Reactions of Co-ordinated Ligands. Part 48. ${ }^{1}$ Reactivity Studies of the Octatrienediylidenedimolybdenum Complexes [$\mathrm{Mo}_{2}\left(\mu-\mathrm{C}_{8} \mathrm{Me}_{8}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$] and $\left[\mathrm{Mo}_{2}\left(\mu-\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{Bu}_{4}^{\mathrm{t}}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$. Crystal Structures of $\left[\mathrm{Mo}_{2}\left(\mu-\mathrm{C}_{8} \mathrm{Me}_{7} \mathrm{CH}_{2}\right)\right.$ -$\left.\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]\left[\mathrm{CF}_{3} \mathrm{SO}_{3}\right],\left[\mathrm{Mo}_{2}\left(\mu-\mathrm{C}_{8} \mathrm{Me}_{8}\right)(\mu-\mathrm{Cl})\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]\left[\mathrm{SbCl}_{4}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$, and $\left[\mathrm{Mo}_{2}\left(\mu-\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{Bu}_{4}^{\mathrm{t}}\right)\left(\mu_{\text {мo.c }}-\mathrm{H}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]\left[\mathrm{BPh}_{4}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ §

Simon G. Bott, Lee Brammer, Neil G. Connelly, Michael Green," \dagger A. Guy Orpen, Jill F. Paxton, and Colin J. Schaverien
Department of Inorganic Chemistry. The University, Bristol BS8 1 TS
Stuart Bristow and Nicholas C. Norman \ddagger
Department of Chemistry, The University, Manchester M13 9PL

Abstract

Double protonation of $\left[\mathrm{Mo}_{2}\left(\mu-\mathrm{C}_{8} \mathrm{Me}_{8}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$, (1), with excess $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ or hydride abstraction with $\left[\mathrm{CPh}_{3}\right]\left[\mathrm{BF}_{4}\right]$ affords the cationic complex $\left[\mathrm{Mo}_{2}\left(\mu-\mathrm{C}_{8} \mathrm{Me}_{7} \mathrm{CH}_{2}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]^{+}$, (4), which has been characterised as the triflate $\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)$ salt by X-ray crystallography. The structure of (4) is similar to that of (1) in having a C_{8} chain bridging a Mo-Mo bond, the chain beginning and ending with σ bonds to $\mathrm{Mo}(2)$. Carbons $\mathrm{C}(1)-\mathrm{C}(3)$ and $\mathrm{C}(6)-\mathrm{C}(8)$ each form an η^{3}-allylic interaction with $\mathrm{Mo}(1)$ and $\mathrm{C}(4), \mathrm{C}(5)$, and $\mathrm{C}(9)$ bond in a similar manner to $\mathrm{Mo}(2)$ [in contrast to an η^{2}-alkenetype interaction involving $\mathrm{C}(4)$ and $\mathrm{C}(5)$ found in (1)]. Mechanistic and electrochemical studies pertinent to the formation of (4) are discussed. Compound (4) reacts with the nucleophiles $\mathrm{K}\left[\mathrm{BHBu}_{3}{ }_{3}\right], \mathrm{K}\left[\mathrm{BDBu}_{3}{ }_{3}\right], \mathrm{Li}\left[\mathrm{CuMe}_{2}\right], \mathrm{Li}\left[\mathrm{CuPh}_{2}\right]$, and $\mathrm{Na}[\mathrm{SMe}]$ affording the neutral complexes [$\left.\mathrm{Mo}_{2}\left(\mu-\mathrm{C}_{8} \mathrm{Me}_{7} \mathrm{CH}_{2} \mathrm{R}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right][\mathrm{R}=\mathrm{H},(1)$; D, (1d); Me, (5); Ph, (6); or SMe, (7)] thereby enabling a modification of the δ-ring substituent in the original complex (1). Subsequent hydride abstraction from (5) results in the cation $\left[\mathrm{Mo}_{2}\left(\mu-\mathrm{C}_{8} \mathrm{Me}_{6} \mathrm{EtCH}_{2}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]^{+}$, (8), analogous to (4), which on treatment with $\mathrm{Li}\left[\mathrm{CuMe} \mathrm{e}^{2}\right]$ affords the diethyl derivative $\left[\mathrm{Mo}_{2}\left(\mu-\mathrm{C}_{8} \mathrm{Me}_{6} \mathrm{Et}_{2}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$, (9). The reaction of (1) with [NPr_{4}] [SbCl_{6}] affords the chloro cationic species $\left[\mathrm{Mo}_{2}\left(\mu-\mathrm{C}_{8} \mathrm{Me}_{8}\right)\right.$ -$\left.(\mu-\mathrm{CI})\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]^{+}$, (11), which was characterised by X-ray crystallography. Its structure is very similar to that of (1) except in containing a chlorine bridging the Mo-Mo vector. Protonation of the unsymmetrically substituted complex $\left[\mathrm{Mo}_{2}\left(\mu-\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{Bu}_{4}^{\mathrm{t}}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$, (3), has also been studied and shown to afford a cationic complex containing an agostic CH interaction $\left[\mathrm{Mo}_{2}(\mu-\right.$ $\left.\left.\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{Bu}_{4}^{+}\right)\left(\mu_{\text {mo. }}-\mathrm{H}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]^{+}$, (12). Compound (12) was characterised by X-ray crystallography which reveals the site of protonation on a δ-ring carbon in contrast to the α-protonation observed in $\left[\mathrm{Mo}_{2}\left(\mu-\mathrm{C}_{8} \mathrm{Me}_{8}\right)\left(\mu_{\text {mo. }}-\mathrm{H}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]^{+}$, (2). Proton and ${ }^{13} \mathrm{C}$ n.m.r. studies indicate, however, that the proton in (12) is fluxional between the α and δ sites analogous to that seen in (2). Details of the spectroscopic studies are presented and discussed.

Alkyne linkage reactions at transition metal centres continue to attract the attention of synthetic chemists and have resulted in a wide variety of complexes. Of particular interest herein are those compounds resulting from the coupling of four alkynes, which contain a C_{8} chain bonded to two metal centres. Our own work in this area derived from the observation that reduction of the bis(alkyne) cation $\left[\mathrm{Mo}(\mathrm{NCMe})\left(\eta^{2}-\mathrm{RC}_{2} \mathrm{R}^{\prime}\right)_{2}-\right.$ $\left.\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]^{+}$resulted in octatrienediylidenedimolybdenum complexes $\left[\mathrm{Mo}_{2}\left\{\mu-\left(\sigma, \eta^{3}: \eta^{2}: \eta^{3}, \sigma-\mathrm{C}_{8} \mathrm{R}_{4} \mathrm{R}_{4}\right)\right\}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right](\mathrm{R}=$ $\left.\mathbf{R}^{\prime}=\mathrm{Me} ; \mathbf{R}=H, \mathbf{R}^{\prime}=\mathrm{Bu}^{\prime}\right)^{-4}$ and for $\mathbf{R}=H, \mathbf{R}^{\prime}=\mathrm{Bu}^{\mathbf{1}}$, a branched chain isomer $\left[\mathrm{Mo}_{2}\left\{\mu-\left(\sigma, \eta^{3}: \eta^{3}, \sigma-\mathrm{CH}=\mathrm{CHBu}^{\prime} \mathrm{C}_{6}-\right.\right.\right.$ $\left.\left.\left.\mathrm{H}_{2} \mathrm{Bu}_{3}{ }_{3}\right)\right\}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]^{4}$ Similar octatrienediylidene complexes have also been characterised by Stone and Knox and coworkers ${ }^{5-8}$ from reactions of alkynes with $\left[\mathrm{Mo}_{2}(\mathrm{CO})_{4}(\eta-\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right](\mathrm{Mo}=\mathrm{Mo}) ;\left[\mathrm{Mo}_{2}\left(\mu-\mathrm{C}_{8} \mathrm{R}_{4} \mathrm{R}^{\prime} \mathrm{R}^{\prime \prime}{ }_{2}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right] \quad(\mathrm{R}=$ $\mathbf{R}^{\prime}=\mathbf{R}^{\prime \prime}=\mathrm{CO}_{2} \mathrm{Me} ; \quad \mathrm{R}=\mathrm{R}^{\prime}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{R}^{\prime \prime}=\mathrm{H} ; \mathrm{R}=\mathrm{Ph}$, $\mathrm{R}^{\prime}=\mathrm{H}, \mathrm{R}^{\prime \prime}=\mathrm{CO}_{2} \mathrm{Me}$) together with an isomeric C_{8} 'flyover' or dimetallacyclodecapentaene complex, $\left[\mathrm{Mo}_{2}\left\{\mu-\left[\sigma, \eta^{4}: \eta^{4}, \sigma-\right.\right.\right.$ $\left.\left.\left.\mathrm{C}_{8}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{8}\right]\right\}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right] .{ }^{6.7}$ The ditungsten complex $[\mathrm{W}\{\mu-$ $\left.\left.\mathrm{C}_{8}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{8}\right\}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$ has also been described. ${ }^{8}$ This latter type of complex has also been reported by Wilke and coworkers, ${ }^{9}$ viz. $\left[\mathrm{Cr}_{2}\left(\mu-\mathrm{C}_{8} \mathrm{H}_{8}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$, from the reaction of
[$\left.\mathrm{Cr}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$ with $\mathrm{Na}_{2}\left[\mathrm{C}_{8} \mathrm{H}_{8}\right]$, and more recently by Geiger and co-workers in $\left[\mathrm{Ru}_{2}\left(\mu-\mathrm{C}_{8} \mathrm{H}_{8}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]^{2+10}$ resulting from oxidation of a complex containing a bridging cyclooctatetraene (cot) ligand. Many examples of bridging cot compounds are known e.g. $\left[\mathrm{Rh}_{2}\left(\mu-\mathrm{C}_{8} \mathrm{H}_{8}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]^{2+11}$ and the relationship between the above-mentioned complexes, cyclo-octatetraene, and alkyne linkage has been discussed by Wilke. ${ }^{12}$ We note also that a dirhenium octatrienediylidene complex, $\left[\operatorname{Re}_{2}(\mathrm{CO})_{5}\left(\mu-\mathrm{C}_{8} \mathrm{Me}_{8}\right)\right]$, has been reported by Mays et al. ${ }^{13}$ though it has not been structurally characterised.

Despite the range of compounds described above and the various synthetic routes whereby they are formed, few reactivity studies have been reported. Our own studies on the protonation of $\left[\mathrm{Mo}_{2}\left(\mu-\mathrm{C}_{8} \mathrm{Me}_{8}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$, (1) resulting in $\left[\mathrm{Mo}_{2}\left(\mu-\mathrm{C}_{8} \mathrm{Me}_{8}\right)\left(\mu_{\mathrm{Mo}, \mathrm{c}}-\mathrm{H}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]^{+}$(2), which contains an

[^0]
(1)

(2)

(3)

(4)
'agostic' CH interaction, have been reported in detail. ${ }^{3}$ Herein we describe the further protonation of (2), together with other aspects of the reactivity of (1), and protonation studies of the unsymmetrical complex $\left[\mathrm{Mo}_{2}\left(\mu-\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{Bu}_{4}^{\mathrm{t}}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$ (3) some aspects of which have been the subject of a preliminary communication. ${ }^{14}$

Figure 1. A view of the molecular structure of complex (4) showing the atom numbering scheme. One cation is shown, the second crystallographically independent cation being similar. Hydrogen atoms are omitted for clarity

Results and Discussion

Protonation of (1) with $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ or $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ affords the monoprotonated complex (2), containing an 'agostic' CH interaction as mentioned in the Introduction and described in detail in ref. 3. It was observed, however, that whilst formation of (2) was immediate and quantitative, prolonged reaction with $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ resulted in a second complex as evidenced by ${ }^{1} \mathrm{H}$ n.m.r. spectroscopy. Reasoning that this additional product might result from further protonation of (2), a reaction with the stronger acid $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ was carried out. Treatment of (1) with an excess of $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ in dichloromethane caused an immediate reaction from which (2) could be isolated as its $\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$salt if work up occurred within $1-2 \mathrm{~h}$, but if the reaction was allowed to proceed for prolonged periods (overnight) a new product, (4), could be isolated as purple crystals. N.m.r. spectroscopy (Table 1) and chemical evidence indicated a structure for (4) in whch one methyl hydrogen had been abstracted from (1) (as hydride) but leaving the basic framework of (1) essentially intact. In order to characterise the nature of (4) fully, an X-ray diffraction study was carried out the results of which are presented in Figure 1 and Tables 2 and 3. The two crystallographically independent cations show the same stereochemistry, the overall structure being very similar to that found in (1). ${ }^{3}$ The Mo-Mo bond length [av. 2.654(1) \AA] is consistent with a bond order of two as required by electron-counting procedures. One hydrogen has indeed been abstracted from (1) from a δ-methyl group resulting in an allyl moiety attached to $\mathrm{Mo}(2)$ whose contact carbons are $C(4), C(5)$, and $C(9)$. This is illustrated schematically in the diagram.

An insight into the nature of the reaction by which complex (4) is formed from (1) was provided by electrochemical studies using cyclic voltammetry.* In $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as solvent, (1) undergoes a diffusion-controlled reversible one-electron oxidation ($E^{\bullet}=-0.02 \mathrm{~V}$) followed by a second irreversible one-electron process with $E_{\frac{1}{2}}{ }^{\circ \times x}=0.70 \mathrm{~V}$ (at a scan rate of $100 \mathrm{mV} \mathrm{s}{ }^{-1}$). Chemical oxidation of (1) with 2 equivalents of $[\mathrm{Fe}(\eta$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]\left[\mathrm{BF}_{4}\right]$ at $-78^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave instantaneously a red solution [presumably (1) ${ }^{\circ}$] which, on being allowed to warm to room temperature and on stirring for 12 h , afforded a purple solution from which (4) was isolated as a tetrafluoroborate salt in good yield by addition of diethyl ether. These observations, deriving from protonation and chemical and electrochemical oxidation, are presented in Scheme 1. We

[^1]Table 1. Proton and ${ }^{13} \mathrm{C}$ n.m.r. data for complexes (4)-(9), (11), and (12) ${ }^{a}$
(6) $\quad 7.6-6.8(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 5.14\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 3.75\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right)$,
(8) $\quad 5.64\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.57\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 2.84(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me})$,
(9) $\quad 5.03\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 3.79\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 2.43(\mathrm{q}, 4 \mathrm{H}$,

