \mathrm{O}_{115.5} \mathrm{SbW}_{24}: \mathrm{Eu}, 6.10 ; \mathrm{K}, 7.85 ; \mathrm{Sb}, 1.60 ; \mathrm{W}, 59.0$; $\mathrm{H}_{2} \mathrm{O}, 6.15 \%$). An attempt to synthesize other polyoxotungstoeuropates containing $\mathrm{AsW}_{9} \mathrm{O}_{33}$ or $\mathrm{BiW}_{9} \mathrm{O}_{33}$ moieties was unsuccessful.

Crystallography.-The crystals of complex (1) are monoclinic. Oscillation and Weisenberg photographs suggested the space group $C 2 / \mathrm{m}$. Accurate unit-cell parameters were determined by least-squares treatment of angular co-ordinates of 15 reflections with $2 \theta=15-25^{\circ}$ measured with a Rigaku four-circle diffractometer.

Crystal data. $\mathrm{H}_{60} \mathrm{Eu}_{3} \mathrm{~K}_{15} \mathrm{O}_{115.5} \mathrm{SbW}_{24}, M=7485.9$, monoclinic, space group $C 2 / m, a=30.250(7), b=18.568(5), c=$ 22.101(6) $\AA, \beta=109.19(8)^{\circ}, U=11723(5) \AA^{3}, Z=4, D_{\mathrm{c}}=$ $4.243 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=13155, \mu\left(\mathrm{Mo}-K_{\alpha}\right)=248.2 \mathrm{~cm}^{-1}$.

Intensities were collected in the range $2<2 \theta<60^{\circ}$ for a crystal with approximate dimensions $0.07 \times 0.35 \times 0.40 \mathrm{~mm}$, using graphite-monochromatized Mo- $K_{\alpha} \quad(\lambda=0.71069 \AA)$ radiation and the $\omega-2 \theta$ scan technique at a 2θ scan rate of 8° $\min ^{-1}$. Lorentz and polarization corrections were applied and an absorption correction was made using the program DABEX. ${ }^{18}$ Correction factors were from 2.468 to 9.094 . Of 10677 independent reflections, 8642 having $I>3 \sigma(I)$, were retained for the structure refinement. The positions of the W atoms were obtained by a direct method using MULTAN $78 .{ }^{19}$ The atomic scattering factors and anomalous dispersion terms were taken from ref. 20. Calculations were carried out on the HITAC M-280H computer at this Institute. The structure was refined using the SHELX 76 package of programs. ${ }^{21}$ The quantity minimized was $\Sigma w\left(F_{\mathrm{o}}-F_{\mathrm{c}}\right)^{2}$. The refinement converged to $R=0.125$ and $R^{\prime}=0.164$ $\left\{w=\Sigma\left[\sigma^{2}\left(F_{\mathrm{o}}\right)+0.0116 F_{\mathrm{o}}^{2}\right]^{-1}\right\}$ for 462 parameters. No extinction coefficient was applied. The maximum and minimum heights in the final difference synthesis were 9.8 and $-8.4 \mathrm{e} \AA^{-3}$ respectively, around W atom at a distance of less than $1 \AA$. The high values of R and R^{\prime} could be ascribed to poor crystal quality in addition to a high absorption index ($\mu=248.2 \mathrm{~cm}^{-1}$) and non-spherical crystals; the crystals lost water readily as they were taken from their solution. The atomic co-ordinates for the non-hydrogen atoms are listed in Table 1.

Additional material available from the Cambridge Crystallographic Data Centre comprises thermal parameters and remaining bond distances and angles.

Spectroscopy.-Sample powders were prepared by grinding
single crystals of complex (1) in an agate mortar. Diffuse reflection and i.r. spectra were recorded on Hitachi 330 and Jasco IRA-2 spectrophotometers, respectively. Emission and excitation spectra were obtained using a lock-in (NF L1-574) technique. A Hamamatsu TV R636 photomultiplier tube, connected to a Nikon G-25 grating monochromator, was used to detect emitted light. The wavelength dependence of the emission in the steady state of irradiation with a $500-\mathrm{W}$ xenon lamp was determined and the signals obtained at $\lambda<400 \mathrm{~nm}$ were corrected to a constant photon flux at each wavelength. Measurements at 77 and 4.2 K were carried out using a liquidnitrogen Dewar flask and an Oxford Instruments cryostat (CF 204), respectively. The exciting light was focused onto the sample, and the emitted light collected at an angle of 90° and focused onto the entrance slit of the monochromator. The time profiles of the luminescence from the ${ }^{5} D_{0}$ state of Eu^{3+} under excitation with a pulsed NRG 0.9-5-90 nitrogen laser (337 nm) were obtained with a Sony-Tektronix 475 oscilloscope or a Kawasaki electronika MR-100E + TMC-400 signal averager. The emission quantum yields were evaluated by the method of Haas and Stein ${ }^{22}$ using as a standard $\mathrm{Na} 9\left[\mathrm{Eu}\left(\mathrm{W}_{5} \mathrm{O}_{18}\right)_{2}\right]$ • $18 \mathrm{H}_{2} \mathrm{O}(\varphi=0.80)^{23}$ for $310-\mathrm{nm}$ excitation. High-resolution emission spectra were recorded on a Jasco CT-1000 D double monochromator using the nitrogen laser for excitation. Highresolution excitation spectra were obtained with a Molectron DL-14P dye laser pumped by a Molectron UV-24 nitrogen laser. The high-resolution spectra were recorded with a slit width resolution of $1 \mathrm{~cm}^{-1}$ and measurements of the $f-f$ emission lines were recorded with an accuracy of $\pm 2 \mathrm{~cm}^{-1}$.

Results

Structure of $\mathrm{K}_{15} \mathrm{H}_{3}\left[\mathrm{Eu}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\left(\mathrm{SbW}_{9} \mathrm{O}_{33}\right)\left(\mathrm{W}_{5} \mathrm{O}_{18}\right)_{3}\right]$. $25.5 \mathrm{H}_{2} \mathrm{O}$, (1).-A central trinuclear $\mathrm{Eu}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$ core in the anion is linked tetrahedrally by three $\mathrm{W}_{5} \mathrm{O}_{18}$ groups and one B- α type $\mathrm{SbW}_{9} \mathrm{O}_{33}$ group. ${ }^{24}$ The anion of approximate point symmetry $C_{3 v}$ has a mirror plane through $\mathrm{W}(1), \mathrm{W}(11)$, $\mathrm{W}(12), \mathrm{W}(14), \mathrm{Sb}$, and $\mathrm{Eu}(2)$, as shown in Figure 1. The $\mathrm{W}_{5} \mathrm{O}_{18}$ group, which is known as part of $\left[\mathrm{Ce}\left(\mathrm{W}_{5} \mathrm{O}_{18}\right)_{2}\right],{ }^{8-},{ }^{25}$ is the lacunary derivative of the $\mathrm{W}_{6} \mathrm{O}_{19}$ structure, a half moiety of $\left[\mathrm{W}_{10} \mathrm{O}_{32}\right]^{4-}{ }^{26}$ The SbW_{9} group is the trivacant Keggin structural $\mathrm{B}-\alpha$ type ligand containing $\mathrm{Sb}^{\text {III }}$ having three-co-ordination ${ }^{24}$ as in other polyoxotungstates where the $\mathrm{XW}_{9} \mathrm{O}_{33}$ moiety is of B- α type, notably $\left[\mathrm{W}_{3} \mathrm{O}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{AsW}_{9} \mathrm{O}_{33}\right)_{2}\right]^{3-}$, $\left[\mathrm{CoW}_{2} \mathrm{O}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{AsW}_{9} \mathrm{O}_{33}\right)_{2}\right]^{8-} \quad\left[\mathrm{Cu}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\left(\mathrm{AsW}_{9}-\right.\right.$ $\left.\left.\mathrm{O}_{33}\right)_{2}\right]^{12-}$, and $\left[\left(\mathrm{Hg}_{2}\right)_{2} \mathrm{WO}\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{AsW}_{9} \mathrm{O}_{33}\right)_{2}\right]^{10-}{ }^{27-29}$ This should be distinguished from the $\mathrm{B}-\alpha \mathrm{XW}_{9} \mathrm{O}_{34}$ moiety with tetrahedral $\mathrm{XO}_{4}\left(\mathrm{X}=\mathrm{Si}^{\mathrm{VV}}, \mathrm{Ge}^{\mathrm{IV}}, \mathrm{P}^{\mathrm{V}}\right.$, or $\left.\mathrm{As}^{\mathrm{v}}\right) .{ }^{30,31}$ Each Eu ${ }^{3+}$ in the $\mathrm{Eu}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$ core achieves eight-co-ordination by attachment of one $\mathrm{W}_{5} \mathrm{O}_{18}$ (four oxygens), one $\mathrm{SbW}_{9} \mathrm{O}_{33}$ (two oxygens), and two aqua ligands (two oxygens). Selected bond distance and angle data are shown in Table 2, hydrogen-bond distances and selected separations between heavy atoms in Table 3. The $\operatorname{Eu}(1) \cdots E u(2)$ and $\mathrm{Eu}(1) \cdots \mathrm{Eu}\left(1^{\prime}\right)$ distances are $5.067(4)$ and $5.015(5) \AA$, respectively. These are much larger than the $\mathrm{Co} \cdots \mathrm{Co}$ distances $(3.16-3.31 \AA)$ in $\left[\mathrm{Co}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}-\right.$ $\left.\left(\mathrm{PW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{10-}$ or $\mathrm{Zn} \cdots \mathrm{Zn}$ distances (3.24-3.46 \AA) in $\left[\mathrm{Zn}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{AsW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{10-}$, where two Co or Zn atoms each carry a water ligand and the anion of crystallographic symmetry $\overline{1}$ contains two $\left[\mathrm{XW}_{9} \mathrm{O}_{34}\right]^{9-}$ groups linked via four $\mathrm{Co}^{\mathrm{II}} \mathrm{O}_{6}$ or $\mathrm{Zn}^{11} \mathrm{O}_{6}$ groups. ${ }^{32}$ The $\mathrm{W}-\mathrm{O}$ bond distances in the $\mathrm{W}_{5} \mathrm{O}_{18}$ and $\mathrm{SbW}_{9} \mathrm{O}_{33}$ groups are little different from corresponding distances in $\left[\mathrm{Ce}\left(\mathrm{W}_{5} \mathrm{O}_{18}\right)_{2}\right]^{8-}$ or $\left[\mathrm{W}_{10} \mathrm{O}_{32}\right]^{4-}$ and $\left[\mathrm{M}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{XW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{10-}$, respectively. ${ }^{25,26,32}$ The relative strength of the $\mathrm{W}-\mathrm{O}, \mathrm{Eu}-\mathrm{O}$, and $\mathrm{Sb}-\mathrm{O}$ interactions is given in Table 4 where the bond strengths in valence units (s) are calculated using $s=(d / 1.904)^{-6.0},(d / 2.090)^{-6.5}$, and $(d / 1.910)^{-4.5}$ for the $\mathrm{W}-\mathrm{O}, \mathrm{Eu}-\mathrm{O}$, and $\mathrm{Sb}-\mathrm{O}$ bond lengths (d) in \AA

