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Proton Nuclear Magnetic Resonance and Optical Spectra of Six-co-ordinated 
H ig h-spin (S = 2) Bis( tetra hydrof uran) (3,7,12,17-tetramethyl-8,13-divinyl- 
porphyri n -2,18-d i propionato) i ron (11) encapsulated in Aqueous Detergent 
Micelles 
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Proton n.m.r. (500 MHz) and optical spectral studies have been made on the six-co-ordinated high- 
spin iron(ii) haem [FeL(thf),] ( L  = 3,7,12,17-tetramethyl-8,13-divinylporphyrin-2,18-dipropionate, 
thf = tetrahydrofuran) encapsulated in aqueous hexadecyltrimethylammonium bromide micelles. The 
results are compared with those of the five-co-ordinated high-spin iron(ii) haem reported 
previously. The optical spectrum of the six-co-ordinated species show the Soret band at 41 5 nm 
and two other bands at 540 and 564 nm, while for the five-co-ordinated species the Soret band 
shifts to longer wavelength and a single broad band at 555 n m  was obtained. The n.m.r. spectra 
show a larger downfield shift for the methyl- and meso-proton resonances and a smaller spread 
of the four methyl resonances for the six-co-ordinated complex as compared to those of 
five - c o - ard i n a t ed h i g h - s p i n h ae ms . 

In deoxyhaemoglobin and deoxymyoglobin the high-spin 
(S = 2) iron@) ion is found in a five-co-ordinated square- 
pyramidal geometry above the plane of the porphyrin and 
displaced towards the fifth ligand.’.’ On binding a sixth ligand 
the iron atom is pulled into the plane of the porphyrin, where it 
is found as a low-spin species in octahedral geometry.’?’ The 
out-of-plane displacement of the iron atom in the deoxyproteins 
was believed to be due to the large size of high-spin (S = 2) 
iron(I1) as compared to that of the N, hole in the porphyrin 
plane.’ This led to the general belief that the high-spin state 
is always associated with the out-of-plane displacement and 
five-co-ordination of the iron atom in porphyrins. 

However, if two equivalent weak-field axial ligands are 
bound, high-spin six-co-ordinated haems may be obtained 
where the iron atom may be found in the plane of the 
p~rphyrin.~ There are several examples of high-spin six-co- 
ordinated iron(rI1) porphyrin c o r n p l e x e ~ , ~ * ~ ~  but the only well 
characterized analogous iron(I1) complex is [Fe(tpp)(thf),] 
(tpp = 5,10,15,20-tetraphenylporphyrinate, thf = tetrahydro- 
furan) which was reported to be stable only in the crystalline 

In these six-co-ordinated complexes the iron atom is 
rigorously centred in the porphyrin plane 398 and the large high- 
spin ions are accommodated in the haem plane by porphyrin 
ring-core expansion with significant non-bonded repulsion 
between the axial ligands and the pyrrole N atoms of the 
porphyrinato c ~ r e . ~ , ~ - ’ ~  

Recently we have shown that six-co-ordinated high-spin 
complexes are easily formed when weak axial ligands such as 
H 2 0  or thf are bound to iron porphyrins encapsulated in 
detergent micelles.”6.’ ’ A Mossbauer study of [FeL,(thf),] 
[L = 3,7,12,17-tetramethyl-8,13-divinylporphyrin-2,18-diprop- 
ionate (dianion of protoporphyrin IX)] in frozen 5% aqueous 
solution showed isomer shift [0.91(2) mm s-’1 and quadrupole 
splitting [2.49(2) mm s-’1 values l 1  similar to those of the high- 
spin six-co-ordinated tpp a n a l ~ g u e . ~ . ~  A resonance-Raman 

study of haem in aqueous thf showed an expanded porphyrin 
core with the high-spin Fe” centred in the haem plane.’’ 
However, in the absence of the detergent (e.g. in aqueous thf) 
about 50% of the molecules are found to be in the form of 
aggregated species. ’ The detergent micelles stabilize mono- 
meric species in aqueous solution as found In 
view of the recent interest in the six-co-ordinated high-spin 
haems as haemoprotein m ~ d e l s , ~ * ~ - ”  we report here the ‘H 
n.m.r. and electronic spectra of the complex [FeL(thf),j in 
aqueous NMe3(C16H3,)Br solution. To our knowledge this is 
the first such study on a high-spin six-co-ordinated iron@) 
haem in aqueous solution. 
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Figure 2. Proton n.m.r. spectra (500 MHz) of [FeL(thf),] at 330 (top) and 300 K (bottom) in 5% aqueous NMe,(C,,H,,)Br solution. Assignments: 
a, haem CH,; b, meso-H 
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Experimental 
Iron(@ protoporphyrin IX chloride (haemin chloride) was 
purchased from Sigma Chemicals, NMe3(C1 6H3,)Br from E. 
Merck Co. A solution of the iron(n1) complex (0.01-1.0 mmol 
dm-3) in 5% aqueous NMe3(cl6H,,)Br micellesL6 at pH 10.0 
was prepared by dissolving it in an alkaline, thoroughly 
deoxygenated, NMe,(C, 6H3 ,)Br solution. The solution was 
allowed to stand for about 2 h at 40-5OoC and then to 
equilibrate with excess of tetrahydrofuran for another 3 h prior 
to reduction of the complex by sodium dithionite (Na2S20,). 

