Aryl and Aryne Complexes of Chromium, Molybdenum, and Tungsten. X-Ray Crystal Structures of $[Cr(2-MeC_6H_4)(\mu-2-MeC_6H_4)(PMe_3)]_2$, $Mo(\eta^2-2-MeC_6H_3)(2-MeC_6H_4)_2(PMe_2Ph)_2$, and $W(\eta^2-2,5-Me_2C_6H_2)(2,5-Me_2C_6H_3)_2-(PMe_3)_2^{\dagger}$

Stefan U. Koschmieder, Brian S. McGilligan, Gregory McDermott, John Arnold, and Geoffrey Wilkinson*

Johnson Matthey Laboratory, Chemistry Department, Imperial College, London SW7 2AY Bilquis Hussain-Bates and Michael B. Hursthouse* Chemistry Department, Queen Mary and Westfield College, London E1 4NS

The interaction of $CrCl_3(thf)_3(thf = tetrahydrofuran)$ and 2-methylphenyl-lithium gives the chromium(IV) tetra-aryl $Cr(2-MeC_6H_4)_4$, which reacts with PMe₃ to give the dimeric chromium(II) complex $[Cr(2-MeC_6H_4)(\mu-2-MeC_6H_4)(PMe_3)]_2$ as a minor product along with $Cr(2-MeC_6H_4)_2$ - $(PMe_3)_2$. Both can be made also by arylation of $Cr_2(O_2CMe)_4$ in the presence of PMe₃. The interaction of W(OPh)_6 and the 2-methylphenyl and 2,5-dimethylphenyl Grignard reagents gives the corresponding tungsten(IV) tetra-aryls. The interaction of PMe_2Ph and Mo(2-MeC_6H_4)_4 and of PMe_3 with W(2,5-Me_2C_6H_3)_4 gives, respectively, the aryne complexes Mo(η^2 -2-MeC_6H_3)(2-MeC_6H_4)_2(PMe_2Ph)_2 and W(η^2 -2,5-Me_2C_6H_2)(2,5-Me_2C_6H_3)_2(PMe_3)_2 whose X-ray structures indicate that they are best formulated as having metallacyclopropene rings. Spectroscopic and electrochemical data are given and X-ray crystal structures of three compounds are reported.

The 2-methylphenyl group has proved useful for the isolation of homoleptic tetra-aryls of transition metals and the syntheses and X-ray structures for those of Os,¹ Ru,² Re,² and Mo^3 have been described; the osmium(v) cation ³ has also been characterised crystallographically.⁴

The interaction of $Re(2-MeC_6H_4)_4$ with small tertiary phosphines gives aryne compounds ^{5a} with loss of toluene, while Os(2-MeC_6H_4)_4 differs in undergoing reductive coupling reactions with PR₃, CO, and Bu'NC, to give η^6 -arene complexes.^{5b}

This paper reports the completion of the Group 6 tetra-aryl compounds with the syntheses of the *o*-tolyls of chromium(Iv) and tungsten(Iv) and of the 2,5-dimethylphenyl of tungsten; reactions of the tetra-aryls with phosphines are described. Analytical and physical data for new compounds are collected in Table 1.

Results and Discussion

The Tetra-aryls of Chromium- and Tungsten-(IV).—Chromium. Although numerous tetra-alkyls,⁶ including the unusual cyclohexyl,¹ have been described, the only tetra-aryl of Cr^{IV} is the mesityl,⁷ which was obtained by oxidation of Li[Cr(2,4,6-Me₃C₆H₂)₄] with either O₂ or Ph₃CCl.

The tetra *o*-tolyl is obtained in yields of *ca*. 20% by interaction of four equivalents of *o*-tolyl-lithium in diethyl ether with $CrCl_3(thf)_3$ (thf = tetrahydrofuran) at -78 °C; the reaction presumably involves some sort of disproportionation or oxidation but the nature of this is obscure. No tetra-aryl can be obtained when the Grignard reagent is used nor when $Cr(OBu^t)_4$ is used as starting material. The *o*-tolyl species $Cr(2-MeC_6H_4)_3(thf)_3$ has been mentioned ⁸ but no experimental details were given; it can be construed that $CrCl_3(thf)_3$ and $MgBr(2-MeC_6H_4)$ in tetrahydrofuran give deep blue solutions containing the complex.

The deep purple tetra *o*-tolyl is thermally stable to *ca*. 90 °C; it is stable indefinitely at room temperature under argon or N_2 and in air for periods of up to 2 h. However, exposure to direct

sunlight causes rapid decomposition and the solid should be stored in the dark.

Like similar tetrahedral chromium(IV) species,^{1.6.7} the compound is paramagnetic with two unpaired electrons [in toluene, by Evans' method, $\mu_{eff.} = 2.7(1)$; cf. Cr(2,4,6-Me₃C₆H₂)₄,⁷ 2.89]. The X-band e.p.r. spectrum at 293 K in toluene has a single band at a field width of 3 360G (3.36 × 10⁻¹ T); g_{iso} = 2.015. On cooling to 77 K the spectrum changes and is then almost identical to that of Cr(CH₂SiMe₃)₄,⁹ which was the first chromium(IV) alkyl to be made; for discussion of the spectra see ref. 9. Cyclic voltammetry of Cr(2-MeC₆H₄)₄ was studied in acetonitrile (for conditions see Table 5); there were oneelectron irreversible oxidation and reduction waves at +1.15 and -1.30V, respectively [cf. for Mo(2-MeC₆H₄)₄,³ +0.63 and -1.82V].

Like most of the chromium(IV) alkyls, the aryl is unreactive towards H_2 , N_2O , MeOH, and Bu'OH although CO, Bu'NC, MeC=CH, and hex-3-yne react to give brown mixtures from which no clean products could be separated. However, the compound reacts rapidly with excess of trimethylphosphine in toluene giving orange solutions from which bi-o-tolyl (identified by its mass spectrum) and two chromium-containing complexes can be separated. The evaporated reaction mixture was extracted with hexane; slow cooling to -20 °C gave very low yields of green crystals that have been shown by X-ray diffraction to be $[Cr(PMe_3)(2-MeC_6H_4)(\mu-2-MeC_6H_4)]_2$ as discussed below. The yellow-brown mother-liquor gives an oil that contains a paramagnetic species that cannot be readily separated but is evidently $Cr(2-MeC_6H_4)_2(PMe_3)_2$.

 $[\]dagger$ Bis(µ-2-methylphenyl)-bis(2-methylphenyl)bis(trimethylphosphine)dichromium(II) (Cr-Cr), bis(dimethylphenylphosphine)[(5,6- η)-1methylcyclohexa-1,3-dien-5-yne]bis(2-methylphenyl)molybdenum, [(5,6- η)-1,4-dimethylcyclohexa-1,3-dien-5-yne]bis(2,5-dimethylphenyl)bis(trimethylphosphine)tungsten.

Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1990, Issue 1, pp. xix—xxii.