Table 1. Atomic co-ordinates ($\times 10^{4}$ for W , Eu, Sb, and $\mathrm{K} ; \times 10^{3}$ for oxygen) for $\mathrm{K}_{15} \mathrm{H}_{3}\left[\mathrm{Eu}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\left(\mathrm{SbW}_{9} \mathrm{O}_{33}\right)\left(\mathrm{W}_{5} \mathrm{O}_{18}\right)_{3}\right] \cdot 25.5 \mathrm{H}_{2} \mathrm{O}$ with estimated standard deviations (e.s.d.s) in parentheses

Atom	x	y	z	Atom	x	y	z
W(1)	$2106(1)$	0	-264(1)	W(2)	1486 (1)	$1006(1)$	686(1)
W(3)	3 096(1)	900(1)	521(1)	W(4)	$1943(1)$	995(1)	2 293(1)
W(5)	$2489(1)$	$1894(1)$	1451(1)	W(6)	5 202(1)	3 319(1)	3 052(1)
W(7)	$4975(1)$	$1813(1)$	$3713(1)$	W(8)	4 179(1)	3070 (1)	3 291(1)
W(9)	4 213(1)	$3047(1)$	$1829(1)$	W(10)	5 001(1)	1766 (1)	$2245(1)$
W(11)	2 906(1)	0	$6017(1)$	W(12)	2 137(1)	0	4 538(1)
W(13)	$2948(1)$	1241 (1)	4942(1)	W(14)	3 760(1)	0	$5374(1)$
$\mathrm{Eu}(1)$	3840 (1)	$1350(1)$	2389 (1)	Eu(2)	2 972(1)	0	3 646(1)
Sb	$2689(1)$	0	1 659(2)	K(1)	3 104(4)	$2975(6)$	491(6)
K(2)	2 948(7)	$2125(8)$	3 233(8)	K(3)	4078(8)	$1305(12)$	4347 (8)
K(4)	$1556(10)$	$1905(13)$	$3915(13)$	K(5)	$3802(11)$	$1747(21)$	$6578(22)$
K(6)	4 939(6)	0	3 076(8)	K(7)	$1187(6)$	0	2 985(8)
K(8)	4 239(6)	0	$1194(8)$	K(9)	$1322(19)$	0	-2416(26)
K(10)	853(8)	0	-831(12)				
$\mathrm{O}(1)$	174(1)	0	-109(2)	O(2)	94(1)	128(2)	17(2)
$\mathrm{O}(3)$	339(1)	148(1)	17(2)	O(4)	165(1)	130(1)	276(1)
$\mathrm{O}(5)$	258(1)	281(2)	137(2)	$\mathrm{O}(6)$	564(2)	401(2)	328(2)
O(7)	527(1)	141(2)	441(2)	$\mathrm{O}(8)$	391(1)	366(2)	368(2)
$\mathrm{O}(9)$	397(1)	360(1)	117(2)	O(10)	538(1)	136(2)	190(2)
$\mathrm{O}(11)$	286(2)	0	675(3)	$\mathrm{O}(12)$	156(2)	0	433(3)
O(13)	294(1)	215(2)	506(2)	O(14)	437(2)	0	577(2)
$\mathrm{O}(15)$	178(1)	68(1)	8(1)	O(16)	254(1)	71(1)	-28(1)
O(17)	134(1)	0	75(2)	O(18)	333(2)	0	31(3)
O(19)	265(2)	0	71(3)	O(20)	139(1)	114(1)	147(1)
O(21)	183(1)	185(1)	78(1)	O(22)	267(1)	154(1)	73(1)
$\mathrm{O}(23)$	215(1)	192(1)	208(2)	$\mathrm{O}(24)$	222(1)	78(1)	146(1)
$\mathrm{O}(25)$	176(1)	0	217(2)	O(26)	542(1)	265(2)	376(2)
O (27)	476(1)	369(2)	342(2)	O (28)	480(1)	363(1)	226(2)
$\mathrm{O}(29)$	541(1)	260(2)	257(2)	$\mathrm{O}(30)$	459(1)	251(1)	397(2)
O(31)	400(1)	353(1)	245(2)	O(32)	465(1)	244(2)	158(2)
O(33)	528(1)	142(2)	314(2)	$\mathrm{O}(34)$	464(1)	248(1)	279(2)
$\mathrm{O}(35)$	226(2)	0	549(2)	O(36)	293(1)	97(2)	585(2)
O(37)	358(2)	0	614(2)	$\mathrm{O}(38)$	227(1)	98(2)	467(2)
O(39)	361(1)	99(1)	534(2)	$\mathrm{O}(40)$	293(2)	0	496(3)
O(41)	348(1)	84(1)	135(1)	$\mathrm{O}(42)$	297(1)	155(2)	196(2)
O(43)	249(1)	76(1)	280(1)	$\mathrm{O}(44)$	449(1)	119(1)	337(1)
$\mathrm{O}(45)$	378(1)	232(1)	306(1)	$\mathrm{O}(46)$	379(1)	232(2)	171(2)
O(47)	453(1)	112(1)	208(2)	O(48)	226(1)	0	378(2)
$\mathrm{O}(49)$	300(1)	113(1)	413(2)	$\mathrm{O}(50)$	371(2)	0	456(2)
O(51)	389(1)	0	257(2)	O(52)	354(1)	56(1)	316(2)
$\mathrm{O}_{\mathrm{w}}(1)$	134(3)	273(4)	220(4)	$\mathrm{O}_{\mathrm{w}}(2)$	296(2)	90(3)	-122(3)
O_{w} (3)	271(4)	218(6)	635(6)	$\mathrm{O}_{\mathrm{w}}(4)$	555(2)	334(3)	154(3)
$\mathrm{O}_{\mathrm{w}}(5)$	433(3)	150(4)	52(5)	$\mathrm{O}_{\mathrm{w}}(6)$	21(3)	216(3)	-40(4)
$\mathrm{O}_{\mathrm{w}}(7)$	382(3)	261(5)	468(5)	$\mathrm{O}_{\mathrm{w}}(8)$	182(3)	121(4)	576(5)
$\mathrm{O}_{\mathrm{w}}(9)$	368(3)	192(4)	-85(4)	$\mathrm{O}_{\mathrm{w}}(10)$	68(3)	0	166(5)
$\mathrm{O}_{\mathrm{w}}(11)$	510(4)	0	120(6)	$\mathrm{O}_{\mathrm{w}}(12)$	424(2)	0	727(3)
$\mathrm{O}_{\mathrm{w}}(13)$	442(3)	500	214(5)	$\mathrm{O}_{\mathrm{w}}(14)$	455(4)	500	385(6)
$\mathrm{O}_{\mathrm{w}}(15)$	386(5)	500	419(6)	$\mathrm{O}_{\mathrm{w}}(16)$	500	74(4)	0
$\mathrm{O}_{\mathrm{w}}(17)$	500	0	500				

respectively and the valence sum (bond order $=\Sigma s$) of all $\mathrm{W}-\mathrm{O}, \mathrm{Eu}-\mathrm{O}$, or $\mathrm{Sb}-\mathrm{O}$ bond strengths about a given oxygen or metal atom gives the valence of that atom..33 The alternative expression, $s=\exp \left[\left(d_{0}-d\right) / B\right]$, where d_{0} and B are empirically determined parameters, ${ }^{34}$ gave similar bond-valence values. The valence sums of the $\mathrm{Eu}-\mathrm{O}$ bond strengths for $\mathrm{O}(51)$ and $O(52)$ are $0.56(6)$ and $0.52(3)$ respectively, implying considerable negative charge on these atoms if they are not protonated. The values are in contrast to those, 1.4(3)-2.7(3), for all other oxygen atoms that carry formal negative charge in the $W_{5} \mathrm{O}_{18}$ and $\mathrm{SbW}_{9} \mathrm{O}_{33}$ groups. In conjunction with the fact that the bond order [0.56(6) or $0.52(3)]$ for $\mathrm{O}(51)$ or $\mathrm{O}(52)$ is close to the value $\left(0.20 \times 2=0.40^{35}\right)$ predicted for the four-co-ordinated water oxygen in the crystal, the two protons can be located with a high degree of confidence on each of these bridging $\mathrm{O}(51)$ and $\mathrm{O}(52)$ atoms that are linked in the centre of
the anion via Eu atoms. Thus, atoms $\mathrm{O}(51), \mathrm{O}(52)$, and $\mathrm{O}\left(52^{\prime}\right)$ comprise the diprotonated oxo bridges (aqua ligands) between Eu atoms, represented as $\mathrm{Eu}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$. The separations $\mathrm{O}(51) \cdots \mathrm{O}(52) 2.21(6)$ and $\mathrm{O}(52) \cdots \mathrm{O}\left(52^{\prime}\right) 2.08(7) \AA$ are extraordinarily short compared with the $\mathrm{O} \ldots \mathrm{O}$ distances ($2.41-2.49 \AA^{36}$) for the diaquahydrogen cation $\left[\mathrm{H}_{5} \mathrm{O}_{2}\right]^{+}$, excluding the possibility of the hydrogen bond in the $\mathrm{Eu}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$ core.

Taking into consideration both $Z=4$ and the multiplicity of the Wyckoff position for each atom, the X-ray structural analysis indicates that complex (1) contains $15 \mathrm{~K}^{+}$cations and 25.5 lattice water oxygen $\left(\mathrm{O}_{\mathrm{w}}\right)$ atoms. Figure 2 shows a half molecule with the numbering of the K^{+}and O_{w} atoms. Atoms $K(6)-K(10), O_{w}(10)-O_{w}(15)$, and $O_{w}(17)$ are situated on a crystallographic mirror plane. In addition, the $\mathrm{O}(28) \cdots \mathrm{O}_{w}(13)$, $O(27) \cdots O_{w}(14)$, and $O(8) \cdots O_{w}(15)$ separations, $2.77(11)$,

Figure 1. Structure of $\left[\mathrm{Eu}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\left(\mathrm{SbW}_{9} \mathrm{O}_{33}\right)\left(\mathrm{W}_{5} \mathrm{O}_{18}\right)_{3}\right]^{18-}$ with the atom numbering scheme. Primed atoms are related to corresponding unprimed ones by a mirror plane
$2.76(13)$, and $2.75(15) \AA$, respectively are comparable with the $\mathrm{O} \ldots \mathrm{O}$ distances of hydrogen-bonded water molecules, 2.70$2.80 \AA \AA^{37}$ Therefore it is possible to say that a pair of hydrogen bonds involving each of $\mathrm{O}_{\mathrm{w}}(13), \mathrm{O}_{\mathrm{w}}(14)$, and $\mathrm{O}_{w}(15)$ links neighbouring anions in the lattice (Table 3). Similarly, since $O_{w}(14) \cdots O_{w}(15) 2.45(19)$ and $O_{w}(6) \cdots$ $\mathrm{O}_{\mathrm{w}}(6 \mathrm{~A}) * 2.50(16) \AA$ are comparable to the $\mathrm{O} \cdots \mathrm{O}$ separation in $\left[\mathrm{H}_{5} \mathrm{O}_{2}\right]^{+}$, it is reasonable to assume that two protons in complex (1) belong to $\left[\mathrm{H}_{5} \mathrm{O}_{2}\right]^{+}$, considering the multiplicity of the Wyckoff position of $\mathrm{O}_{\mathrm{w}}(6), \mathrm{O}_{\mathrm{w}}(14)$, and $\mathrm{O}_{\mathrm{w}}(15)$, eight, four, and four, respectively, in the unit cell. Then, (1) can be represented as $\mathrm{K}_{15}\left[\mathrm{H}_{5} \mathrm{O}_{2}\right]_{2} \mathrm{H}\left[\mathrm{Eu}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\left(\mathrm{SbW}_{9} \mathrm{O}_{33}\right)\right.$ $\left.\left(\mathrm{W}_{5} \mathrm{O}_{18}\right)_{3}\right] \cdot 21.5 \mathrm{H}_{2} \mathrm{O}$.

