Gold Complexes with Heterocyclic Thiones as Ligands. X-Ray Structure Determination of $\left[\mathrm{Au}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NS}\right)_{2}\right] \mathrm{ClO}_{4}{ }^{*}$

Rafael Usón, Antonio Laguna, Mariano Laguna, Josefina Jiménez, Maria P. Gómez, and Ana Sainz
Departamento de Química Inorgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain
Peter G. Jones
Institut für Anorganische und Analytische Chemie der Technischen Universität, Hagenring 30, 3300 Braunschweig, Federal Republic of Germany

Abstract

Displacement of the weakly co-ordinating tetrahydrothiophene (tht) ligand in [AuX(tht)], $\left[\mathrm{Au}(\mathrm{tht})_{2}\right] \mathrm{ClO}_{4}$, or $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)(\mathrm{tht})\right] \mathrm{ClO}_{4}\left(\mathrm{X}=\mathrm{Cl}\right.$ or $\left.\mathrm{C}_{6} \mathrm{~F}_{5}\right)$ by heterocyclic thiones HL ($\mathrm{HL}=\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NS}_{2}, \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{~S}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NS}, \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NS}_{2}$, or $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{~S}$), leads to the formation of neutral or cationic complexes of the types $[\mathrm{AuX}(\mathrm{HL})],\left[\mathrm{Au}(\mathrm{HL})_{2}\right] \mathrm{ClO}_{4}$, or $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)(\mathrm{HL})\right] \mathrm{ClO}_{4}$. For gold(iII) complexes the tht ligand cannot be displaced but $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{OEt}_{2}\right)\right]$ reacts with HL to give neutral complexes $\left[\mathrm{AuR}_{3}(\mathrm{HL})\right]$. Deprotonation of the NH unit in the cationic complexes leads to neutral monomeric complexes and since the deprotonated N atom is now donor, binuclear complexes can be prepared by displacement of a weakly co-ordinating ligand from other suitable complexes. The structure of $\left[\mathrm{Au}(\mathrm{HL})_{2}\right] \mathrm{ClO}_{4}\left(\mathrm{HL}=\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NS}\right)$ has been established by X-ray crystallography [space group $P \overline{1}, a=9.609(3), b=15.024(6), c=16.712$ (7) $\AA, \alpha=97.52(4), \beta=104.17$ (2), $\gamma=104.76(2)^{\circ}$, and $R^{\prime}=0.045$ for 5499 unique observed reflections]. The cations are arranged in a way that is unprecedented for gold(1) compounds. Five of the six cations in the cell are linked by short $\mathrm{Au} . . \mathrm{Au}$ contacts ($3.3 \AA$) and the sixth cation is monomeric.

Herein we describe the preparation and properties of gold(I) and gold(III) complexes with heterocyclic ligands (HL) containing the $-\mathrm{NH}-\mathrm{C}=\mathrm{S}$ unit [or $-\mathrm{N}=\mathrm{C}-\mathrm{S}^{-}$for the corresponding anionic ligand L^{-}formed by deprotonation], with an exocyclic S atom $\left[\mathrm{HL}=1,3\right.$-thiazolidine-2-thione $\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NS}_{2}\right), 1 \mathrm{H}$-pyri-midine-2-thione $\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{~S}\right)$, pyridine-2-thione ($\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NS}$), benzo-thiazolidine-2-thione $\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NS}_{2}\right)$, or benzimidazole-2thione $\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{~S}\right)$].

No gold complex containing these ligands has been reported previously.

Results and Discussion

(a) Neutral Gold(I) Complexes.-The tetrahydrothiophene (tht) ligand in gold(I) complexes [AuX(tht)] can readily be displaced by a heterocyclic thione to give neutral complexes of the type [AuX(HL)] [equation (1); $\mathrm{X}=\mathrm{Cl} ; \mathrm{HL}=\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{~S}$

$$
\begin{equation*}
[\mathrm{AuX}(\text { tht })]+\mathrm{HL} \longrightarrow \underset{(\mathbf{1})-(7)}{[\mathrm{AuX}(\mathrm{HL})]+\text { tht }} \tag{1}
\end{equation*}
$$

(1) or $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NS}(\mathbf{2}) ; \mathrm{X}=\mathrm{C}_{6} \mathrm{~F}_{5} ; \mathrm{HL}=\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NS}_{2}(\mathbf{3}), \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{~S}$ (4), $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NS}(5), \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NS}_{2}(6)$, or $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{~S}$ (7)] which can be isolated as white [(1), (3), and (6)], yellow [(2), (5), and (7)], or red [(4)] air- and moisture-stable solids, at room temperature. Their acetone solutions are non-conducting but the complexes are only slightly soluble in non-donor organic solvents; only the molecular weight of (7) $\left(\mathrm{CHCl}_{3}\right.$ solution, isopiestic method: $M 470$, calc. 570) has been measured, confirming its monomeric nature.

The i.r. spectra of the complexes show absorptions at ≈ 3300 $[v(\mathrm{NH})]$ and $1620[\delta(\mathrm{NH})] \mathrm{cm}^{-1}$. Since no band in the 2500 $[v(\mathrm{SH})] \mathrm{cm}^{-1}$ region can be observed, the ligands are S-bonded to the gold atoms in all complexes (1)-(7). The $v(\mathrm{Au}-\mathrm{Cl})$
vibration appears at 330 s and $322 \mathrm{~s} \mathrm{~cm}^{-1}$ in the spectra of complexes (1) and (2).
(b) Cationic Gold(I) Complexes.-If the starting gold complex is cationic, two different situations can arise depending on whether both or only one of the two ligands bonded to the gold(I) atom are readily displaced. For $\left[\mathrm{Au}(\mathrm{tht})_{2}\right] \mathrm{ClO}_{4}$ both ligands are bonded weakly and upon addition of two moles of HL homoleptic cationic complexes are obtained [equation (2);

$$
\left[\mathrm{Au}(\mathrm{tht})_{2}\right] \mathrm{ClO}_{4}+2 \mathrm{HL} \longrightarrow \underset{(\mathbf{8})-(\mathbf{1 2)}}{\left[\mathrm{Au}(\mathrm{HL})_{2}\right] \mathrm{ClO}_{4}}+2 \text { tht }
$$

$\mathrm{HL}=\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NS}_{2}(8), \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{~S}$ (9), $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NS}(10), \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NS}_{2}$ (11), or $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{~S}$ (12)].

The complexes are white [(8), (11), and (12)] or yellow [(9) and (10)] solids, which slowly decompose at room temperature. In acetone solution, they are conducting and behave as $1: 1$ electrolytes. They are insoluble in dichloromethane, n -hexane and diethyl ether. Their i.r. spectra show a strong absorption in the $3600-3240 \mathrm{~cm}^{-1}$ region due to the $\mathrm{v}(\mathrm{N}-\mathrm{H})$ vibration and therefore the two HL ligands are S-bonded to the gold atom. Two bands at 1100 s , br and $620 \mathrm{~m} \mathrm{~cm}^{-1}$ arise from the ClO_{4}^{-} anion. ${ }^{1}$

If the starting gold complex contains only one readily displaceable ligand, mixed cationic complexes are obtained [equation (3); $\mathrm{HL}=\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NS}_{2}$ (13), $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NS}$ (14), or $\left.\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NS}_{2}(15)\right]$.