Compound

(4) ${ }^{b}$
(5)
(7) ${ }^{\text {c }}$
$(11)^{d}$
(12) ${ }^{b, e}$
${ }^{1} \mathrm{H}(\delta)$
5.71 (s, $5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}$), $4.60\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 2.89(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me})$, 2.69 (s, $3 \mathrm{H}, \mathrm{Me}$), 2.61 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), 2.39 (s, $3 \mathrm{H}, \mathrm{Me}$), 2.23 ($\mathrm{s}, 3$ $\mathrm{H}, \mathrm{Me}), 1.96(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 1.78\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 0.71(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{Me}), 0.07\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{2}\right)$ $5.07\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 3.80\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 2.42\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$, $\left.{ }^{3} J_{\mathrm{HH}}=7.4\right), 2.41(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 2.30(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 2.29(\mathrm{~s}, 3 \mathrm{H}$, Me), 2.26 (s, $3 \mathrm{H}, \mathrm{Me}$), 2.01 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), 1.87 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), 0.99 (s, $3 \mathrm{H}, \mathrm{Me}$), 0.74 (t, $3 \mathrm{H}, \mathrm{CH}_{3},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.4$) $3.18\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2},{ }^{2} J_{\mathrm{HH}}=15.6\right), 2.48(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 2.39(\mathrm{~s}, 3$ $\mathrm{H}, \mathrm{Me}), 2.30(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 2.05(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 1.88(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me})$, $1.80\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2},{ }^{2} J_{\mathrm{HH}}=15.6\right), 1.67(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 1.09(\mathrm{~s}, 3$ H, Me)
5.23 (s, $5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}$), 3.82 (s, $5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}$), $3.33\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$, ${ }^{2} J_{\mathrm{HH}}=11.4$), 2.44 (s, $3 \mathrm{H}, \mathrm{Me}$), 2.40 (s, $3 \mathrm{H}, \mathrm{Me}$), $2.29(\mathrm{~s}, 3 \mathrm{H}$, Me), 2.01 (s, $3 \mathrm{H}, \mathrm{Me}$), 1.81 (s, $6 \mathrm{H}, 2 \times \mathrm{Me}$), $1.55(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{Me}), 1.48\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=11.4\right), 1.01(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me})$ 2.67 (s, $3 \mathrm{H}, \mathrm{Me}$), 2.58 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$), 2.35 (s, $3 \mathrm{H}, \mathrm{Me}$), 2.20 (s, 3 $\mathrm{H}, \mathrm{Me}), 1.97\left[\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}(\mathrm{Et}),{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.6\right], 1.80(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{Me}), 1.75\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 0.08\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{2}\right)$ $\left.2 \times \mathrm{CH}_{2},{ }^{3} J_{\mathrm{HH}}=7.3\right), 2.37(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{Me}), 2.26(\mathrm{~s}, 6 \mathrm{H}$, $2 \times \mathrm{Me}$), $1.89(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{Me}), 0.77(\mathrm{t}, 6 \mathrm{H}, 2 \times \mathrm{Me}$ ${ }^{3} J_{\mathrm{HH}}=7.3$)
$5.16\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.93\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 2.43(\mathrm{~s}, 6 \mathrm{H}$, $2 \times \mathrm{Me}), 2.35(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{Me}), 2.07(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{Me}), 1.51$ $(\mathrm{s}, 6 \mathrm{H}, 2 \times \mathrm{Me})$
Ring protons: 7.45 [ddd, $1 \mathrm{H}, \mathrm{H}(6)], 7.15[\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}(2)], 4.89$ [dd, $1 \mathrm{H}, \mathrm{H}(7)], 2.29$ [s, $1 \mathrm{H}, \mathrm{H}(4)],-10.81$ [ddd, $1 \mathrm{H}, \mathrm{H}(5)$] Coupling constants: ${ }^{3} J[H(6) H(7)] 5.1,{ }^{3} J[H(7) H(5)] 3.8$, ${ }^{4} J[H(6) H(5)] \quad 3.0,{ }^{3} J[H(4) H(5)] 3.0,{ }^{4} J[H(6) H(4)] 3.0$, ${ }^{4} J[\mathrm{H}(2) \mathrm{H}(4)]$ unresolved $<1.0,5.73\left[\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}(\mathrm{~A})\right]$, $5.07\left[\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}(\mathrm{~B})\right], 1.35\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Bu}^{\prime}(\mathrm{A})\right], 1.31[\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{Bu}^{\prime}(\mathrm{B})\right], 1.28\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{Bu}^{1}(\mathrm{C})\right], 0.82\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{Bu}^{\mathrm{t}}(\mathrm{D})\right]$
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}(\delta)$
195.9, 183.0, 135.8, 116.2, 113.8, 98.8, 84.2, 70.7 (C_{8} ring carbons); 100.7, $96.7\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 59.4\left(\mathrm{CH}_{2}\right), 37.1,34.0,22.9$, $22.1,19.7,19.5,18.9$ (Me)
174.7, 173.9, 120.1, 119.7, 76.8, 71.7, 68.0, 67.8 (C_{8} ring carbons); 97.3, 91.4, ($\left.\mathrm{C}_{5} \mathrm{H}_{5}\right), 33.3,32.8,25.3,21.9,21.6,18.5$, 17.3, 12.7 (Me); $25.3\left(\mathrm{CH}_{2}\right)$
$175.6,174.3,122.0,120.2,74.3,71.7,69.5,68.2\left(\mathrm{C}_{8}\right.$ ring carbons); 143.4, (Ph , ipso C), 130.5-125.3 (CH of Ph), 98.4, 91.8, ($\mathrm{C}_{5} \mathrm{H}_{5}$), $44.6\left(\mathrm{CH}_{2}\right), 56.7,33.1,26.3,23.5,21.9,18.5$, 18.1 (Me)
175.0, 174.4, 121.8, 119.9, 70.9, 70.7, 68.9, $68.0\left(\mathrm{C}_{8}\right.$ ring carbons); $98.0,91.5\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 30.2\left(\mathrm{CH}_{2}\right), 46.7,33.1,32.8,21.8$, $18.5,17.6,16.4,14.3$ (Me)
196.1, 183.4, 136.2, 116.9, 112.7, 107.6, 96.9, 71.5 (C_{8} rìng carbons); 100.4, $96.8\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 59.6\left(\mathrm{CH}_{2}\right), 37.0,34.2,22.1$, 19.6, 18.9, 13.8 (Me); $25.8\left(\mathrm{CH}_{2}, \mathrm{Et}\right)$
188.4, 129.2, 96.3, 92.6 (C_{8} ring carbons); $100.5,100.4$ $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right), 30.1,25.3,22.5,18.0(\mathrm{Me})$
C_{8} ring carbons: $211.2[\mathrm{C}(1)], 197.0[\mathrm{C}(8)], 103.5\{\mathrm{C}(2)$, $\left.{ }^{1} J[\mathrm{C}(2) \mathrm{H}(2)] 154\right\}, 102.4[\mathrm{C}(3)], 99.8\left\{\mathrm{C}(6),{ }^{1} J[\mathrm{C}(6) \mathrm{H}(6)]\right.$ $168\}, 69.3[\mathrm{C}(5)], 61.0\left\{\mathrm{C}(4),{ }^{1} J[\mathrm{C}(4) \mathrm{H}(4)] 154\right\}, 60.2\{\mathrm{C}(7)$, $\left.{ }^{1} J[\mathrm{C}(7) \mathrm{H}(7)] \quad 165\right\}, 98.2\left[\mathrm{C}_{5} \mathrm{H}_{5}(\mathrm{~A}),{ }^{1} \mathrm{~J}(\mathrm{CH}), 190\right], 91.6$ $\left[\mathrm{C}_{5} \mathrm{H}_{5}(\mathrm{~B}),{ }^{1} \mathrm{~J}(\mathrm{CH}), 190\right], 46.4,44.3,39.3,38.5\left(\mathrm{Bu}^{1}\right.$ quaternary carbons), 34.7(C), 33.8(B), 32.9(A), 30.6(D), (Bu methyl carbons) ${ }^{f}$
${ }^{a}$ Chemical shifts in p.p.m. relative to SiMe_{4}, positive values to high frequency, coupling constants in Hz , measurements at 303 K . ${ }^{b} \mathrm{Measured}$ in CDCl_{3} solution. ${ }^{c}$ Measured in $\mathrm{C}_{6} \mathrm{D}_{6}$ solution. ${ }^{d}$ Recorded in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solution. ${ }^{e}$ Measured at $292 \pm 1 \mathrm{~K}$. The numbering scheme adopted is shown in the diagram of complex (12) (see text) and is the same as that used in the X-ray crystallographic study. The letters $\mathrm{A}-\mathrm{D}$ for the $\mathrm{C}_{5} \mathrm{H}_{5}$ and Bu^{t} signals refer to correlations between the peaks in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ n.m.r. spectra as determined by two-dimensional experiments (see Experimental section). This was also the basis for the assignments of the C_{8} ring carbons. ${ }^{95} \mathrm{Mo}$ N.m.r. -352 p.p.m. (one signal observed, see Experimental section for details). ${ }^{5}$ Additional $\mathrm{C}-\mathrm{H}$ couplings observed: $\left.\mathrm{C}(4), 10,{ }^{3} J \mathrm{C}(4) \mathrm{H}(6)\right]$ or ${ }^{3} J[\mathrm{C}(4) \mathrm{H}(2)] ; \mathrm{C}(7), 11$ and $6,{ }^{2} J[\mathrm{C}(7) \mathrm{H}(6)]$ and ${ }^{4} J[\mathrm{C}(7) \mathrm{H}(4)]$.
propose that double protonation of (1) [or monoprotonation of (2)] affords an intermediate diprotonated dication, (A), which subsequently loses H_{2} to afford the dication (1) ${ }^{2+}$ which may also be generated electrochemically or by addition of >2 equivalents of $\left[\mathrm{Fe}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]\left[\mathrm{BF}_{4}\right]$. The species (1) ${ }^{2+}$ then loses a proton from one of the δ-methyl carbons affording (4) possibly by means of a β-hydrogen abstraction process involving the doubly charged, and hence activated, molybdenum centre. Support for the proposed intermediate, (A), is provided by extended-Hückel molecular-orbital (m.o.) calculations which show a build up of negative charge on the unprotonated α-ring carbon in both (1) and (2). These are discussed in more detail in ref. 3. We note also that similar reactions involving double oxidation followed by proton loss from organic fragments at dimetal centres have been reported by Knox and Connelly. ${ }^{15}$

Since complex (4) derives from (1) by formal loss of hydride, an alternative synthetic route to (4) involving this process directly was thought possible. Accordingly, a reaction between (1) and $\left[\mathrm{CPh}_{3}\right]\left[\mathrm{BF}_{4}\right]$ was carried out $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 24 \mathrm{~h}\right)$ which does indeed afford (4) in high yield. The precise mechanism by which this reaction occurs is unclear. One possibility involves double oxidation of (1) by $\left[\mathrm{CPh}_{3}\right]\left[\mathrm{BF}_{4}\right]$ affording (4) via the route $\mathbf{(1)} \longrightarrow(\mathbf{1})^{+} \longrightarrow(1)^{2+} \longrightarrow(4)$. An alternative pathway, however, is shown in equation (1). The fact that complex

$$
\begin{equation*}
\text { (1) } \xrightarrow[{-\left[\mathrm{Ph}_{3} \mathrm{C}^{-}\right.}]{+[1)^{+}} \xrightarrow[-\mathrm{Ph}_{3} \mathrm{CH}]{+\mathrm{Ph}_{3} \mathrm{C}^{-}} \text {(4) } \tag{1}
\end{equation*}
$$

(4) is formed in high yield from the reaction between equimolar quantities of (1) and $\left[\mathrm{CPh}_{3}\right]\left[\mathrm{BF}_{4}\right]$ supports the latter mechanism.
The availability of complex (4) in high yield from (1) enabled a number of reactivity studies to be carried out. Specifically, the addition of nucleophiles to (4) regenerates (1) or derivatives thereof allowing modification of the δ substituents on the C_{8} ring.
Treatment of complex (4) with $\mathrm{K}\left[\mathrm{BHBu}_{3}{ }_{3}\right.$] affords (1) quantitatively whilst use of the deutero borohydride $\mathrm{K}\left[\mathrm{BDBu}_{3}{ }_{3}\right]$ affords ($\mathbf{1 d}$). The ${ }^{1} \mathrm{H}$ n.m.r. spectrum of (1d) is identical to (1) except that the methyl signal at $\delta 0.99^{3}$ has a reduced intensity from 6 to 5 in accordance with two CH_{3} groups becoming CH_{3} and $\mathrm{CH}_{2} \mathrm{D}$. Corresponding reactions with $\mathrm{Li}\left[\mathrm{CuMe}_{2}\right]$, $\mathrm{Li}\left[\mathrm{CuPh}_{2}\right]$, and $\mathrm{Na}[\mathrm{SMe}]$ afforded the derivatives (5)-(7) respectively, n.m.r. data for which are presented in Table 1.

This synthetic approach resulting in modification of the δ carbon substituent can be carried further so as to modify the substituent at the other δ position (δ^{\prime}). Thus treatment of the monoethyl derivative, (5), with 1 equivalent of $\left[\mathrm{CPh}_{3}\right]\left[\mathrm{BF}_{4}\right]$ afforded the cationic species (8) analogous to (4) which, on treatment with $\mathrm{Li}\left[\mathrm{CuMe}_{2}\right]$ gave the δ, δ^{\prime}-diethyl complex (9)

Table 2. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for complex (4)

$\mathbf{M o}(1)-\mathbf{M o}(2)$	2.655(1)	$\mathbf{M o}(1)-\mathrm{C}(1)$	2.205(10)
$\mathrm{Mo}(1)-\mathrm{C}(2)$	2.283(13)	$\mathrm{Mo}(1)-\mathrm{C}(3)$	2.266(12)
$\mathbf{M o}(1)-\mathrm{C}(6)$	2.180 (13)	$\mathbf{M o}(1)-\mathrm{C}(7)$	2.172(17)
$\mathrm{Mo}(1)-\mathrm{C}(8)$	2.218(12)	$\mathrm{Mo}(1)-\mathrm{C}(22)$	$2.357(12)$
$\mathrm{Mo}(1)-\mathrm{C}(23)$	2.342(10)	$\mathrm{Mo}(1)-\mathrm{C}(24)$	2.312(11)
$\mathbf{M o (1) - C (2 5)}$	$2.365(18)$	$\mathrm{Mo}(1)-\mathrm{C}(26)$	2.329(16)
$\mathbf{M o}(2)-\mathbf{C}(1)$	2.132(10)	Mo(2)-C(4)	2.239(15)
$\mathbf{M o}(2)-\mathrm{C}(5)$	2.276(14)	$\mathrm{Mo}(2)-\mathrm{C}(8)$	2.015 (9)
$\mathbf{M o}(2)-\mathbf{C}(9)$	2.416(13)	Mo(2)-C(17)	2.387(10)
Mo(2)-C(18)	2.403(12)	Mo(2)-C(19)	2.371(16)
$\mathrm{Mo}(2)-\mathrm{C}(20)$	2.329(16)	$\mathrm{Mo}(2)-\mathrm{C}(21)$	2.354(12)
$\mathbf{M o}(3)-\mathbf{M o}(4)$	2.653(1)	Mo(3)-C(51)	2.196(10)
Mo(3)-C(52)	2.255(10)	Mo(3)-C(53)	2.266(11)
$\mathrm{Mo}(3)-\mathrm{C}(56)$	2.280 (10)	$\mathrm{Mo}(3)-\mathrm{C}(57)$	2.311(10)
$\mathrm{Mo}(3)-\mathrm{C}(58)$	2.183(12)	Mo(3)-C(72)	2.313(10)
$\mathrm{Mo}(3)-\mathrm{C}(73)$	2.317(11)	$\mathrm{Mo}(3)-\mathrm{C}(74)$	2.348(15)
$\mathrm{Mo}(3)-\mathrm{C}(75)$	$2.345(16)$	Mo(3)-C(76)	2.339(12)
Mo(4)-C(51)	2.075(10)	Mo(4)-C(54)	2.283(12)
Mo(4)-C(55)	2.295(12)	Mo(4)-C(58)	2.069(10)
Mo(4)-C(59)	2.546(21)	$\mathrm{Mo}(4)-\mathrm{C}\left(63^{\prime}\right)$	2.567(23)
Mo(4)-C(67)	2.328(14)	Mo(4)-C(68)	2.350 (13)
Mo(4)-C(69)	2.408(13)	Mo(4)-C(70)	2.420 (15)
Mo(4)-C(71)	2.334(18)	$\mathrm{C}(1)-\mathrm{C}(2)$	1.383(20)
$\mathrm{C}(1)-\mathrm{C}(10)$	1.548(18)	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.350(19)$
$\mathrm{C}(2)-\mathrm{C}(11)$	1.555(19)	$\mathrm{C}(3)-\mathrm{C}(4)$	1.401(16)
$\mathrm{C}(3)-\mathrm{C}(12)$	1.605(23)	$\mathrm{C}(4)-\mathrm{C}(5)$	1.426(17)
C(4)-C(13)	1.654(15)	$\mathrm{C}(5)-\mathrm{C}(6)$	1.541(14)
$\mathrm{C}(5)-\mathrm{C}(9)$	1.464(19)	$\mathrm{C}(6)-\mathrm{C}(7)$	1.274(23)
$\mathbf{M o}$ (2)-Mo(1)-C(2)	74.9(3)	$\mathbf{M o}(2)-\mathbf{M o}(1)-\mathbf{C}(1)$	51.0(3)
$\mathbf{M o}(2)-\mathbf{M o}(1)-\mathbf{C}(3)$	74.9(3)	$\mathrm{C}(1)-\mathrm{Mo}(1)-\mathrm{C}(2)$	35.9(5)
$\mathrm{C}(2)-\mathrm{Mo}(1)-\mathrm{C}(3)$	34.5(5)	$\mathrm{C}(1)-\mathrm{Mo}(1)-\mathrm{C}(3)$	62.3(5)
$\mathrm{C}(1)-\mathrm{Mo}(1)-\mathrm{C}(6)$	118.5(3)	$\mathbf{M o}(2)-\mathrm{Mo}(1)-\mathrm{C}(6)$	75.5(3)
$\mathrm{C}(3)-\mathrm{Mo}(1)-\mathrm{C}(6)$	78.0(5)	$\mathrm{C}(2)-\mathrm{Mo}(1)-\mathrm{C}(6)$	111.0(5)
$\mathrm{C}(1)-\mathrm{Mo}(1)-\mathrm{C}(7)$	119.3(5)	$\mathbf{M o}(2)-\mathbf{M o}(1)-\mathbf{C}(7)$	68.4(4)
$\mathrm{C}(3)-\mathrm{Mo}(1)-\mathrm{C}(7)$	107.5(5)	$\mathrm{C}(2)-\mathrm{Mo}(1)-\mathrm{C}(7)$	134.2(4)
$\mathbf{M o}(2)-\mathrm{Mo}(1)-\mathrm{C}(8)$	47.8(2)	$\mathrm{C}(6)-\mathrm{Mo}(1)-\mathrm{C}(7)$	34.0(6)
$\mathrm{C}(2)-\mathrm{Mo}(1)-\mathrm{C}(8)$	122.7(4)	$\mathrm{C}(1)-\mathrm{Mo}(1)-\mathrm{C}(8)$	93.8(4)
$\mathrm{C}(6)-\mathrm{Mo}(1)-\mathrm{C}(8)$	61.5(5)	$\mathrm{C}(3)-\mathrm{Mo}(1)-\mathrm{C}(8)$	114.5(4)
$\mathbf{M o}(1)-\mathrm{Mo}(2)-\mathrm{C}(1)$	53.5(3)	$\mathrm{C}(7)-\mathrm{Mo}(1)-\mathrm{C}(8)$	32.0(6)
$\mathrm{C}(1)-\mathrm{Mo}(2)-\mathrm{C}(4)$	72.7(4)	$\mathbf{M o}(1)-\mathbf{M o}(2)-\mathrm{C}(4)$	68.2(3)
$\mathrm{C}(1)-\mathrm{Mo}(2)-\mathrm{C}(5)$	101.4(5)	$\mathbf{M o}(1)-\mathrm{Mo}(2)-\mathrm{C}(5)$	68.5(3)
$\mathbf{M o}(1)-\mathrm{Mo}(2)-\mathrm{C}(8)$	54.7(3)	$\mathrm{C}(4)-\mathrm{Mo}(2)-\mathrm{C}(5)$	36.8(4)
$\mathrm{C}(4)-\mathrm{Mo}(2)-\mathrm{C}(8)$	104.5(5)	$\mathrm{C}(1)-\mathrm{Mo}(2)-\mathrm{C}(8)$	102.2(4)
$\mathbf{M o}(1)-\mathrm{Mo}(2)-\mathrm{C}(9)$	99.4(3)	$\mathrm{C}(5)-\mathrm{Mo}(2)-\mathrm{C}(8)$	76.3(5)
$\mathrm{C}(4)-\mathrm{Mo}(2)-\mathrm{C}(9)$	65.7(5)	$\mathrm{C}(1)-\mathrm{Mo}(2)-\mathrm{C}(9)$	137.0(5)
$\mathrm{C}(8)-\mathrm{Mo}(2)-\mathrm{C}(9)$	78.7(4)	$\mathrm{C}(5)-\mathrm{Mo}(2)-\mathrm{C}(9)$	36.2(5)
$\mathbf{M o (4) - M o (3) - C (5 2) ~}$	74.3(3)	$\mathbf{M o}(4)-\mathrm{Mo}(3)-\mathrm{C}(51)$	49.6(3)
Mo(4)-Mo(3)-C(53)	74.8(3)	$\mathrm{C}(51)-\mathrm{Mo}(3)-\mathrm{C}(52)$	36.2(4)
$\mathrm{C}(52)-\mathrm{Mo}(3)-\mathrm{C}(53)$	34.7(4)	$\mathrm{C}(51)-\mathrm{Mo}(3)-\mathrm{C}(53)$	62.5(4)
$\mathrm{C}(51)-\mathrm{Mo}(3)-\mathrm{C}(56)$	116.7(3)	Mo(4)-Mo(3)-C(56)	75.9(3)
$\mathrm{C}(53)-\mathrm{Mo}(3)-\mathrm{C}(56)$	75.7(4)	$\mathrm{C}(52)-\mathrm{Mo}(3)-\mathrm{C}(56)$	109.0(3)
$\mathrm{C}(51)-\mathrm{Mo}(3)-\mathrm{C}(57)$	123.9(4)	$\mathbf{M o}(4)-\mathrm{Mo}(3)-\mathrm{C}(57)$	74.3(3)
$\mathrm{C}(53)-\mathrm{Mo}(3)-\mathrm{C}(57)$	108.9(4)	$\mathrm{C}(52)-\mathrm{Mo}(3)-\mathrm{C}(57)$	137.7(3)
$\mathbf{M o}(4)-\mathrm{Mo}(3)-\mathrm{C}(58)$	49.5(3)	$\mathrm{C}(56)-\mathrm{Mo}(3)-\mathrm{C}(57)$	35.2(4)
$\mathrm{C}(52)-\mathrm{Mo}(3)-\mathrm{C}(58)$	123.8(4)	$\mathrm{C}(51)-\mathrm{Mo}(3)-\mathrm{C}(58)$	94.2(4)
$\mathrm{C}(56)-\mathrm{Mo}(3)-\mathrm{C}(58)$	62.8(4)	$\mathrm{C}(53)-\mathrm{Mo}(3)-\mathrm{C}(58)$	115.4(4)
$\mathrm{C}(51)-\mathrm{Mo}(4)-\mathrm{C}(55)$	104.3(4)	$\mathrm{C}(57)-\mathrm{Mo}(3)-\mathrm{C}(58)$	35.7(5)
$\mathbf{M o (3) - M o (4) - C (5 8) ~}$	53.3(3)	$\mathrm{C}(54)-\mathrm{Mo}(4)-\mathrm{C}(55)$	36.7(4)
$\mathrm{C}(54)-\mathrm{Mo}(4)-\mathrm{C}(58)$	103.1(5)	$\mathrm{C}(51)-\mathrm{Mo}(4)-\mathrm{C}(58)$	101.5(4)
$\mathbf{M o (3) - M o (4) - C (5 9) ~}$	98.8(5)	$\mathrm{C}(55)-\mathrm{Mo}(4)-\mathrm{C}(58)$	74.5(4)
$\mathrm{C}(54)-\mathrm{Mo}(4)-\mathrm{C}(59)$	64.5(6)	$\mathrm{C}(51)-\mathrm{Mo}(4)-\mathrm{C}(59)$	138.7(6)
$\mathrm{C}(58)-\mathrm{Mo}(4)-\mathrm{C}(59)$	76.1(5)	$\mathrm{C}(55)-\mathrm{Mo}(4)-\mathrm{C}(59)$	34.7(6)
$\mathrm{Mo}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	75.1(7)	$\mathbf{M o}(1)-\mathbf{C}(1)-\mathrm{Mo}(2)$	75.5(3)
$\mathrm{Mo}(1)-\mathrm{C}(1)-\mathrm{C}(10)$	125.2(6)	$\mathrm{Mo}(2)-\mathrm{C}(1)-\mathrm{C}(2)$	116.6(8)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(10)$	122.3(10)	$\mathrm{Mo}(2)-\mathrm{C}(1)-\mathrm{C}(10)$	120.7(9)
$\mathrm{Mo}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	72.0(7)	Mo(1)-C(2)-C(1)	69.0(7)
$\mathrm{Mo}(1)-\mathrm{C}(2)-\mathrm{C}(11)$	131.7(7)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	115.5(12)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(11)$	123.9(14)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(11)$	120.4(13)
Mo(1)-C(3)-C(4)	94.9(8)	$\mathrm{Mo}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	73.4(7)