Luminescence Properties.-The diffuse reflection spectrum of powdered complex (1) at 300 K is shown in Figure 3. The spectrum shows an intense broad absorption band with a maximum around 310 nm and a very weak and narrow band around 395 nm . The broad band can be assigned to $\mathrm{O} \rightarrow \mathrm{W}$ 1.m.c.t. transitions of $\mathrm{W}_{5} \mathrm{O}_{18}$ and $\mathrm{SbW}_{9} \mathrm{O}_{33}$ ligands which are practically unaffected by co-ordination. The $\mathrm{O} \rightarrow \mathrm{Eu}$ l.m.c.t. bands are expected to lie in the $240-250 \mathrm{~nm}$ region but are obscured by the intense polyoxotungstate bands, due to their small absorption coefficients. ${ }^{13,16}$ The narrow band around 395 nm corresponds to the ${ }^{7} F_{0} \longrightarrow{ }^{5} L_{6}$ transition of $\mathrm{Eu}^{3+},{ }^{16}$ which is superimposed on the tail of much more intense bands due to the $\mathrm{W}_{5} \mathrm{O}_{18}$ and $\mathrm{SbW}_{9} \mathrm{O}_{33}$ ligands. The luminescence spectrum of the powder consists of ${ }^{5} D_{0} \longrightarrow{ }^{7} F_{J}(J=0-4)$ transitions of $\mathrm{Eu}^{3+},{ }^{38}$ as shown in Figure 4 where the energies

* $\mathrm{O}_{\mathrm{w}}(6 \mathrm{~A})$ denotes atom $\mathrm{O}_{\mathrm{w}}(6)$ in the adjacent molecule at $-x, y,-z$ (Table 3).
of the ${ }^{5} D_{0} \longrightarrow{ }^{7} F_{J}$ transitions in the high-resolution spectrum are given. Emission from the ${ }^{5} D_{0}$ level is observed upon irradiation with u.v. and visible light at 300 K . The line at 579.5 nm corresponds to the ${ }^{5} D_{0} \longrightarrow{ }^{7} F_{0}$ transition for the Eu^{3+} site, this transition being allowed for low symmetry $\left(C_{s}\right)$ around the Eu^{3+} (Figure 1). Since both the ${ }^{5} D_{0}$ and ${ }^{7} F_{0}$ levels cannot be split by ligand-field effects, the observation of a single component in the ${ }^{5} D_{0} \longrightarrow{ }^{7} F_{0}$ region under high-resolution conditions indicates that atoms Eu(1) and Eu(2) exhibiting crystallographically slightly different co-ordination (Table 2) can hardly be discriminated spectroscopically. Table 5 shows the relative intensities of ${ }^{5} D_{0} \longrightarrow{ }^{7} F_{J}$ emission at 300 K for complex (1), $\mathrm{Na}_{9}\left[\mathrm{Eu}\left(\mathrm{W}_{5} \mathrm{O}_{18}\right)_{2}\right] \cdot 18 \mathrm{H}_{2} \mathrm{O}$, and $\mathrm{K}_{13}\left[\mathrm{Eu}\left(\mathrm{SiW}_{11^{-}}\right.\right.$ $\left.\left.\mathrm{O}_{39}\right)_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$. The relative intensity of the ${ }^{5} D_{0} \longrightarrow{ }^{7} F_{2}$ emission for (1), corresponding to the electronic dipole transition, is the highest. A decrease in temperature resulted in no significant change in the intensity ratio of the ${ }^{5} D_{0} \longrightarrow{ }^{7} F_{J}$ emission.

The excitation spectra obtained at 300,77 , and 4.2 K are shown in Figure 5 where the emission is monitored for the most intense ${ }^{5} D_{0} \longrightarrow{ }^{7} F_{2}$ transition at 613.1 nm . The spectra consist of broad bands corresponding to the transitions of the $\mathrm{O} \rightarrow \mathrm{W}$ l.m.c.t. of both $\mathrm{W}_{5} \mathrm{O}_{18}$ and $\mathrm{SbW}_{9} \mathrm{O}_{33}$ ligands and a large number of lines due to the transition within the $4 f^{6}$ configuration of Eu^{3+}. The intensity of the broad band increases with decreasing temperature. This indicates that the photoexcitation of the $\mathrm{W}_{5} \mathrm{O}_{18}$ and $\mathrm{SbW}_{9} \mathrm{O}_{33}$ ligands is followed by energy transfer to the emitting ${ }^{5} D_{0}$ state of Eu^{3+} and that this transfer takes place efficiently at low temperature. It may be noted that the position of the excitation maximum around 280 nm at 300 K [Figure $5(a)$] is different from the absorption maximum around 310 nm (Figure 3). As supported by the relative increase in the excitation band around 310 nm with decreasing temperature (Figure 5), this is due to the well known phenomenon that in

Table 2. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\mathrm{K}_{15} \mathrm{H}_{3}\left[\mathrm{Eu}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\left(\mathrm{SbW}_{9} \mathrm{O}_{33}\right)\left(\mathrm{W}_{5} \mathrm{O}_{18}\right)_{3}\right] \cdot 25.5 \mathrm{H}_{2} \mathrm{O}$ with e.s.d.s in parentheses