Analysis * (%)

Colour С Н Compound M.p. (°C) 80.6 $Cr(2-MeC_6H_4)_4$ Deep purple 90-91 (decomp.) 6.9 (80.7)(6.8) $Cr(2-MeC_6H_4)_2(PMe_3)_2$ Orange 110-112 (decomp.) 62.1 8.3 (60.6)(8.2) 166-167 $Mo(\eta^2-2-MeC_6H_3)(2-MeC_6H_4)_2(PMe_3)_2$ Dark green 62.3 7.4 (62.5)(7.4) $Mo(\eta^2-2-MeC_6H_3)(2-MeC_6H_4)_2(PMe_2Ph)_2$ Dark green 146-148 69.0 6.6 (68.9)(6.6)Deep blue 123-125 $W(2-MeC_6H_4)_4$ 61.1 5.1 (61.4) (5.1) Blue 132-133 (decomp.) $W(2,5-Me_2C_6H_3)_4$ 63.1 6.0 (63.6) (6.0) $W(\eta^2-2-MeC_6H_3)(2-MeC_6H_4)_2(PMe_3)_2$ Dark green 184-188 51.5 6.3 (53.3)(6.3) $W(\eta^2-2-MeC_6H_3)(2-MeC_6H_4)_2(PMe_2Ph)_2$ Dark green 154-157 60.4 5.7 (60.7)(5.7) $W(\eta^2 - 2.5 - Me_2C_6H_2)(2.5 - Me_2C_6H_3)(PMe_3)_2$ Dark green 180-182 55.3 6.8 (55.4)(6.8) $W(\eta^2-2.5-Me_2C_6H_2)(2.5-Me_2C_6H_3)(PMe_2Ph)_2$ Dark green 176-180 61.2 6.2 (62.0) (6.2)

Table 1. Analytical and physical data for new compounds

* Required values in parentheses.

Table 2. Selected bond lengths (Å) and angles (°) for $[Cr(2-MeC_6H_4)(\mu-2-MeC_6H_4)(PMe_3)]_2$

P(1)-Cr(1) C(31)-Cr(1) Cr(1)-C(11B)	2.510(5) 2.090(10) 2.208(4)	C(11)-Cr(1) Cr(1)-Cr(1B)	2.444(9) 2.741(5)
$\begin{array}{l} C(11) - Cr(1) - P(1) \\ C(31) - Cr(1) - C(11) \\ Cr(1B) - Cr(1) - C(11B) \\ C(11) - Cr(1) - C(11B) \\ Cr(1B) - Cr(1) - P(1) \\ C(11B) - Cr(1) - C(31) \end{array}$	89.7(3) 168.8(3) 52.3(4) 97.7(4) 141.0(2) 91.5(6)	C(31)-Cr(1)-P(1) Cr(1B)-C(11)-Cr(1) P(1)-Cr(1)-C(1B) Cr(1B)-Cr(1)-C(31) Cr(1B)-Cr(1)-C(11)	84.7(3) 76.0(3) 154.7(5) 133.0(4) 51.4(3)

Figure 1. The structure of $[Cr(2-MeC_6H_4)(\mu-2-MeC_6H_4)(PMe_3)]_2$

Chromium(II) bis-alkyl and -mesityl compounds with a chelate diphosphine and $Cr(2,4,6-Me_3C_6H_2)_2(PMe_3)_2$ have been isolated ¹⁰ and shown to have essentially square geometries; $CrR_2(PR'_3)_2$, R = Ph, o-tolyl, or mesityl, R' = Et

or Et_2Ph , have been reported but were not fully characterised.¹¹ The reaction of $\text{Cr}(2-\text{MeC}_6\text{H}_4)_4$ with PMe_3 thus appears to be the reductive elimination (1) which gives the green dimer as a

$$Cr(2-MeC_6H_4)_4 + 2 PMe_3 \longrightarrow$$

$$Cr(2-MeC_6H_4)_2(PMe_3)_2 + (2-MeC_6H_4)_2 \quad (1)$$

by-product. The addition of excess of PMe_3 to the yellowbrown solution followed by treatment with CO leads to the known compound $Cr(CO)_4(PMe_3)_2$.¹²

The dimeric compound, whose structure is described below, is similar to a trimethylsilylmethyl compound,¹³ [Cr(CH₂SiMe₃)- $(\mu$ -CH₂SiMe₃)(PMe₃)]₂, made by alkylation of Cr₂(O₂CMe)₄ in the presence of PMe₃. Arylation of chromium(II) acetate by $MgBr(2-MeC_6H_4)$ in the presence of PMe₃ in thf produces a dark brown solution from which a mixture of green and orange crystals was obtained in low yields. Separation by crystallisation proved difficult so the crystals were separated manually. This green complex is identical to that obtained from $Cr(2-MeC_6H_4)_4$ while the orange product is $Cr(2-MeC_6H_4)_4$ $MeC_6H_4)_2(PMe_3)_2$. The magnetic moment in solution is 3.7 (cf. $\mu_{\rm B} = 4.9$ for the mesityl¹⁰), while the ¹H n.m.r. spectrum has paramagnetically shifted and broadened resonances for PMe₃ $(\delta - 20.9)$ and aryl protons (28.5, 25.6, 24.8) and presumably the ortho-methyl protons (-104.4). For the mesityl analogue ¹⁰ the ortho-methyls were not observed and a signal at $\delta - 88.3$ was assigned to the *para*-methyl groups.

The structure of the green dimer is shown in Figure 1 and bond lengths and angles are given in Table 2. The molecule lies on a two-fold axis perpendicular to and bisecting the Cr–Cr vector. The Cr_2C_2 four-membered ring is folded at the Cr–Cr vector with a dihedral angle of 145.5° between the Cr–C–Cr planes. The molecule is similar to the trimethylsilylmethyl;¹³ this had a short Cr–Cr distance of 2.1 Å and metal–metal quadruple bonding was suggested. The longer Cr–Cr distance in the *o*-tolyl, 2.741(5) Å, and the magnetic moment (*ca.* 1.2 per Cr atom), which is higher than that of the trimethylsilylmethyl (0.9) but still well below the spin-only value for Cr^{II}, indicates a lower bond order for Cr–Cr interaction. The o-tolyl bridge, CrC_2Cr , is unsymmetrical with Cr–C distances of 2.208(9) and 2.444(9) Å while the terminal Cr–C bond length is 2.09(1) Å and the Cr–P distance 2.510(5) Å.

The e.p.r. spectra of both orange and green compounds are not informative having overlapping signals centred at g = 2.082.

Tungsten. Both the compounds WR_4 (R = 2-MeC₆H₄ or 2,5-Me₂C₆H₃) have been made by interaction of the appropriate Grignard reagent with the hexaphenoxide W(OPh)₆ in tetrahydrofuran at 0 °C. Blue solutions are obtained from which, on work up, the crystalline aryls can be obtained in 10-15% yield. Similar arylation of WCl₆ in diethyl ether-tetrahydrofuran at -78 °C also gives blue solutions, but we have not been able readily to isolate the compounds in a pure state. Similar problems were encountered using lithium reagents.