$\mathrm{C}(6)-\mathrm{C}(14)$	1.543(24)	$\mathrm{C}(7)-\mathrm{C}(8)$	1.212(23)
$\mathrm{C}(7)-\mathrm{C}(15)$	1.764(20)	$\mathrm{C}(8)-\mathrm{C}(16)$	1.592(20)
$\mathrm{C}(17)-\mathrm{C}(18)$	1.355(20)	C(17)-C(21)	1.374(17)
$\mathrm{C}(18)-\mathrm{C}(19)$	1.410(21)	C(19)-C(20)	1.423(19)
$\mathrm{C}(20)-\mathrm{C}(21)$	1.436(18)	$\mathrm{C}(22)-\mathrm{C}(23)$	1.334(17)
$\mathrm{C}(22)-\mathrm{C}(26)$	1.419(28)	C(23)-C(24)	1.370(22)
C(24)-C(25)	1.366(29)	C(25)-C(26)	1.366(31)
C(51)-C(52)	1.383(17)	C(51)-C(60)	1.578(17)
C(52)-C(53)	1.350 (17)	C(52)-C(61)	1.575(16)
$\mathrm{C}(53)-\mathrm{C}(54)$	1.513(15)	$\mathrm{C}(53)-\mathrm{C}(62)$	1.558(22)
C(54)-C(55)	1.442(14)	C(54)-C(63)	1.554(22)
$\mathrm{C}(54)-\mathrm{C}\left(63^{\prime}\right)$	1.433(25)	C(55)-C(56)	1.503(13)
$\mathrm{C}(55)-\mathrm{C}(59)$	1.463(23)	$\mathrm{C}(55)-\mathrm{C}\left(59{ }^{\prime}\right)$	1.492(23)
C(56)-C(57)	1.389(16)	C(56)-C(64)	1.560(20)
$\mathrm{C}(57)-\mathrm{C}(58)$	1.384(18)	C(57)-C(65)	1.521(15)
$\mathrm{C}(58)-\mathrm{C}(66)$	1.618(18)	C(67)-C(68)	1.350 (16)
$\mathrm{C}(67)-\mathrm{C}(71)$	1.379(18)	$\mathrm{C}(68)-\mathrm{C}(69)$	1.353(19)
C (69)-C(70)	1.379(23)	$\mathrm{C}(70)-\mathrm{C}(71)$	1.427(23)
C(72)-C(73)	1.385(20)	C(72)-C(76)	1.373(20)
$\mathrm{C}(73)-\mathrm{C}(74)$	1.381(28)	$\mathrm{C}(74)-\mathrm{C}(75)$	1.307(25)
$\mathrm{C}(75)-\mathrm{C}(76)$	1.372(25)	$\mathrm{S}(1)-\mathrm{O}(1)$	1.406(9)
$\mathrm{S}(1)-\mathrm{O}(2)$	1.326(12)	$\mathrm{S}(1)-\mathrm{O}(3)$	1.387(11)
$\mathrm{S}(1)-\mathrm{C}(27)$	1.750(20)	$\mathrm{S}(2)-\mathrm{O}(4)$	1.381(12)
$\mathrm{S}(2)-\mathrm{O}(5)$	1.391(10)	$\mathrm{S}(2)-\mathrm{O}(6)$	1.250(13)
$\mathrm{S}(2)-\mathrm{C}(28)$	1.759(24)	C(27)-F(1)	1.270(18)
C(27)-F(2)	1.303(18)	C(27)-F(3)	1.266(21)
C(28)-F(4)	1.270(23)	C(28)-F(5)	1.247(23)
C(28)-F(6)	$1.315(19)$		
$\mathrm{Mo}(1)-\mathrm{C}(3)-\mathrm{C}(12)$	129.0(7)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	112.7(12)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(12)$	118.3(11)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(12)$	119.4(12)
$\mathrm{Mo}(2)-\mathrm{C}(4)-\mathrm{C}(5)$	73.0(8)	Mo(2)-C(4)-C(3)	109.3(9)
$\mathbf{M o}(2)-\mathbf{C}(4)-\mathrm{C}(13)$	116.9(9)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	116.9(10)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(13)$	115.8(9)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(13)$	117.1(11)
$\mathrm{Mo}(2)-\mathrm{C}(5)-\mathrm{C}(6)$	101.1(8)	Mo(2)-C(5)-C(4)	70.2(8)
$\mathrm{Mo}(2)-\mathrm{C}(5)-\mathrm{C}(9)$	77.1(8)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	118.0(10)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(9)$	114.1(11)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(9)$	122.2(10)
$\mathrm{Mo}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	72.6(10)	Mo(1)-C(6)-C(5)	95.7(8)
$\mathbf{M o}(1)-\mathrm{C}(6)-\mathrm{C}(14)$	127.5(8)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	107.3(12)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(14)$	134.7(13)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(14)$	109.6(11)
$\mathrm{Mo}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	76.1(10)	$\mathrm{Mo}(1)-\mathrm{C}(7)-\mathrm{C}(6)$	73.3(9)
$\mathrm{Mo}(1)-\mathrm{C}(7)-\mathrm{C}(15)$	126.8(9)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	129.5(15)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(15)$	121.4(14)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(15)$	109.1(14)
$\mathrm{Mo}(1)-\mathrm{C}(8)-\mathrm{C}(7)$	71.9(10)	$\mathrm{Mo}(1)-\mathrm{C}(8)-\mathrm{Mo}(2)$	77.5(4)
$\mathrm{Mo}(1)-\mathrm{C}(8)-\mathrm{C}(16)$	125.4(7)	$\mathrm{Mo}(2)-\mathrm{C}(8)-\mathrm{C}(7)$	114.0(10)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(16)$	122.3(11)	$\mathrm{Mo}(2)-\mathrm{C}(8)-\mathrm{C}(16)$	123.2(9)
$\mathrm{Mo}(3)-\mathrm{C}(51)-\mathrm{Mo}(4)$	76.7(4)	$\mathrm{Mo}(2)-\mathrm{C}(9)-\mathrm{C}(5)$	66.7(7)
$\mathrm{Mo}(4)-\mathrm{C}(51)-\mathrm{C}(52)$	117.6(8)	Mo(3)-C(51)-C(52)	74.2(6)
$\mathrm{Mo}(4)-\mathrm{C}(51)-\mathrm{C}(60)$	123.5(8)	Mo(3)-C(51)-C(60)	127.0(6)
$\mathrm{Mo}(3)-\mathrm{C}(52)-\mathrm{C}(51)$	69.6(6)	$\mathrm{C}(52)-\mathrm{C}(51)-\mathrm{C}(60)$	118.1(9)
$\mathrm{C}(51)-\mathrm{C}(52)-\mathrm{C}(53)$	115.7(10)	$\mathrm{Mo}(3)-\mathrm{C}(52)-\mathrm{C}(53)$	73.1(6)
$\mathrm{C}(51)-\mathrm{C}(52)-\mathrm{C}(61)$	122.0(11)	Mo(3)-C(52)-C(61)	132.5(7)
Mo(3)-C(53)-C(52)	72.2(6)	$\mathrm{C}(53)-\mathrm{C}(52)-\mathrm{C}(61)$	121.9(12)
$\mathrm{C}(52)-\mathrm{C}(53)-\mathrm{C}(54)$	115.3(11)	$\mathrm{Mo}(3)-\mathrm{C}(53)-\mathrm{C}(54)$	96.7(7)
$\mathrm{C}(52)-\mathrm{C}(53)-\mathrm{C}(62)$	122.6(10)	$\mathrm{Mo}(3)-\mathrm{C}(53)-\mathrm{C}(62)$	126.2(7)
$\mathrm{Mo}(4)-\mathrm{C}(54)-\mathrm{C}(53)$	102.7(7)	$\mathrm{C}(54)-\mathrm{C}(53)-\mathrm{C}(62)$	114.9(9)
$\mathrm{C}(53)-\mathrm{C}(54)-\mathrm{C}(55)$	116.4(8)	Mo(4)-C(54)-C(55)	72.1(7)
C(53)-C(54)-C(63)	124.1(12)	$\mathrm{Mo}(4)-\mathrm{C}(54)-\mathrm{C}(63)$	112.4(13)
$\mathrm{Mo}(4)-\mathrm{C}(55)-\mathrm{C}(54)$	71.2(7)	$\mathrm{C}(55)-\mathrm{C}(54)-\mathrm{C}(63)$	115.1(11)
$\mathrm{C}(54)-\mathrm{C}(55)-\mathrm{C}(56)$	116.7(8)	$\mathrm{Mo}(4)-\mathrm{C}(55)-\mathrm{C}(56)$	104.8(7)
$\mathrm{C}(54)-\mathrm{C}(55)-\mathrm{C}(59)$	125.8(11)	$\mathrm{Mo}(4)-\mathrm{C}(55)-\mathrm{C}(59)$	82.1(11)
$\mathrm{Mo}(3)-\mathrm{C}(56)-\mathrm{C}(55)$	95.9(7)	$\mathrm{C}(56)-\mathrm{C}(55)-\mathrm{C}(59)$	115.3(10)
$\mathrm{C}(55)-\mathrm{C}(56)-\mathrm{C}(57)$	111.6(10)	$\mathrm{Mo}(3)-\mathrm{C}(56)-\mathrm{C}(57)$	73.6(6)
$\mathrm{C}(55)-\mathrm{C}(56)-\mathrm{C}(64)$	117.3(9)	$\mathrm{Mo}(3)-\mathrm{C}(56)-\mathrm{C}(64)$	126.3(7)
$\mathrm{Mo}(3)-\mathrm{C}(57)-\mathrm{C}(56)$	71.2(6)	$\mathrm{C}(57)-\mathrm{C}(56)-\mathrm{C}(64)$	122.6(9)
$\mathrm{C}(56)-\mathrm{C}(57)-\mathrm{C}(58)$	114.1(9)	$\mathrm{Mo}(3)-\mathrm{C}(57)-\mathrm{C}(58)$	67.1(6)
$\mathrm{C}(56)-\mathrm{C}(57)-\mathrm{C}(65)$	119.1(11)	$\mathrm{Mo}(3)-\mathrm{C}(57)-\mathrm{C}(65)$	130.3(7)
$\mathrm{Mo}(3)-\mathrm{C}(58)-\mathrm{Mo}(4)$	77.1(4)	$\mathrm{C}(58)-\mathrm{C}(57)-\mathrm{C}(65)$	126.8(11)
$\mathrm{Mo}(4)-\mathrm{C}(58)-\mathrm{C}(57)$	120.0(8)	$\mathrm{Mo}(3)-\mathrm{C}(58)-\mathrm{C}(57)$	77.2(7)
$\mathrm{Mo}(4)-\mathrm{C}(58)-\mathrm{C}(66)$	121.4(9)	$\mathrm{Mo}(3)-\mathrm{C}(58)-\mathrm{C}(66)$	127.2(7)

Table 2 (continued)