$\mathrm{W}(1)-\mathrm{O}(1)$	1.78(4)	$\mathrm{W}(2)-\mathrm{O}(2)$	1.75(4)	W(3)-O(3)	1.73(3)
$\mathrm{W}(1)-\mathrm{O}(15)$	1.91(3)	$\mathrm{W}(2)-\mathrm{O}(15)$	1.93(3)	W(3)-O(16)	2.02(3)
$\mathrm{W}(1)-\mathrm{O}(16)$	1.88(3)	W(2)-O(17)	1.93(4)	W(3)-O(18)	1.94(7)
$\mathrm{W}(1)-\mathrm{O}(19)$	2.24(6)	W(2)-O(20)	1.85(3)	W(3)-O(19)	2.28(6)
		W(2)-O(21)	1.87(3)	$\mathrm{W}(3)-\mathrm{O}(22)$	1.91(3)
		$\mathrm{W}(2)-\mathrm{O}(24)$	2.34(3)	W(3)-O(41)	1.82(3)
$\mathrm{W}(4)-\mathrm{O}(4)$	1.66(3)	W(5)-O(5)	1.74(4)	W(6)-O(6)	1.79(5)
$\mathrm{W}(4)-\mathrm{O}(20)$	2.04(3)	$\mathrm{W}(5)-\mathrm{O}(21)$	2.06 (3)	W(6)-O(26)	1.95(4)
$\mathrm{W}(4)-\mathrm{O}(23)$	1.95(3)	$\mathrm{W}(5)-\mathrm{O}(22)$	1.96(3)	W(6)-O(27)	1.91(4)
W(4)-O(24)	2.29(3)	W(5)-O(23)	1.98(3)	W(6)-O(28)	1.86(3)
W(4)-O(25)	1.92(4)	$\mathrm{W}(5)-\mathrm{O}(24)$	2.23(3)	W(6)-O(29)	1.93(4)
W(4)-O(43)	1.73(3)	$\mathrm{W}(5)-\mathrm{O}(42)$	1.65(4)	W(6)-O(34)	2.25(3)
$\mathrm{W}(7)-\mathrm{O}(7)$	1.68(4)	$\mathrm{W}(8)-\mathrm{O}(8)$	1.75(5)	$\mathrm{W}(9)-\mathrm{O}(9)$	1.73(3)
$\mathrm{W}(7)-\mathrm{O}(26)$	2.03(4)	$\mathrm{W}(8)-\mathrm{O}(27)$	2.03(4)	W(9)-O(28)	2.02(3)
$\mathrm{W}(7)-\mathrm{O}(30)$	1.94(4)	$\mathrm{W}(8)-\mathrm{O}(30)$	1.93(4)	W(9)-O(31)	1.92(3)
$\mathrm{W}(7)-\mathrm{O}(33)$	1.94(4)	$\mathrm{W}(8)-\mathrm{O}(31)$	1.95(3)	W(9)-O(32)	1.94(4)
$\mathbf{W}(7)-O(34)$	2.32(3)	W(8)-O(34)	2.32(3)	W(9)-O(34)	2.34(3)
W(7)-O(44)	1.83(3)	$\mathrm{W}(8)-\mathrm{O}(45)$	1.81(3)	W(9)-O(46)	1.82(4)
$\mathrm{W}(10)-\mathrm{O}(10)$	1.74(4)	$\mathrm{W}(11)-\mathrm{O}(11)$	1.66(6)	$\mathrm{W}(12)-\mathrm{O}(12)$	1.66(6)
$\mathrm{W}(10)-\mathrm{O}(29)$	1.97(4)	$\mathrm{W}(11)-\mathrm{O}(35)$	1.92(5)	$\mathrm{W}(12)-\mathrm{O}(35)$	2.02(5)
$\mathrm{W}(10)-\mathrm{O}(32)$	1.96(4)	$\mathrm{W}(11)-\mathrm{O}(36)$	1.85(5)	$\mathrm{W}(12)-\mathrm{O}(38)$	1.86(4)
$\mathrm{W}(10)-\mathrm{O}(33)$	1.98(4)	$\mathrm{W}(11)-\mathrm{O}(37)$	1.97(5)	$\mathrm{W}(12)-\mathrm{O}(40)$	2.26(6)
$\mathrm{W}(10)-\mathrm{O}(34)$	2.30 (3)	W(11)-O(40)	2.35(6)	W(12)-O(48)	1.83(4)
W(10)-O(47)	1.81(3)				
$\mathrm{W}(13)-\mathrm{O}(13)$	1.71(4)	$\mathrm{W}(14)-\mathrm{O}(14)$	1.77(5)	$\mathrm{Sb}-\mathrm{O}(19)$	2.05(6)
$\mathrm{W}(13)-\mathrm{O}(36)$	2.08(5)	$\mathrm{W}(14)-\mathrm{O}(37)$	1.94(5)	$\mathrm{Sb}-\mathrm{O}(24)$	1.98(3)
$\mathrm{W}(13)-\mathrm{O}(38)$	2.00 (4)	$\mathrm{W}(14)-\mathrm{O}(39)$	1.90(3)		
W(13)-O(39)	1.96(3)	W(14)-O(40)	2.39(6)		
W(13)-O(40)	2.31 (6)	$\mathrm{W}(14)-\mathrm{O}(50)$	1.75(6)		
W(13)-O(49)	1.87(3)				
$\mathrm{Eu}(1)-\mathrm{O}(41)$	2.40(3)	$\mathrm{Eu}(1)-\mathrm{O}(46)$	2.31(4)	$\mathrm{Eu}(2)-\mathrm{O}(43)$	2.40(3)
$\mathrm{Eu}(1)-\mathrm{O}(42)$	2.51(4)	$\mathrm{Eu}(1)-\mathrm{O}(47)$	2.43(3)	$\mathrm{Eu}(2)-\mathrm{O}(48)$	2.28(4)
$\mathrm{Eu}(1)-\mathrm{O}(44)$	2.41(3)	$\mathrm{Eu}(1)-\mathrm{O}(51)$	2.54(4)	$\mathrm{Eu}(2)-\mathrm{O}(49)$	2.34(3)
$\mathrm{Eu}(1)-\mathrm{O}(45)$	2.39(3)	$\mathrm{Eu}(1)-\mathrm{O}(52)$	2.64(3)	$\mathrm{Eu}(2)-\mathrm{O}(50)$	2.47(6)
				$\mathrm{Eu}(2)-\mathrm{O}(52)$	2.51(3)
$\mathrm{W}(1)-\mathrm{O}(15)-\mathrm{W}(2)$	155(2)	W(2)-O(24)-W(5)	95(1)	W(9)-O(32)-W(10)	115(2)
$\mathrm{W}(1)-\mathrm{O}(16)-\mathrm{W}(3)$	120(2)	$\mathrm{W}(2)-\mathrm{O}(24)-\mathrm{Sb}$	137(1)	W(7)-O(33)-W(10)	113(2)
$\mathrm{W}(2)-\mathrm{O}(17)-\mathrm{W}\left(2^{\prime}\right)$	150(2)	$\mathrm{W}(4)-\mathrm{O}(24)-\mathrm{W}(5)$	94(1)	W(6)-O(34)-W(7)	94(1)
$\mathrm{W}(3)-\mathrm{O}(18)-\mathrm{W}\left(3^{\prime}\right)$	119(4)	$\mathrm{W}(4)-\mathrm{O}(25)-\mathrm{W}\left(4^{\prime}\right)$	148(3)	W(9)-O(34)-W(10)	$90(1)$
W(3)-O(19)-W(3)	94(2)	$\mathrm{W}(6)-\mathrm{O}(26)-\mathrm{W}(7)$	114(2)	W(11)-O(36)-W(13)	116(2)
$\mathrm{W}(2)-\mathrm{O}(20)-\mathrm{W}(4)$	119(1)	$\mathrm{W}(6)-\mathrm{O}(27)-\mathrm{W}(8)$	116(2)	W(11)-O(37)-W(14)	117(2)
$\mathrm{W}(2)-\mathrm{O}(21)-\mathrm{W}(5)$	119(2)	$\mathrm{W}(6)-\mathrm{O}(28)-\mathrm{W}(9)$	119(2)	W (12)-O(38)-W(13)	116(2)
$\mathrm{W}(3)-\mathrm{O}(22)-\mathrm{W}(5)$	143(2)	$\mathrm{W}(6)-\mathrm{O}(29)-\mathrm{W}(10)$	118(2)	W(14)-O(39)-W(13)	116(2)
W(4)-O(23)-W(5)	115(2)	$\mathrm{W}(7)-\mathrm{O}(30)-\mathrm{W}(8)$	115(2)	W(11)-O(40)-W(12)	93(2)
$\mathrm{W}(2)-\mathrm{O}(24)-\mathrm{W}(4)$	93(1)	$\mathrm{W}(8)-\mathrm{O}(31)-\mathrm{W}(9)$	115(2)	W(14)-O(40)-W(13)	88(2)
$\mathrm{W}(3)-\mathrm{O}(41)-\mathrm{Eu}(1)$	151(2)	$\mathrm{W}(9)-\mathrm{O}(46)-\mathrm{Eu}(1)$	127(2)	$\mathrm{Eu}(1)-\mathrm{O}(51)-\mathrm{Eu}\left(1^{\prime}\right)$	163(2)
$\mathrm{W}(5)-\mathrm{O}(42)-\mathrm{Eu}(1)$	153(2)	W(10)-O(47)-Eu(1)	122(2)	$\mathrm{Eu}(1)-\mathrm{O}(52)-\mathrm{Eu}(2)$	159(2)
$\mathrm{W}(4)-\mathrm{O}(43)-\mathrm{Eu}(2)$	149(2)	$\mathrm{W}(12)-\mathrm{O}(48)-\mathrm{Eu}(2)$	127(2)		
W(7)-O(44)-Eu(1)	127(1)	$\mathrm{W}(13)-\mathrm{O}(49)-\mathrm{Eu}(2)$	122(2)	$\mathrm{O}(19)-\mathrm{Sb}-\mathrm{O}(24)$	88(2)
$\mathrm{W}(8)-\mathrm{O}(45)-\mathrm{Eu}(1)$	125(2)	W(14)-O(50)-Eu(2)	126(3)	$\mathrm{O}(24)-\mathrm{Sb}-\mathrm{O}\left(24^{\prime}\right)$	94(1)

strongly absorbing crystals excitation into the absorption maximum is not very effective because it cannot enter the crystal and considerable radiationless losses occur in the surface layer. ${ }^{13,39}$ Another feature of the temperature effect on the excitation spectrum is the disappearance of several sublines in each of the spectral ranges $589-595,530-540,468-478$, and 414420 nm at $T \leqslant 77 \mathrm{~K}$. The high-resolution excitation spectrum at 300 K can be resolved into several components as shown in Figure 6. The excitation spectrum in the ${ }^{7} F_{0} \longrightarrow{ }^{5} D_{0}$ region under high-resolution conditions (Figure 6) displays a single line and three components to low energy. The positions of these four lines at $17247,16971,16855$, and $16807 \mathrm{~cm}^{-1}$ respectively
correspond to the emission lines for the ${ }^{5} D_{0} \longrightarrow{ }^{7} F_{0}$ (17255 cm^{-1}) and ${ }^{5} D_{0} \longrightarrow{ }^{7} F_{1}\left(16975\right.$ and $\approx 16834 \mathrm{~cm}^{-1}$) transitions (Figure 4). Therefore, the three well separated bands to low energy may be assigned to the ${ }^{7} F_{1} \longrightarrow{ }^{5} D_{0}$ transition of the Eu^{3+} site having C_{s} symmetry. Upon cooling to 77 K the thermal population of the higher-energy ${ }^{7} F_{1}$ state is substantially reduced due to the Boltzmann factor intensity-dependent changes with temperature, leaving the vast majority of Eu^{3+} in the ${ }^{7} F_{0}$ level. Thus, the sublines to low energy for the other spectral region may be assigned to the transition from ${ }^{7} F_{1}$ sublevels.

The ${ }^{5} D_{0}$ emission decay ($\tau_{\text {c.t. }}$) after excitation into the $\mathrm{O} \rightarrow \mathbf{W}$

Table 3. Selected interatomic distances (\AA) for $\mathrm{K}_{15} \mathrm{H}_{3}\left[\mathrm{Eu}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\left(\mathrm{SbW}_{9} \mathrm{O}_{33}\right)\left(\mathrm{W}_{5} \mathrm{O}_{18}\right)_{3}\right] \cdot 25.5 \mathrm{H}_{2} \mathrm{O}$ with e.s.d.s in parentheses