The very air-sensitive compounds are paramagnetic with the magnetic moment, $\mu_{eff.} = 2.9$ (Evans' method in toluene), close to that for the spin-only value for two unpaired electrons, and similar to the values for Mo(2-MeC₆H₄)₄ and tetra(norbornyl)molybdenum (see ref. 3). The X-band e.p.r. spectrum of the *o*-tolyl at 293 K has a broad band at *ca. g* = 2 but in frozen toluene at 77 K has two signals with g = 1.96 and 2.30.

There are relatively few monomeric molecules of the type WX_4 ; examples with bulky aryl oxide ligands^{14a} have an essentially planar WO_4 core attributed to the bulk of the ligands and also to π bonding, and are diamagnetic. The tetrabenzyl^{14b} is also diamagnetic probably because of the postulated secondary interactions between the metal and the phenyl ring [cf. Ti(CH₂Ph)₄^{14c}]. The present tungsten compounds are hence probably tetrahedral or slightly distorted tetrahedral like Mo(2-MeC₆H₄)₄.³ We have been unable to obtain X-ray quality crystals of either compound.

Like those of the chromium tetra-aryl, reactions appear to be complicated and Bu¹NC, 2,6-Me₂C₆H₃NC, MeC=CH, and hex-3-yne give brown solutions containing several products. The *o*-tolyl reacts with CO (30 lbf in⁻², *ca.* 2.07 × 10⁵ Pa) at room temperature in toluene to give W(CO)₆ and the diaryl ketone essentially quantitatively (*cf.* interaction of WMe₆ and CO¹⁵).

Attempts to oxidise the compounds by use of silver salts and CuCl were unsuccessful, as were attempts to obtain oxo- or thio-aryls, WR₄X, X = O or S, by interaction with O₂, C₂H₄O, and S₈. Attempts to reduce the species using Li or sodium dihydronaphthylide in thf also failed. We were similarly unable to isolate cationic or anionic species from Mo(2-MeC₆H₄)₄³ and so far the only [MR₄]⁺ cations are those of osmium ^{3.4} and [Mo(2,4,6-Me₃C₆H₂)₄]⁺, the latter being obtained as the triodide by iodine oxidation of Mo(2,4,6-Me₃C₆H₂)₄.¹⁶

Aryne Compounds of Molybdenum and Tungsten.—As noted above, Re(2-MeC₆H₄)₄ and PMe₃ or PMe₂Ph react under mild conditions to give toluene and the aryne species Re(η^2 -2-MeC₆H₃)(2-MeC₆H₄)₂(PR₃)₂.^{5a} The molybdenum tetra-otolyl³ and both tungsten(IV) aryls described above react similarly with small tertiary phosphines, essentially quantitatively. The i.r. and n.m.r. spectra of all these aryne compounds are very similar.^{5a,17}

The yields of the tungsten aryne complexes can be substantially increased by treating the initial blue solutions obtained from W(OPh)₆ directly with excess of phosphine, then passing the mixture through an alumina column (see Experimental section). Although Mo(2-MeC₆H₄)₄ reacts with PPr¹₃ on refluxing in toluene to give a brown solution, no pure product could be isolated; bulkier phosphines, PPh₃ and P(C₆H₁)₃, do not react. Pyridine, NMe₃, Bu¹NC, and 2,6-Me₂C₆H₃NC all gave mixtures of products for both Mo and W.

A tungsten aryne $W(2-MeC_6H_4)_4(2-MeC_6H_3)[Li(Et_2O)]_4$ has been previously characterised spectroscopically.¹⁸

The structures of $Mo(\eta^2-2-MeC_6H_3)(2-MeC_6H_4)_2(PMe_2-MeC_6H_$

Ph)₂ and $W(\eta^2 - 2.5 - Me_2C_6H_2)(2.5 - Me_2C_6H_3)_2(PMe_3)_2$ are shown, respectively in Figures 2 and 3; bond lengths and angles are given in Tables 3 and 4. The structures are essentially equivalent, each molecule containing one π -bonded aryne $[Mo-C 2.01, 2.06(1) \text{ Å}, C \equiv C' 1.28(2); W-C 2.06(3), 2.10(2),$ 'C=C' 1.43(3) Å] two σ-bonded aryls [Mo-C 2.12, 2.14(1); W-C 2.06, 2.16(2) Å], and two phosphines. The M-P bonds lie approximately in the same plane as the aryne ligand and if the latter is assumed to occupy only one co-ordination site the geometry at the metal centres can be described as distorted trigonal bipyramidal with the phosphines occupying the axial sites and the aryls in the other two equatorial sites. Notwithstanding this representation, and the rather different aryne 'C=C' distances, the Mo-C and W-C distances coupled with the ${}^{13}C-{}^{1}H$ n.m.r. resonances favour a metallacyclopropenyl formulation for the aryne ligand, as for the isoelectronic cat-

Figure 2. The structure of $Mo(\eta^2-2-MeC_6H_3)(2-MeC_6H_4)_2(PMe_2Ph)_2$. The remaining phenyl ring atoms at C(101) and C(201) on the phosphines have been omitted for clarity

Figure 3. The structure of $W(\eta^2-2,5-Me_2C_6H_2)(2,5-Me_2C_6H_3)_2(PMe_3)_2$

Table 3. Selected bond lengths (Å) and angles (°) for $Mo(\eta^2\mathcal{-}2\mathcal{-}MeC_6H_3)(2\mathcal{-}MeC_6H_4)_2(PMe_2Ph)_2$

P(1)-Mo	2.472(5)	P(2)-Mo	2.493(5)
C(11)-Mo	2.138(12)	C(21)-Mo	2.123(12)
C(31)–Mo	2.011(14)	C(36)-Mo	2.056(14)
C(32) - C(31)	1.522(19)	C(36)-C(31)	1.276(16)
C(33) - C(32)	1.417(18)	C(321) - C(32)	1.328(21)
C(34) - C(33)	1.443(18)	C(35)-C(34)	1.261(18)
C(36)–C(35)	1.595(19)		
P(2)-Mo-P(1)	161.1(1)	C(11)-Mo-P(1)	84.3(4)
C(11)-Mo-P(2)	82.9(4)	C(21) - Mo - P(1)	88.3(4)
C(21)-Mo-P(2)	86.9(4)	C(21)-Mo-C(11)	122.3(5)
C(31)-Mo-P(1)	111.7(5)	C(31) - Mo - P(2)	86.5(5)
C(31)-Mo-C(11)	115.7(5)	C(31)-Mo-C(21)	120.0(5)
C(36)-Mo-P(1)	75.2(5)	C(36)-Mo-P(2)	123.0(5)
C(36)-Mo-C(11)	115.5(5)	C(36)-Mo-C(21)	117.4(5)
C(36)-Mo-C(31)	36.6(4)	C(101)-P(1)-Mo	121.1(4)
C(10)-P(1)-Mo	114.4(5)	C(20)-P(1)-Mo	115.1(5)
C(201)-P(2)-Mo	121.5(4)	C(30)-P(2)-Mo	114.4(5)
C(40)-P(2)-Mo	115.0(5)	C(12)-C(11)-Mo	124.2(9)
C(16)-C(11)-Mo	118.7(8)	C(22)-C(21)-Mo	124.5(8)
C(26)-C(21)-Mo	117.9(8)	C(32)-C(31)-Mo	168.4(10)
C(36)-C(31)-Mo	73.6(9)	C(31)-C(36)-Mo	69.8(9)
C(35)-C(36)-Mo	159.6(9)	C(32)-C(31)-Mo	168.4(10)
C(36)-C(31)-Mo	73.6(9)	C(36)-C(31)-C(32)	118.0(13)
C(33)-C(32)-C(31)	112.7(13)	C(321)-C(32)-C(31)	121.7(15)
C(321)-C(32)-C(33)	125.6(15)	C(34)-C(33)-C(32)	122.5(13)
C(35)-C(34)-C(33)	129.9(15)	C(36)-C(35)-C(34)	106.4(13)
C(35)-C(36)-C(31)	130.2(11)		