[^0]\[

$$
\begin{gathered}
{\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)(\mathrm{tht})\right] \mathrm{ClO}_{4}+\mathrm{HL} \longrightarrow} \\
{\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)(\mathrm{HL})\right] \mathrm{ClO}_{4}+\text { tht }} \\
(\mathbf{1 3) - (1 5)}
\end{gathered}
$$
\]

The use of $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{OClO}_{3}\right)\right]$ as the precursor leads to the same results, but this method is less convenient since the instability of the perchlorato complex leads to impure products. Complexes (13)-(15) are isolated as white solids, which are $1: 1$ electrolytes in acetone solution. The HL ligand is again S-bonded, as confirmed by a strong band $[v(N-H)]$ at ≈ 3200 cm^{-1} in the i.r. spectra.
(c) Gold(iII) Complexes.--Since tht is more strongly bonded to $\mathrm{Au}^{\text {III }}$ than to Au^{1}, the reactions between $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right.$ (tht)] and thione ligands lead to equilibria. Therefore, we have used $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{OEt}_{2}\right)\right]$ as the starting gold(III) complex with satisfactory results [equation (4); $\mathrm{HL}=\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NS}_{2}$ (16), $\mathrm{C}_{4} \mathrm{H}_{4}$ $\mathrm{N}_{2} \mathrm{~S}(17), \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NS}(18), \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NS}_{2}(19)$, or $\left.\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{~S}(20)\right]$.

$$
\begin{align*}
& {\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{OEt}_{2}\right)\right]+\mathrm{HL} } \\
& {\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(\mathrm{HL})\right]+\mathrm{Et}_{2} \mathrm{O} } \tag{4}\\
&(\mathbf{1 6})-(\mathbf{2 0})
\end{align*}
$$

Complex (17) is a red solid, whilst all the other complexes are white solids. They are all air- and moisture-stable, their acetone solutions are non-conducting, and their molecular weights confirm their monomeric nature [complexes (19) and (21) could not be measured owing to poor solubility]. Their i.r. spectra show bands in the region $3500-3200 \mathrm{~cm}^{-1}$ assigned to the $v(\mathrm{~N}-\mathrm{H})$ vibration; the HL ligands are therefore S-bonded. Moreover, two bands at $\approx 800 \mathrm{~s}$ and $785 \mathrm{~s}(\mathrm{br}) \mathrm{cm}^{-1}$ are indicative of the presence of three $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups. ${ }^{2}$
(d) Deprotonation Reactions of the NH Moiety with $\mathrm{Na}_{2} \mathrm{CO}_{3}$:Mono-, Di-, and Poly-nuclear Complexes.-A set of different processes has been studied.
(i) Complexes (13)-(15) react with solid $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (excess) to give neutral derivatives [equation (5); $\mathrm{L}=\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{NS}_{2}$ (21),

$$
\begin{align*}
& {\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)(\mathrm{HL})\right] \mathrm{ClO}_{4}+\mathrm{Na}_{2} \mathrm{CO}_{3} \longrightarrow } \\
& \mathrm{NaClO}_{4}+\mathrm{NaHCO}_{3}+ {\left[\mathrm{AuL}\left(\mathrm{PPh}_{3}\right)\right] } \tag{5}\\
&(\mathbf{2 1})-(\mathbf{2 3})
\end{align*}
$$

$\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NS}$ (22), or $\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NS}_{2}$ (23)] and the same complexes [and others that are not accessible by the process represented in equation (5)] can be obtained by the reaction [equation (6);

$$
\left[\mathrm{AuCl}_{(}\left(\mathrm{PPh}_{3}\right)\right]+\mathrm{KL} \longrightarrow\left[\mathrm{AuL}^{(}\left(\mathrm{PPh}_{3}\right)\right]+\mathrm{KCl}
$$

$\mathrm{L}=\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{~S}(\mathbf{2 4})$ or $\left.\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{~S}(\mathbf{2 5})\right]$ of $\left[\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)\right]$ with the deprotonated ligand L^{-}(obtained by treating HL with KOH in methanol).
Complexes (21)-(25) are air- and moisture-stable white solids. Their acetone solutions are non-conducting and they are monomeric in chloroform solution. The i.r. spectra of the complexes do not show bands due to either ClO_{4} or to $\mathrm{v}(\mathrm{N}-\mathrm{H})$.
(ii) The deprotonated N atom is a potential donor and binuclear complexes can now be obtained [equation (7);

$$
\begin{align*}
{\left[\mathrm{AuL}\left(\mathrm{PPh}_{3}\right)\right]+\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{tht})\right] } \\
{\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{AuLAu}\left(\mathrm{PPh}_{3}\right)\right] } \tag{7}
\end{align*}
$$

(26), (27)
$\mathrm{L}=\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{NS}_{2}$ (26) or $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NS}$ (27)] by reaction with [Au-
$\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)$ (tht)]. Binuclear complexes can also be obtained in one-step processes by suitable selection of the reagents in $1: 1$ mixtures. Thus, for instance, addition of solid $\mathrm{Na}_{2} \mathrm{CO}_{3}$ to a $1: 1$ mixture of complex (5) and $\left[\mathrm{NBu}_{4}\right]\left[\mathrm{AuBr}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right]$ gives [equation (8)] the yellow binuclear cationic complex (28) which

$$
\begin{align*}
& {\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NS}\right)\right]+\left[\mathrm{NBu}_{4}\right]\left[\mathrm{AuBr}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right]+} \\
& (5) \\
& \mathrm{Na}_{2} \mathrm{CO}_{3} \longrightarrow\left[\mathrm{NBu}_{4}\right]\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{Au}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NS}\right) \mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right]+ \\
& \mathrm{NaBr}+\mathrm{NaHCO}_{3} \tag{8}
\end{align*}
$$

behaves as a $1: 1$ electrolyte in acetone solution. A mixture of complex (18) and $\left[\mathrm{NBu}_{4}\right]\left[\mathrm{AuBr}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right]$ or $\left[\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)\right]$ gives, upon deprotonation with solid $\mathrm{Na}_{2} \mathrm{CO}_{3}$, the anionic complex $\left[\mathrm{NBu}_{4}\right]\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \mathrm{Au}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NS}\right) \mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right]$ (29) or the neutral complex $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \mathrm{Au}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NS}\right) \mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right]$ (30) respectively. The latter can also be prepared by the $1: 1$ reaction of complex (14) with $\left[\mathrm{NBu}_{4}\right]\left[\operatorname{AuBr}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]$ in the presence of $\mathrm{Na}_{2} \mathrm{CO}_{3}$. In the i.r. spectra of all these white binuclear complexes $\mathrm{v}(\mathrm{N}-\mathrm{H})$ vibrations are absent as expected.
(iii) Reaction of complex (2) with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ causes deprotonation of the NH moiety, simultaneous elimination of the Cl^{-}ligand and precipitation of an insoluble yellow solid of the stoicheiometry $\mathrm{Au}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NS}\right)$ (31) which is probably polymeric in nature. Both $v(\mathrm{~N}-\mathrm{H})$ and $v(\mathrm{Au}-\mathrm{Cl})$ are absent in its i.r. spectrum.
(iv) The two OEt_{2} ligands in cis- $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left(\mathrm{OEt}_{2}\right)_{2}\right] \mathrm{ClO}_{4}$ can be readily displaced by pyridine-2-thione with deprotonation of the ligand [equation (9)] and formation of a neutral monomeric auracycle (32). Lack of solubility precluded the

determination of the molecular weight. The presence of two bands at 800 s and $780 \mathrm{~s} \mathrm{~cm}^{-1}$ in the i.r. spectrum confirms the cis disposition of the $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups. ${ }^{3}$
(e) X-Ray Crystal Structure of Complex (10).-The asymmetric unit of complex (10) consists of three formula units with two entire and two half cations in the asymmetric unit. As expected, the co-ordination geometry at gold is linear [maximum deviation 5.7° at $\mathrm{Au}(1)$]; the $\mathrm{Au}-\mathrm{S}$ bond lengths ($2.28-2.29 \AA$) lie in the expected range. The cations are arranged in a way that is unprecedented for gold (1) compounds. Five of the six cations in the cell are linked by short $\mathrm{Au} \ldots \mathrm{Au}$ contacts ${ }^{4}$ of $c a .3 .3 \AA$ to form an approximately linear chain, the central gold atom $\mathrm{Au}(3)$ lying on a crystallographic symmetry centre (Figure 1). The Au_{5} chains in adjacent unit cells are not collinear. The $\mathrm{Au}(2)-\mathrm{Au}(1)-\mathrm{Au}\left(1^{\prime \prime}\right)$ angle is 145.4° and the $\mathrm{Au}(1) \cdots \mathrm{Au}\left(1^{\prime \prime}\right)$ distance is $>4.5 \AA$. The sixth cation is monomeric, its gold atom $\mathrm{Au}(4)$ also occupying a symmetry centre.