$\mathrm{K}(1) \cdots \mathrm{O}(3)$	3.05(4)	$\mathrm{K}(2) \cdots \mathrm{O}(23)$	2.91(4)	$\mathrm{K}(3) \cdots \mathrm{O}(30)$	2.99(4)	$\mathrm{K}(4) \cdots \mathrm{O}(4)$	2.90(4)
$\mathrm{K}(1) \cdots \mathrm{O}(5)$	2.92(4)	$\mathrm{K}(2) \cdots \mathrm{O}(42)$	3.03(4)	K (3) \cdots O (39)	3.03(4)	$\mathrm{K}(4) \cdots \mathrm{O}$ (38)	2.84(5)
$\mathrm{K}(1) \cdots \mathrm{O}(9)$	2.81(4)	$\mathrm{K}(2) \cdots \mathrm{O}(43)$	2.89(4)	$\mathrm{K}(3) \cdots \mathrm{O}(44)$	2.83(4)	$\mathrm{K}(4) \cdots \mathrm{O}\left(6^{\text {V }}\right.$)	3.16(6)
$\mathrm{K}(1) \cdots \mathrm{O}(22)$	3.10(4)	$\mathrm{K}(2) \cdots \mathrm{O}(45)$	2.67(4)	$\mathrm{K}(3) \cdots \mathrm{O}(49)$	3.16(4)	$\mathrm{K}(4) \cdots \mathrm{O}\left(13^{\text {II }}\right.$)	2.88(5)
$\mathrm{K}(1) \cdots \mathrm{O}(46)$	3.07(4)	$\mathrm{K}(2) \cdots \mathrm{O}(49)$	2.67 (4)	$\mathrm{K}(3) \cdots \mathrm{O}(50)$	2.77(6)	$\mathrm{K}(4) \cdots \mathrm{K}\left(5^{\text {II }}\right.$)	2.80(6)
$\mathrm{K}(1) \cdots \mathrm{O}\left(15^{1}\right)$	2.88(3)	$\mathrm{K}(2) \cdots \mathrm{O}_{w}\left(3^{\text {II }}\right.$)	2.78 (13)	$\mathrm{K}(3) \cdots \mathrm{O}(52)$	2.94(4)	$\mathrm{K}(4) \cdots \mathrm{O}_{w}\left(3^{\prime \prime}\right)$	2.99(13)
$\mathrm{K}(1) \cdots \mathrm{O}\left(16^{1}\right)$	3.06(3)			$\mathrm{K}(3) \cdots \mathrm{O}_{\mathbf{w}}(7)$	2.73(11)		
$\mathrm{K}(1) \cdots \mathrm{O}\left(21^{1}\right)$	2.89(4)			$\mathrm{K}(3) \cdots \mathrm{O}\left(7^{\text {III }}\right)$	2.82(5)		
$\mathrm{K}(1) \cdots \mathrm{O}\left(22^{1}\right)$	3.08(4)						
$\mathrm{K}(5) \cdots \mathrm{O}(36)$	2.97(7)	$\mathrm{K}(6) \cdots \mathrm{O}(33)$	2.82(4)	$\mathrm{K}(7) \cdots \mathrm{O}(4)$	2.92(4)	$\mathrm{K}(8) \cdots \mathrm{O}(18)$	2.80(7)
K(5) \cdots. $\mathrm{O}(39)$	2.96(6)	$\mathrm{K}(6) \cdots \mathrm{O}(44)$	2.78(4)	$\mathrm{K}(7) \cdots \mathrm{O}(12)$	2.81(6)	$\mathrm{K}(8) \cdots \mathrm{O}(41)$	2.89(3)
$\mathrm{K}(5) \cdots$ O(29III)	2.97(6)	K(6) $\cdot \cdots$ O(47)	2.99(4)	$\mathrm{K}(7) \cdots \mathrm{O}(25)$	2.89(5)	$\mathrm{K}(8) \cdots \mathrm{O}(47)$	2.80(4)
$\mathrm{K}(5) \cdots \mathrm{O}\left(33^{\text {III }}\right.$)	2.71(6)	$\mathrm{K}(6) \cdots \mathrm{O}(51)$	3.00(5)	$\mathrm{K}(7) \cdots \mathrm{O}(48)$	3.14(4)	$\mathrm{K}(8) \cdots \mathrm{O}_{w}(5)$	3.21(10)
$\mathrm{K}(5) \cdots \mathrm{O}_{w}\left(1^{\text {II }}\right.$)	3.04(10)	$\mathrm{K}(6) \cdots \mathrm{O}\left(14^{\text {III }}\right.$)	2.71(6)	$\mathrm{K}(7) \cdots \mathrm{O}_{\mathbf{w}}(10)$	2.83 (10)	$\mathrm{K}(8) \cdots \mathrm{O}(11)$	2.59(13)
		$\mathrm{K}(6) \cdots \mathrm{O}_{\mathbf{w}}\left(12^{\text {IIII }}\right)$	2.84(8)	$\mathrm{K}(7) \cdots \mathrm{O}\left(6^{\text {lV }}\right.$)	2.70(5)		
$\mathrm{K}(9) \cdots \mathrm{O}(1)$	2.80(7)	$\mathrm{K}(9) \cdots \mathrm{O}_{\mathrm{w}}\left(13^{1}\right)$	2.52(12)	$\mathrm{K}(10) \cdots \mathrm{O}(9)$	2.81(4)	$\mathrm{K}(10) \cdots \mathrm{O}\left(1^{v}\right)$	2.93(5)
$\mathrm{K}(9) \cdots \mathrm{O}\left(31^{1}\right)$	2.90(7)			$\mathrm{K}(10) \cdots \mathrm{O}_{\mathrm{w}}(13)$	2.74(11)	$\mathrm{K}(10) \cdots \mathrm{O}\left(15^{\text {v }}\right.$)	3.13(4)
$\mathrm{O}_{\mathrm{w}}(1) \cdots \mathrm{O}(4)$	2.95(9)	$\mathrm{O}_{w}(5) \cdots \mathrm{O}(3)$	2.68(11)	$\mathrm{O}_{\mathbf{w}}(9) \cdots \mathrm{O}(3)$	$2.82(11)$	$\mathrm{O}_{\mathbf{w}}(14) \cdots \mathrm{O}(8)$	3.10(13)
$\mathrm{O}_{\mathrm{w}}(1) \cdots \mathrm{O}(23)$	2.94(9)	$\mathrm{O}_{w}(5) \cdots \mathrm{O}(32)$	2.83(11)	$\mathrm{O}_{w}(9) \cdots \mathrm{O}\left(21^{1}\right)$	2.79(11)	$\mathrm{O}_{w}(14) \cdots \mathrm{O}(27)$	2.76(13)
$\mathrm{O}_{w}(1) \cdots \mathrm{O}_{w}\left(9^{1}\right)$	3.01(13)	$\mathrm{O}_{w}(5) \cdots \mathrm{O}_{\mathbf{w}}(9)$	3.13(14)			$\mathrm{O}_{\mathrm{w}}(14) \cdots \mathrm{O}_{\mathrm{w}}(15)$	2.45(19)
$\mathrm{O}_{w}(1) \cdots \mathrm{O}_{w}\left(4^{\text {lV }}\right.$)	3.09(12)	$\mathrm{O}_{w}(5) \cdots \mathrm{O}_{w}(16)$	3.01(12)	$\mathrm{O}_{w}(10) \cdots \mathrm{O}(20)$	3.15(11)	$\mathrm{O}_{\mathrm{w}}(14) \cdots \mathrm{O}\left(8^{\text {LX }}\right.$)	3.10(13)
		$O_{w}(5) \cdots O_{w}\left(6^{1}\right)$	2.90(13)	$\mathrm{O}_{w}(10) \cdots \mathrm{O}(25)$	3.08(11)	$\mathrm{O}_{w}(14) \cdots \mathrm{O}\left(27^{1 \mathrm{X}}\right)$	2.76(13)
$\mathrm{O}_{\mathrm{w}}(2) \cdots \mathrm{O}(16)$	2.78 (7)	$\mathrm{O}_{w}(5) \cdots \mathrm{O}_{w}\left(16^{\text {vil }}\right.$)	3.01(12)				
$\mathrm{O}_{w}(2) \cdots \mathrm{O}_{w}(9)$	2.79 (12)			$\mathrm{O}_{w}(11) \cdots \mathrm{O}(10)$	2.94(14)	$\mathrm{O}_{w}(15) \cdots \mathrm{O}(8)$	2.75(15)
$\mathrm{O}_{\mathrm{w}}(2) \cdots \mathrm{O}\left(5^{\text {I }}\right.$)	2.83(8)	$\mathrm{O}_{\mathbf{w}}(6) \cdots \mathrm{O}(2)$	$2.71(9)$	$\mathrm{O}_{w}(11) \cdots \mathrm{O}_{w}(16)$	2.91 (15)	$\mathrm{O}_{w}(15) \cdots \mathrm{O}\left(8^{1 \mathrm{x}}\right)$	2.75(15)
		$\mathrm{O}_{\mathrm{w}}(6) \cdots \mathrm{O}\left(32^{1}\right)$	2.88(9)	$\mathrm{O}_{\mathrm{w}}(11) \cdots \mathrm{O}_{\mathrm{w}}\left(16^{\mathrm{VII}}\right)$	2.91(15)		
$\mathrm{O}_{\mathrm{w}}(3) \cdots \mathrm{O}(13)$	3.151(14)	$\mathrm{O}_{\mathrm{w}}(6) \cdots \mathrm{O}_{\mathrm{w}}\left(6^{\mathrm{vNI}}\right)$	2.50 (16)			$\mathrm{O}_{w}(16) \cdots \mathrm{O}_{\mathrm{w}}\left(16^{\mathrm{V}}\right)$	2.74(14)
$\mathrm{O}_{w}(3) \cdots \mathrm{O}_{w}(8)$	3.15(17)			$\mathrm{O}_{w}(12) \cdots \mathrm{O}(37)$	$2.64(9)$		
		$\mathrm{O}_{\mathbf{w}}(7) \cdots \mathrm{O}(8)$	3.02(11)	$\mathrm{O}_{\mathrm{w}}(12) \cdots \mathrm{O}\left(10^{\text {III }}\right.$)	3.11(8)	$\mathrm{O}_{\mathrm{w}}(17) \cdots \mathrm{O}(7)$	3.15(4)
$\mathrm{O}_{\mathrm{w}}(4) \cdots \mathrm{O}(28)$	3.23(8)	$\mathrm{O}_{w}(7) \cdots \mathrm{O}(13)$	$3.15(11)$			$\mathrm{O}_{\mathrm{w}}(17) \cdots \mathrm{O}(14)$	2.94(5)
$\mathrm{O}_{\mathrm{w}}(4) \cdots \mathrm{O}(29)$	2.81(9)	$\mathrm{O}_{w}(7) \cdots \mathrm{O}_{w}\left(8^{\text {II }}\right.$)	2.86(15)	$\mathrm{O}_{\boldsymbol{w}}(13) \cdots \mathrm{O}(28)$	2.77 (11)	$\mathrm{O}_{\mathrm{w}}(17) \cdots \mathrm{O}\left(7^{\mathrm{V}}\right)$	3.15(4)
$\mathrm{O}_{w}(4) \cdots \mathrm{O}(32)$	3.23(9)			$\mathrm{O}_{w}(13) \cdots \mathrm{O}(31)$	3.19 (11)	$\mathrm{O}_{\mathrm{w}}(17) \cdots \mathrm{O}\left(14^{\mathrm{v}}\right.$)	2.94(5)
$\mathrm{O}_{w}(4) \cdots \mathrm{O}_{w}\left(6^{1}\right)$	2.94(11)	$\mathrm{O}_{\mathbf{w}}(8) \cdots \mathrm{O}(35)$	2.77(12)	$\mathrm{O}_{w}(13) \cdots \mathrm{O}\left(28^{1 \mathrm{x}}\right)$	2.77 (11)	$\mathrm{O}_{w}(17) \cdots \mathrm{O}\left(7^{\text {III }}\right)$	3.15(4)
$\mathrm{O}_{w}(4) \cdots \mathrm{O}_{w}\left(10^{\mathrm{VI}}\right)$	3.11(13)	$\mathrm{O}_{w}(8) \cdots \mathrm{O}(38)$	3.16(11)	$\mathrm{O}_{w}(13) \cdots \mathrm{O}\left(31^{\text {IX }}\right)$	3.19(11)	$\mathrm{O}_{w}(17) \cdots \mathrm{O}\left(14^{\text {III }}\right.$)	2.94(5)
$\mathrm{O}_{\mathrm{w}}(4) \cdots \mathrm{O}\left(20^{\mathrm{VI}}\right)$	2.78(8)	$\mathrm{O}_{w}(8) \cdots \mathrm{O}_{w}\left(15^{\text {II }}\right)$	3.08(18)			$\mathrm{O}_{w}(17) \cdots \mathrm{O}\left(7^{\text {III }}\right.$)	3.15(4)
		$\mathrm{O}_{w}(8) \cdots \mathrm{O}\left(8^{\text {II }}\right)$	2.88(11)			$\mathrm{O}_{\mathrm{w}}(17) \cdots \mathrm{O}\left(14^{\mathrm{x}}\right)$	2.94(5)
$\mathrm{W}(1) \cdots \mathrm{W}(2)$	3.741 (3)	$\mathrm{W}(6) \cdots \mathrm{W}(7)$	$3.331(3)$	W(3) \cdots Eu(1)	4.087(3)	$\mathrm{O}(41) \cdots \mathrm{O}(42)$	2.71 (5)
W(1) $\cdot .$. W(3)	3.372(3)	W(6) \cdots W(8)	3.340(3)	W(5) $\cdots \mathrm{Eu}(1)$	4.054(3)	$\mathrm{O}(41) \cdots \mathrm{O}(51)$	3.00(5)
W(2) ... W(4)	3.362(3)	W(6) \cdots W(9)	3.344(3)	W(7) \cdots. $\mathrm{Eu}(1)$	3.807(3)	$\mathrm{O}(42) \cdots \mathrm{O}(52)$	3.22(5)
W(2) \cdot. W ${ }^{\text {(5) }}$	3.378(3)	W(7) \cdots W (8)	3.263(3)	$\mathrm{W}(8) \cdots \mathrm{Eu}(1)$	$3.725(3)$	$\mathrm{O}(43) \cdots \mathrm{O}\left(43^{\prime}\right)$	2.82(5)
W(3) \cdot. W ${ }^{\text {(5) }}$	3.672(3)	W(7) ... W ${ }^{\text {(9) }}$	4.648(3)	$\mathrm{W}(9) \cdots \mathrm{Eu}(1)$	$3.695(3)$	$\mathrm{O}(43) \cdots \mathrm{O}(52)$	3.01(5)
W(4) \cdots W (5)	3.316(3)	W(7) . . W W (10)	3.274 (3)	$\mathrm{W}(10) \cdots \mathrm{Eu}(1)$	3.713(3)	$\mathrm{O}(44) \cdots \mathrm{O}(45)$	2.92(4)
		W(8) \ldots W ${ }^{\text {(9) }}$	3.267(3)			$\mathrm{O}(44) \cdots \mathrm{O}(47)$	2.89(5)
$\mathrm{W}(1) \cdot \cdots \mathrm{Sb}$	4.032(5)	$\mathrm{W}(8) \cdots \mathrm{W}(10)$	4.603(3)	W(4) \cdots. $\mathrm{Eu}(2)$	$3.991(4)$	$\mathrm{O}(45) \cdots \mathrm{O}(46)$	3.00 (5)
W(3) $\cdot \cdots$ Sb	3.561(4)	W(9) . . W W (10)	3.279(3)	$\mathrm{W}(12) \cdots \mathrm{Eu}(2)$	$3.680(5)$	$\mathrm{O}(46) \cdots \mathrm{O}(47)$	3.07(5)
W(4) $\cdot \cdots$ Sb	3.542(4)	$\mathrm{W}(11) \cdots \mathrm{W}(12)$	3.331(4)	$\mathrm{W}(13) \cdots \mathrm{Eu}(2)$	$3.696(4)$	$\mathrm{O}(48) \cdots \mathrm{O}(49)$	2.98(5)
W(5) $\cdot \cdots$ Sb	3.572(4)	W(11) \cdots. $\mathrm{W}(13)$	3.342 (4)	$\mathrm{W}(14) \cdots \mathrm{Eu}(2)$	3.779(4)	$\mathrm{O}(49) \cdots \mathrm{O}(50)$	2.94(6)
		$\mathrm{W}(11) \cdots \mathrm{W}(14)$	$3.334(4)$			$\mathrm{O}(51) \cdots \mathrm{O}(52)$	2.21(6)
$\mathrm{Eu}(1) \cdots \mathrm{Cb}$	4.161(5)	$\mathrm{W}(12) \cdots \mathrm{W}(13)$	$3.269(4)$	$\mathrm{Eu}(2) \cdots \mathrm{O}(51)$	4.21(4)	$\mathrm{O}(52) \cdots \mathrm{O}\left(52^{\prime}\right)$	2.08(7)
$\mathrm{Eu}(2) \cdots \mathrm{Cb}$	4.188(5)	W(12) \cdots. $\mathrm{W}(14)$	4.643(4)				
$\mathrm{Eu}(1) \cdots \mathrm{Cu}(2)$	5.067(4)	$\mathrm{W}(13) \cdots \mathrm{W}\left(13^{\prime}\right)$	4.609(3)				
$\mathrm{Eu}(1) \cdots \mathrm{Eu}\left(1^{\prime}\right)$	5.015(5)	$\mathrm{W}(13) \cdots \mathrm{W}(14)$	3.274(4)				