All operations were carried out under a nitrogen atmosphere 
and all reagents (including water-D20) were deoxygenated. A 
minimum amount of a saturated aqueous solution of Na2S20, 
was used to reduce the iron(1Ir) complex. For the optical 
spectrum, a ca. lO-' mol dmU3 solution of the iron(1Ir) 
porphyrinate was taken in a quartz cuvette fitted with a rubber 
septum, and the reduction was carried out by injecting the 
dithionite solution, with gentle shaking, until a red solution 
was obtained. The sample for n.m.r. studies was prepared by 
reducing a ca. 1 mmol dm-, solution of the iron(rr1) 
porphyrinate in an n.m.r. tube fitted with a rubber septum which 
was previously flushed with nitrogen gas. 

Experimental details for the optical and n.m.r. spectral 
measurements are as reported previou~ly. '~ To get a good 
signal-to-noise ratio in the n.m.r. spectra, about 4 00&5 000 
transients were required over a spectral width of ca. 45 kHz with 
8K data points. In order to observe the paramagnetically shifted 
porphyrin protons, the micelle- and the water-proton signals 
needed to be saturated. A microprogram for multi-frequency 
irradiation was used to irradiate all these proton signals. 

Results and Discussion 
The optical spectrum of [FeL(thf),] in 5% NMe,(C,,H,,)Br 
aqueous solution is shown in Figure 1. This spectrum is clearly 
different at 415,540, and 564 nm) from those of high-spin 
(S = 2) five-co-ordinated or intermediate-spin (S = 1) four- 
co-ordinated species in the same detergent solution. ' Gradual 
addition of thf to the four-co-ordinated [FeL] in NMe,- 
(C16H33)Br solution, which shows a split Soret band,', led to 
a sharp band at 415 nm when excess of thf was added. The 
spectrum in Figure 1 is similar to that found for six-co- 
ordinated haems l4 indicating co-ordination of two molecules of 
thf to [FeL]. Optical spectral study at various concentrations 
showed no evidence for aggregation '' of the haem in 5% 
aqueous NMe3(C16H33)Br. Thus the species in solution is a 
monomeric six-co-ordinated haem with thf as the axial ligands. 

The 'H n.m.r. (500 MHz) spectra of [FeL(thf),] in 5% 
aqueous NMe,(Cl6H3,)Br at various temperatures are shown 
in Figure 2. Though the room-temperature (298 K) spectrum is 
broad, four sharp well resolved lines are observed at >300 K. 
These spectra agree quite well with those reported for deoxy- 
haemoglobin l 6  and other high-spin ( S  = 2) haerns.', However, 
the downfield shift of the proton resonances of the six-co- 
ordinated species [FeL(thf),] is larger than that reported 
previously for other high-spin (S = 2) haems. Assignment of 
the various resonances is based on the relative intensity and 
multiplicity and by comparison with the assignments for high- 
spin iron(I1) haems ' and haemoglobin.' 6 * 1  ' 

The porphyrin proton resonances in the n.m.r. spectrum of 
[FeL(thf),] in aqueous NMe,(C,,H,,)Br are much broader 
than those observed for high-spin haems in organic solvents l 7  

and are similar to those observed for haemoglobin.'6-'8 A 

* Assigned by comparison with the proton n.m.r. spectra of various 
iron-(Ii) and -(m) haems reported previously.' 3.1 ' -*O 

possible cause of such line broadening for haems encapsulated 
in a hydrophobic cavity was discussed recently.', As in the case 
of high-spin five-co-ordinated species,' the isotropic shift of 
the methyl and meso protons shows a linear temperature 
dependence in the range 310-330 K indicating that only one 
spin state is populated in this range.13 

There are three significant differences in the n.m.r. spectra of 
the five- and six-co-ordinated high-spin iron(1r) haem complexes. 
First, the spread of the haem methyl resonances for the six-co- 
ordinated complex [FeL(thf),] is much smaller (ca. 6.5 p.p.m.) 
than that found for the five-co-ordinated high-spin species (ca. 
16 p.p.m.) studied under identical conditions. ' The smaller 
spread of the haem methyl signals for the former may be due to a 
smaller haem in-plane asymmetry. ' 3 9 1  6-' ' Secondly, the 
average shift of the four haem methyl resonances has a larger 
downfield bias for the six-co-ordinated species (ca. 21 p.p.m.) 
than that of the five-co-ordinated haem (ca. 17 p.p.m.).', A 
similar dependence of the methyl proton resonances on co- 
ordination number was found for the iron(rI1) porphyrinates, 
where the larger downfield shifts for the six-co-ordinated 
complex were attributed to the added effect of n-spin transfer on 
a dominant a-spin transfer rnechani~m.'~ Thirdly, the broad 
and weak resonances near 30 p.p.m. downfield, resolved as four 
broad and weak peaks at 320 K (Figure 2), are likely to be the 
meso-H signals.* For the five-co-ordinated high-spin haem the 
meso-H peaks appear at 6 @-6.17 The large downfield bias of 
the meso-H resonances for the high-spin six-co-ordinated haems 
studied here agrees quite well with the similar observation for 
haemin complexes. ' 

It is interesting that for the haem complexes where the iron 
atom lies in the plane of the porphyrin (viz. four-co-ordinated 
intermediate-spin,' 3 , 2 0  six-co-ordinated low-spin,' and six- 
co-ordinated high-spin) the downfield shift of the mew protons 
is larger than that of the methyl-proton resonances. However, 
for the high-spin five-co-ordinated haems where the iron atom is 
out of the porphyrin plane the downfield shift of the methyl- 
proton resonances is larger than that of the meso-proton 
resonances. 
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