The protonated nitrogen atoms of the heterocyclic rings form hydrogen bonds to the perchlorate anions [$\mathrm{N}(112) \cdots \mathrm{O}(33)$ $(x, y, 1+z) 2.95, \mathrm{~N}(122) \cdots \mathrm{O}(31)(1-x, 1-y, 1-z)$ $2.87, \mathrm{~N}(222) \cdots \mathrm{O}(11)(1-x, \quad 1-y, 1-z) 2.80$, and $\mathrm{N}(42) \cdots \mathrm{O}(13) 2.97 \AA]$. A stereographic packing plot is shown in Figure 2.

Experimental

Instrumentation and general experimental techniques were as described earlier. ${ }^{2}$ N.m.r. spectra were recorded on a Varian XL

200 spectrometer in CDCl_{3}. Chemical shifts are quoted relative to $\mathrm{SiMe}_{4}\left({ }^{1} \mathrm{H}\right), 85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ (external, ${ }^{31} \mathrm{P}$) and CFCl_{3} (external, ${ }^{19} \mathrm{~F}$). The yields, C, H, and N analyses, molecular weights and conductivities of the new complexes are listed in Table 1. All the reactions were performed at room temperature.

Preparation of the Complexes.- $[\mathrm{AuX}(\mathrm{HL})][\mathrm{X}=\mathrm{Cl}, \mathrm{HL}=$ $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{~S}$ (1) or $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NS}(2) ; \mathrm{X}=\mathrm{C}_{6} \mathrm{~F}_{5}, \mathrm{HL}=\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NS}_{2}$ (3), $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{~S}(4), \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NS}(5), \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NS}_{2}(6)$, or $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{~S}$ (7)]. To a solution of $[\mathrm{AuCl}(\mathrm{tht})]^{5}(0.256 \mathrm{~g}, 0.8 \mathrm{mmol})$ or $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{tht})\right]^{5}(0.36 \mathrm{~g}, 0.8 \mathrm{mmol})$ in dichloromethane (20 cm^{3}) was added HL [$0.8 \mathrm{mmol}, \mathrm{HL}=\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NS}_{2}(0.095)$, $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{~S}(0.090), \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NS}$ (0.089), $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NS}_{2}$ (0.134), or $\left.\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{~S}(0.120 \mathrm{~g})\right]$ and the mixture was stirred for 1 h . The solution was concentrated to $c a .5 \mathrm{~cm}^{3}$ and addition of n -hexane

Figure 1. The pentameric cation of complex (10) in the crystal. Radii are arbitrary; H atoms omitted for clarity
($20 \mathrm{~cm}^{3}$) gave complexes (1)-(7) [complexes (1), (4), and (6) precipitated from the dichloromethane solution]. N.m.r.: (1), δ_{H} $8.83[\mathrm{~d}, J(\mathrm{HH})=5.2 \mathrm{~Hz}, 2 \mathrm{H}]$ and $7.53(\mathrm{t}, 1 \mathrm{H}) ;(2), \delta_{\mathrm{H}} 16.4$ $(1 \mathrm{H}, \mathrm{NH}), 8.38\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{6}\right), 8.07$ (ddd, $1 \mathrm{H}, \mathrm{H}^{4}$), 7.98 (dd, 1 H , H^{3}), and $7.48\left(\mathrm{dt}, 1 \mathrm{H}, \mathrm{H}^{5}\right) ;(3), \delta_{\mathrm{H}} 8.2(1 \mathrm{H}, \mathrm{NH}), 4.2[\mathrm{t}, J(\mathrm{HH})$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}]$, and $3.2(\mathrm{t}, 2 \mathrm{H}) ; \delta_{\mathrm{F}}-117.4(\mathrm{~m}, o-\mathrm{F}),-160.28$ $[\mathrm{t}, J(\mathrm{FF}) 19.5 \mathrm{~Hz}, p-\mathrm{F}]$, and -163.3 p.p.m. $(\mathrm{m}, m-\mathrm{F}) ;(5), \delta_{\mathrm{H}} 7.27$ $(\mathrm{m}) ; \delta_{\mathrm{F}}-117.6(\mathrm{~m}, o-\mathrm{F}),-160.4[\mathrm{t}, J(\mathrm{FF}) 20.0 \mathrm{~Hz}, p-\mathrm{F}]$, and -163.7 p.p.m. $(\mathrm{m}, m-\mathrm{F}) ;(6), \delta_{\mathrm{H}} 7.66(\mathrm{~m}, 1 \mathrm{H}), 7.63(\mathrm{~m}, 1 \mathrm{H})$, and $7.53(\mathrm{~m}, 2 \mathrm{H}) ; \delta_{\mathrm{F}}-117.7(\mathrm{~m}, o-\mathrm{F}),-160.5[\mathrm{t}, J(\mathrm{FF}) 19.8 \mathrm{~Hz}$, $p-\mathrm{F}]$, and -163.5 p.p.m. (m, m-F); (7), $\delta_{\mathrm{H}} 7.27(\mathrm{~m}) ; \delta_{\mathrm{F}}-117.6$ $(\mathrm{m}, o-\mathrm{F}),-160.4[\mathrm{t}, J(\mathrm{FF}) 20.1 \mathrm{~Hz}, p-\mathrm{F}]$, and -163.7 p.p.m. (m, $m-\mathrm{F}$).
$\left.\left[\mathrm{Au}(\mathrm{HL})_{2}\right] \mathrm{ClO}_{4}\right] \quad\left[\mathrm{HL}=\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NS}_{2} \quad(8), \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{~S} \quad\right.$ (9), $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NS}(10), \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NS}_{2}(11)$, or $\left.\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{~S}(12)\right]$. To a solution or suspension of $\left[\mathrm{Au}(\mathrm{tht})_{2}\right] \mathrm{ClO}_{4}$ \{obtained by a $1: 1$ reaction of $[\mathrm{AuCl}(\text { tht })]^{5}$ and $\left[\mathrm{Ag}\left(\mathrm{OClO}_{3}\right)(\right.$ tht $\left.)\right]$ in dichloromethane $\}(0.378$ $\mathrm{g}, 0.8 \mathrm{mmol})$ in acetone ($20 \mathrm{~cm}^{3}$) was added HL $[0.8 \mathrm{mmol}$, $\mathrm{HL}=\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NS}_{2}(0.095), \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{~S}(0.090), \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NS}(0.089)$, $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NS}_{2}(0.134)$, or $\left.\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{~S}(0.120 \mathrm{~g})\right]$ and the mixture stirred for 30 min . Evaporation of the solution to $c a .5 \mathrm{~cm}^{3}$ gave (8), (9), or (12) as solids. To obtain complex (10) or (11) it was necessary to add diethyl ether ($15 \mathrm{~cm}^{3}$). N.m.r.: (8), $\delta_{\mathrm{H}} 7.28$ $(\mathrm{NH}), 3.90[\mathrm{t}, J(\mathrm{HH}) 7.8 \mathrm{~Hz}, 2 \mathrm{H}]$, and $3.60(\mathrm{t}, 2 \mathrm{H}) ;(9), \delta_{\mathrm{H}} 8.90$ [d, $J(\mathrm{HH}) 4.9 \mathrm{~Hz}, 2 \mathrm{H}]$ and $7.6(\mathrm{t}, 1 \mathrm{H}) ;(10), 8.46[\mathrm{~d}, J(\mathrm{HH})$ $\left.6.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{6}\right], 8.12\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{3}\right.$ and $\left.\mathrm{H}^{4}\right)$, and $7.56[\mathrm{dt}, J(\mathrm{HH})$ 13.0 and $\left.1.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{5}\right]\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right.$ solution $] ;(11), \delta_{\mathrm{H}} 7.8(\mathrm{~m})$.
$\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)(\mathrm{HL})\right] \mathrm{ClO}_{4}\left[\mathrm{HL}=\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NS}_{2}(13), \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NS}(14)\right.$, or $\left.\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NS}_{2}(15)\right]$. To a solution of $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)(\right.$ tht $\left.)\right] \mathrm{ClO}_{4}$ $\left\{\right.$ obtained by $1: 1$ reaction of $\left[\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)\right]^{5}$ and $\left[\mathrm{Ag}\left(\mathrm{OClO}_{3}\right)-\right.$ (tht)] in dichloromethane $\}$ ($0.517 \mathrm{~g}, 0.8 \mathrm{mmol}$) in dichloromethane ($20 \mathrm{~cm}^{3}$) was added HL [$0.8 \mathrm{mmol}, \mathrm{HL}=\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NS}_{2}$ (0.095), $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NS}(0.089)$, or $\left.\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NS}_{2}(0.134 \mathrm{~g})\right]$ and the mixture stirred for 1 h . Partial concentration of the solution to ca. $5 \mathrm{~cm}^{3}$ and addition of n -hexane ($20 \mathrm{~cm}^{3}$) led to precipitation of complexes (13)-(15). N.m.r.: (13), $\delta_{\mathrm{H}} 7.54$ (m, $15 \mathrm{H}, \mathrm{PPh}_{3}$), $4.37[\mathrm{t}, J(\mathrm{HH}) 8.3 \mathrm{~Hz}, 2 \mathrm{H}]$, and $3.69(\mathrm{t}, 2 \mathrm{H}) ; \delta_{\mathrm{P}} 37.18$ p.p.m. (s);