Symmetry codes: $\mathrm{I} \frac{1}{2}-x, \frac{1}{2}-y,-z ; \mathrm{II} \frac{1}{2}-x, \frac{1}{2}-y, 1-z ;$ III $1-x, y, 1-z ; \mathrm{IV}-\frac{1}{2}+x, \frac{1}{2}-y, z ; \mathrm{V} x,-y, z ; \mathrm{VI} \frac{1}{2}+x, \frac{1}{2}-y, z ; \mathrm{VII} 1-x, y,-z$; VIII $-x, y,-z$; IX $x, 1-y, z$; X $1-x,-y, 1-z$.
1.m.c.t. level shows exponential behaviour and $\tau_{\text {c.t. }}=1.1 \pm 0.2$ ms is almost temperature-independent. The value is shorter than for $\mathrm{Na}_{9}\left[\mathrm{Eu}\left(\mathrm{W}_{5} \mathrm{O}_{18}\right)_{2}\right](3.3 \mathrm{~ms})$ and $\mathrm{K}_{13}\left[\mathrm{Eu}\left(\mathrm{SiW}_{11} \mathrm{O}_{39}\right)_{2}\right]$ $(2.4 \mathrm{~ms})$. The quantum efficiency ($\varphi_{\text {c.t. }}$) of the luminescence under $\mathrm{O} \rightarrow \mathrm{W}$ 1.m.c.t. excitation at 300 nm is 0.25 at 300 K and increases with decreasing temperature (0.51 and 0.55 at 77 and 4.2 K , respectively). Table 6 lists $\tau_{\text {c.t. }}$ and $\varphi_{\text {c.t. }}$ for the three complexes.

Discussion

Figure 7 shows a schematic representation of the EuO_{8} site of local C_{s} symmetry. The average Eu-O bond distances are 2.52 , 2.37, and $2.46 \AA$ for $\mathrm{SbW}_{9} \mathrm{O}_{33}, \mathrm{~W}_{5} \mathrm{O}_{18}$, and aqua oxygen atoms, respectively. Since $O(44) \cdots O(45), O(45) \cdots O(46)$, $\mathrm{O}(46) \cdots \mathrm{O}(47), \quad \mathrm{O}(47) \cdots \mathrm{O}(44), \quad \mathrm{O}(48) \cdots \mathrm{O}(49)$, and $\mathrm{O}(49) \cdots \mathrm{O}(50)$ are 2.92(4), 3.00(5), 3.07(5), 2.89(5), 2.98(5), and 2.94(6) \AA respectively, four oxygen atoms belonging to a $\mathrm{W}_{5} \mathrm{O}_{18}$

Table 4. Sum of metal-oxygen bond strengths about a given atom*

$\mathrm{W}(1)$	$6.0(7)$	$\mathrm{O}(1)$	$1.5(2)$	$\mathrm{O}(18)$	$1.8(4)$	$\mathrm{O}(35)$	$1.7(2)$
$\mathrm{W}(2)$	$6.1(7)$	$\mathrm{O}(2)$	$1.7(2)$	$\mathrm{O}(19)$	$1.8(3)$	$\mathrm{O}(36)$	$1.8(3)$
$\mathrm{W}(3)$	$6.0(7)$	$\mathrm{O}(3)$	$1.8(2)$	$\mathrm{O}(20)$	$1.8(2)$	$\mathrm{O}(37)$	$1.7(2)$
$\mathrm{W}(4)$	$6.8(8)$	$\mathrm{O}(4)$	$2.2(2)$	$\mathrm{O}(21)$	$1.7(2)$	$\mathrm{O}(38)$	$1.9(3)$
$\mathrm{W}(5)$	$6.7(7)$	$\mathrm{O}(5)$	$1.7(2)$	$\mathrm{O}(22)$	$1.8(2)$	$\mathrm{O}(39)$	$1.8(2)$
$\mathrm{W}(6)$	$5.8(8)$	$\mathrm{O}(6)$	$1.5(2)$	$\mathrm{O}(23)$	$1.6(2)$	$\mathrm{O}(40)$	$1.4(3)$
$\mathrm{W}(7)$	$6.0(5)$	$\mathrm{O}(7)$	$2.1(3)$	$\mathrm{O}(24)$	$1.8(2)$	$\mathrm{O}(41)$	$1.7(2)$
$\mathrm{W}(8)$	$5.8(8)$	$\mathrm{O}(8)$	$1.7(3)$	$\mathrm{O}(25)$	$1.9(3)$	$\mathrm{O}(42)$	$2.7(4)$
$\mathrm{W}(9)$	$5.9(6)$	$\mathrm{O}(9)$	$1.8(2)$	$\mathrm{O}(26)$	$1.5(2)$	$\mathrm{O}(43)$	$2.1(3)$
$\mathrm{W}(10)$	$5.9(7)$	$\mathrm{O}(10)$	$1.7(3)$	$\mathrm{O}(27)$	$1.7(2)$	$\mathrm{O}(44)$	$1.7(2)$
$\mathrm{W}(11)$	$6.8(12)$	$\mathrm{O}(11)$	$2.3(5)$	$\mathrm{O}(28)$	$2.0(2)$	$\mathrm{O}(45)$	$1.8(2)$
$\mathrm{W}(12)$	$6.9(10)$	$\mathrm{O}(12)$	$2.3(5)$	$\mathrm{O}(29)$	$1.7(2)$	$\mathrm{O}(46)$	$1.8(3)$
$\mathrm{W}(13)$	$5.5(7)$	$\mathrm{O}(13)$	$1.9(3)$	$\mathrm{O}(30)$	$1.8(3)$	$\mathrm{O}(47)$	$1.7(2)$
$\mathrm{W}(14)$	$6.5(10)$	$\mathrm{O}(14)$	$1.5(2)$	$\mathrm{O}(31)$	$1.8(2)$	$\mathrm{O}(48)$	$1.9(3)$
$\mathrm{Eu}(1)$	$2.9(3)$	$\mathrm{O}(15)$	$1.9(2)$	$\mathrm{O}(32)$	$1.7(3)$	$\mathrm{O}(49)$	$1.6(1)$
$\mathrm{Eu}(2)$	$3.3(3)$	$\mathrm{O}(16)$	$1.8(2)$	$\mathrm{O}(33)$	$1.7(2)$	$\mathrm{O}(50)$	$2.0(4)$
Sb	$2.4(2)$	$\mathrm{O}(17)$	$1.8(2)$	$\mathrm{O}(34)$	$1.6(1)$	$\mathrm{O}(51)$	$0.56(6)$
						$\mathrm{O}(52)$	$0.52(3)$

* The standard errors given in parentheses refer to the last decimal place given.