$\mathrm{Mo}(4)-\mathrm{C}(59)-\mathrm{C}(55)$	63.2(8)	$\mathrm{C}(57)-\mathrm{C}(58)-\mathrm{C}(66)$	117.4(9)	$\mathrm{S}(1)-\mathrm{C}(27)-\mathrm{F}(2)$	113.4(11)	$\mathrm{S}(1)-\mathrm{C}(27)-\mathrm{F}(1)$	114.4(14)
$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{O}(3)$	114.4(6)	$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{O}(2)$	114.7(8)	$\mathrm{S}(1)-\mathrm{C}(27)-\mathrm{F}(3)$	114.0(13)	$F(1)-C(27)-F(2)$	105.1(13)
$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{C}(27)$	104.6(7)	$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{O}(3)$	115.4(7)	$F(2)-C(27)-F(3)$	103.5(16)	$F(1)-C(27)-F(3)$	105.5(14)
$\mathrm{O}(3)-\mathrm{S}(1)-\mathrm{C}(27)$	104.8(8)	$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{C}(27)$	100.7(8)	$\mathrm{S}(2)-\mathrm{C}(28)-\mathrm{F}(5)$	116.0(15)	$\mathrm{S}(2)-\mathrm{C}(28)-\mathrm{F}(4)$	115.3(14)
$\mathrm{O}(4)-\mathrm{S}(2)-\mathrm{O}(6)$	117.8(8)	$\mathrm{O}(4)-\mathrm{S}(2)-\mathrm{O}(5)$	110.0(7)	$\mathrm{S}(2)-\mathrm{C}(28)-\mathrm{F}(6)$	113.7(15)	$F(4)-C(28)-F(5)$	106.2(18)
$\mathrm{O}(4)-\mathrm{S}(2)-\mathrm{C}(28)$	102.4(9)	$\mathrm{O}(5)-\mathrm{S}(2)-\mathrm{O}(6)$	116.9(8)	$\mathrm{F}(5)-\mathrm{C}(28)-\mathrm{F}(6)$	102.6(16)	$F(4)-C(28)-F(6)$	101.4(16)
$\mathrm{O}(6)-\mathrm{S}(2)-\mathrm{C}(28)$	105.2(10)	$\mathrm{O}(5)-\mathrm{S}(2)-\mathrm{C}(28)$	102.0(8)				

Table 3. Atomic co-ordinates ($\times 10^{4}$) for complex (4)

Atom	x	y	z	Atom	\boldsymbol{x}	y	z
Mo(1)	3 511(1)	8 265(1)	4 913(1)	C(58)	$7928(6)$	7 244(6)	-10(7)
Mo(2)	2010 (1)	8380 (1)	4 308(1)	C(59)*	6 929(11)	6 917(10)	-1758(13)
Mo(3)	8530 (1)	$8218(1)$	-170(1)	C(59')	6972(13)	$6965(12)$	-2329(15)
Mo(4)	7 054(1)	7 959(1)	-700(1)	C(60)	7 498(6)	$9501(6)$	343(7)
C(1)	2 650(5)	7 380(5)	4 557(7)	C(61)	8 213(8)	10 087(6)	-784(9)
C(2)	3 056(6)	7 249(8)	4 059(8)	C(62)	$8383(8)$	$9012(7)$	-2063(8)
C(3)	3 078(6)	7 816(7)	3 551(7)	C(63)*	6 592(13)	8 448(12)	-2 668(16)
C(4)	2 410(6)	8 236(6)	3 248(8)	C(63')	6 600(13)	8 640(12)	-2 149(15)
C(5)	2 483(6)	$9002(7)$	3 466(7)	C(64)	8 796(7)	7 089(7)	-1658(7)
C(6)	3 248(5)	9 276(7)	4 147(9)	C(65)	$8963(7)$	6 333(6)	-36(8)
C(7)	3 151(9)	$9411(9)$	4 833(9)	C(66)	7990 (8)	6 879(7)	886(7)
C(8)	2 757(6)	$9094(5)$	5 130(7)	C(67)	6 356(6)	7 998(6)	145(7)
C(9)	$1831(7)$	9 455(7)	3 401(9)	C(68)	6 020(6)	8 484(6)	-502(8)
C(10)	2 574(7)	6 794(6)	5 183(8)	C(69)	5 697(7)	$8110(9)$	- $1254(10)$
C(11)	3 411(8)	6 476(7)	4 064(10)	C(70)	5 834(8)	7 365(9)	-1090(12)
C(12)	3 524(8)	7716 (9)	2 937(9)	C(71)	6 282(8)	7 293(8)	- 189(11)
C(13)	1760 (8)	8 026(8)	2 284(8)	C(72)	9 406(6)	8 520(7)	1 195(7)
C(14)	3 715(8)	$9636(9)$	3 694(10)	C(73)	9 657(6)	7 878(8)	950(9)
C(15)	$3718(9)$	$10175(7)$	5 362(11)	C(74)	$9839(8)$	8 030(9)	258(12)
C(16)	2 758(7)	9 306(7)	6 042(8)	C(75)	$9719(8)$	8 735(11)	84(11)
C(17)	698(6)	8 074(8)	3 571(8)	C(76)	$9467(6)$	9 056(8)	653(9)
C(18)	715(6)	8769 (8)	3 878(11)	S(1)	338(2)	$5779(2)$	2 676(2)
C(19)	$1065(7)$	$8758(8)$	$4786(9)$	S(2)	$4807(2)$	-468(2)	2 026(2)
C(20)	1 268(7)	$8009(7)$	5 034(8)	O(1)	761(6)	$5769(5)$	$3573(6)$
C(21)	$1017(6)$	7 591(7)	4 248(8)	O(2)	-192(6)	5 260(7)	2 384(8)
C(22)	4 705(6)	7 702(7)	5 280(10)	$\mathrm{O}(3)$	114(7)	6 480(6)	2 332(7)
C(23)	$4820(5)$	8 431(7)	5 347(9)	O(4)	4 863(7)	210(6)	2 423(7)
C(24)	4 625(6)	8 673(8)	5 996(8)	O(5)	4 109(6)	-527(7)	$1327(8)$
C(25)	4 391(12)	$8100(12)$	6 354(13)	O(6)	5 034(8)	-1025(7)	2 497(9)
C(26)	4 413(8)	$7488(11)$	5 892(13)	C(27)	974(9)	5 480(8)	2 242(10)
C(51)	7 587(5)	8978 (6)	-355(6)	F(1)	$1243(6)$	4 838(6)	2 482(7)
C(52)	7946 (5)	9 257(6)	-852(6)	F(2)	677(6)	5 455(7)	$1403(6)$
C(53)	7 983(6)	8 796(6)	$-1460(7)$	F(3)	$1544(8)$	5 898(8)	2 416(11)
C(54)	7 320(6)	8271 (6)	-1852(8)	C(28)	5 436(10)	-368(10)	$1516(12)$
C(55)	7 484(5)	7 496(5)	- $1681(6)$	F(4)	$5485(7)$	-927(7)	$1087(7)$
C(56)	8 298(6)	7 292(5)	-1 157(7)	F(5)	5 324(7)	176(7)	1 028(8)
C(57)	$8388(6)$	6 955(5)	-386(7)	F(6)	$6148(6)$	-280(7)	$2055(8)$

* Atomic site occupancy $0.51(1)$; primed atoms have occupancy $0.49(1)$.
(Scheme 2). Protonation of (9) with 1 equivalent of $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ resulted in complex (10) containing an agostic CH interaction analogous to that in (2). Full details of the preparation and n.m.r. spectroscopic characterisation of (10) are reported in ref. 3.

In addition to the reactivity studies carried out on complex (4) we have also examined further aspects of the reactivity of (1). Treatment of (1) with 1 equivalent of the weak oxidising agent $\left[\mathrm{NPr}_{4}{ }_{4}\right]\left[\mathrm{SbCl}_{6}\right]$ resulted in a quantitative yield of the chloro cationic complex (11). The structure of this salt, containing the octachlorodiantimonate dianion and methylene chloride of crystallisation, was established by X-ray crystallography. As illustrated in Figure 2, the cation shows the same configuration as the $\mathrm{Mo}_{2}\left(\mu-\mathrm{C}_{8} \mathrm{Me}_{8}\right)$ core of (1) ${ }^{3}$ with approximate C_{5} symmetry and the bonding description advanced for (1) ${ }^{3}$ applies with equal validity to (11). The chlorine bridges the Mo-Mo vector preserving the formal double bond found in this
class of molecule by acting as a formal, neutral one-electron donor. This is rather unusual since bridging chlorines are normally three-electron donors. The anion resides on a crystallographic inversion centre, each antimony atom being co-ordinated by five chlorine atoms with a square-pyramidal co-ordination geometry sharing one basal edge of the pyramid with the other antimony (Figure 3). We suggest that complex (11) is formed by initial one-electron oxidation of (1) followed by chlorination (i.e. reaction with Cl°) of the resulting radical cation, i.e. (1) ${ }^{\cdot+}$.

A study of the reactivity of (11) towards the reagents $\mathrm{K}\left[\mathrm{BHBu}_{3}\right]$ and $\mathrm{Li}\left[\mathrm{CuMe}_{2}\right]$ resulted in the regeneration of (1) as determined by ${ }^{1} \mathrm{H}$ n.m.r. spectroscopy in both cases.

In addition to the reactions of complexes (1) and (4) described above, we also examined the protonation of (3). Treatment with 1 equivalent of $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ afforded high yields of the monoprotonated complex (12) as its $\left[\mathrm{BF}_{4}\right]^{-}$salt. Metathesis

(A)
iii)

Scheme 1. (i) $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ or $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H} ;(i i)-\mathrm{H}_{2} ;(i i i)-\mathrm{H}^{+} ;(i v) \mathrm{Ph}_{3} \mathrm{C}^{\cdot},-\mathrm{Ph}_{3} \mathrm{CH} ;(v)\left[\mathrm{Fe}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]^{+} ;(v i) \mathrm{K}\left[\mathrm{BHBu}_{3}{ }_{3}\right] ;(v i i)\left[\mathrm{CPh}_{3}\right]\left[\mathrm{BF}_{4}\right]$

with $\mathrm{Na}\left[\mathrm{BPh}_{4}\right]$ afforded crystals of the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ adduct which was characterised by X-ray crystallography, the results of which are shown in Figure 4 with parameters presented in Tables 6 and 7.

The structure of the cation of (12) is grossly similar to that of
$[\mathrm{Mo}(2)-\mathrm{C}(5) 2.419(6) \AA$ in (12) vs. $\mathrm{Mo}(2)-\mathrm{C}(5)$ 2.293(2) \AA in (3) ${ }^{4}$]. A similar Mo-C bond lengthening on protonation is observed for (1) and (2) ${ }^{3}$ in which the Mo-C ${ }_{\alpha}$ bond is bridged. The hydrogen atom, $\mathrm{H}(5)$, was directly located and is bonded to both $\mathrm{C}(5)[\mathrm{C}(5)-\mathrm{H}(5) 1.10(8) \AA]$ and $\mathrm{Mo}(2)[\mathrm{Mo}(2)-\mathrm{H}(5)$ $1.81(6) \AA]$ and, as such, may be described as agostic. ${ }^{17}$

Other consequences of protonation on the geometry of the $\mathrm{Mo}_{2}\left(\mu-\mathrm{C}_{8}\right)$ core of (12) [as compared with (3) ${ }^{4}$] are notable. The Mo-C distances involving Mo(2) [other than $\mathrm{Mo}(2)-\mathrm{C}(5)$] are lengthened $[\mathrm{by} 0.013(8)-0.061(6) \AA]$ and the $\mathrm{Mo}(1)-\mathrm{Mo}(2)$ bond length by $0.020(1) ~ \AA$, presumably as a consequence of increased positive charge on $\mathrm{Mo}(2)$. The $\mathrm{C}(4)-\mathrm{C}(5)$ bond length is markedly lengthened by protonation at $\mathrm{C}(5)$ [from 1.432(4) to 1.479(9) \AA] but does not reach alkyl proportions (ca. $1.54 \AA$), remaining intermediate between co-ordinated alkene and alkyl values. As in other β-agostic species, the $\mathrm{Mo}-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$ system shows a relatively small deviation from strict planarity $\left[\mathrm{Mo}-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)\right.$ torsion angle $\left.=-25(4)^{\circ}\right]$.

Thus the site of protonation in complex (2), as revealed by X ray crystallography, is found to be an α-ring carbon whilst that observed in (12) is on a δ-ring carbon. Those factors which determine the protonation site of lowest energy are subtle and difficult to gauge, but n.m.r. studies carried out for (12) indicate that the proton is fluxional between the α and δ sites as has been observed and discussed in detail for (2). ${ }^{3}$

Proton and ${ }^{13} \mathrm{C}$ n.m.r. data obtained at 292 K for complex (12) are listed in Table 1, and the variable temperature ${ }^{13} \mathrm{C}$ and

(5)

(10)

(8)

(9)

Scheme 2. (i) $\left[\mathrm{CPh}_{3}\right]\left[\mathrm{BF}_{4}\right]$; (ii) $\mathrm{Li}^{2}\left[\mathrm{CuMe}_{2}\right]$; (iii) $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$

(11)
analysis of the variation in ${ }^{13} \mathrm{C}$ chemical shifts was attempted [cf. (2) for which such analyses were carried out, making use of simplifying assumptions made possible by the symmetry of the $\mathrm{C}_{8} \mathrm{Me}_{8}$ ligand]. Nevertheless, several qualitative points emerge from these data when taken together with the observed ${ }^{1} J_{\mathrm{CH}}$ data involving $\mathrm{H}(5)$ at $\left.292 \mathrm{~K}, \int \mathrm{C}(5) \mathrm{H}(5)\right]=45$, $J[\mathrm{C}(8) \mathrm{H}(5)]<20$, and $J[\mathrm{C}(6) \mathrm{H}(5)]$ and $J \mathrm{C}(7) \mathrm{H}(5)]<5 \mathrm{~Hz}\}$. It is clear that, as in (2),(12) consists of an equilibrium mixture of two isomers in solution and equilibration remains fast on the n.m.r. time-scale above 223 K . The two isomers have $\mathbf{H}(5)$ directly bonded to a δ carbon, $\mathrm{C}(5)$, as in the solid-state structure, and to an α carbon, $\mathrm{C}(8)$, respectively. In both isomers this hydrogen is further co-ordinated in an agostic manner to Mo(2). The observed coupling constants and chemical shifts are therefore time averages weighted according to the concentrations of the two isomers. In contrast to (2), the δ-protonated

Figure 2. A view of the molecular structure of complex (11) showing the atom numbering scheme. Hydrogen atoms are omitted for clarity
isomer of (12) is the higher-concentration species at all temperatures $\left\{c f .{ }^{1} J_{\mathrm{CH}}\right.$ values for (2) are $J[\mathrm{C}(5) \mathrm{H}]=24$ and $\left.\left.\int \mathrm{C}(8) \mathrm{H}\right]=48 \mathrm{~Hz}\right\}$. As in (2) the effect of protonation is to cause an upfield change on the carbon atom's chemical shift. The ${ }^{13} \mathrm{C}$ chemical shifts of all $\mathrm{C}(1)-\mathrm{C}(8)$ are temperature dependent (Table 8) but those of $\mathrm{C}(5)$ and $\mathrm{C}(8)$ most notably so, as observed for (2). The temperature dependence of the chemical shifts of $C(5)$ and $C(8)$ are in the same sense as for (2) with that for the δ carbon, $\mathrm{C}(5)$, falling with decreased temperature and that for the α carbon, $\mathrm{C}(8)$, rising. The quantitative analysis applied to the variable-temperature ${ }^{13} \mathrm{C}$ n.m.r. data for complex (2) revealed that the temperature dependence of the equilibrium position led to the α-protonated isomer predominating

Table 4. Selected bond lengths (\AA) and angles (${ }^{\circ}$) for complex (11)