Figure 2. Stereographic packing diagram of complex (10). Hydrogen bonds are indicated by dashed lines

Table 1. Analytical data for complexes (1)-(32)

Complex		Found (calc.) (\%)				M Found (calc.)	M.p. ${ }^{\circ} \mathrm{C}$
	$\begin{aligned} & \text { Yield } \\ & (\%) \end{aligned}$	C	H	N	$\Lambda_{\text {M }}{ }^{*}$		
(1) $\left[\mathrm{AuCl}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{~S}\right)\right]$	89	$\begin{aligned} & 13.8 \\ & (13.95) \end{aligned}$	$\begin{aligned} & 1.15 \\ & (1.15) \end{aligned}$	$\begin{aligned} & 8.4 \\ & (8.15) \end{aligned}$	1	-	215
(2) $\left[\mathrm{AuCl}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NS}\right)\right]$	98	$\begin{aligned} & 17.55 \\ & (17.5) \end{aligned}$	$\begin{aligned} & 1.45 \\ & (1.45) \end{aligned}$	$\begin{gathered} 3.75 \\ (4.05) \end{gathered}$	3	-	145
(3) $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NS}_{2}\right)\right]$	91	$\begin{aligned} & 22.1 \\ & (22.35) \end{aligned}$	$\begin{aligned} & 0.9 \\ & (1.05) \end{aligned}$	$\begin{array}{r} 2.75 \\ (2.9) \end{array}$	6	-	141
(4) $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{~S}\right)\right]$	67	$\begin{aligned} & 24.85 \\ & (25.2) \end{aligned}$	$\begin{gathered} 0.70 \\ (0.85) \end{gathered}$	$\begin{array}{r} 5.85 \\ (5.9) \end{array}$	0	-	194
(5) $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NS}\right)\right]$	90	$\begin{gathered} 27.4 \\ (27.8) \end{gathered}$	$\begin{aligned} & 1.05 \\ & (1.05) \end{aligned}$	$\begin{aligned} & 2.75 \\ & (2.95) \end{aligned}$	6	-	185
(6) $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NS}_{2}\right)\right]$	85	$\begin{gathered} 29.6 \\ (29.4) \end{gathered}$	$\begin{gathered} 0.85 \\ (0.95) \end{gathered}$	$\begin{gathered} 2.65 \\ (2.65) \end{gathered}$	1	-	267
(7) $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{~S}\right)\right]$	91	$\begin{aligned} & 30.3 \\ & (30.35) \end{aligned}$	$\begin{aligned} & 1.15 \\ & (1.2) \end{aligned}$	$\begin{gathered} 5.6 \\ (5.45) \end{gathered}$	3	$\begin{gathered} 470 \\ (514) \end{gathered}$	236
(8) $\left[\mathrm{Au}\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NS}_{2}\right)_{2}\right] \mathrm{ClO}_{4}$	89	$\begin{aligned} & 13.85 \\ & (13.5) \end{aligned}$	$\begin{gathered} 1.8 \\ (1.9) \end{gathered}$	$\begin{gathered} 5.3 \\ (5.25) \end{gathered}$	105	-	177
(9) $\left[\mathrm{Au}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{~S}\right)_{2}\right] \mathrm{ClO}_{4}$	98	$\begin{gathered} 18.65 \\ (18.45) \end{gathered}$	$\begin{aligned} & 1.75 \\ & (1.55) \end{aligned}$	$\begin{gathered} 10.45 \\ (10.75) \end{gathered}$	150	-	178
(10) $\left[\mathrm{Au}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NS}\right)_{2}\right] \mathrm{ClO}_{4}$	97	$\begin{gathered} 23.1 \\ (23.15) \end{gathered}$	$\begin{aligned} & 1.95 \\ & (1.95) \end{aligned}$	$\begin{array}{r} 5.55 \\ (5.4) \end{array}$	136	-	172
(11) $\left[\mathrm{Au}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NS}_{2}\right)_{2}\right] \mathrm{ClO}_{4}$	95	$\begin{gathered} 26.3 \\ (26.65) \end{gathered}$	$\begin{gathered} 1.5 \\ (1.6) \end{gathered}$	$\begin{aligned} & 4.3 \\ & (4.45) \end{aligned}$	115	-	126
(12) $\left[\mathrm{Au}\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{~S}\right)_{2}\right] \mathrm{ClO}_{4}$	70	$\begin{aligned} & 27.95 \\ & (28.2) \end{aligned}$	$\begin{aligned} & 1.75 \\ & (2.05) \end{aligned}$	$\begin{gathered} 9.1 \\ (9.4) \end{gathered}$	134	-	225
(13) $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NS}_{2}\right)\right] \mathrm{ClO}_{4}$	83	$\begin{aligned} & 37.55 \\ & (37.2) \end{aligned}$	$\begin{gathered} 3.15 \\ (2.95) \end{gathered}$	$\begin{aligned} & 2.25 \\ & (2.05) \end{aligned}$	157	-	118
(14) $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NS}\right)\right] \mathrm{ClO}_{4}$	89	$\begin{gathered} 40.95 \\ (41.25) \end{gathered}$	$\begin{gathered} 3.2 \\ (3.0) \end{gathered}$	$\begin{gathered} 1.8 \\ (2.1) \end{gathered}$	129	-	72
(15) $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NS}_{2}\right)\right] \mathrm{ClO}_{4}$	81	$\begin{gathered} 40.95 \\ (41.35) \end{gathered}$	$\begin{array}{r} 2.75 \\ (2.8) \end{array}$	$\begin{gathered} 1.65 \\ (1.95) \end{gathered}$	137	-	120
(16) $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NS}_{2}\right)\right]$	90	$\begin{gathered} 30.6 \\ (30.85) \end{gathered}$	$\begin{array}{r} 0.65 \\ (0.6) \end{array}$	$\begin{gathered} 1.7 \\ (1.7) \end{gathered}$	2	$\begin{gathered} 802 \\ (817) \end{gathered}$	148
(17) $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{~S}\right)\right]$	73	$\begin{gathered} 32.2 \\ (32.6) \end{gathered}$	$\begin{gathered} 0.95 \\ (0.5) \end{gathered}$	$\begin{aligned} & 3.9 \\ & (3.45) \end{aligned}$	2	-	210
(18) $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NS}\right)\right]$	87	$\begin{gathered} 34.3 \\ (34.15) \end{gathered}$	$\begin{gathered} 0.5 \\ (0.6) \end{gathered}$	$\begin{aligned} & 1.55 \\ & (1.75) \end{aligned}$	3	$\begin{gathered} 820 \\ (809) \end{gathered}$	175
(19) $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NS}_{2}\right)\right]$	93	$\begin{gathered} 34.7 \\ (34.7) \end{gathered}$	$\begin{array}{r} 1.1 \\ (0.6) \end{array}$	$\begin{gathered} 1.5 \\ (1.6) \end{gathered}$	2	-	241
(20) $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{~S}\right)\right]$	67	$\begin{aligned} & 35.55 \\ & (35.4) \end{aligned}$	$\begin{array}{r} 0.75 \\ (0.7) \end{array}$	$\begin{gathered} 3.25 \\ (3.3) \end{gathered}$	1	$\begin{gathered} 826 \\ (848) \end{gathered}$	236
(21) $\left[\mathrm{Au}\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{NS}_{2}\right)\left(\mathrm{PPh}_{3}\right)\right]$	88	$\begin{aligned} & 43.35 \\ & (43.7) \end{aligned}$	$\begin{array}{r} 3.45 \\ (3.3) \end{array}$	$\begin{aligned} & 2.3 \\ & (2.45) \end{aligned}$	4	$\begin{gathered} 582 \\ (577) \end{gathered}$	159
(22) $\left[\mathrm{Au}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NS}\right)\left(\mathrm{PPh}_{3}\right)\right]$	43	$\begin{gathered} 48.2 \\ (48.5) \end{gathered}$	$\begin{gathered} 3.15 \\ (3.35) \end{gathered}$	$\begin{aligned} & 2.45 \\ & (2.45) \end{aligned}$	10	$\begin{array}{r} 624 \\ (569) \end{array}$	210
(23) $\left[\mathrm{Au}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NS}_{2}\right)\left(\mathrm{PPh}_{3}\right)\right]$	92	$\begin{gathered} 48.0 \\ (48.0) \end{gathered}$	$\begin{aligned} & 2.95 \\ & (3.05) \end{aligned}$	$\begin{aligned} & 2.0 \\ & (2.25) \end{aligned}$	14	$\begin{array}{r} 582 \\ (625) \end{array}$	167
(24) $\left[\mathrm{Au}\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{~S}\right)\left(\mathrm{PPh}_{3}\right)\right]$	90	$\begin{aligned} & 45.9 \\ & (46.35) \end{aligned}$	$\begin{aligned} & 3.15 \\ & (3.2) \end{aligned}$	$\begin{gathered} 4.8 \\ (4.9) \end{gathered}$	1	$\begin{gathered} 572 \\ (570) \end{gathered}$	215
(25) $\left[\mathrm{Au}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{~S}\right)\left(\mathrm{PPh}_{3}\right)\right]$	91	$\begin{gathered} 49.3 \\ (49.35) \end{gathered}$	$\begin{array}{r} 3.45 \\ (3.3) \end{array}$	$\begin{array}{r} 4.55 \\ (4.6) \end{array}$	1	$\begin{gathered} 593 \\ (608) \end{gathered}$	215
(26) $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{Au}\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{NS}_{2}\right) \mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right]$	80	$\begin{gathered} 34.7 \\ (34.45) \end{gathered}$	$\begin{gathered} 2.05 \\ (2.05) \end{gathered}$	$\begin{aligned} & 2.05 \\ & (1.5) \end{aligned}$	3	$\begin{gathered} 922 \\ (941) \end{gathered}$	195
(27) $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{Au}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NS}\right) \mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right]$	73	$\begin{aligned} & 37.2 \\ & (37.3) \end{aligned}$	$\begin{aligned} & 2.1 \\ & (2.05) \end{aligned}$	$\begin{aligned} & 1.6 \\ & (1.5) \end{aligned}$	2	$\begin{gathered} 906 \\ (933) \end{gathered}$	143
(28) $\left[\mathrm{NBu}_{4}\right]\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{Au}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NS}\right) \mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right]$	60	$\begin{aligned} & 36.15 \\ & (36.5) \end{aligned}$	$\begin{gathered} 3.4 \\ (3.75) \end{gathered}$	$\begin{gathered} 2.2 \\ (2.6) \end{gathered}$	178	-	175
(29) $\left[\mathrm{NBu}_{4}\right]\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \mathrm{Au}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NS}\right) \mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right]$	75	$\begin{aligned} & 38.65 \\ & (38.2) \end{aligned}$	$\begin{gathered} 3.5 \\ (2.85) \end{gathered}$	$\begin{array}{r} 2.05 \\ (2.0) \end{array}$	150	-	170
(30) $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \mathrm{Au}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NS}\right) \mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right]$	65	$\begin{gathered} 38.0 \\ (38.85) \end{gathered}$	$\begin{gathered} 1.8 \\ (1.5) \end{gathered}$	$\begin{aligned} & 1.05 \\ & (1.1) \end{aligned}$	1	-	165
(31) $\left[\left\{\mathrm{Au}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NS}\right)\right\}_{n}\right]$	84	$\begin{gathered} 19.25 \\ (19.55) \end{gathered}$	$\begin{aligned} & 1.25 \\ & (1.3) \end{aligned}$	$\begin{gathered} 4.15 \\ (4.55) \end{gathered}$	1	-	135
(32) cis-[$\left.\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NS}\right)\right]$	95	$\begin{aligned} & 31.6 \\ & (31.85) \end{aligned}$	$\begin{gathered} 0.65 \\ (0.65) \end{gathered}$	$\begin{aligned} & 2.15 \\ & (2.2) \end{aligned}$	3	-	220