Figure 2. Structure of half a molecule of $\mathrm{K}_{15} \mathrm{H}_{3}\left[\mathrm{Eu}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\left(\mathrm{SbW}_{9} \mathrm{O}_{33}\right)\right.$ $\left.\left(\mathrm{W}_{5} \mathrm{O}_{18}\right)_{3}\right] \cdot 25 \cdot 5 \mathrm{H}_{2} \mathrm{O}$, viewed in projection along the a axis
ligand at the EuO_{8} site lie approximately at the positions of a square plane. On the other hand, since $O(41) \cdots O(42)$, $\mathrm{O}(42) \cdots \mathrm{O}(52), \mathrm{O}(52) \cdots \mathrm{O}(51), \mathrm{O}(51) \cdots \mathrm{O}(41), \mathrm{O}(43) \cdots$ $\mathrm{O}(52), \mathrm{O}(52) \cdots \mathrm{O}\left(52^{\prime}\right)$, and $\mathrm{O}(43) \cdots \mathrm{O}\left(43^{\prime}\right)$ are $2.71(5)$, $3.22(5), 2.21(6), 3.00(5), 3.01(5), 2.08(7)$, and $2.82(5) \AA$ respec-

Figure 3. Diffuse reflection spectrum of complex (1) at 300 K

Figure 4. Emission spectrum of complex (1) at 300 K under low resolution. The positions of ${ }^{5} D_{0} \longrightarrow{ }^{7} F_{J}(J=0-4)$ emission lines under high resolution are indicated in frequency units

Table 5. Relative intensities of the ${ }^{5} D_{0} \longrightarrow{ }^{7} F_{J}$ emissions of Eu^{3+} in polyoxotungstates at $300 \mathrm{~K}^{*}$

Terminal level	(1)	$\mathrm{Na}_{9}\left[\mathrm{Eu}\left(\mathrm{W}_{5} \mathrm{O}_{18}\right)_{2}\right]$	$\mathrm{K}_{13}\left[\mathrm{Eu}\left(\mathrm{SiW}_{11} \mathrm{O}_{3}\right)_{2}\right]$
${ }^{7} F_{0}$	5	≈ 0	2
${ }^{7} F_{1}$	16	61	39
${ }^{7} F_{2}$	66	26	43
${ }^{7} F_{3}$	3	3	4
${ }^{7} F_{4}$	11	10	13

[^1]

Figure 5. Excitation spectra of complex (1) at $300(a), 77(b)$, and 4.2 K (c) under low resolution. Analyzing wavelength $613.1 \mathrm{~nm}\left({ }^{5} D_{0} \longrightarrow{ }^{7} F_{2}\right.$ transition)
tively, each two oxygen atoms belonging to $\mathrm{SbW}_{9} \mathrm{O}_{33}$ and aqua ligands deviate significantly from a square-planar arrangement. The angles $\operatorname{Eu}(1) \cdots \operatorname{Eu}(2) \cdots \operatorname{Eu}\left(1^{\prime}\right), \quad \operatorname{Eu}(2) \cdots$ $\mathrm{Eu}(1) \cdots \mathrm{Eu}\left(1^{\prime}\right), \mathrm{O}(52) \cdots \mathrm{O}(51) \cdots \mathrm{O}\left(52^{\prime}\right)$, and $\mathrm{O}(51) \cdots$ $O(52) \cdots O\left(52^{\prime}\right)$ are $59,60,56$, and 62°, respectively. The sum of the six $\mathrm{O}-\mathrm{Eu}-\mathrm{O}$ and $\mathrm{Eu}-\mathrm{O}-\mathrm{Eu}$ angles in the $\mathrm{Eu}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$ core is 630° and the dihedral angle between the two planes $\mathrm{Eu}(1) \mathrm{Eu}(2) \mathrm{Eu}\left(1^{\prime}\right)$ and $\mathrm{O}(52) \mathrm{O}\left(52^{\prime}\right) \mathrm{O}(51)$ is 3.5°. The deviation from a planar arrangement for Eu and aqua oxygen atoms arises from distortion due to the co-ordination of the non-equivalent ligands $\mathrm{W}_{5} \mathrm{O}_{18}, \mathrm{SbW}_{9} \mathrm{O}_{33}$, and $\mathrm{H}_{2} \mathrm{O}$. The average $\mathrm{O} \cdots \mathrm{O}$ distance between the pair of aqua O atoms now bridged by a Eu atom and the average $\mathrm{Eu} \ldots \mathrm{Eu}$ distance is 2.17 and $5.05 \AA$, respectively. These distances are significantly different from corresponding average $\mathrm{O} \ldots \mathrm{O}$ $(3.05 \AA)$ and $\mathrm{Zr} \cdots \mathrm{Zr} \quad(4.13 \AA)$ distances in $\left[\mathrm{Zr}_{3}(\mathrm{OH})_{3}\left(\mathrm{SiW}_{9} \mathrm{O}_{34}\right)_{2}\right]^{11-}$ where the Zr atoms are linked in the equatorial plane via hydroxo oxygen atoms and the overall co-ordination geometry is close to trigonal prismatic, the local three-fold axis of the ZrO_{6} group lying in the equatorial plane. ${ }^{40}$
The temperature effect on the intramolecular energy transfer from the excited level of the $\mathrm{O} \rightarrow \mathrm{W}$ 1.m.c.t. for the ligands to the emitting ${ }^{5} D_{0}$ level of Eu^{3+} depends strongly on the structure of the ligands (Table 6): $\varphi_{\text {c.t. }}$ for $\mathrm{K}_{13}\left[\mathrm{Eu}\left(\mathrm{SiW}_{11} \mathrm{O}_{39}\right)_{2}\right]$ at 295 K drops by a factor larger than 10^{3} compared with that at 77 K , whereas complex (1) and $\mathrm{Na}_{9}\left[\mathrm{Eu}\left(\mathrm{W}_{5} \mathrm{O}_{18}\right)_{2}\right]$ give moderate values of $\varphi_{\text {c.t }}$ with a smaller effect of temperature. It can be recalled that the thermal activation energy for electron hopping in the corner-sharing WO_{6} octahedral lattice is much less than in the edge-sharing WO_{6} lattice, 0.004 and 0.06 eV having been reported for $\left[\mathrm{BW}_{12} \mathrm{O}_{40}\right]^{6-}$ and $\left[\mathrm{W}_{10} \mathrm{O}_{32}\right]^{5-}$, respectively. ${ }^{7,11}$

Figure 6. High-resolution excitation spectra of complex (1) at 300 K . Analyzing wavelength 613.1 nm . Vertical scales are not directly comparable

Figure 7. Bond distances (\AA) and angles $\left(^{\circ}\right)$ in the $E u_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$ core of complex (1)

Table 6. The ${ }^{5} D_{0}$ emission decay $\left(\tau_{c .1}\right)$ and emission quantum yield $\left(\varphi_{\text {c.t. }}\right)$ upon excitation of the $\mathrm{O} \rightarrow$ W 1.m.c.t. band

	$\tau_{\text {c.t. }} / \mathrm{ms}$			$\underbrace{}_{\text {c.t. }}$			$10^{-2} \varphi_{\text {c.t. }} / \tau^{\text {c.t. } /} / \mathrm{s}^{-1}$		
Polyoxotungstate powder	300	77	4.2 K	300	77	4.2 K	300	77	4.2 K
(1)	1.1 ± 0.2	1.1 ± 0.2	1.1	0.25	0.51	0.55	2.3	4.6	5.0
$\mathrm{Na} 9\left[\mathrm{Eu}\left(\mathrm{W}_{5} \mathrm{O}_{18}\right)_{2}\right]$	2.8 *	3.3 *	-	0.80*	0.9*	-	2.9*	2.7	-
$\mathrm{K}_{13}\left[\mathrm{Eu}\left(\mathrm{SiW}_{11} \mathrm{O}_{39}\right)_{2}\right]$	2.4*	2.7 *	-	$<10^{-3}$	1*	-	$<4 \times 10^{-3}$	3.7	-

* Ref. 16. Values for room temperature are at 295 K.