Table 4. Selected bond lengths (Å) and angles (°) for $W(\eta^2-2,5-Me_2C_6H_2)(2,5-Me_2C_6H_3)_2(PMe_3)_2$

P(1)-W	2.464(8)	P(2)–W	2.467(8)
C(10)-W	2.105(21)	C(20)–W	2.056(27)
C(11)-W	2.065(23)	C(21)-W	2.167(25)
C(20) - C(10)	1.431(33)	C(60) - C(10)	1.410(32)
C(30) - C(20)	1.441(35)	C(40) - C(30)	1.478(39)
C(301)-C(30)	1.473(38)	C(50) - C(40)	1.470(43)
C(60)-C(50)	1.357(35)	C(601)-C(60)	1.504(39)
P(2)-W-P(1)	144.3(2)	C(10)-W-P(1)	108.8(7)
C(10)-W-P(2)	81.6(7)	C(20) - W - P(1)	76.0(8)
C(20) - W - P(2)	121.8(8)	C(20) - W - C(10)	40.2(9)
C(11)-W-P(1)	112.5(7)	C(11) - W - P(2)	88.0(6)
C(11)-W-C(10)	121.1(9)	C(11)-W-C(20)	116.8(11)
C(21)-W-P(1)	61.3(7)	C(21)-W-P(2)	83.1(7)
C(21)-W-C(10)	112.9(9)	C(21)-W-C(20)	115.4(11)
C(21)-W-C(11)	123.1(9)	C(11P) - P(1) - W	116.4(10)
C(12P) - P(1) - W	118.3(12)	C(13P) - P(1) - W	113.3(11)
C(21P) - P(2) - W	116.3(10)	C(22P)-P(2)-W	117.6(11)
C(23P)-P(2)-W	113.4(12)	C(20)-C(10)-W	68.1(14)
C(60)-C(10)-W	169.3(17)	C(30)-C(20)-W	161.7(22)
C(10)-C(20)-W	71.7(14)	C(12)-C(11)-W	120.7(16)
C(16)-C(11)-W	120.3(17)	C(22)–C(21)–W	124.4(19)
C(26)-C(21)-W	115.1(15)	C(20)-C(10)-W	68.1(14)
C(60)-C(10)-W	169.3(17)	C(60)-C(10)-C(20)	122.7(21)
C(30)-C(20)-C(10)	125.7(23)	C(40)-C(30)-C(20)	107.0(23)
C(301)-C(30)-C(20)	132.0(23)	C(301)-C(30)-C(40)	119.6(26)
C(50)-C(40)-C(30)	127.9(24)	C(60)-C(50)-C(40)	118.9(26)
C(50)-C(60)-C(50)	117.5(26)	C(601)-C(60)-C(10)	124.9(22)
C(601)-C(60)-C(50)	117.5(25)		

ionic rhenium complex,^{5a} $[\text{Re}(\eta^2-2-\text{MeC}_6\text{H}_3)(2-\text{MeC}_6\text{H}_4)_2-(\text{PMe}_3)_2]^+$. In the context of the aryne formulation it is important to note that its definition is not very precise for the molybdenum complex where a final difference map showed significant residual electron density which could not, however, be incorporated into any recognisable disorder model. In

particular, there did not seem to be any indication of the alternative orientation of the tolyl ligand.

The differing symmetry of the complexes arising out of the presence, respectively, of *o*-tolyl and *p*-xylyl ligands is reflected in the n.m.r. spectra. While the molybdenum complex has a ^{31}P - $\{^{1}H\}$ spectrum with a doublet of doublets, the tungsten xylyl complex shows only a singlet; this equivalence is also evident in the solid state.

The cyclic voltammetric data for the arynes are given in Table 5. Attempts to reduce the solutions chemically failed, although interaction with silver salts ($CF_3SO_3^-$, PF_6^- , BF_4^-) in thf initially gave blue solutions that gradually became deep green due to reduction by solvent to starting material. Evaporation of the blue solutions in thf or MeCN gave blue oils that did not crystallise.

Experimental

The general methods and techniques are those described previously (see refs. 3 and 19). All operations were carried out under argon or dinitrogen or in vacuum. N.m.r. spectra are in p.p.m. vs. SiMe₄ or H_3PO_4 (external) and i.r. spectra (cm⁻¹) in Nujol mulls.

Tetrakis(2-methylphenyl)chromium(IV).—To $CrCl_3(thf)_3^{20}$ (1.91 g, 5.1 mmol) in Et₂O (ca. 50 cm³) was added 4 equivalents of Li(2-MeC₆H₄) (2.0 g, 20.4 mmol) in Et₂O (40 cm³) at -78 °C. The resulting deep purple solution was stirred for 2 h and allowed to warm to room temperature. After removal of solvent, the residue was extracted with hexane (3 × 40 cm³) which was reduced in volume (to ca. 25 cm³), filtered, and cooled to -20 °C to give deep purple crystals. Yield: ca. 20%. If the reaction mixture is kept at room temperature too long, the yield is substantially reduced and an intractable green product formed. The i.r. spectrum shows only bands for the aryl ligand.¹⁻⁴

Tetrakis(2-methylphenyl)tungsten(IV).—To a stirred solution of W(OPh)₆²¹ (5.0 g, 6.75 mmol) in thf (150 cm³) at 0 °C was added 6 equivalents of MgBr(2-MeC₆H₄) (46.5 cm³ of 0.87 mol dm⁻³ solution in thf) and the mixture stirred (6 h) at 0 °C. The blue solution was decanted from a colourless crystalline precipitate and evaporated under vacuum. The residue was extracted with hexane (2 × 300 cm³) which was concentrated (to *ca.* 200 cm³) and allowed to stand for 2 h while an amorphous beige material precipitated. The solution was filtered, concentrated to *ca.* 60 cm³, and cooled to -20 °C for 24 h, to yield *ca.* 0.3 g of blue crystals; further concentration and cooling of the mother-liquor gave an additional 0.2 g product. Yield: 0.5 g, 13%.