${ }^{*}$ In acetone, $\mathrm{S} \mathrm{cm}^{2} \mathrm{~mol}^{-1}$.

Table 2. Atomic co-ordinates ($\times 10^{4}$) for complex (10)

Atom	x	y	z	Atom	x	y	z
Au(1)	9 282.6(5)	$5716.2(3)$	$8896.7(3)$	$\mathrm{Au}(3)$	5000	5000	5000
S(1a)	7 496(3)	$4702(2)$	$9301(2)$	S(3)	6 797(3)	$6118(2)$	4 694(2)
C(111)	$7829(10)$	3 628(7)	$9113(6)$	C(31)	$6409(10)$	7 158(6)	4 925(6)
$\mathrm{N}(112)$	$6863(9)$	$2896(5)$	9 251(5)	N(32)	7 367(9)	7 953(5)	4 807(5)
C(113)	6 974(13)	$2008(8)$	9 123(7)	C(33)	7 165(11)	8 816(7)	4 992(6)
C(114)	8 112(14)	$1828(8)$	8 846(8)	C(34)	6042 (12)	8 930(8)	5 289(7)
C(115)	9 108(12)	2 568(9)	$8715(7)$	C(35)	5070 (11)	8 145(8)	5 403(7)
C(116)	$9004(10)$	3 460(8)	8 835(6)	C(36)	5 246(9)	7 269(6)	5 236(6)
S(1b)	11 233(3)	$6725(2)$	8 614(2)	$\mathrm{Au}(4)$	10000	5000	5000
C(121)	11 067(10)	$7838(7)$	8 828(6)	S(4)	$7895(3)$	3 929(2)	$4090(2)$
N(122)	$9855(9)$	7 985(6)	9 029(5)	C(41)	7 463(9)	4 359(7)	3 180(6)
C(123)	$9685(13)$	8 851(8)	9 172(7)	N(42)	6 291(8)	3 797(6)	2 542(5)
C(124)	$10753(13)$	9614(9)	9 129(8)	C(43)	$5814(13)$	4 044(9)	$1827(9)$
C(125)	12 000(15)	9 484(9)	8 945(8)	C(44)	6520 (12)	4 855(10)	1 663(8)
C(126)	$12185(12)$	8 614(8)	$8796(8)$	C(45)	7 712(12)	5460 (8)	2 295(8)
$\mathrm{Au}(2)$	7 393.5(4)	5 379.6(3)	6 902.1(3)	C(46)	8 220(10)	5 228(7)	3 057(7)
S(2a)	7 711(3)	3 920(2)	6 642(2)	$\mathrm{Cl}(1)$	4 577(3)	797(2)	2 192(2)
C(211)	6 300(10)	3 157(7)	$6898(6)$	O(11)	3 277(8)	479(6)	$2385(8)$
$\mathrm{N}(212)$	6 309(8)	2 260(6)	$6810(5)$	O(12)	4 426(13)	349(8)	$1423(6)$
C(213)	$5312(11)$	1 573(7)	6 997(7)	O(13)	5 133(13)	$1723(5)$	2 306(9)
C(214)	4 212(12)	$1747(7)$	7 271(7)	$\mathrm{O}(14)$	5 602(11)	529(9)	2 727(13)
C(215)	4 125(11)	2 661(8)	7 379(7)	$\mathrm{Cl}(2)$	655(3)	8 400(2)	3 960(2)
C(216)	$5147(10)$	3 373(7)	7 202(6)	$\mathrm{O}(21)$	-29(8)	$9060(5)$	4 147(8)
S(2b)	7 107(3)	6843 (2)	7 186(2)	$\mathrm{O}(22)$	-73(12)	7 556(5)	4 085(9)
C(221)	8 534(9)	7 629(7)	$6939(6)$	$\mathrm{O}(23)$	2090 (8)	8 675(9)	4 436(9)
N(222)	8 514(8)	8 530(5)	7 037(5)	O (24)	736(17)	8341 (12)	3 173(9)
C(223)	$9558(11)$	9 220(7)	$6896(7)$	$\mathrm{Cl}(3)$	3 128(3)	2 518(2)	-387(2)
C(224)	10 644(12)	$9022(7)$	6 581(7)	$\mathrm{O}(31)$	2 501(8)	2 726(8)	239(6)
C(225)	10 689(10)	8 105(7)	6460 (7)	O(32)	3 662(13)	3 282(6)	-667(9)
C(226)	9 644(9)	7 409(7)	6 620(6)	O(33)	4 312(9)	2 204(11)	-75(8)
				$\mathrm{O}(34)$	2 142(13)	$1825(8)$	-1010(9)