Thus, the hopping delocalization of a d^{1} electron must occur more predominantly in $\mathrm{SbW}_{9} \mathrm{O}_{33}$ or $\left[\mathrm{XW}_{11} \mathrm{O}_{39}\right]^{n-}$ ligands involving the corner-sharing WO_{6} octahedral configuration with $\mathrm{W}-\mathrm{O}-\mathrm{W}$ bond angles of about 150° than in the $\mathrm{W}_{5} \mathrm{O}_{18}$ ligand with five edge-shared WO_{6} octahedra and $\mathrm{W}-\mathrm{O}-\mathrm{W}$ bond angles of about 100°. Therefore, it is reasonable to assume that the electron delocalization among WO_{6} octahedra is the deactivation channel of the $\mathrm{O} \rightarrow \mathrm{W}$ l.m.c.t. energy, which would reduce the communication between $\mathrm{O} \rightarrow \mathrm{W}$ l.m.c.t. levels and excited Eu^{3+} levels drastically. In other words, a large degree of the localization of the d^{1} electron induced by the $\mathrm{O} \rightarrow \mathrm{W}$ l.m.c.t. band photoexcitation at a WO_{6} octahedron must be readily followed by energy transfer from the excited level of the $\mathrm{O} \rightarrow \mathrm{W}$ 1.m.c.t. state to Eu^{3+}. The temperature effect on $\varphi_{\text {c.t. }}$ (Table 6) can then be explained by the Boltzmann factor for the electron hopping. As shown in Table 6, complex (1) gives an increase in $\varphi_{\text {c.t. }} / \tau_{\text {c.t. }}$ with decreasing temperature $\left(2.3 \times 10^{2}, 4.6 \times 10^{2}\right.$, and $5.0 \times 10^{2} \mathrm{~s}^{-1}$ at 300,77 , and 4.2 K respectively), whereas with $\mathrm{Na}_{9}\left[\mathrm{Eu}\left(\mathrm{W}_{5} \mathrm{O}_{18}\right)_{2}\right]$ there is little effect of temperature on $\varphi_{\text {c.t. }} / \tau_{\text {c.t. }}\left(2.9 \times 10^{2}\right.$ and $2.7 \times 10^{2} \mathrm{~s}^{-1}$ at 295 and 77 K , respectively). This indicates that energy transfer from the $\mathrm{W}_{5} \mathrm{O}_{18}$ ligand in (1) occurs exclusively at 300 K and that the additional energy transfer from the $\mathrm{SbW}_{9} \mathrm{O}_{33}$ ligand contributes to the emission at low temperature. The average volume of a molecule of complex (1) (11723/4 = $2930.8 \AA^{3}$) is approximately two times larger than that ($6214 / 4=1553 \AA^{3}$) of a molecule of $\mathrm{Na}_{9}\left[\mathrm{Eu}\left(\mathrm{W}_{5} \mathrm{O}_{18}\right)_{2}\right]$, if the crystal structure of the latter is assumed to be isomorphous with that of $\mathrm{Na}_{6} \mathrm{H}_{2}-$ $\left[\mathrm{CeW}_{10} \mathrm{O}_{36}\right] \cdot 30 \mathrm{H}_{2} \mathrm{O}$ (space group $C 2 / c, Z=4, U=6214$ \AA^{3}). ${ }^{25}$ Therefore, the light intensity absorbed by the unit polyoxotungstate moiety in the crystals of both (1) (containing four polyoxotungstate ligands) and $\mathrm{Na}_{9}\left[\mathrm{Eu}\left(\mathrm{W}_{5} \mathrm{O}_{18}\right)_{2}\right]$ (containing two polyoxotungstate ligands) would be nearly equal, but the concentration of Eu^{3+} in (1) would be 1.5 times higher than for $\mathrm{Na},\left[\mathrm{Eu}\left(\mathrm{W}_{5} \mathrm{O}_{18}\right)_{2}\right]$. Since $\varphi_{\text {c.t. }}=0.80$ at 295 K for the latter is based on the energy transfer from the two $\mathrm{W}_{5} \mathrm{O}_{18}$ ligands, ${ }^{13}$ the quantum yield based on the energy transfer from the $\mathrm{W}_{5} \mathrm{O}_{18}$ ligands of (1) may be $(1 / 2) \times 0.80 \times 1.5=0.60$. However, $\varphi_{\text {c.t. }}=0.25$ at 300 K (Table 6) is not necessarily explained by the negligible energy transfer from the $\mathrm{SbW}_{9} \mathrm{O}_{33}$ ligand. In conjunction with the fact that $\tau_{\text {c.t. }}$ for complex (1) is appreciably shorter than for both $\mathrm{Na} 9\left[\mathrm{Eu}\left(\mathrm{W}_{5} \mathrm{O}_{18}\right)_{2}\right]$ and $\mathrm{K}_{13}[\mathrm{Eu}-$ $\left(\mathrm{SiW}_{11} \mathrm{O}_{39}\right)_{2}$] which have no aqua ligand in the first coordination sphere of $E u^{3+},{ }^{14,16}$ an additional reason for the smaller $\varphi_{\text {c.t. }}$ for (1) is radiationless deactivation of the ${ }^{5} D_{0}$ level by two aqua ligands, probably by coupling with the highfrequency OH oscillators. ${ }^{38}$ From the radiative transition rate at Eu^{3+}, which is close to $5.0 \times 10^{2} \mathrm{~s}^{-1}\left(=\varphi_{\text {c.t. }} / \tau_{\text {c.t. }}\right.$ at 4.2 K$)$, the rate of non-radiative decay by the aqua ligands could be estimated as $4 \times 10^{2} \mathrm{~s}^{-1}\left(=1 / \tau_{\text {c.t. }}-5.0 \times 10^{2}\right)$, if the rate of other radiationless decay from the ${ }^{5} D_{0}$ level of (1) is almost the same $\left(<1 \times 10^{2} \mathrm{~s}^{-1}\right)$ as for $\mathrm{Na}_{9}\left[\mathrm{Eu}\left(\mathrm{W}_{5} \mathrm{O}_{18}\right)_{2}\right]$. As suggested by
 efficient energy transfer from the $\mathrm{O} \rightarrow \mathrm{W}$ 1.m.c.t. excited state for the large ligand of the lacunary Keggin polyoxotungstate implies that the energy transfer from the $\mathrm{O} \rightarrow \mathrm{W}$ l.m.c.t. excited
state in the polyoxotungstate lattice to Eu^{3+} occurs at least over $6.9 \AA$, which corresponds to the distance of atoms $W(1)$ and $\mathrm{W}(2)$ in the $\mathrm{SbW}_{9} \mathrm{O}_{33}$ ligand from the nearest Eu atom, $W(1) \cdots E u(1)(6.93 \AA)$ and $W(2) \cdots E u(1)(6.90 \AA)$. The lack of detectable emission from the ligands of complex (1) supports the conclusion that the radiative transition rate $\left(10^{5} \mathrm{~s}^{-1}\right)$ at the polyoxotungstate group is much lower than the transfer rate (at least $10^{7} \mathrm{~s}^{-1}$) to $\mathrm{Eu}^{3+} .{ }^{13}$

Acknowledgements

We are indebted to Professors Y. Ohashi and Y. Sasada for providing facilities for X-ray measurements and valuable advice. Thanks are also due to Professor T. Hirose and Mr. N. Akamatsu for providing facilities for high-resolution emission and excitation spectra measurements.

References

1 T. Yamase and M. Suga, J. Chem. Soc., Dalton Trans., 1989, 661.
2 T. Yamase, J. Chem. Soc., Dalton Trans., 1982, 1987.
3 T. Yamase, J. Chem. Soc., Dalton Trans., 1985, 2585.
4 T. Yamase, Polyhedron, 1986, 5, 79.
5 M. Isobe, F. Marumo, T. Yamase, and T. Ikawa, Acta Crystallogr., Sect. B, 1978, 34, 2728.
6 Y. Ohashi, K. Yanagi, Y. Sasada, and T. Yamase, Bull. Chem. Soc. Jpn., 1982, 55, 1254.
7 T. Yamase and R. Watanabe, J. Chem. Soc., Dalton Trans., 1986, 1669.
8 C. Sanchez, J. Livage, J. P. Launay, M. Fournier, and Y. Jeannin, J. Am. Chem. Soc., 1982, 104, 3194.

9 C. Sanchez, J. Livage, J. P. Launary, and M. Fournier, J. Am. Chem. Soc., 1983, 105, 6817.
10 T. Yamase, J. Chem. Soc., Dalton Trans., 1987, 1597.
11 T. Yamase and T. Usami, J. Chem. Soc., Dalton Trans., 1988, 183.
12 M. J. Stillman and A. J. Thompson, J. Chem. Soc., Dalton Trans., 1976, 1138.
13 G. Blasse, G. J. Dirksen, and F. Zonnevijlle, J. Inorg. Nucl. Chem., 1981, 43, 2847; Chem. Phys. Lett., 1981, 83, 449.
14 R. Ballardini, Q. G. Mulazzani, M. Venturi, F. Bolletta, and V. Balzani, Inorg. Chem., 1984, 23, 300.

15 J. R. Darwent, C. D. Fint, and P. J. O'Grady, Chem. Phys. Lett., 1986, 127, 547.
16 R. Ballardini, E. Chiorboli, and V. Balzani, Inorg. Chim. Acta, 1984, 95, 323.
17 R. D. Peacock and T. J. R. Weakley, J. Chem. Soc. A, 1971, 1836.
18 S. Ohba, 'Manual for CHAGE System,' ed. T. Itoh, Computer Center of Tokyo University, Tokyo, 1986, p. 22.
19 P. Main, S. E. Hull, L. Lessinger, G. Germain, J. P. Declercq, and M. M. Woolfson, MULTAN 78, A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray, Diffraction Data, University of York, York, 1978.
20 'International Tables for X-Ray Crystallography,' Kynoch Press, Birmingham, 1974, vol. 4, pp. 99 and 149; D. T. Cromer and D. Liberman, J. Chem. Phys.,1970, 53, 1891.
21 G. M. Sheldrick, SHELX 76, Program for Crystal Structure Determination, University of Cambridge, 1976.
22 Y. Haas and G. Stein, J. Phys. Chem., 1971, 75, 3668.
23 G. Blasse, G. J. Dirksen, and F. Zonnevijlle, Chem. Phys. Lett., 1981, 83, 449.

24 R. Constant, J-M. Fruchard, G. Hervé, and A. Tézé, C.R. Acad. Sci., Ser. C, 1974, 278, 199.
25 J. Iball, J. N. Low, and T. J. R. Weakley, J. Chem. Soc., Dalton Trans., 1974, 2021.
26 Y. Sasaki, T. Yamase, Y. Ohashi, and Y. Sasada, Bull. Chem. Soc. Jpn., 1987, 60, 4285; J. Fuchs, H. Hartl, W. Schiller, and U. Gerlach, Acta Crystallogr., Sect. B, 1976, 34, 740.
27 Y. Jeannin and J. Martin-Frère, J. Am. Chem. Soc., 1981, 103, 1664; Inorg. Chem., 1984, 23, 3394.
28 T. J. R. Weakley, Inorg. Chim. Acta, 1984, 87, 13.
29 F. Robert, M. Leyrie, and G. Hervé, Acta Crystallogr., Sect. B, 1982, 38, 358.
30 G. Hervé and A. Tézé, Inorg. Chem., 1977, 16, 2115 ; R. G. Finke, B. Rapko, R. J. Saxton, and P. J. Domaille, J. Am. Chem. Soc., 1986, 108, 2947; R. G. Finke, M. W. Droege, and P. J. Domaille, Inorg. Chem., 1987, 26, 3886.
31 C. Tourné, A. Revel, G. Tourné, and M. C. Vendrell, C.R. Acad. Sci., Ser. C, 1973, 277, 643.
32 H. T. Evans, C. M. Tourné, G. F. Tourné, and T. J. R. Weakley, J. Chem. Soc., Dalton Trans., 1986, 2699.

33 I. D. Brown and K. K. Wu, Acta Crystallogr., Sect. B, 1976, 32, 1957. 34 D. Altermatt and I. D. Brown, Acta Crystallogr., Sect. B, 1985, 41, 240; I. D. Brown and D. Altermatt, ibid., p. 144.
35 I. D. Brown, 'Structure and Bonding in Crystals,' vol. 2, eds. M. D. Keeffe and A. Navrotsky, Academic Press, New York, 1981, p. 1.
36 J. Emsley, Chem. Soc. Rev., 1980, 9, 91.
37 J. O. Lundgren and I. Olovsson, J. Chem. Phys., 1968, 49, 1063; J. M. Williams and S. W. Peterson, J. Am. Chem. Soc., 1969, 91, 776.

38 G. Blasse, 'Handbook on the Physics and Chemistry of Rare Earths,' vol. 4, eds. K. A. Gschneidner, jun., and L. Eyring, North-Holland, Amsterdam, 1979, p. 209; W. D. Horrocks, jun., and D. K. Sudnick, Acc. Chem. Res., 1981, 14, 384; V. Balzani, N. Sabbatini, and F. Scandola, Chem. Rev., 1986, 86, 319.
39 Z. Mazurak, G. Blasse, and J. Liebertz, J. Solid State Chem., 1987, 68, 181.

40 R. G. Finke, B. Rapko, and T. J. R. Weakley, Inorg. Chem., 1989, 28, 1573.

Received 25th July 1989; Paper 9/03126J

[^0]: \dagger Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1990, Issue 1, pp. xix-xxii.
 Non-S.I. unit employed: $\mathrm{eV} \approx 1.60 \times 10^{-19} \mathrm{~J}$.

[^1]: * The intensity is calculated with respect to the total intensity of the ${ }^{5} D_{0} \longrightarrow{ }^{7} F_{J}(J=0-4)$ transitions.