Tetrakis(2,5-dimethylphenyl)tungsten(1V).—To W(OPh)₆ (3.0 g, 4.0 mmol) was added MgBr(2,5-Me₂C₆H₃) (54 cm³ of 0.45 mol dm⁻³ solution in thf) at 0 °C; after stirring for 6 h the solution was brown with a large amount of colourless precipitate. After decantation and evaporation of the solution, the residue was extracted with hexane (2 × 200 cm³) which was concentrated to ca. 300 cm³, cooled for 3 h at -78 °C, and filtered cold. Further concentration to ca. 100 cm³ and cooling at -20 °C gave a bluebrown powder that was recrystallised from hexane at -50 °C to give a blue powder. Yield: 0.1 g, 4%.

Chromium(II) o-Tolyl Trimethylphosphine Complexes.—(a) To a hexane (40 cm³) solution of $Cr(2-MeC_6H_4)_4$ (0.2 g, 0.48 mmol) at -78 °C was added 1 equivalent of PMe₃ (1.0 cm³ of a 0.5 mol dm⁻³ solution in hexane) and the mixture allowed to warm slowly to room temperature. Solvent was then removed under vacuum and bi-o-tolyl sublimed onto a cold probe at -70 °C. The residue was extracted into hexane (30 cm³) which was concentrated to ca. 5 cm³ and cooled (-20 °C) to give a low

Table 5. Cyclic voltammetry of $M(2-MeC_6H_4)_2(\eta^2-2-MeC_6H_3)L_2$ complexes

M L			$E_{\frac{1}{2}}/V$		
	L	Solvent*	Oxidation	Reduction	
Мо	PMe ₃	MeCN	(+0.59)	-0.78, -2.34	
W	PMe ₃	MeCN	(+0.37)(+0.87)	-0.85, -2.5	
W	PMe ₃	CH ₂ Cl ₂	(+0.51)	-0.90	
W	PMe ₂ Ph	thf		-0.75	

* Data on OE-PP2 instrument with 0.2 mol dm⁻³ NBuⁿ₄PF₆ as supporting electrolyte at 20 °C with platinum working, tungsten auxiliary, and silver pseudo-reference electrodes. Sweep rate 50 mV s⁻¹. Values in parentheses indicate one-electron irreversible processes (E_p), reference ferrocene-ferrocenium (0.00 V).

Table 6. 4	Crystal data	details of intensity	measurements and	structure refinement*
------------	--------------	----------------------	------------------	-----------------------

Ν	folecular Formula	C ₆₀ H ₀ ,Cr ₂ P ₂	C ₁₇ H ₁₀ MoP ₂	C ₁₀ H ₄₄ P ₂ W
M	1	667.044	632.533	650.477
a	/Å	14.487(10)	10.248(6)	14.702(2)
b	/Å	14.231(7)	29.941(2)	12.120(5)
c/	Å	17.403(9)	10.740(5)	17.309(4)
ß	/°	104.59(5)	91.23(6)	99.61(2)
Ü	//Å ³	3 427.33	3 294.65	3 040.98
Si	pace group	C2/c	$P2_1/n$	C2
Ď	$\frac{1}{2}$ /g cm ⁻³	1.276	1.275	1.421
μ,	/cm ⁻¹	6.28	4.53	39.98
F	(000)	1 496	1 296	1 312
h,	k, l range	0—15	0-11	0—17
		0—15	0-11	0-14
		- 19 to 19	-32 to 32	-20 to 20
T	otal no. of reflections	2 716	9 725	3 075
N	o. of unique reflections	2 408	4 573	2 815
N	o. of observed reflections	1 634	3 096	2 016
σ	test	$[F > 3\sigma(F)]$	$[F > 6\sigma(F)]$	$[F > 3\sigma(F)]$
N	o. of parameters	226	355	297
w	/eighting scheme parameter g in $w = 1/[\sigma^2(F) + gF_2^2]$	0.003	0.002	0.008
F	inal R	0.0732	0.0673	0.0450
F	inal <i>R</i> '	0.0781	0.0662	0.0488
* Details in common: monoclin	nic; $\alpha = \gamma = 90^\circ$; $Z = 4$.			

yield (<5%) of deep green crystals (m.p. 86 °C) of [Cr(2-MeC₆H₄)(μ -2-MeC₆H₄)(PMe₃)]₂ which were collected; the remainder of the brown solution gave an oil which could not be purified or crystallised but contains Cr(2-MeC₆H₄)₂(PMe₃)₂.

(b) To a stirred solution of $Cr_2(O_2CMe)_4$ (0.2 g, 0.74 mmol) in thf (30 cm³) at 0 °C was added PMe₃ (0.3 cm³, 2.9 mmol) followed by 4 equivalents of MgBr(2-MeC₆H₄) (3.4 cm³ of a 0.87 mol dm⁻³ solution in thf) added dropwise. After warming to room temperature and stirring overnight the solution was evaporated and the brown residue extracted with hexane (1 × 30 cm³) which was filtered, concentrated (to 10 cm³), and cooled (-20 °C) to give green crystals of [Cr(2-MeC₆H₄)-(µ-2-MeC₆H₄)(PMe₃)]₂ (18 mg, 4%) and orange crystalline aggregates of Cr(2-MeC₆H₄)₂(PMe₃)₂ (18 mg, 7%) that were separated manually.

Molybdenum and Tungsten Aryne Compounds.— $Mo(\eta^2-2-MeC_6H_3)(2-MeC_6H_4)_2(PMe_3)_2$. To a solution of Mo(2- $MeC_6H_4)_4^3$ (0.83 g, 1.8 mmol) in toluene (30 cm³) at -78 °C was added PMe₃ (0.4 cm³, 3.8 mmol) and the solution allowed to warm; reaction to give a turquoise colour began at *ca.* -30 °C. After stirring (1 h) the solution was evaporated and the green solid extracted with warm hexane (3 × 20 cm³). The filtered solution was concentrated (20 cm³) and cooled (-20 °C) to give dark green crystals. Yield: 0.91 g, 97%. Mass