Table 3. Bond lengths (\AA) for complex (10)

$\mathrm{Au}(1)-\mathrm{S}(1 \mathrm{a})$	$2.288(3)$	$\mathrm{Au}(1)-\mathrm{S}(1 \mathrm{~b})$	$2.282(3)$
$\mathrm{Au}(1)-\mathrm{Au}(2)$	$3.285(1)$	$\mathrm{S}(1 \mathrm{a})-\mathrm{C}(111)$	$1.727(11)$
$\mathrm{C}(111)-\mathrm{N}(112)$	$1.331(12)$	$\mathrm{C}(111)-\mathrm{C}(116)$	$1.388(16)$
$\mathrm{N}(112)-\mathrm{C}(113)$	$1.359(14)$	$\mathrm{C}(113)-\mathrm{C}(114)$	$1.359(20)$
$\mathrm{C}(114)-\mathrm{C}(115)$	$1.351(17)$	$\mathrm{C}(115)-\mathrm{C}(116)$	$1.362(18)$
$\mathrm{S}(1 \mathrm{~b})-\mathrm{C}(121)$	$1.719(11)$	$\mathrm{C}(121)-\mathrm{N}(122)$	$1.349(14)$
$\mathrm{C}(121)-\mathrm{C}(126)$	$1.387(14)$	$\mathrm{N}(122)-\mathrm{C}(123)$	$1.350(16)$
$\mathrm{C}(123)-\mathrm{C}(124)$	$1.353(16)$	$\mathrm{C}(124)-\mathrm{C}(125)$	$1.362(21)$
$\mathrm{C}(125)-\mathrm{C}(126)$	$1.363(19)$	$\mathrm{Au}(2)-\mathrm{S}(2 \mathrm{a})$	$2.291(3)$
$\mathrm{Au}(2)-\mathrm{S}(2 \mathrm{~b})$	$2.288(3)$	$\mathrm{Au}(2)-\mathrm{Au}(3)$	$3.316(1)$
$\mathrm{S}(2 \mathrm{a})-\mathrm{C}(211)$	$1.719(10)$	$\mathrm{C}(211)-\mathrm{N}(212)$	$1.340(13)$
$\mathrm{C}(211)-\mathrm{C}(216)$	$1.416(15)$	$\mathrm{N}(212)-\mathrm{C}(213)$	$1.344(13)$
$\mathrm{C}(213)-\mathrm{C}(214)$	$1.319(18)$	$\mathrm{C}(214)-\mathrm{C}(215)$	$1.389(17)$
$\mathrm{C}(215)-\mathrm{C}(216)$	$1.374(15)$	$\mathrm{S}(2 \mathrm{~b})-\mathrm{C}(221)$	$1.739(10)$
$\mathrm{C}(221)-\mathrm{N}(222)$	$1.348(13)$	$\mathrm{C}(221)-\mathrm{C}(226)$	$1.394(14)$
$\mathrm{N}(222)-\mathrm{C}(223)$	$1.337(13)$	$\mathrm{C}(223)-\mathrm{C}(224)$	$1.356(18)$
$\mathrm{C}(224)-\mathrm{C}(225)$	$1.380(16)$	$\mathrm{C}(225)-\mathrm{C}(226)$	$1.358(14)$
$\mathrm{Au}(3)-\mathrm{S}(3)$	$2.290(3)$	$\mathrm{S}(3)-\mathrm{C}(31)$	$1.714(10)$
$\mathrm{C}(31)-\mathrm{N}(32)$	$1.379(12)$	$\mathrm{C}(31)-\mathrm{C}(36)$	$1.380(14)$
$\mathrm{N}(32)-\mathrm{C}(33)$	$1.366(14)$	$\mathrm{C}(33)-\mathrm{C}(34)$	$1.331(18)$
$\mathrm{C}(34)-\mathrm{C}(35)$	$1.373(16)$	$\mathrm{C}(35)-\mathrm{C}(36)$	$1.370(16)$
$\mathrm{Au}(4)-\mathrm{S}(4)$	$2.278(2)$	$\mathrm{S}(4)-\mathrm{C}(41)$	$1.727(11)$
$\mathrm{C}(41)-\mathrm{N}(42)$	$1.346(10)$	$\mathrm{C}(41)-\mathrm{C}(46)$	$1.392(14)$
$\mathrm{N}(42)-\mathrm{C}(43)$	$1.308(17)$	$\mathrm{C}(43)-\mathrm{C}(44)$	$1.332(19)$
$\mathrm{C}(44)-\mathrm{C}(45)$	$1.371(14)$	$\mathrm{C}(45)-\mathrm{C}(46)$	$1.372(18)$
$\mathrm{Cl}(1)-\mathrm{O}(11)$	$1.351(10)$	$\mathrm{Cl}(1)-\mathrm{O}(12)$	$1.326(11)$
$\mathrm{Cl}(1)-\mathrm{O}(13)$	$1.327(7)$	$\mathrm{Cl}(1)-\mathrm{O}(14)$	$1.341(15)$
$\mathrm{Cl}(2)-\mathrm{O}(21)$	$1.365(10)$	$\mathrm{Cl}(2)-\mathrm{O}(22)$	$1.352(10)$
$\mathrm{Cl}(2)-\mathrm{O}(23)$	$1.339(8)$	$\mathrm{Cl}(2)-\mathrm{O}(24)$	$1.329(16)$
$\mathrm{Cl}(3)-\mathrm{O}(31)$	$1.369(11)$	$\mathrm{Cl}(3)-\mathrm{O}(32)$	$1.325(12)$
$\mathrm{Cl}(3)-\mathrm{O}(33)$	$1.356(13)$	$\mathrm{Cl}(3)-\mathrm{O}(34)$	$1.340(10)$