$\mathrm{Sb}-\mathrm{Cl}(1)$	2.364(4)	$\mathrm{Sb}-\mathrm{Cl}(2)$	2.979(3)	$\mathrm{Mo}(2)-\mathrm{C}(5)$	2.362(12)	$\mathrm{Cl}(6)-\mathrm{C}(99)$	1.707(21)
$\mathrm{Sb}-\mathrm{Cl}(3)$	2.422(3)	$\mathrm{Sb-Cl}(4)$	2530 (4)	$\mathrm{Cl}(7)-\mathrm{C}(99)$	1.832(19)	$\mathrm{C}(11)-\mathrm{C}(12)$	1.420 (23)
$\mathrm{Sb}-\mathrm{Cl}\left(2^{\mathbf{1}}\right)$	2.749(4)	$\mathrm{Mo}(1)-\mathrm{Mo}(2)$	2.625(2)	$\mathrm{C}(11)-\mathrm{C}(15)$	1.391(19)	$\mathrm{C}(12)-\mathrm{C}(13)$	1.390 (20)
$\mathrm{Mo}(1)-\mathrm{Mo}$ (3)	2.623(20)	$\mathrm{Mo}(1)-\mathrm{Cl}(5)$	2.533(4)	$\mathrm{C}(13)-\mathrm{C}(14)$	1.414(21)	$\mathrm{C}(14)-\mathrm{C}(15)$	1.392(19)
$\mathrm{Mo}(1)-\mathrm{C}(11)$	2.352(17)	$\mathrm{Mo}(1)-\mathrm{C}(12)$	2.340 (15)	$\mathrm{C}(21)-\mathrm{C}(22)$	1.460(28)	$\mathrm{C}(21)-\mathrm{C}(25)$	$1.359(26)$
Mo(1)-C(13)	2.322(15)	$\mathbf{M o}(1)-\mathrm{C}(14)$	2.323(14)	$\mathrm{C}(22)-\mathrm{C}(23)$	$1.315(31)$	$\mathrm{C}(23)-\mathrm{C}(24)$	1.288(29)
$\mathrm{Mo}(1)-\mathrm{C}(15)$	2.362 (17)	$\mathrm{Mo}(1)-\mathrm{C}(1)$	2.347(12)	C(24)-C(25)	1.338(22)	$\mathrm{C}(1)-\mathrm{C}(2)$	1.383(17)
$\mathrm{Mo}(1)-\mathrm{C}(2)$	2.420 (14)	$\mathrm{Mo}(1)-\mathrm{C}(3)$	2.392(15)	$\mathrm{C}(1)-\mathrm{C}\left(1^{\prime}\right)$	1.517(16)	$\mathrm{C}(2)-\mathrm{C}(3)$	1.399(18)
$\mathrm{Mo}(1)-\mathrm{C}(8)$	$2.408(12)$	$\mathbf{M o}(1)-\mathrm{C}(7)$	2.425(11)	$\mathrm{C}(2)-\mathrm{C}\left(2^{\prime}\right)$	1.507(17)	C(3)-C(4)	1.491(19)
$\mathrm{Mo}(1)-\mathrm{C}(6)$	2.387(13)	$\mathrm{Mo}(2)-\mathrm{Cl}(5)$	$2.585(5)$	$\mathrm{C}(3)-\mathrm{C}\left(3^{\prime}\right)$	1.544(17)	$\mathrm{C}(4)-\mathrm{C}(5)$	1.396(18)
$\mathrm{Mo}(2)-\mathrm{C}(21)$	2.291(17)	$\mathrm{Mo}(2)-\mathrm{C}(22)$	2.346(20)	$\mathrm{C}(4)-\mathrm{C}\left(4^{\prime}\right)$	1.533(23)	$\mathrm{C}(8)-\mathrm{C}(7)$	1.379(15)
Mo(2)-C(23)	$2.360(16)$	$\mathrm{Mo}(2)-\mathrm{C}(24)$	2.317(20)	$\mathrm{C}(8)-\mathrm{C}\left(8^{\prime}\right)$	1.539(20)	$\mathrm{C}(7)-\mathrm{C}(6)$	1.410(21)
Mo(2)-C(25)	$2.338(17)$	$\mathrm{Mo}(2)-\mathrm{C}(1)$	2.153(12)	$\mathrm{C}(7)-\mathrm{C}\left(7^{\prime}\right)$	1.492(20)	$\mathrm{C}(6)-\mathrm{C}(5)$	1.544(21)
$\mathbf{M o}(2)-\mathrm{C}(4)$	$2.353(14)$	$\mathrm{Mo}(2)-\mathrm{C}(8)$	2.180(13)	$\mathrm{C}(6)-\mathrm{C}\left(6^{\prime}\right)$	1.505(16)	$\mathrm{C}(5)-\mathrm{C}\left(5^{\prime}\right)$	1.509(19)
$\mathrm{Cl}(1)-\mathrm{Sb}-\mathrm{Cl}(2)$	79.8(1)	$\mathrm{Cl}(1)-\mathrm{Sb}-\mathrm{Cl}(3)$	90.6(1)	$\mathrm{Mo}(1)-\mathrm{Cl}(5)-\mathrm{Mo}(2)$	61.7(1)	$\mathrm{Mo}(1)-\mathrm{C}(1)-\mathrm{Mo}(2)$	$71.2(3)$
$\mathrm{Cl}(2)-\mathrm{Sb}-\mathrm{Cl}(3)$	169.8(1)	$\mathrm{Cl}(1)-\mathrm{Sb}-\mathrm{Cl}(4)$	92.3(1)	$\mathrm{Mo}(2)-\mathrm{C}(1)-\mathrm{Mo}(3)$	27.7(1)	$\mathrm{Mo}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	76.0(7)
$\mathrm{Cl}(2)-\mathrm{Sb}-\mathrm{Cl}(4)$	93.7(1)	$\mathrm{Cl}(3)-\mathrm{Sb}-\mathrm{Cl}(4)$	90.2(1)	$\mathrm{Mo}(2)-\mathrm{C}(1)-\mathrm{C}(2)$	118.3(8)	$\mathrm{Mo}(1)-\mathrm{C}(1)-\mathrm{C}\left(1^{\prime}\right)$	131.2(10)
$\mathrm{Cl}(1)-\mathrm{Sb}-\mathrm{Cl}\left(2^{\mathrm{l}}\right)$	86.4(1)	$\mathrm{Cl}(2)-\mathrm{Sb}-\mathrm{Cl}\left(2^{1}\right)$	87.4(1)	$\mathrm{Mo}(2)-\mathrm{C}(1)-\mathrm{C}\left(1^{\prime}\right)$	123.1(9)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}\left(1^{\prime}\right)$	118.0(11)
$\mathrm{Cl}(3)-\mathrm{Sb}-\mathrm{Cl}\left(2^{1}\right)$	88.5(1)	$\mathrm{Cl}(4)-\mathrm{Sb}-\mathrm{Cl}\left(2^{\mathrm{l}}\right)$	178.1(1)	$\mathrm{Mo}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	70.3(7)	$\mathrm{Mo}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	72.0(8)
$\mathrm{Mo}(2)-\mathrm{Mo}(1)-\mathrm{Cl}(5)$	60.1(1)	$\mathbf{M o}(2)-\mathrm{Mo}(1)-\mathrm{Cl}(1)$	51.0(3)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	113.3(11)	$\mathrm{Mo}(1)-\mathrm{C}(2)-\mathrm{C}\left(2^{\prime}\right)$	127.8(11)
$\mathrm{Cl}(5)-\mathrm{Mo}(1)-\mathrm{C}(1)$	66.4(3)	$\mathrm{Mo}(2)-\mathrm{Mo}(1)-\mathrm{C}(2)$	74.6(3)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}\left(2^{\prime}\right)$	121.8(11)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}\left(2^{\prime}\right)$	124.8(11)
$\mathrm{Cl}(5)-\mathrm{Mo}(1)-\mathrm{C}(2)$	98.9(3)	$\mathrm{C}(1)-\mathrm{Mo}(1)-\mathrm{C}(2)$	33.7(4)	$\mathrm{Mo}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	74.2(9)	$\mathrm{Mo}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	98.4(9)
$\mathrm{Mo}(2)-\mathrm{Mo}(1)-\mathrm{C}(3)$	73.9(3)	$\mathrm{Cl}(5)-\mathrm{Mo}(1)-\mathrm{C}(3)$	123.1(3)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	116.1(10)	$\mathrm{Mo}(1)-\mathrm{C}(3)-\mathrm{C}\left(3^{\prime}\right)$	121.8(9)
$\mathrm{C}(1)-\mathrm{Mo}(1)-\mathrm{C}(3)$	58.7(4)	$\mathrm{C}(2)-\mathrm{Mo}(1)-\mathrm{C}(3)$	33.8(4)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}\left(3^{\prime}\right)$	120.9(11)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}\left(3^{\prime}\right)$	116.3(11)
$\mathrm{Mo}(2)-\mathrm{Mo}(1)-\mathrm{C}(8)$	$51.1(3)$	$\mathrm{Cl}(5)-\mathrm{Mo}(1)-\mathrm{C}(8)$	66.1(3)	$\mathbf{M o}(2)-\mathrm{C}(4)-\mathrm{C}(3)$	101.2(9)	$\mathbf{M o}(2)-\mathrm{C}(4)-\mathrm{C}(5)$	73.1(8)
$\mathrm{C}(1)-\mathrm{Mo}(1)-\mathrm{C}(8)$	100.8(4)	$\mathrm{C}(2)-\mathrm{Mo}(1)-\mathrm{C}(8)$	124.5(5)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	116.8(12)	$\mathrm{Mo}(2)-\mathrm{C}(4)-\mathrm{C}\left(4^{\prime}\right)$	119.2(8)
$\mathrm{C}(3)-\mathrm{Mo}(1)-\mathrm{C}(8)$	109.4(5)	$\mathbf{M o}(2)-\mathrm{Mo}(1)-\mathrm{C}(7)$	75.4(3)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}\left(4^{\prime}\right)$	112.1(11)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}\left(4^{\prime}\right)$	125.5(13)
$\mathrm{Cl}(5)-\mathrm{Mo}(1)-\mathrm{C}(7)$	97.5(3)	$\mathrm{C}(1)-\mathrm{Mo}(1)-\mathrm{C}(7)$	125.5(5)	$\mathrm{Mo}(1)-\mathrm{C}(8)-\mathrm{Mo}(2)$	69.6(3)	$\mathrm{Mo}(1)-\mathrm{C}(8)-\mathrm{C}(7)$	74.1 (7)
$\mathrm{C}(2)-\mathrm{Mo}(1)-\mathrm{C}(7)$	$132.0(5)$	$\mathrm{C}(3)-\mathrm{Mo}(1)-\mathrm{C}(7)$	101.6(5)	$\mathrm{Mo}(2)-\mathrm{C}(8)-\mathrm{C}(7)$	119.0(10)	$\mathrm{Mo}(1)-\mathrm{C}(8)-\mathrm{C}\left(8^{\prime}\right)$	128.4(9)
$\mathrm{C}(8)-\mathrm{Mo}(1)-\mathrm{C}(7)$	33.1(4)	$\mathbf{M o}(2)-\mathrm{Mo}(1)-\mathrm{C}(6)$	75.3(3)	$\mathrm{Mo}(2)-\mathrm{C}(8)-\mathrm{C}\left(8^{\prime}\right)$	122.9(8)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}\left(8^{\prime}\right)$	118.1(11)
$\mathrm{Cl}(5)-\mathrm{Mo}(1)-\mathrm{C}(6)$	122.9(3)	$\mathrm{C}(1)-\mathrm{Mo}(1)-\mathrm{C}(6)$	111.4(5)	$\mathrm{Mo}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	72.8(7)	$\mathrm{Mo}(1)-\mathrm{C}(7)-\mathrm{C}(6)$	71.5(7)
$\mathrm{C}(2)-\mathrm{Mo}(1)-\mathrm{C}(6)$	101.7(5)	$\mathrm{C}(3)-\mathrm{Mo}(1)-\mathrm{C}(6)$	68.8(5)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	113.7(12)	$\mathrm{Mo}(1)-\mathrm{C}(7)-\mathrm{C}\left(7^{\prime}\right)$	128.6(10)
$\mathrm{C}(8)-\mathrm{Mo}(1)-\mathrm{C}(6)$	58.3(4)	$\mathrm{C}(7)-\mathrm{Mo}(1)-\mathrm{C}(6)$	34.1(5)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}\left(7^{\prime}\right)$	123.7(12)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}\left(7^{\prime}\right)$	122.4(10)
$\mathbf{M o}(1)-\mathrm{Mo}(2)-\mathrm{Cl}(5)$	58.2(1)	$\mathbf{M o}(1)-\mathrm{Mo}(2)-\mathrm{C}(1)$	57.8(3)	$\mathrm{Mo}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	74.4(7)	$\mathrm{Mo}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	97.8(7)
$\mathrm{Cl}(5)-\mathrm{Mo}(2)-\mathrm{C}(1)$	68.1(4)	$\mathbf{M o}(1)-\mathrm{Mo}(2)-\mathrm{C}(4)$	73.8(4)	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	113.6(11)	$\mathrm{Mo}(1)-\mathrm{C}(6)-\mathrm{C}\left(6^{\prime}\right)$	129.5(9)
$\mathrm{Cl}(5)-\mathrm{Mo}(2)-\mathrm{C}(4)$	129.4(4)	$\mathrm{C}(1)-\mathrm{Mo}(2)-\mathrm{C}(4)$	73.8(5)	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}\left(6^{\prime}\right)$	121.7(12)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}\left(6^{\prime}\right)$	113.3(3)
$\mathrm{Mo}(1)-\mathrm{Mo}(2)-\mathrm{C}(8)$	59.3(3)	$\mathrm{Cl}(5)-\mathrm{Mo}(2)-\mathrm{C}(8)$	68.4(4)	$\mathrm{Mo}(2)-\mathrm{C}(5)-\mathrm{C}(4)$	72.4(7)	$\mathbf{M o}(2)-\mathrm{C}(5)-\mathrm{C}(6)$	101.4(8)
$\mathrm{C}(1)-\mathrm{Mo}(2)-\mathrm{C}(8)$	115.5(5)	$\mathrm{C}(4)-\mathrm{Mo}(2)-\mathrm{C}(8)$	101.5(4)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	114.1(11)	$\mathrm{Mo}(2)-\mathrm{C}(5)-\mathrm{C}\left(5^{\prime}\right)$	119.9(8)
$\mathbf{M o}(1)-\mathrm{Mo}$ (2)-C(5)	74.1(3)	$\mathrm{Cl}(5)-\mathrm{Mo}(2)-\mathrm{C}(5)$	128.9(4)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}\left(5^{\prime}\right)$	125.7(14)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}\left(5^{\prime}\right)$	113.9(10)
$\mathrm{C}(1)-\mathrm{Mo}(2)-\mathrm{C}(5)$	102.7(4)	$\mathrm{C}(4)-\mathrm{Mo}(2)-\mathrm{C}(5)$	34.4(4)	$\mathrm{Cl}(6)-\mathrm{C}(99)-\mathrm{Cl}(7)$	110.2(8)	$\mathrm{Cl}(2)-\mathrm{Sb}-\mathrm{Cl}\left(2^{2}\right)$	87.4(1)
$\mathrm{C}(8)-\mathrm{Mo}(2)-\mathrm{C}(5)$	72.3(5)	$\mathbf{S b - C l}(2)-\mathbf{S b}^{\mathbf{1}}$	92.6(1)	$\mathrm{Sb}-\mathrm{Cl}\left(2^{\mathbf{l}}\right)-\mathrm{Sb}^{\mathbf{1}}$	92.6(1)		

Symmetry operation: I $1-x, 3-y,-z$.

Figure 3. A view of the molecular structure of the $\left[\mathrm{Sb}_{2} \mathrm{Cl}_{8}\right]^{2-}$ dianion of (11)
increasingly at higher temperatures, despite the δ-protonated isomer being of lower enthalpy. In the case of (12) the δ protonated isomer is predominant at all temperatures by virtue of an increased enthalpy difference (in favour of δ protonation) between the isomers. This predominance is sufficient to allow isolation and characterisation of (12) in the solid state as the δ protonated isomer, thereby supporting the postulate made in ref. 3 that δ - and α-protonated isomers of (2) exist in equilibrium.

(12)

Experimental

All reactions were carried out using standard Schlenk techniques under an atmosphere of dry oxygen-free dinitrogen. All solvents were distilled over suitable drying agents immediately prior to use.

Proton and ${ }^{13} \mathrm{C}$ n.m.r. spectra were recorded on JEOL

Table 5. Atomic co-ordinates ($\times 10^{4}$) for complex (11)

Atom	x	y	z
Sb	4 519(1)	15 824(1)	843(1)
Mo(1)	4 430(1)	10 272(1)	2741 (1)
Mo(2)	$5797(1)$	11 625(1)	2957(1)
Mo(3)*	5 519(17)	11 775(15)	3 455(14)
$\mathrm{Cl}(1)$	$3720(3)$	14 278(2)	890(2)
$\mathrm{Cl}(2)$	3882 (3)	15 325(3)	-929(2)
$\mathrm{Cl}(3)$	4 999(4)	15912 (3)	$2319(2)$
$\mathrm{Cl}(4)$	$3037(3)$	16847 (3)	802(2)
Cl(5)	4 801(3)	11 402(3)	$3989(2)$
$\mathrm{Cl}(6)$	$1566(4)$	9 289(4)	-497(3)
$\mathrm{Cl}(7)$	-296(4)	8 510(4)	-485(3)
C(11)	$2787(12)$	$9942(11)$	2 502(8)
C(12)	$3178(11)$	9 193(11)	2091(9)
C(13)	$3829(12)$	8 640(11)	2 685(10)
C(14)	3860 (10)	9043 (9)	3 461(7)
C(15)	3 199(11)	$9828(10)$	3 337(9)
C(21)	7 098(15)	12 298(14)	3890 (8)
C(22)	6 383(16)	$13100(15)$	3 687(14)
C(23)	$6333(15)$	13 303(11)	2921(11)
C(24)	$6872(14)$	12 727(13)	2 628(9)
C(25)	7 394(12)	12 123(12)	$3212(10)$
C(1)	6 023(9)	10 166(9)	3 540(7)
C(2)	$5904(10)$	$9315(9)$	$3050(8)$
C(3)	$5641(10)$	$9536(10)$	$2216(7)$
C(4)	6043 (10)	10 486(10)	1 973(7)
C(8)	4 308(9)	12 050(9)	$2428(7)$
C(7)	3 787(10)	11 565(9)	$1731(7)$
C(6)	4331 (11)	10 887(9)	1 403(7)
C(5)	$5387(10)$	11 206(9)	1556 (7)
$\mathrm{C}\left(1^{\prime}\right)$	6446(11)	10 031(11)	4 452(7)
$\mathrm{C}\left(2^{\prime}\right)$	$6083(12)$	8 267(9)	3 407(8)
C($\mathbf{3}^{\prime}$)	5415(11)	8 683(9)	1 573(7)
C(4')	$7057(11)$	10337 (11)	1890 (8)
C 8^{\prime})	3 808(11)	12 879(10)	2793 (8)
$\mathrm{C}\left(7^{\prime}\right)$	2 766(12)	$11798(10)$	$1312(8)$
C(6)	$3925(11)$	$10386(10)$	588(7)
C(5^{\prime})	5 555(12)	11 959(10)	945(7)
C(99)	962(15)	8 661(14)	82(9)

* Atomic site occupancy 0.061 (3).