spectrum (electron impact, e.i.): m/z 522 (522), M^+ ; 446 (446), $M^+ - PMe_3$; and 370 (370), $M^+ - 2PMe_3$. I.r.: 3 039m, 3 021m, 1 561vs, 1 544w, 1 438s (sh), 1 429m, 1 413m, 1 399m, 1 322w, 1 296m, 1 279m, 1 243m, 1 182w, 1 041m, 1 020s, 1 002w, 981m, 941vs, 848m, 817w, 786m, 761s, 710s, 665m, 639m, 547w, and 442m cm⁻¹. N.m.r. (C₆D₆, 26 °C): ³¹P-{¹H}, δ 7.09, 16.98 (AB quartet, J = 97.5); ¹³C-{¹H}, δ 15.91 (d, $J_{PC} = 22.0$, PMe₃), 16.49 (d, $J_{PC} = 21.0$, PMe₃), 24.82 (s, 2-MeC₆H₃), 26.19 (s, 2-MeC₆H₄), 120.27 (d, $J_{PC} = 2.5$, 2-MeC₆H₄), 122.19 (d, $J_{PC} = 2.0$, 2-MeC₆H₄), 125.95 (dd, $J_{PC} = 7.4$, 3.6, 2-MeC₆H₃), 126.17 (t, $J_{PC} = 3.6$, 2-MeC₆H₄), 128.52 (d, $J_{PC} = 2.5$, 2-MeC₆H₄), 133.86 (d, $J_{PC} = 2.4$, 2-MeC₆H₃), 138.46 (t, $J_{PC} = 3.5$, 2-MeC₆H₄), 133.86 (d, $J_{PC} = 29.0$, 6.0, 2-MeC₆H₃, aryne C), 178.26 (dd, $J_{PC} =$ 38.0, 6.0, 2-MeC₆H₄, aryne C), and 207.37 ('t', ' $J_{PC} = 12.0$ Hz', 2-MeC₆H₄, *ipso*-C).

 $Mo(\eta^{2}-2-MeC_{6}H_{3})(2-MeC_{6}H_{4})_{2}(PMe_{2}Ph)_{2}$. From PMe₂Ph (0.57 cm³, 4.0 mmol) and Mo(2-MeC_{6}H_{4})_{4} (0.87 g, 1.89 mmol). Work-up gave dark green crystals. Yield: 1.19 g (97%). Mass spectrum (e.i.): m/z 646 (646), M^{+} ; 508 (508), $M^{+} - PMe_{2}Ph$; 370 (370), $M^{+} - 2PMe_{2}Ph$. I.r.: 3 087m, 3 056m, 1 577m, 1 562vs, 1 544m, 1 488m, 1 450vs, 1 434vs, 1 418s, 1 326m, 1 290s, 1 274m, 1 242m, 1 181m, 1 151m, 1 101m, 1 075m, 1 040m, 1 021s, 1 004s, 981m, 941vs, 907vs, 867m, 836m, 785m, 767s, 746s, 737vs, 699s, 669m, 637m, 551m, 445m, 422m, and

Atom	x	У	Z
Cr(1)	4 509(1)	1 735(1)	3 078(1)
P(1)	2 855(2)	1 504(2)	3 250(1)
C(11)	3 982(5)	1 374(6)	1 787(4)
C(12)	3 943(6)	406(6)	1 622(5)
C(13)	3 167(8)	29(7)	1 024(6)
C(14)	2 476(7)	572(8)	581(6)
C(15)	2 525(6)	1 484(9)	767(6)
C(16)	3 241(5)	1 945(6)	1 337(4)
C(161)	3 251(7)	2 979(6)	1 449(5)
C(31)	4 808(6)	2 284(7)	4 229(5)
C(32)	4 617(7)	3 241(9)	4 365(7)
C(33)	4 714(8)	3 660(12)	5 169(8)
C(34)	5 011(8)	2 941(13)	5 726(9)
C(35)	5 213(9)	2 084(14)	5 688(8)
C(36)	5 128(7)	1 684(10)	4 906(5)
C(321)	4 335(8)	3 864(9)	3 734(8)
C(10A)	2 689(13)	1 258(18)	4 221(10)
C(20A)	2 133(13)	604(14)	2 634(12)
C(30A)	1 996(11)	2 464(14)	2 894(12)
C(20B)	1 832(20)	1 512(25)	2 573(18)
C(30B)	2 651(14)	1 951(15)	4 159(12)
C(10B)	2 894(22)	204(22)	3 574(21)
locounancies	1.0 except: $C(10A)$	0.650 C(10B) 0.2	50. C(20A) 0652

Table 7. Fractional atomic co-ordinates ($\times 10^4$) for [Cr(2-MeC₆H₄)(µ-2-MeC₆H₄)(PMe₃)]₂

All occupancies 1.0 except: C(10A), 0.650; C(10B), 0.350; C(20A), 0.653; C(20B), 0.347; C(30A), 0.602; C(30B), 0.398.

406m cm⁻¹. ³¹P-{¹H} N.m.r.: δ 22.17, 24.58 (AB quartet, J = 91 Hz).

 $W(\eta^2-2-MeC_6H_3)(2-MeC_6H_4)_2(PMe_3)_2$. From $W(2-MeC_6-MeC_6)_2$ $H_4)_4$ (0.27 g, 0.49 mmol) in hexane (30 cm³) and PMe₃ (0.15 cm³, 1.6 mmol), at ambient temperature. The solution was evaporated, extracted with hexane (30 cm³) which was filtered, reduced to 15 cm³, and allowed to stand to give green crystals. Yield: 94%. The aryne may also be recovered by addition of excess of PMe₃ to $W(2-MeC_6H_4)_4$ made in situ; the browngreen solution was transferred to an alumina column and eluted with toluene. Mass spectrum (e.i.): m/z 608 (608), M^+ ; other peaks due to loss of PMe₃. N.m.r.: ¹H, 8 0.49 (s, 6 H, 2- MeC_6H_4), 1.31 (d, 9 H, $J_{PH} = 7.7$, PMe_3), 1.33 (d, 9 H, $J_{PH} =$ 7.7, PMe₃), 2.58 (s, 3 H, 2-MeC₆H₄), 6.57 (t, 2 H, J = 7.8, 2- MeC_6H_4), 6.96 (m, 4 H, 2- MeC_6H_4), 7.05 (d, 1 H, J = 6.5, MeC₆H₃), 7.19 (m, 3 H, 2-MeC₆H₄), and 8.05 (m, 1 H, MeC₆H₃); 13 C-{¹H}, δ 17.35 (d, $J_{PC} = 25.7$), 18.25 (d, $J_{PC} =$ 24.4, PMe₃), 25.1 (s, 2-MeC₆H₃), 26.2 (s, 2-MeC₆H₄), 120 (s, 2- MeC_6H_4), 122.9 (s, 2-MeC_6H_4), 127 (s, 2-MeC_6H_4), 130 (s, 2-MeC₆H₄), 131.1 (d, $J_{PC} = 34.4$, 2-MeC₆H₄), 134.3 (s, 2- MeC_6H_3), 139 (s, 2- MeC_6H_3), 185.1 (d, $J_{PC} = 25.4$, 2- MeC_6H_3), 186.5 (d, $J_{PC} = 29.4$, 2- MeC_6H_3), and 211 (t, $J_{PC} = 9$ Hz, 2-MeC₆H₃); ³¹P-{¹H}, δ 5.3 (d, J_{PP} = 77.6); and 12.9 (d, J_{PP} 77.5 Hz).