(14), $\delta_{\mathrm{H}} 8.29\left[\mathrm{~d}, J(\mathrm{HH}) 5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{6}\right], 7.88\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{3}\right.$ and $\left.\mathrm{H}^{4}\right), 7.68\left(\mathrm{~m}, 15 \mathrm{H}, \mathrm{PPh}_{3}\right)$, and $7.34[\mathrm{dt}, J(\mathrm{HH}) 5.4$ and 1.1 Hz ,
$\left.1 \mathrm{H}, \mathrm{H}^{5}\right] ; \delta_{\mathrm{P}} 38.55$ p.p.m. (s); (15), $\delta_{\mathrm{H}} 7.6\left(\mathrm{~m}, 15 \mathrm{H}, \mathrm{PPh}_{3}\right)$ and 7.56 (m, $4 \mathrm{H}, \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NS}_{2}$); $\delta_{\mathrm{P}} 36.91$ p.p.m. (s).
$\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(\mathrm{HL})\right]\left[\mathrm{HL}=\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NS}_{2}(16), \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{~S}\right.$ (17), $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NS}(18), \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NS}_{2}(19)$, or $\left.\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{~S}(20)\right]$. To a solution of $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{OEt}_{2}\right)\right]^{6}(0.618 \mathrm{~g}, 0.8 \mathrm{mmol})$ in dichloromethane $\left(20 \mathrm{~cm}^{3}\right)$ was added HL [$0.8 \mathrm{mmol}, \mathrm{HL}=\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NS}_{2}(0.095)$, $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{~S}(0.090), \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NS}$ (0.089), $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NS}_{2}$ (0.134), or $\left.\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{~S}(0.120 \mathrm{~g})\right]$ and the mixture was stirred for 30 min . Evaporation of the solution to $c a .5 \mathrm{~cm}^{3}$ and addition of n -hexane ($20 \mathrm{~cm}^{3}$) gave complexes (16)-(20). N.m.r.: (16), δ_{H} $7.99(1 \mathrm{H}, \mathrm{NH}), 4.23[\mathrm{t}, J(\mathrm{HH})=3.87 \mathrm{~Hz}, 2 \mathrm{H}]$, and $3.71(\mathrm{t}, 2$ $\mathrm{H})$; (19), $\delta_{\mathrm{H}} 7.61(\mathrm{~m}) ; \delta_{\mathrm{F}}-122.48\left(\mathrm{~m}, o-\mathrm{F}, \mathrm{C}_{6} \mathrm{~F}_{5}\right.$ cis and trans $)$, -157.64 [$\left.\mathrm{t}, J(\mathrm{FF}) 20.0 \mathrm{~Hz}, p-\mathrm{F}, c i s-\mathrm{C}_{6} \mathrm{~F}_{5}\right],-157.8[\mathrm{t}, J(\mathrm{FF})$ 20.6 Hz , trans $-\mathrm{C}_{6} \mathrm{~F}_{5}$), and -161.93 p.p.m. (m, $m-\mathrm{F}, \mathrm{C}_{6} \mathrm{~F}_{5}$ cis and trans); (20), $\delta_{\mathrm{H}} 7.42(\mathrm{~m}) ; \delta_{\mathrm{F}}-122.78\left(\mathrm{~m}, o-\mathrm{F}, \mathrm{C}_{6} \mathrm{~F}_{5}\right.$ cis and trans), $-158.44\left[\mathrm{t}, J(\mathrm{FF}) 19.9 \mathrm{~Hz}, p-\mathrm{F}\right.$, trans $\left.-\mathrm{C}_{6} \mathrm{~F}_{5}\right],-158.65[\mathrm{t}, J(\mathrm{FF})$ $20.1 \mathrm{~Hz}, p-\mathrm{F}$, cis $\left.-\mathrm{C}_{6} \mathrm{~F}_{5}\right]$, and -162.39 p.p.m. (m, $m-\mathrm{F}, \mathrm{C}_{6} \mathrm{~F}_{5}$ cis and trans).
$\left[\mathrm{AuL}\left(\mathrm{PPh}_{3}\right)\right]\left[\mathrm{L}=\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{NS}_{2}(21), \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NS}(22), \mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NS}_{2}\right.$ (23), $\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{~S}$ (24), or $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{~S}$ (25)]. These complexes can be obtained in two different ways.
(a) To a solution of compound (13), (14), or (15) (1 mmol) in dichloromethane ($20 \mathrm{~cm}^{3}$) was added $\mathrm{Na}_{2} \mathrm{CO}_{3}(1 \mathrm{~g})$ and the mixture stirred for 1 h . The excess of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ was filtered off. The solution was concentrated to $c a .2 \mathrm{~cm}^{3}$ and addition of diethyl ether ($20 \mathrm{~cm}^{3}$) gave complexes (21)-(23).
(b) To a solution of $\mathrm{HL}\left[0.8 \mathrm{mmol}, \mathrm{HL}=\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NS}_{2}(0.095)\right.$, $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{~S}(0.090), \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NS}_{2}(0.134)$, or $\left.\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{~S}(0.120 \mathrm{~g})\right]$ in methanol ($20 \mathrm{~cm}^{3}$) was added a solution of KOH in methanol ($14 \mathrm{~cm}^{3}, 0.125 \mathrm{~mol} \mathrm{dm}^{-3}$) and the mixture was stirred for 30 min ; [$\left.\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)\right](0.396 \mathrm{~g}, 0.8 \mathrm{mmol})$ was then added and the mixture stirred for 2 h . Concentration to $\mathrm{ca} .2 \mathrm{~cm}^{3}$ and addition of n-hexane ($20 \mathrm{~cm}^{3}$) gave (21) and (23)-(25). N.m.r.: (21), δ_{H} $7.55\left(\mathrm{~m}, 15 \mathrm{H}, \mathrm{PPh}_{3}\right), 4.29[\mathrm{t}, J(\mathrm{HH}) 8.1 \mathrm{~Hz}, 2 \mathrm{H}]$, and 3.39

Table 4. Bond angles (${ }^{\circ}$) for complex (10)