Figure 4. A view of the molecular structure of complex (12) showing the atom numbering scheme. Methyl and cyclopentadienyl hydrogens are omitted for clarity

FX90Q, FX200, and Varian XL300 spectrometers as appropriate and are recorded in Table 1.

Preparations.- $\left[\mathrm{Mo}_{2}\left(\mu-\mathrm{C}_{8} \mathrm{Me}_{7} \mathrm{CH}_{2}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]\left[\mathrm{CF}_{3} \mathrm{SO}_{3}\right]$, (4). Method A, double protonation. To a solution of complex

Figure 5. Proton-decoupled ${ }^{13} \mathrm{C}$ n.m.r. spectrum of complex (12) measured at 292 K

Figure 6. Proton-decoupled ${ }^{13} \mathrm{C}$ n.m.r. spectrum of complex (12) measured at 223 K

Figure 7. Proton-coupled ${ }^{13} \mathrm{C}$ n.m.r. spectrum of complex (12) with selective irradiation of $\mathbf{H}(5)(-10.81$ p.p.m.) measured at 292 K

Figure 8. Fully proton-coupled ${ }^{13} \mathrm{C}$ n.m.r. spectrum of complex (12) measured at 292 K

Table 6. Selected bond lengths (\AA) and angles (${ }^{\circ}$) for complex (12)

$\mathbf{M o (1) - M o (2)}$	2.659(1)	$\mathrm{Mo}(1)-\mathrm{C}(1)$	2.251(5)	$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}(53)$	1.560(13)	$\mathrm{C}(6)-\mathrm{C}(7)$	1.422(10)
$\mathrm{Mo}(1)-\mathrm{C}(2)$	2.310 (6)	Mo(1)-C(3)	2.381 (6)	C(7)-C(8)	$1425(9)$	$\mathrm{C}(8)-\mathrm{C}\left(8^{\prime}\right)$	1.569(9)
$\mathrm{Mo}(1)-\mathrm{C}(6)$	$2.253(7)$	$\mathrm{Mo}(1)-\mathrm{C}(7)$	2.270(7)	$\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}(81)$	1.522(11)	$\mathrm{C}\left(8^{\prime}\right)$ - $\mathrm{C}(82)$	1.539(12)
$\mathrm{Mo}(1)-\mathrm{C}(8)$	2.293 (7)	$\mathrm{Mo}(1)-\mathrm{C}(101)$	2.421(7)	$\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}(83)$	1.517(11)	C(201)-C(202)	1.419(10)
$\mathrm{Mo}(1)-\mathrm{C}(102)$	$2.398(8)$	$\mathrm{Mo}(1)-\mathrm{C}(103)$	2.355(8)	$\mathrm{C}(201)-\mathrm{C}(205)$	1.389(11)	C(202)-C(203)	$1.384(10)$
$\mathrm{Mo}(1)-\mathrm{C}(104)$	$2.351(7)$	$\mathrm{Mo}(1)-\mathrm{C}(105)$	2.392(7)	C(203)-C(204)	1.390 (11)	C(204)-C(205)	1.413(10)
$\mathrm{Mo}(1)-\mathrm{C}(106)$	2.343(9)	$\mathrm{Mo}(1)-\mathrm{C}(107)$	2.326 (9)	B-C(301)	$1.625(11)$	B-C(401)	1.665(8)
$\mathrm{Mo}(1)-\mathrm{C}(108)$	$2.356(10)$	$\mathrm{Mo}(1)-\mathrm{C}(109)$	2.392(11)	B-C(501)	1.660(10)	B-C(601)	1.662(9)
$\mathrm{Mo}(1)-\mathrm{C}(110)$	$2.384(10)$	$\mathrm{Mo}(2)-\mathrm{C}(1)$	2.173(6)	$\mathrm{C}(301)-\mathrm{C}(302)$	1.411(8)	$\mathrm{C}(301)-\mathrm{C}(306)$	1.407(9)
$\mathrm{Mo}(2)-\mathrm{C}(4)$	2.226 (7)	$\mathrm{Mo}(2)-\mathrm{C}(5)$	2.419(6)	C(302)-C(303)	1.391(11)	C(303)-C(304)	1.374(10)
$\mathrm{Mo}(2)-\mathrm{C}(8)$	$2.178(6)$	$\mathrm{Mo}(2)-\mathrm{H}(5)$	1.81(6)	$\mathrm{C}(304)-\mathrm{C}(305)$	$1.374(9)$	$\mathrm{C}(305)-\mathrm{C}(306)$	1.390 (10)
H(5)-C(5)	1.10(8)	$\mathrm{Mo}(2)-\mathrm{C}(201)$	2.392(6)	$\mathrm{C}(401)-\mathrm{C}(402)$	1.399(9)	$\mathrm{C}(401)-\mathrm{C}(406)$	1.415(8)
$\mathrm{Mo}(2)-\mathrm{C}(202)$	2.388(6)	$\mathrm{Mo}(2)-\mathrm{C}(203)$	2.377(7)	$\mathrm{C}(402)-\mathrm{C}(403)$	1.386(9)	C(403)-C(404)	1.368(10)
$\mathrm{Mo}(2)-\mathrm{C}(204)$	2.368(7)	$\mathrm{Mo}(2)-\mathrm{C}(205)$	2.394(8)	$\mathrm{C}(404)-\mathrm{C}(405)$	1.398(11)	$\mathrm{C}(405)-\mathrm{C}(406)$	1.383(9)
$\mathrm{C}(1)-\mathrm{C}\left(1^{\prime}\right)$	1.537(8)	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.422(9)$	$\mathrm{C}(501)-\mathrm{C}(502)$	1.398(10)	$\mathrm{C}(501)-\mathrm{C}(506)$	1.390(10)
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}(11)$	1.531(9)	$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}(12)$	1.549(11)	$\mathrm{C}(502)-\mathrm{C}(503)$	1.399(10)	C(503)-C(504)	1.362(12)
$\mathrm{C}\left(1^{\prime}\right) \mathrm{C}(13)$	1.524(9)	$\mathrm{C}(2)-\mathrm{C}(3)$	1.434(9)	C(504)-C(505)	1.373(13)	$\mathrm{C}(505)-\mathrm{C}(506)$	1.407(11)
$\mathrm{C}(3)-\mathrm{C}\left(3^{\prime}\right)$	1.562(10)	$\mathrm{C}(3)-\mathrm{C}(4)$	1.464(11)	C(601)-C(602)	1.388(8)	$\mathrm{C}(601)-\mathrm{C}(606)$	1.392(10)
$\mathrm{C}\left(3^{\prime}\right)$ - $\mathrm{C}(31)$	1.512(11)	$\mathrm{C}\left(3^{\prime}\right) \mathrm{C}(32)$	1.539(14)	$\mathrm{C}(602)-\mathrm{C}(603)$	1.409(8)	$\mathrm{C}(603)-\mathrm{C}(604)$	1.364(10)
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}(33)$	1.539(12)	$\mathrm{C}(4)-\mathrm{C}(5)$	1.479(9)	$\mathrm{C}(604)-\mathrm{C}(605)$	1.417(11)	$\mathrm{C}(605)-\mathrm{C}(606)$	1.377(10)
$\mathrm{C}(5)-\mathrm{C}\left(5^{\prime}\right)$	1.569(10)	$\mathrm{C}(5)-\mathrm{C}(6)$	1.503(9)	C-Cl(1)	1.680(11)	$\mathrm{C}-\mathrm{Cl}(2)$	$1.678(14)$
$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}(51)$	1.521(11)	$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}(52)$	1.478(14)	$\mathrm{C}^{\prime}-\mathrm{Cl}(1)$	1.679(18)	$\mathrm{C}^{\prime}-\mathrm{Cl}\left(2^{\prime}\right)$	1.679(25)
$\mathrm{Mo}(2)-\mathrm{Mo}(1)-\mathrm{C}(1)$	51.7(2)	$\mathrm{Mo}(2)-\mathrm{Mo}(1)-\mathrm{C}(2)$	73.0(2)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}\left(3^{\prime}\right)$	119.7(6)	Mo(1)-C(3)-C(4)	94.4(4)
$\mathrm{C}(1)-\mathrm{Mo}(1)-\mathrm{C}(2)$	36.3(2)	$\mathrm{Mo}(2)-\mathrm{Mo}(1)-\mathrm{C}(3)$	72.7(2)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	113.5(6)	$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}(3)-\mathrm{C}(4)$	117.8(6)
$\mathrm{C}(1)-\mathrm{Mo}(1)-\mathrm{C}(3)$	64.5(2)	$\mathrm{C}(2)-\mathrm{Mo}(1)-\mathrm{C}(3)$	35.6(2)	$\mathrm{C}(3)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}(31)$	113.3(6)	$\mathrm{C}(3)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}(32)$	111.3(7)
$\mathrm{Mo}(2)-\mathrm{Mo}(1)-\mathrm{C}(6)$	74.6(2)	$\mathrm{C}(1)-\mathrm{Mo}(1)-\mathrm{C}(6)$	117.9(2)	$\mathrm{C}(31)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}(32)$	109.6(7)	$\mathrm{C}(3)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}(33)$	106.7(7)
$\mathrm{C}(2)-\mathrm{Mo}(1)-\mathrm{C}(6)$	106.5(2)	$\mathrm{C}(3)-\mathrm{Mo}(1)-\mathrm{C}(6)$	72.3(2)	$\mathrm{C}(31)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}(33)$	109.7(7)	$\mathrm{C}(32)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}(33)$	106.0(7)
$\mathbf{M o}(2)-\mathrm{Mo}(1)-\mathrm{C}(7)$	74.5(2)	$\mathrm{C}(1)-\mathrm{Mo}(1)-\mathrm{C}(7)$	126.0(2)	$\mathrm{Mo}(2)-\mathrm{C}(4)-\mathrm{C}(3)$	106.7(4)	$\mathrm{Mo}(2)-\mathrm{C}(4)-\mathrm{C}(5)$	78.7(4)
$\mathrm{C}(2)-\mathrm{Mo}(1)-\mathrm{C}(7)$	136.9(2)	$\mathrm{C}(3)-\mathrm{Mo}(1)-\mathrm{C}(7)$	107.0(2)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	118.7(6)	$\mathrm{Mo}(2)-\mathrm{C}(5)-\mathrm{C}(4)$	64.4(3)
$\mathrm{C}(6)-\mathrm{Mo}(1)-\mathrm{C}(7)$	36.6(2)	$\mathrm{Mo}(2)-\mathrm{Mo}(1)-\mathrm{C}(8)$	51.5(1)	$\mathrm{Mo}(2)-\mathrm{C}(5)-\mathrm{C}\left(5^{\prime}\right)$	131.9(5)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}\left(5^{\prime}\right)$	126.0 (6)
$\mathrm{C}(1)-\mathrm{Mo}(1)-\mathrm{C}(8)$	96.1(2)	$\mathrm{C}(2)-\mathrm{Mo}(1)-\mathrm{C}(8)$	124.5(2)	$\mathrm{Mo}(2)-\mathrm{C}(5)-\mathrm{C}(6)$	96.7(4)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$110.5(6)$
$\mathrm{C}(3)-\mathrm{Mo}(1)-\mathrm{C}(8)$	115.8(2)	$\mathrm{C}(6)-\mathrm{Mo}(1)-\mathrm{C}(8)$	65.1(2)	$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}(5)-\mathrm{C}(6)$	115.8(5)	$\mathrm{C}(5)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}(51)$	113.5(6)
$\mathrm{C}(7)-\mathrm{Mo}(1)-\mathrm{C}(8)$	36.4(2)	$\mathrm{Mo}(1)-\mathrm{Mo}(2)-\mathrm{C}(1)$	54.4(1)	$\mathrm{C}(5)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}(52)$	109.5(7)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$	102(3)
$\mathrm{Mo}(1)-\mathrm{Mo}(2)-\mathrm{C}(4)$	71.9(2)	$\mathrm{C}(1)-\mathrm{Mo}(2)-\mathrm{C}(4)$	79.7(2)	$\mathrm{Mo}(2)-\mathrm{C}(5)-\mathrm{H}(5)$	45(3)	$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}(5)-\mathrm{H}(5)$	91(4)
$\mathrm{Mo}(1)-\mathrm{Mo}(2)-\mathrm{C}(5)$	72.4(2)	$\mathrm{C}(1)-\mathrm{Mo}(2)-\mathrm{C}(5)$	108.1(2)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5)$	106(4)	$\mathrm{C}(51)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}(52)$	110.7(8)
$\mathrm{C}(4)-\mathrm{Mo}(2)-\mathrm{C}(5)$	36.8(2)	$\mathrm{Mo}(1)-\mathrm{Mo}(2)-\mathrm{C}(8)$	55.5(2)	$\mathrm{C}(5)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}(53)$	108.6(7)	$\mathrm{C}(51)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}(53)$	104.9(7)
$\mathrm{C}(1)-\mathrm{Mo}(2)-\mathrm{C}(8)$	101.9(2)	$\mathrm{C}(4)-\mathrm{Mo}(2)-\mathrm{C}(8)$	107.0(2)	$\mathrm{C}(52)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}(53)$	109.4(7)	$\mathrm{Mo}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	104.4(4)
$\mathrm{C}(5)-\mathrm{Mo}(2)-\mathrm{C}(8)$	78.5(2)	$\mathrm{Mo}(1)-\mathrm{C}(1)-\mathrm{Mo}(2)$	73.9(2)	$\mathrm{Mo}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	72.3(4)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	116.4(6)
$\mathrm{Mo}(1)-\mathrm{C}(1)-\mathrm{C}\left(1^{\prime}\right)$	129.1(4)	$\mathrm{Mo}(2)-\mathrm{C}(1)-\mathrm{C}\left(1^{\prime}\right)$	$130.2(4)$	$\mathrm{Mo}(1)-\mathrm{C}(7)-\mathrm{C}(6)$	71.0 (4)	$\mathrm{Mo}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	$72.7(4)$
$\mathrm{Mo}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	74.1 (3)	$\mathrm{Mo}(2)-\mathrm{C}(1)-\mathrm{C}(2)$	109.7(4)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	118.6(5)	$\mathrm{Mo}(1)-\mathrm{C}(8)-\mathrm{Mo}(2)$	72.9 (2)
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}(1)-\mathrm{C}(2)$	118.7(6)	$\mathrm{C}(1)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}(11)$	110.6(5)	$\mathrm{Mo}(1)-\mathrm{C}(8)-\mathrm{C}(7)$	70.9(4)	$\mathrm{Mo}(2)-\mathrm{C}(8)-\mathrm{C}(7)$	$111.0(4)$
$\mathrm{C}(1)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}(12)$	113.1(6)	$\mathrm{C}(11)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}(12)$	105.5(6)	$\mathrm{Mo}(1)-\mathrm{C}(8)-\mathrm{C}\left(8^{\prime}\right)$	136.0(5)	$\mathrm{Mo}(2)-\mathrm{C}(8)-\mathrm{C}\left(8^{\prime}\right)$	129.0(5)
$\mathrm{C}(1)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}(13)$	110.9(5)	$\mathrm{C}(11)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}(13)$	109.1(6)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}\left(8^{\prime}\right)$	$117.9(5)$	$\mathrm{C}(8)-\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}(81)$	112.4 (6)
$\mathrm{C}(12)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}(13)$	107.5(6)	$\mathrm{Mo}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	69.6 (3)	$\mathrm{C}(8)-\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}(82)$	106.5(5)	$\mathrm{C}(81)-\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}(82)$	105.3(6)
$\mathrm{Mo}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	74.9(3)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	120.1(6)	$\mathrm{C}(8)-\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}(83)$	112.0(5)	$\mathrm{C}(81)-\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}(83)$	109.2(6)
$\mathrm{Mo}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	69.5(3)	$\mathrm{Mo}(1)-\mathrm{C}(3)-\mathrm{C}\left(3^{\prime}\right)$	132.3(4)	$\mathrm{C}(82)-\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}(83)$	111.4(7)	$\mathbf{M o}(2)-\mathbf{H}(5)-\mathrm{C}(5)$	110(5)

(1) ${ }^{3, *}(0.5 \mathrm{~g}, 0.93 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$, an excess of freshly distilled $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}\left(0.1 \mathrm{~cm}^{3}\right)$ was added dropwise with continuous stirring. After 12 h , pentane $\left(10 \mathrm{~cm}^{3}\right)$ was added to the reaction mixture resulting in the separation of a dark purple oil. All solvents were then removed by syringe and $\mathrm{Et}_{2} \mathrm{O}$ (10 cm^{3}) was added to the purple oil in which most of it dissolves. Further addition of pentane resulted in the precipitation of a purple powder leaving the excess of $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ in solution. Further washing in $\mathrm{Et}_{2} \mathrm{O}$ and pentane produced (4) as a purple crystalline powder ($0.45 \mathrm{~g}, 70 \%$ yield) (Found: C, 47.1; H, 4.8. $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~F}_{3} \mathrm{Mo}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires $\mathrm{C}, 47.2 ; \mathrm{H}, 4.8 \%$). Crystals suitable for X-ray diffraction were obtained by solvent diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of (4) at $-30^{\circ} \mathrm{C}$ over a period of days.
Method B , reaction with ferrocenium cation. A suspension of $\left[\mathrm{Fe}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]\left[\mathrm{BF}_{4}\right](0.26 \mathrm{~g}, 0.93 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$

[^2]was added to a stirred $\left(-78^{\circ} \mathrm{C}\right)$ solution of complex (1) $(0.25 \mathrm{~g}$, 0.46 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$. The reaction mixture was allowed to warm to room temperature and after 12 h diethyl ether ($5 \mathrm{~cm}^{3}$) was added resulting in the precipitation of the purple crystalline material (4) $\left(\mathrm{BF}_{4}\right.$ salt) $(0.20 \mathrm{~g}, 85 \%)$, which was identified by comparison of the n.m.r. spectra.