W(η²-2-MeC₆H₃)(2-MeC₆H₄)₂(PMe₂Ph)₂. From W(2-Me-C₆H₄)₄ (0.2 g, 0.37 mmol) and PMe₂Ph (0.1 cm³, 0.74 mmol) in toluene at room temperature. Work-up as before gave dark green crystals. Yield: 0.24 g, 89%. N.m.r.: ¹H, δ 0.5 (s, 6 H, 2-MeC₆H₄), 1.55 (d, 6 H, $J_{PH} = 7.2$, PMe₂Ph), 1.66 (d, 6 H, $J_{PH} = 7.9$, PMe₂Ph), 2.21 (s, 3 H, 2-MeC₆H₃), and 6.55–8.01 (aromatic H); ³¹P-{¹H}, δ 10.8 (d, $J_{PP} = 75$, PMe₂Ph); and 18.1 (d, $J_{PP} = 75$ Hz, PMe₂Ph).

 $W(\eta^2-2,5-Me_2C_6H_2)(2,5-Me_2C_6H_3)_2(PMe_3)_2$. To a stirred solution of $W(OPh)_6$ (2.0 g, 2.7 mmol) in th fat 0 °C was added MgBr(2,5-Me_2C_6H_3) (36 cm³ of 0.45 mol dm⁻³ thf solution). After stirring for 6 h at 0 °C the solution was filtered, evaporated, and the brown residue dissolved in toluene (50 cm³) to which PMe₃ (1.0 cm³) was added. After stirring for 2 h the green solution was transferred to a short alumina column and the

Table 8. Fractional atomic co-ordinates ($\times\,10^4)$ for $Mo(\eta^2\mathcal{-2}\mbox{MeC}_6H_4)(2\mbox{MeC}_6H_4)_2(PMe_2Ph)_2$

Atom	x	у	2
Мо	1 015(1)	1 495.3(4)	414(1)
P (1)	-25(4)	1 504(2)	-1684(4)
P(2)	2 546(4)	1 665(1)	2 188(4)
C(11)	978(15)	2 206(5)	236(14)
C(12)	6(16)	2 492(6)	787(14)
C(13)	104(19)	2 959(6)	690(15)
C(14)	1 117(19)	3 156(6)	27(17)
C(15)	2 060(18)	2 892(6)	-518(15)
C(16)	1 981(16)	2 418(5)	-414(14)
C(21)	2 533(14)	1 099(5)	-324(13)
C(22)	2 621(15)	625(5)	-204(14)
C(23)	3 677(17)	389(6)	-732(16)
C(24)	4 643(17)	615(8)	-1362(17)
C(25)	4 570(16)	1 072(7)	-1519(15)
C(26)	3 520(15)	1 318(6)	-981(14)
C(121)	-1 143(17)	2 290(7)	1 479(17)
C(221)	1 583(18)	358(6)	472(18)
C(102)	428(9)	657(4)	-2 618(10)
C(103)	91(9)	253(4)	-3 184(10)
C(104)	-1 191(9)	177(4)	-3 593(10)
C(105)	-2137(9)	506(4)	-3435(10)
C(106)	-1 800(9)	911(4)	-2 869(10)
C(101)	-518(9)	986(4)	-2 461(10)
C(202)	2 993(10)	1 233(3)	4 487(9)
C(203)	3 506(10)	894(3)	5 242(9)
C(204)	4 212(10)	546(3)	4 717(9)
C(205)	4 406(10)	537(3)	3 436(9)
C(206)	3 894(10)	876(3)	2 680(9)
C(201)	3 187(10)	1 224(3)	3 205(9)
C(10)	972(18)	1 748(7)	-2 883(14)
C(20)	-1 456(16)	1 850(6)	-1 838(18)
C(30)	4 080(15)	1 915(6)	1 734(17)
C(40)	1 973(19)	2 073(6)	3 263(15)
C(31)	-176(17)	1 237(6)	1 692(18)
C(32)	-867(23)	1 074(8)	2 847(21)
C(33)	-2134(19)	906(6)	2 575(17)
C(34)	-2 668(21)	881(8)	1 323(21)
C(35)	-2201(20)	1 016(7)	313(19)
C(36)	- 769(17)	1 196(6)	640(17)
C(321)	-293(24)	1 086(8)	3 967(23)

product eluted with toluene (40 cm³); evaporation and crystallisation of the residue from hexane gave green crystals. Yield: 0.5 g, 28% based on W(OPh)₆. N.m.r.: ¹H, δ 0.78 (s, 6 H, 2,5-Me₂C₆H₃), 1.47 (t, 18 H, J_{PH} = 3.6, PMe₃), 2.44 (s, 6 H, 2,5-Me₂C₆H₃), 2.79 (s, 6 H, 2,5-Me₂C₆H₂), 6.46 (d, 2 H, J_{HH} = 7.3, 2,5-Me₂C₆H₃), 6.91 (s, 2 H, 2,5-Me₂C₆H₂), 6.99 (d, 2 H, J_{HH} = 7.4 Hz, 2,5-Me₂C₆H₃), and 7.24 (s, 2 H, 2,5-Me₂C₆H₂), ³¹P-{¹H}, δ 4.8 (s, PMe₃).

W(η^2 -2,5-Me₂C₆H₂)(2,5-Me₂C₆H₃)₂(PMe₂Ph)₂. As above but using PMe₂Ph to give green crystals. Yield: 0.42 g, 20%. N.m.r.: ¹H, δ 0.88 (s, 6 H, 2,5-Me₂C₆H₃), 1.68 (t, 12 H, J_{PH} = 7.0, PMe₂Ph), 2.05 (s, 6 H, 2,5-Me₂C₆H₃), 2.28 (s, 6 H, 2,5-Me₂C₆H₂), 6.34 (s, 2 H, 2,5-Me₂C₆H₃), 6.41 (d, 2 H, J_{HH} = 7.0 Hz, 2,5-Me₂C₆H₃), and 6.91—7.13 (24 H, aromatic H); ³¹P-{¹H}, δ 11.2 (s, PMe₂Ph).

X-Ray Crystallography.—Measurements for all compounds were made on crystals sealed under argon in thin-walled glass capillaries. Cell dimensions and intensity data were measured using standard procedures and software on an Enraf–Nonius CAD4 diffractometer operating with graphite-monochromated Mo- K_{α} radiation in the ω —2 θ scan mode.²² Intensity data were corrected for absorption empirically and the structures solved via Patterson methods. Refinements were accomplished by full-

Table 9. Fractional atomic co-ordinates ($\times\,10^4)$ for $W(\eta^2\text{-}2,5\text{-}Me_2C_6H_2)(2,5\text{-}Me_2C_6H_3)_2(PMe_3)_2$