Method C, reaction with $\left[\mathrm{CPh}_{3}\right]\left[\mathrm{BF}_{4}\right]$. Trityl tetrafluoroborate ($0.31 \mathrm{~g}, 0.93 \mathrm{mmol}$) was added to a stirred (room temperature) solution of complex (1) $(0.50 \mathrm{~g}, 0.93 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(15 \mathrm{~cm}^{3}\right)$. After 24 h diethyl ether ($10 \mathrm{~cm}^{3}$) was added resulting in a purple crystalline precipitate of (4) $\left(\mathrm{BF}_{4}\right.$ salt $)(0.41$ $\mathrm{g}, 80 \%$) which was washed with further diethyl ether $\left(10 \mathrm{~cm}^{3}\right)$ and dried under vacuum.
$\left[\mathrm{Mo}_{2}\left(\mu-\mathrm{C}_{8} \mathrm{Me}_{7} \mathrm{Et}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$, (5). A freshly prepared solution of $\mathrm{Li}\left[\mathrm{CuMe}_{2}\right](0.3 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}\left(10 \mathrm{~cm}^{3}\right)$ was added to a solution of complex (4) $(0.15 \mathrm{~g}, 0.272 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10$ cm^{3}) at $-78^{\circ} \mathrm{C}$. After stirring for 30 min the solvent was removed in vacuo and the crude product dissolved in $\mathrm{Et}_{2} \mathrm{O}$ ($20 \mathrm{~cm}^{3}$). After filtration through alumina to remove all particulate matter the $\mathrm{Et}_{2} \mathrm{O}$ was removed in vacuo and the product dissolved in the minimum of hexane. Purification by

Table 7. Atomic co-ordinates ($\times 10^{4}$) for complex (12)

Atom	x	y	z	Atom	x	y	z
Mo(1)	2990 (1)	$2725(1)$	2 553(1)	C(201)	$2652(5)$	-640(4)	$2421(6)$
$\mathrm{Mo}(2)$	2 277(1)	$1084(1)$	2 178(1)	C(202)	$2502(5)$	-594(4)	$1306(6)$
C(1)	3 624(4)	1 194(4)	1 801(4)	C(203)	$1607(5)$	-175(5)	1 109(6)
$\mathrm{C}\left(1^{\prime}\right)$	4 542(4)	558(5)	2082(5)	C(204)	1193 (5)	42(4)	2076(6)
C(11)	4 657(5)	-471(5)	$1409(6)$	C(205)	1841 (5)	-254(4)	$2895(6)$
$\mathrm{C}(12)$	5350 (5)	1013 (6)	1846 (7)	B	7646 (5)	$2814(5)$	$4898(6)$
C(13)	4 637(5)	425(5)	3 263(5)	C(301)	$6870(4)$	$2545(4)$	5 555(5)
C(2)	3 566(5)	1827 (5)	997(5)	C(302)	$6610(5)$	$3102(4)$	6 541(5)
C(3)	2 709(5)	2384 (4)	669(4)	C(303)	5871 (5)	$2999(5)$	7 066(6)
C(3^{\prime})	2 648(6)	$3040(5)$	-251(6)	C(304)	$5350(5)$	2316 (5)	6 622(6)
C(31)	2002(7)	$4024(6)$	-56(7)	C(305)	$5588(5)$	1730 (5)	5 678(5)
C(32)	3 582(7)	$3229(7)$	-459(8)	C(306)	$6326(4)$	1840 (5)	5 157(5)
C(33)	2333 (9)	2423 (8)	-1278(6)	C(401)	8065(4)	$1824(4)$	4048 (5)
C(4)	1952(5)	1887 (5)	751(4)	C(402)	$7638(4)$	$1593(5)$	$3045(5)$
C(5)	$1217(5)$	2 403(4)	1 442(5)	C(403)	$7951(5)$	736(5)	$2364(6)$
C(5)	180(5)	$2525(5)$	1 128(6)	C(404)	8 708(5)	77(5)	$2631(7)$
C(51)	-67(6)	$1672(6)$	328(7)	C(405)	9 161(5)	285(5)	3 623(6)
C(52)	-323(7)	2652(9)	2 104(9)	C(406)	8 850(4)	$1138(5)$	4 306(6)
C(53)	-115(7)	3 471(7)	547(10)	C(501)	8 466(4)	$3174(4)$	5 726(5)
C(6)	$1508(5)$	$3256(4)$	2 179(5)	C(502)	$8912(4)$	3945 (5)	$5609(6)$
C(7)	1 628(5)	$3146(5)$	3 284(5)	C(503)	$9601(5)$	4 214(5)	$6334(7)$
C(8)	2048(4)	2 199(5)	3 582(5)	C(504)	$9871(5)$	$3722(6)$	7 198(7)
C(8)	2048(5)	2043(5)	$4785(5)$	C(505)	9 461(6)	2948(6)	$7335(7)$
C(81)	$2115(7)$	2992(7)	5 546(6)	C(506)	8 758(5)	2 688(5)	6616 (6)
C(82)	$1117(5)$	$1813(6)$	4 939(6)	C(601)	7 161(4)	3 710(4)	4 175(5)
C(83)	$2802(6)$	$1212(7)$	5 084(6)	C(602)	6266 (4)	4 183(4)	4247 (5)
$\mathrm{C}(101)^{a}$	4 402(4)	$3120(5)$	3 369(6)	C(603)	$5859(4)$	4 951(4)	3644 (5)
$\mathrm{C}(102)^{a}$	4230	3530	2390	C(604)	$6351(5)$	$5263(5)$	$2950(5)$
$\mathrm{C}(103)^{a}$	3426	4259	2469	C(605)	7268 (6)	$4802(5)$	$2851(6)$
C(104) ${ }^{\text {a }}$	3102	4299	3497	C(606)	7 630(5)	4042 (5)	3 444(5)
C(105) ${ }^{\text {a }}$	3705	3596	4054	$\mathrm{C}^{\text {c }}$	7049 (7)	3 107(13)	10 569(5)
C(106) ${ }^{\text {b }}$	3 202(6)	4 007(7)	$3927(6)$	$\mathrm{C}^{\text {d }}$	$6477(11)$	4026 (19)	9666 (28)
C(107) ${ }^{\text {b }}$	4045	3360	3763	$\mathrm{Cl}(1)$	$7478(2)$	3 278(3)	$9444(4)$
$\mathrm{C}(108){ }^{\text {b }}$	4301	3428	2727	$\mathrm{Cl}(2){ }^{\text {c }}$	$6039(4)$	$2764(5)$	$10333(5)$
C(109) ${ }^{\text {b }}$	3617	4117	2251	$\mathrm{Cl}\left(2^{\prime}\right)^{d}$	$5462(8)$	$4385(15)$	10 183(13)
C(110) ${ }^{\text {b }}$	2937	4475	2993				

${ }^{a}$ Atomic site occupancy $0.55(1) .{ }^{b}$ Atomic site occupancy $0.45(1) .{ }^{c}$ Atomic site occupancy $0.68(1) .{ }^{d}$ Atomic site occupancy $0.32(1)$.

Table 8. Variation in ${ }^{13} \mathrm{C}$ n.m.r. chemical shifts with temperature for complex (12)*

T	$\mathrm{C}(1)$	$\mathrm{C}(8)$	$\mathrm{C}(2)$	$\mathrm{C}(3)$	$\mathrm{C}(6)$	$\mathrm{C}(5)$	$\mathrm{C}(4)$	$\mathrm{C}(7)$	$\mathrm{C}_{5} \mathbf{H}_{5}(\mathrm{~A})$	$\mathrm{C}_{5} \mathbf{H}_{5}(\mathrm{~B})$
292	211.2	197.0	103.5	102.4	99.8	69.3	61.0	60.2	98.2	91.6
273	210.6	197.5	103.3	101.8	99.3	68.2	60.5	59.7	97.9	91.3
253	21.4	198.2	103.4	101.5	99.1	67.3	60.3	59.4	97.9	91.2
233	210.2	199.1	103.5	101.2	98.9	66.4	60.2	59.1	98.0	91.2
223	210.0	199.6	103.6	101.1	98.8	66.0	60.1	59.0	98.0	91.2
	-1.2	2.6	+-0.1	-1.3	-1.0	-3.3	-0.9	-1.2	-0.2	-0.4

* The signals for $C(8)$ and $C(5)$ broaden as the temperature is lowered and show the largest change in chemical shift.

Table 9. Variation in ${ }^{1} \mathrm{H}$ n.m.r. chemical shifts with temperature for complex (12)

T	$\mathrm{H}(2)$	$\mathbf{H}(4)$	$\mathbf{H}(6)$	$\mathbf{H}(7)$	$\mathbf{H}(5)$	$\mathbf{C H C l}_{3}$
293	7.15	2.29	7.45	4.89	-10.81	7.23
273	7.14	2.28	7.43	4.85	-10.85	7.23
253	7.13	2.27	7.42	4.80	-10.89	7.23
233	7.12	2.26	7.41	4.76	-10.93	7.23
218	7.11	2.25	7.39	4.72	-10.96	7.24
	-0.04	-0.04	-0.06	-0.17	-0.15	0.00

* Negative denotes a shift to high field (low frequency) as temperature is lowered. One ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ coupling varies measurably with temperature, namely ${ }^{4} J[H(6) H(5)]=3.0(293), 2.4$ (273), 1.8 (253), 1.2 (233), and $<1.0 \mathrm{~Hz}(218 \mathrm{~K})$. Measured T_{1} for $\mathrm{H}(5)$ is $0.35(2) \mathrm{s}$.
column chromatography (alumina/hexane) afforded a purple solution of complex (5). Reduction of the solvent volume and
cooling to $-78^{\circ} \mathrm{C}$ afforded pure (5) as purple crystals (Found: $\mathrm{C}, 58.6 ; \mathrm{H}, 6.6 . \mathrm{C}_{27} \mathrm{H}_{36} \mathrm{Mo}_{2}$ requires $\mathrm{C}, 58.7 ; \mathrm{H}, 6.5 \%$). Mass spectrum: $m / z 552, P$.

Compound (6) was prepared in an analogous manner using $\mathrm{Li}\left[\mathrm{CuPh}_{2}\right]$ (yield 74%) (Found: $\mathrm{C}, 62.8$; $\mathrm{H}, 6.1 . \mathrm{C}_{31} \mathrm{H}_{36} \mathrm{Mo}_{2}$ requires $\mathrm{C}, 62.5 ; \mathrm{H}, 6.2 \%$). Mass spectrum: $m / z 614, P$.
[$\mathrm{Mo}_{2}\left(\mu-\mathrm{C}_{8} \mathrm{Me}_{7} \mathrm{CH}_{2} \mathrm{SMe}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$], (7). A solution of $\mathrm{Me}_{2} \mathrm{~S}_{2}(0.1 \mathrm{~g}, 0.106 \mathrm{mmol})$ was reduced over a sodium amalgam in tetrahydrofuran (thf) ($10 \mathrm{~cm}^{3}$) by stirring overnight. A fraction of the resulting solution of $\mathrm{Na}[\mathrm{SMe}]\left(2 \mathrm{~cm}^{3}\right)$ was added to a suspension of complex (4) $(0.1 \mathrm{~g}, 0.146 \mathrm{mmol})$ in thf $\left(10 \mathrm{~cm}^{3}\right)$ and the mixture was stirred at room temperature for 12 h . The thf was removed in vacuo and the resulting purple residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}\left(5 \mathrm{~cm}^{3}\right)$ and purified by low-temperature column chromatography (alumina/ $\mathrm{Et}_{2} \mathrm{O}$) which afforded a purple solution. Removal of the solvent in vacuo followed by recrystallisation ($-78^{\circ} \mathrm{C}$) from hexane afforded purple crystals

Table 10. Structure analyses of compounds (4), (11), and (12)*

Crystal data

Formula

M
Crystal system
Space group (no.)
a / \AA
b / \AA
$\underset{\alpha /{ }^{\circ}}{c}$
$\alpha /{ }^{\circ}{ }^{\circ}{ }^{\circ}{ }^{\circ}{ }^{\circ}{ }^{\circ}$
$\gamma /{ }^{\circ}$
$\stackrel{\gamma / \rho^{\circ}}{U / \AA^{3}}$
$Z_{Z}^{T / K}$
Z
$D_{\mathrm{c}} / \mathrm{g} \mathrm{cm}^{-3}$
F(000)
$\mu\left(\mathrm{Mo}-K_{\alpha}\right) / \mathrm{cm}^{-1}$
Data collection and reduction
Crystal dimensions (mm)
2θ range (${ }^{\circ}$)
Scan width, ω°
Total data
Unique data
'Observed' data (N_{0})
Observation criterion $\left[F^{2}>n \sigma\left(F^{2}\right)\right]$
No. azimuthal scan data
Min., max. transmission coefficients
Refinement

Disordered atoms	$\mathrm{C}(59), \mathrm{C}(63)$
Least-squares variables $\left(N_{\mathrm{v}}\right)$	648
R	0.058
R^{\prime}	0.065
S	2.04
g	0.0002
Final difference map features $\left(\mathrm{e} \AA^{-3}\right)$	$+1.2,-0.6$

(4)
$\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~F}_{3} \mathrm{Mo}_{2} \mathrm{O}_{3} \mathrm{~S}$
686.5

Monoclinic
$P 2_{1} / \boldsymbol{c}$ (no. 14)
19.251(9)
18.078(8)
16.963(8)

90
113.79(4)

90
5 402(4)
295
8
1.69

2768
10.3
$0.7 \times 0.45 \times 0.3$
3- 50
$1.0+\Delta \alpha_{1} \alpha_{2}$
7087
5573
5159
2
213
$0.584,0.683$
*Details in common: $\lambda\left(\right.$ Mo- $\left.K_{\alpha}\right) 0.71069 \AA ;$ scan method, $\omega-2 \theta ; R=\Sigma|\Delta| / \Sigma\left|F_{0}\right| ; R^{\prime}=\left(\Sigma w \Delta^{2} / \Sigma w F_{0}{ }^{2}\right)^{\frac{1}{2}} ; S=\left[\Sigma w \Delta^{2} /\left(N_{\mathrm{o}}-N_{\mathrm{v}}\right)\right]^{\ddagger} ; \Delta=F_{\mathrm{o}}-F_{\mathrm{c}} ; w=$ $\left[\sigma_{\mathrm{c}}{ }^{2}\left(F_{\mathrm{o}}\right)+g F_{\mathrm{o}}{ }^{2}\right]^{-1} ; \sigma_{\mathrm{c}}{ }^{2}\left(F_{\mathrm{o}}\right)=$ variance in F_{o} due to counting statistics.