Atom	x	У	Z
w	2 400.2(4)	0	2 266.9(4)
P(1)	4 013(4)	570(5)	2 285(4)
P(2)	1 000(4)	351(5)	2 841(3)
C(10)	1 573(14)	686(15)	1 273(11)
C(20)	2 459(16)	357(26)	1 115(15)
C(30)	2 744(18)	369(22)	358(15)
C(40)	1 975(23)	847(26)	-201(15)
C(50)	1 090(20)	1 268(23)	- 36(16)
C(60)	895(18)	1 169(19)	700(14)
C(11P)	4 194(19)	1 767(18)	1 675(14)
C(12P)	4 700(20)	983(29)	3 224(19)
C(13P)	4 756(18)	- 557(25)	2 055(22)
C(21P)	1 085(16)	75(43)	3 866(14)
C(22P)	-67(18)	-326(22)	2 385(21)
C(23P)	691(24)	1 875(28)	2 871(22)
C(301)	3 511(23)	-179(24)	60(16)
C(601)	-23(19)	1 592(24)	846(16)
C(11)	2 287(14)	-1 644(17)	2 550(11)
C(12)	1 910(15)	-2 421(18)	1 971(12)
C(13)	1 941(20)	-3 627(22)	2 141(15)
C(14)	2 250(15)	-3 977(15)	2 942(14)
C(15)	2 691(22)	-3 167(22)	3 507(16)
C(16)	2 677(23)	-2 035(20)	3 305(15)
C(121)	1 486(19)	-2129(22)	1 131(14)
C(151)	3 103(25)	-3 542(27)	4 300(19)
C(21)	2 994(16)	1 235(15)	3 108(16)
C(22)	3 030(19)	2 456(20)	2 934(14)
C(23)	3 373(17)	3 153(24)	3 602(21)
C(24)	3 605(18)	2 706(28)	4 397(19)
C(25)	3 525(18)	1 620(21)	4 499(18)
C(26)	3 205(15)	852(20)	3 926(12)
C(221)	2 742(21)	2 849(21)	2 098(18)
C(251)	3 758(20)	1 155(29)	5 360(18)

matrix least squares with anisotropic displacement factors for all non-hydrogen atoms. All three structures showed varying levels of disorder in the aryl ligands and it was therefore considered inappropriate to add hydrogen atoms in the final refinements. Disorder also occurs in the orientations of the trimethylphosphine groups where methyl occupancies range from 0.347 to 0.653. Refinement of an inverted set of coordinates for the tungsten structure gave R and R' values of 0.0523 and 0.0634, respectively, confirming the original assignment. The phenyl rings of the phosphine in the molybdenum complex were treated as idealised hexagons and refined as rigid groups. Standard weighting schemes were applied to give acceptable agreement analyses. Details of the crystal data and experimental parameters are given in Table 6. Fractional atomic co-ordinates are listed in Tables 7—9.

Additional material available from the Cambridge Crystallographic Data Centre comprises thermal parameters and remaining bond lengths and angles. We thank the S.E.R.C. for a studentship (to B. McG.) and X-ray facilities and the National Science Foundation, Washington D.C., for a N.A.T.O. Fellowship (G. McD.).

References

- 1 P. Stavropoulos, P. D. Savage, R. P. Tooze, G. Wilkinson, B. Hussain, M. Motevalli, and M. B. Hursthouse, J. Chem. Soc., Dalton Trans., 1987, 557.
- 2 P. D. Savage, G. Wilkinson, M. Motevalli, and M. B. Hursthouse, J. Chem. Soc., Dalton Trans., 1988, 669.
- 3 J. Arnold, G. Wilkinson, B. Hussain, and M. B. Hursthouse, J. Chem. Soc., Dalton Trans., 1989, 2149.
- 4 J. Arnold, G. Wilkinson, B. Hussain, and M. B. Hursthouse, J. Chem. Soc., Chem. Commun., 1988, 1349.
- 5 J. Arnold, G. Wilkinson, B. Hussain, and M. B. Hursthouse, Organometallics, 1989, 8, (a) 45, (b) 1362.
- 6 R. P. A. Sneedon, 'Organochromium Compounds,' Academic Press, New York, 1975; S. W. Kirtley, 'Comprehensive Organometallic Chemistry,' eds. G. Wilkinson, F. G. A. Stone, and E. W. Abel, Pergamon, Oxford, 1982, vol. 3, ch. 26–1.
- 7 W. Seidel and I. Burger, Z. Anorg. Allg. Chem., 1976, 426, 155.
- 8 G. M. Whitesides and W. J. Ehmann, J. Am. Chem. Soc., 1970, 92, 5625.
- 9 W. Mowat, A. Shortland, G. Yagupsky, N. J. Hill, M. Yagupsky, and G. Wilkinson, J. Chem. Soc., Dalton Trans., 1972, 533.
- 10 A. R. Hermes, R. J. Morris, and G. S. Girolami, Organometallics, 1988, 7, 2372.
- 11 W. Seidel and G. Stoll, Z. Chem., 1974, 14, 488.
- 12 R. Mathieu, M. Lenzi, and R. Poiblanc, Inorg. Chem., 1970, 9, 2030.
- 13 R. A. Andersen, R. A. Jones, G. Wilkinson, M. B. Hursthouse, and K. M. A. Malik, J. Chem. Soc., Chem. Commun., 1977, 283; R. A. Andersen, R. A. Jones, and G. Wilkinson, J. Chem. Soc., Dalton Trans., 1978, 446; M. B. Hursthouse, K. M. A. Malik, and K. D. Sales, *ibid.*, p. 1314.
- 14 (a) M. L. Listemann, R. R. Schrock, J. C. Dewan, and B. M. Kolodziej, *Inorg. Chem.*, 1988, 27, 264; (b) K. H. Thiele, A. Russek, P. Opitz, B. Mohai, and W. Bruser, Z. Anorg. Allg. Chem., 1975, 412, 11; (c) I. W. Bassi, G. Allegra, R. Scordamgalia, and G. Chiocolla, J. Am. Chem. Soc., 1971, 93, 3787.
- 15 A. J. Shortland and G. Wilkinson, J. Chem. Soc., Dalton Trans., 1973, 872.
- 16 W. Seidel and I. Burger, J. Organomet. Chem., 1979, 177, C19; R. Kirmse and W. Seidel, Z. Anorg. Allg. Chem., 1982, 490, 19; C. Cauletti and R. Zanoni, *ibid.*, 1983, 496, 143.
- 17 See M. A. Bennett and H. P. Schweinlein, Angew. Chem., Int. Ed. Engl., 1989, 28, 1296.
- 18 B. Sarry, H. Singh, B. Hahn, and R. Schaffernicht, Z. Anorg. Allg. Chem., 1979, 456, 181; B. Sarry and R. Schaffernicht, Z. Naturforsch., Teil B, 1981, 36, 1238; B. Sarry and P. Velling, Z. Anorg. Allg. Chem., 1983, 500, 199.
- 19 A. A. Danopoulos, A. C. C. Wong, G. Wilkinson, B. Hussain, and M. B. Hursthouse, J. Chem. Soc., Dalton Trans., 1990, 315.
- 20 J. Shamir, Inorg. Chim. Acta, 1989, 156, 163.
- 21 G. Brauer, 'Handbook of Preparative Inorganic Chemistry,' 2nd edn., Academic Press, New York, 1965, vol. 2, p. 1426.
- 22 R. A. Jones, K. M. A. Malik, M. B. Hursthouse, and G. Wilkinson, J. Am. Chem. Soc., 1979, 101, 4128.

Received 31st May 1990; Paper 0/02443K