(11)	(12)
$\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{Cl}_{7} \mathrm{Mo}_{2} \mathrm{Sb}$	$\mathrm{C}_{59} \mathrm{H}_{73} \mathrm{BCl}_{2} \mathrm{Mo}_{2}$
922.4	1055.8
Monoclinic	Triclinic
$P 2_{1} / \boldsymbol{n}$ (no. 14)	PI (no. 2)
14.549(7)	15.149(4)
13.231(4)	13.793(3)
17.040(4)	12.660(2)
90	98.37(2)
105.95(3)	94.90(2)
90	78.72(2)
3 154(2)	$2562(1)$
205	205
4	2
1.94	1.37
1808	1200
22.4	6.2
ca. 0.4 diameter	$0.6 \times 0.25 \times 0.2$
3-40	4-56
$1.0+\Delta \alpha_{1} \alpha_{2}$	$1.2+\Delta \alpha_{1} \alpha_{2}$
3504	7962
2544	7522
2493	6407
2	2.5
-	-
-	-
[partial occupancy Mo(3)]	$\mathrm{C}_{5} \mathrm{H}_{5}$ on $\mathrm{Mo}(1), \mathrm{CH}_{2} \mathrm{Cl}_{2}$
333	619
0.059	0.053
0.076	0.067
3.06	1.58
0.00022	0.0008
+1.6, -1.2	+1.1, - 1.4

of complex (7) $(0.07 \mathrm{~g}, 78 \%)$ (Found: C, $54.5 ; \mathrm{H}, 6.5$. $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{Mo}_{2} \mathrm{~S}$ requires $\mathrm{C}, 55.5 ; \mathrm{H}, 6.2 \%$).
$\left[\mathrm{Mo}_{2}\left(\mu-\mathrm{C}_{8} \mathrm{Me}_{6} \mathrm{EtCH}_{2}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]\left[\mathrm{BF}_{4}\right]$, (8). Trityl tetrafluoroborate ($0.31 \mathrm{~g}, 0.93 \mathrm{mmol}$) was added to a stirred (room temperature) solution of complex (5) ($0.51 \mathrm{~g}, 0.93 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(15 \mathrm{~cm}^{3}\right)$. After 24 h diethyl ether $\left(10 \mathrm{~cm}^{3}\right)$ was added and the resulting purple precipitate collected. Recrystallisation $\left(0^{\circ} \mathrm{C}\right)$ from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}(1: 2)$ afforded purple crystals of complex (8) $(0.51 \mathrm{~g}, 86 \%)$ (Found: C, $50.2 ; \mathrm{H}, 5.1$. $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{BF}_{4} \mathrm{Mo}_{2}$ requires $\mathrm{C}, 50.8 ; \mathrm{H}, 5.5 \%$).
$\left[\mathrm{Mo}_{2}\left(\mu-\mathrm{C}_{8} \mathrm{Me}_{6} \mathrm{Et}_{2}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$, (9). This was prepared and purified in a manner identical to the preparation of complex (5) from (4) (yield 79\%) (Found: C, 60.0; H, 6.7. $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{Mo}_{2}$ requires $\mathrm{C}, 60.4 ; \mathrm{H}, 6.8 \%$). Mass spectrum: $m / z 566$, P.
$\left[\mathrm{Mo}_{2}\left(\mu-\mathrm{C}_{8} \mathrm{Me}_{8}\right)(\mu-\mathrm{Cl})\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]\left[\mathrm{SbCl}_{4}\right]$, (11). A solution of complex (1) $(0.2 \mathrm{~g}, 0.372 \mathrm{mmol})$ was dissolved in $\mathrm{Et}_{2} \mathrm{O}$ ($15 \mathrm{~cm}^{3}$) and cooled to $-78^{\circ} \mathrm{C}$. To this a solution of $\left[\mathrm{NPr}^{\mathrm{n}}{ }_{4}\right]\left[\mathrm{SbCl}_{6}\right](0.19 \mathrm{~g}, 0.370 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ was slowly added with continuous stirring, resulting in the immediate formation of a red-brown precipitate of (11). The mother-liquor was removed by syringe and the solid product washed with $\mathrm{Et}_{2} \mathrm{O}\left(3 \times 10 \mathrm{~cm}^{3}\right)$. Crystallisation by solvent diffusion of $\mathrm{Et}_{2} \mathrm{O}\left(10 \mathrm{~cm}^{3}\right)$ into a $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \mathrm{~cm}^{3}\right)$ solution of complex (11) at $-30^{\circ} \mathrm{C}$ over a period of days afforded crystals suitable for X-ray diffraction (yield 48%) (Found: C, $35.0 ; \mathrm{H}, 4.1$. $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{Cl}_{4} \mathrm{Mo}_{2} \mathrm{Sb} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ requires C, 36.6; $\mathrm{H}, 4.1 \%$). The low
observed carbon value is attributed to slow loss of solvent from the crystals.
$\left[\mathrm{Mo}_{2}\left(\mu-\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{Bu}_{4}^{\mathrm{t}}\right)\left(\mu_{\mathrm{Mo}, \mathrm{C}}-\mathrm{H}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]\left[\mathrm{BF}_{4}\right]$, (12). To a solution of $\left[\mathrm{MO}_{2}\left(\mu-\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{Bu}_{4}^{\mathrm{t}}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right](0.4 \mathrm{~g}, 0.62 \mathrm{mmol})$ in ether ($5 \mathrm{~cm}^{3}$) an excess of $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}\left(0.5 \mathrm{~cm}^{3}\right)$ was added dropwise and the solution stirred. Stirring was continued for 23 h at room temperature after which time the ether was removed in vacuo giving a purple oily residue. Further washings with fresh ether ($3 \times 10 \mathrm{~cm}^{3}$) were carried out to remove excess of $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ resulting in a purple powder. Recrystallisation by solvent diffusion of $\mathrm{Et}_{2} \mathrm{O}\left(10 \mathrm{~cm}^{3}\right)$ into a $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \mathrm{~cm}^{3}\right)$ solution of complex (12) gave purple crystals of $\left[\mathrm{Mo}_{2}(\mu-\right.$ $\left.\left.\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{Bu}_{4}^{\mathrm{t}}\right)\left(\mu_{\mathrm{Mo}, \mathrm{C}}-\mathrm{H}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]\left[\mathrm{BF}_{4}\right](0.3 \mathrm{~g}, 65 \%$ yield).

Crystals suitable for X-ray diffraction were obtained by metathesis with $\mathrm{Na}\left[\mathrm{BPh}_{4}\right]$. Equimolar quantities of $\left[\mathrm{Mo}_{2}(\mu-\right.$ $\left.\left.\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{Bu}_{4}^{\mathrm{t}}\right)\left(\mu_{\mathrm{Mo}, \mathrm{C}}-\mathrm{H}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]\left[\mathrm{BF}_{4}\right]$ and $\mathrm{Na}\left[\mathrm{BPh}_{4}\right]$ were dissolved in $90 \% \quad \mathrm{CH}_{2} \mathrm{Cl}_{2}-10 \% \mathrm{MeOH}$ over which an equivalent volume of $\mathrm{Et}_{2} \mathrm{O}$ was layered. Slow diffusion at $-20^{\circ} \mathrm{C}$ produced crystals of $\left[\mathrm{Mo}_{2}\left(\mu-\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{Bu}_{4}{ }_{4}\right)\left(\mu_{\mathrm{Mo}, \mathrm{C}}-\mathrm{H}\right)(\eta-\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]\left[\mathrm{BPh}_{4}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$.
N.M.R. Spectroscopic Studies for Complex (12).-All n.m.r. spectra for complex (12) as its BF_{4} salt were recorded on a Varian XL 300 spectrometer using the pulse Fourier-transform technique at $299.92,75.42$, and 19.55 MHz for ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{95}$ Mo respectively. Proton n.m.r. data were collected for samples dissolved in degassed $\mathrm{CDCl}_{3}\left(\right.$ ca. $\left.0.2 \mathrm{~mol} \mathrm{dm}^{-3}\right)$ and contained in
tubes (outside diameter 5 mm) rotated at $c a .20 \mathrm{~Hz},{ }^{13} \mathrm{C}$ and ${ }^{93} \mathrm{Mo}$ data were obtained from similar solutions ($\mathrm{CDCl}_{3}, \mathrm{ca} .0 .2$ $\mathrm{mol} \mathrm{dm}{ }^{-3}$) in tubes (outside diameter 10 mm) rotated at $c a .15$ Hz . The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts are reported downfield of SiMe_{4} while the ${ }^{95} \mathrm{Mo}$ spectrum is referenced externally to a 2 mol dm ${ }^{-3}$ solution of $\mathrm{Na}_{2}\left[\mathrm{MoO}_{4}\right]$ in $\mathrm{D}_{2} \mathrm{O}$ at apparent pH 11.

The two-dimensional ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ chemical shift correlation was acquired using the following parameters: ${ }^{13} \mathrm{C} 90^{\circ}$ pulse, $18 \mu \mathrm{~s}$; ${ }^{1} \mathrm{H} 90^{\circ}$ pulse, $27 \mu \mathrm{~s} ; 128$ transients; 128 increments; spectral widths $6000 \times 2200 \mathrm{~Hz}$; Fourier-transform size, 1024×512 points; total experiment time, $c a .14 \mathrm{~h}$.

X-Ray Crystallographic Studies.-Structure determinations for complexes (4) $\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right.$ salt), (11) $\left(\mathrm{SbCl}_{4}\right.$ salt) $\cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$, and (12) $\left(\mathrm{BPh}_{4}\right.$ salt $) \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$. Many of the details of the structure analyses carried out are listed in Table 10. X-Ray diffraction measurements were made using Nicolet four-circle P3m diffractometers on single crystals mounted in thin-walled glass capillaries. For (11) and (12) data were collected at reduced temperature using a Nicolet LT-1 crystal-cooling device. Cell dimensions for each analysis were determined from the settingangle values of 15 centred reflections.
For each structure analysis, intensity data were collected by $\omega-2 \theta$ scans for unique portions of reciprocal space and corrected for Lorentz, polarisation, crystal decay (of $c a .0,40$, and 0% respectively), and long-term intensity fluctuations, on the basis of the intensities of three check reflections repeatedly measured during data collection. Corrections for X-ray absorption effects were applied for complex (4) only. For (11) crystal decomposition prevented both measurement of the crystal faces (and therefore absorption correction) and any useful data collection for $2 \theta>40^{\circ}$. Only those reflections with pre-scan counts above a low threshold of 20 counts s^{-1} and having $2 \theta>40^{\circ}$ were measured for (12) and above 30 counts s^{-1} (for all 20) were measured for (4). The structures were solved by heavyatom (Patterson and difference Fourier) methods, and refined by blocked-cascade least squares against F. For (12) one cyclopentadienyl ring [on Mo(1)] showed a two-site disorder, as did the dichloromethane solvent. In (4) there are two crystallographically distinct cations, one of which displays disorder affecting atoms $\mathrm{C}(59)$ and $\mathrm{C}(63)$, corresponding to atoms $\mathbf{C}(9)$ and $\mathrm{C}(13)$ in Figure 1. These atoms adopt two conformations: one of occupancy $0.51(1)$ in which $\mathrm{C}(59)$ is bonded to $\operatorname{Mo}(4)$ (i.e. is a methylene carbon), and one of occupancy $0.49(1)$ in which $\mathrm{C}\left(63^{\prime}\right)$ is bonded to $\mathrm{Mo}(4)$. In complex (11) there is evidence of a second, low-occupancy, site for $\operatorname{Mo}(2)$, labelled $\operatorname{Mo}(3)$, which may be associated with the product of crystal decomposition. Although some sign of carbon-atom sites correspond to a molecule centred around $\mathrm{Mo}(1)$ and $\mathrm{Mo}(3)$ was observed in difference Fourier maps, no satisfactory model could be developed for those sites.

All non-hydrogen atoms were assigned anisotropic displacement parameters with the exception of the disordered carbons $\mathrm{C}(101)-\mathrm{C}(110)$ of complex (12), the disordered methyl/ methylene carbons $C(59), C\left(59^{\prime}\right), C(63)$, and $C\left(63^{\prime}\right)$ of (4), and $\mathrm{C}(11)$ and the low-occupancy $\mathrm{Mo}(3)$ of (11). All hydrogen atoms were constrained to ideal geometries (with C-H $0.96 \AA$) except $\mathrm{H}(2,4-7)$ of (12) for which the $\mathrm{C}-\mathrm{H}$ distances of $\mathrm{H}(2,4,6,7)$
were restrained to be close to $0.96 \AA$ and $\mathrm{H}(5)$ not constrained at all. All hydrogen atoms were assigned fixed isotropic displacement parameters. Positional constraints were applied to the disordered cyclopentadienyl carbons of (12) (C-C $1.42 \AA$) and the C -Cldistances of the disordered dichloromethane in (12).

Final difference syntheses showed no chemically significant features, the largest being close to the metal, solvent, or anion atoms. Refinements converged smoothly to residuals given in Table 10. All calculations were made with programs of the SHELXTL ${ }^{18}$ system as implemented on a Nicolet R3m/E structure-determination system. Complex neutral-atom scattering factors were taken from ref. 19.

Additional material available from the Cambridge Crystallographic Data Centre comprises H -atom co-ordinates, thermal parameters, and remaining bond lengths and angles.

References

1 Part 47, M. Crocker, M. Green, K. R. Nagle, A. G. Orpen, M-P. Neumann, C. E. Morton, and C. J. Schaverien, Organometallics, in the press.
2 M. Green, N. C. Norman, and A. G. Orpen, J. Am. Chem. Soc., 1981, 103, 1269.
3 M. Green, N. C. Norman, A. G. Orpen, and C. J. Schaverien, J. Chem. Soc., Dalton Trans., 1984, 2455.
4 M. Green, N. K. Jetha, R. J. Mercer, N. C. Norman, and A. G. Orpen, J. Chem. Soc., Dalton Trans., 1988, 1843.
5 S. A. R. Knox, R. F. D. Stansfield, F. G. A. Stone, M. J. Winter, and P. Woodward, J. Chem. Soc, Chem. Commun., 1978, 221.
6 S. A. R. Knox, R. F. D. Stansfield, F. G. A. Stone, M. J. Winter, and P. Woodward, J. Chem. Soc., Dalton Trans., 1982, 173.
7 A. M. Boileau, A. G. Orpen, R. F. D. Stansfield, and P. Woodward, J. Chem. Soc., Dalton Trans., 1982, 187.
8 S. R. Finnimore, S. A. R. Knox, and G. E. Taylor, J. Chem. Soc., Dalton Trans., 1982, 1783.
9 W. Geibel, G. Wilke, R. Goddard, C. Kruger, and R. Mynott, J. Organomet. Chem., 1978, 160, 131.
10 J. Edwin, W. E. Geiger, A. Salzer, U. Ruppli, and A. L. Rheingold, J. Am. Chem. Soc., 1987, 109, 7893.
11 J. Edwin, W. E. Geiger, and A. L. Rheingold, J. Am. Chem. Soc., 1984, 106, 3052.
12 G. Wilke, Pure Appl. Chem., 1978, 50, 677.
13 M. J. Mays, D. W. Prest, and P. R. Raithby, J. Chem. Soc., Dalton Trans., 1981, 771.
14 S. G. Bott, N. G. Connelly, M. Green, N. C. Norman, A. G. Orpen, J. F. Paxton, and C. J. Schaverien, J. Chem. Soc., Chem. Commun., 1983, 378.
15 N. G. Connelly, Chem. Soc. Rev., 1989, 18, 153; N. G. Connelly, N. J. Forrow, B. P. Gracey, S. A. R. Knox, and A. G. Orpen, J. Chem. Soc., Chem. Commun., 1985, 14; N. G. Connelly, N. J. Forrow, S. A. R. Knox, K. A. Macpherson, and A. G. Orpen, ibid., p. 16; N. M. Doherty, M. J. Fildes, N. J. Forrow, S. A. R. Knox, K. A. Macpherson, and A. G. Orpen, ibid., 1986, 1355.
16 L. Brammer, Ph.D. Thesis, University of Bristol, 1987.
17 M. Brookhart, M. L. H. Green, and L-L. Wong, Prog. Inorg. Chem., 1988, 36, 1.
18 G. M. Sheldrick, SHELXTL 4.1, Göttingen, 1985.
19 'International Tables for X-Ray Crystallography,' Birmingham, Kynoch Press, 1974, vol. 4.

Received 21st September 1989; Paper 9/04030G

[^0]: \dagger Present address: Department of Chemistry, Kings College, London, Strand, London WC2R 2LS
 \ddagger Present address: Department of Chemistry, The University, Newcastle upon Tyne NE1 7RU.
 §Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1990, Issue 1, pp. xix-xxii.

[^1]: * At a platinum electrode, with $0.1 \mathrm{~mol} \mathrm{dm}^{-3}\left[\mathrm{NBu}_{4}{ }_{4}\right]\left[\mathrm{BF}_{4}\right]$ as base electrolyte, and a saturated calomel electrode as reference. Under these conditions E^{\ominus} for the couple $\left[\mathrm{Fe}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]^{+}-\left[\mathrm{Fe}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$ is 0.57 V .

[^2]: * An alternative and higher yield preparation of (1), compared to that reported in ref. 3, involves magnesium amalgam reduction of $\left[\mathrm{Mo}(\mathrm{NCMe})\left(\eta-\mathrm{MeC}_{2} \mathrm{Me}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]\left[\mathrm{BF}_{4}\right] ;$ C. J. Schaverien, unpublished work.