$S(1 b)-A u(1)-S(1 a)$	174.3(1)	$\mathrm{Au}(2)-\mathrm{Au}(1)-\mathrm{S}(1 \mathrm{a})$	97.7(1)	$\mathrm{C}(225)-\mathrm{C}(224)-\mathrm{C}(223)$	118.3(10)	$\mathrm{C}(226)-\mathrm{C}(225)-\mathrm{C}(224)$	121.2(11)
$\mathrm{Au}(2)-\mathrm{Au}(1)-\mathrm{S}(1 \mathrm{~b})$	87.7(1)	$\mathrm{C}(111)-\mathrm{S}(1 \mathrm{a})-\mathrm{Au}(1)$	104.8(4)	$\mathrm{C}(225)-\mathrm{C}(226)-\mathrm{C}(221)$	119.5(10)	$\mathrm{S}(3)-\mathrm{Au}(3)-\mathrm{Au}(2)$	87.3(1)
$\mathrm{N}(112)-\mathrm{C}(111)-\mathrm{S}(1 \mathrm{a})$	116.5(8)	$\mathrm{C}(116)-\mathrm{C}(111)-\mathrm{S}(1 \mathrm{a})$	126.1(8)	$\mathrm{C}(31)-\mathrm{S}(3)-\mathrm{Au}(3)$	105.8(4)	$\mathrm{N}(32)-\mathrm{C}(31)-\mathrm{S}(3)$	116.9(8)
$\mathrm{C}(116)-\mathrm{C}(111)-\mathrm{N}(112)$	117.4(10)	$\mathrm{C}(113)-\mathrm{N}(112)-\mathrm{C}(111)$	123.1(10)	$\mathrm{C}(36)-\mathrm{C}(31)-\mathrm{S}(3)$	125.6(7)	$\mathrm{C}(36)-\mathrm{C}(31)-\mathrm{N}(32)$	117.4(9)
$\mathrm{C}(114)-\mathrm{C}(113)-\mathrm{N}(112)$	120.5(10)	$\mathrm{C}(115)-\mathrm{C}(114)-\mathrm{C}(113)$	116.9(12)	$\mathrm{C}(33)-\mathrm{N}(32)-\mathrm{C}(31)$	121.0(9)	$\mathrm{C}(34)-\mathrm{C}(33)-\mathrm{N}(32)$	122.0(10)
$\mathrm{C}(116)-\mathrm{C}(115)-\mathrm{C}(114)$	123.3(13)	$\mathrm{C}(115)-\mathrm{C}(116)-\mathrm{C}(111)$	118.9(10)	$\mathrm{C}(35)-\mathrm{C}(34)-\mathrm{C}(33)$	117.8(11)	$\mathrm{C}(36)-\mathrm{C}(35)-\mathrm{C}(34)$	122.0(11)
$\mathrm{C}(121)-\mathrm{S}(1 \mathrm{~b})-\mathrm{Au}(1)$	107.5(4)	$\mathrm{N}(122)-\mathrm{C}(121)-\mathrm{S}(1 \mathrm{~b})$	121.5(7)	$\mathrm{C}(35)-\mathrm{C}(36)-\mathrm{C}(31)$	119.8(9)	$\mathrm{C}(41)-\mathrm{S}(4)-\mathrm{Au}(4)$	107.4(3)
$\mathrm{C}(126)-\mathrm{C}(121)-\mathrm{S}(1 \mathrm{~b})$	120.5(9)	$\mathrm{C}(126)-\mathrm{C}(121)-\mathrm{N}(122)$	118.0(10)	$\mathrm{N}(42)-\mathrm{C}(41)-\mathrm{S}(4)$	116.4(7)	C(46)-C(41)-S(4)	125.6(6)
$\mathrm{C}(123)-\mathrm{N}(122)-\mathrm{C}(121)$	122.2(9)	$\mathrm{C}(124)-\mathrm{C}(123)-\mathrm{N}(122)$	120.5(12)	$\mathrm{C}(46)-\mathrm{C}(41)-\mathrm{N}(42)$	118.0(9)	$\mathrm{C}(43)-\mathrm{N}(42)-\mathrm{C}(41)$	122.9(9)
$\mathrm{C}(125)-\mathrm{C}(124)-\mathrm{C}(123)$	118.3(13)	$\mathrm{C}(126)-\mathrm{C}(125)-\mathrm{C}(124)$	121.9(12)	$\mathrm{C}(44)-\mathrm{C}(43)-\mathrm{N}(42)$	121.8(10)	$\mathrm{C}(45)-\mathrm{C}(44)-\mathrm{C}(43)$	117.7(13)
$\mathrm{C}(125)-\mathrm{C}(126)-\mathrm{C}(121)$	119.0(12)	$\mathrm{S}(2 \mathrm{a})-\mathrm{Au}(2)-\mathrm{Au}(1)$	90.8(1)	$\mathrm{C}(46)-\mathrm{C}(45)-\mathrm{C}(44)$	121.8(11)	$\mathrm{C}(45)-\mathrm{C}(46)-\mathrm{C}(41)$	117.7(8)
$\mathrm{S}(2 \mathrm{~b})-\mathrm{Au}(2)-\mathrm{Au}(1)$	88.2(1)	S(2b)-Au(2)-S(2a)	179.0(1)	$\mathrm{O}(12)-\mathrm{Cl}(1)-\mathrm{O}(11)$	108.8(7)	$\mathrm{O}(13)-\mathrm{Cl}(1)-\mathrm{O}(11)$	116.3(8)
$\mathrm{Au}(3)-\mathrm{Au}(2)-\mathrm{Au}(1)$	170.7(1)	$\mathrm{Au}(3)-\mathrm{Au}(2)-\mathrm{S}(2 \mathrm{a})$	92.0(1)	$\mathrm{O}(13)-\mathrm{Cl}(1)-\mathrm{O}(12)$	113.1(9)	$\mathrm{O}(14)-\mathrm{Cl}(1)-\mathrm{O}(11)$	105.6(9)
$\mathrm{Au}(3)-\mathrm{Au}(2)-\mathrm{S}(2 \mathrm{~b})$	89.1(1)	$\mathrm{C}(211)-\mathrm{S}(2 \mathrm{a})-\mathrm{Au}(2)$	106.6(4)	$\mathrm{O}(14)-\mathrm{Cl}(1)-\mathrm{O}(12)$	106.8(10)	$\mathrm{O}(14)-\mathrm{Cl}(1)-\mathrm{O}(13)$	105.4(7)
$\mathrm{N}(212)-\mathrm{C}(211)-\mathrm{S}(2 \mathrm{a})$	116.0(8)	$\mathrm{C}(216)-\mathrm{C}(211)-\mathrm{S}(2 \mathrm{a})$	127.5(8)	$\mathrm{O}(22)-\mathrm{Cl}(2)-\mathrm{O}(21)$	110.8(7)	$\mathrm{O}(23)-\mathrm{Cl}(2)-\mathrm{O}(21)$	110.0(7)
$\mathrm{C}(216)-\mathrm{C}(211)-\mathrm{N}(212)$	116.5(9)	$\mathrm{C}(213)-\mathrm{N}(212)-\mathrm{C}(211)$	124.1(10)	$\mathrm{O}(23)-\mathrm{Cl}(2)-\mathrm{O}(22)$	109.9(8)	$\mathrm{O}(24)-\mathrm{Cl}(2)-\mathrm{O}(21)$	110.3(10)
$\mathrm{C}(214)-\mathrm{C}(213)-\mathrm{N}(212)$	121.0(11)	$\mathrm{C}(215)-\mathrm{C}(214)-\mathrm{C}(213)$	118.4(10)	$\mathrm{O}(24)-\mathrm{Cl}(2)-\mathrm{O}(22)$	111.2(9)	$\mathrm{O}(24)-\mathrm{Cl}(2)-\mathrm{O}(23)$	104.3(9)
$\mathrm{C}(216)-\mathrm{C}(215)-\mathrm{C}(214)$	121.3(11)	$\mathrm{C}(215)-\mathrm{C}(216)-\mathrm{C}(211)$	118.7(10)	$\mathrm{O}(32)-\mathrm{Cl}(3)-\mathrm{O}(31)$	110.8(8)	$\mathrm{O}(33)-\mathrm{Cl}(3)-\mathrm{O}(31)$	109.6(7)
$\mathrm{C}(221)-\mathrm{S}(2 \mathrm{~b})-\mathrm{Au}(2)$	107.5(4)	$\mathrm{N}(222)-\mathrm{C}(221)-\mathrm{S}(2 \mathrm{~b})$	116.0(8)	$\mathrm{O}(33)-\mathrm{Cl}(3)-\mathrm{O}(32)$	106.6(8)	$\mathrm{O}(34)-\mathrm{Cl}(3)-\mathrm{O}(31)$	110.9(7)
$\mathrm{C}(226)-\mathrm{C}(221)-\mathrm{S}(2 \mathrm{~b})$	126.4(8)	$\mathrm{C}(226)-\mathrm{C}(221)-\mathrm{N}(222)$	117.5(9)	$\mathrm{O}(34)-\mathrm{Cl}(3)-\mathrm{O}(32)$	112.0(8)	$\mathrm{O}(34)-\mathrm{Cl}(3)-\mathrm{O}(33)$	106.7(8)
$\mathrm{C}(223)-\mathrm{N}(222)-\mathrm{C}(221)$	123.1(9)	$\mathrm{C}(224)-\mathrm{C}(223)-\mathrm{N}(222)$	120.3(10)				

(t, 2 H); $\delta_{\mathrm{P}} 38.78$ p.p.m. (s); (22), $\delta_{\mathrm{P}} 33.16$ p.p.m. (s); (23), $\delta_{\mathrm{H}} 7.75$ (m, 2 H$), 7.7\left(\mathrm{~m}, 15 \mathrm{H}, \mathrm{PPh}_{3}\right)$, and $7.35(\mathrm{~m}, 2 \mathrm{H})$; $\delta_{\mathrm{P}} 38.41$ p.p.m. (s); (24), $\delta_{\mathrm{H}} 8.39[\mathrm{~d}, J(\mathrm{HH}) 5.13 \mathrm{~Hz}, 2 \mathrm{H}], 7.50\left(\mathrm{~m}, 15 \mathrm{H}, \mathrm{PPh}_{3}\right)$, and 6.88 (t, 1 H); $\delta_{\mathbf{P}} 39.09$ p.p.m. (s); (25), $\delta_{\mathrm{H}} 7.6(\mathrm{~m}) ; \delta_{\mathbf{P}} 38.04$ p.p.m. (s).
$\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{AuLAu}\left(\mathrm{PPh}_{3}\right)\right]\left[\mathrm{L}=\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{NS}_{2}\right.$ (26) or $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NS}$ (27)]. A mixture of (21) $(0.173 \mathrm{~g}, 0.3 \mathrm{mmol})$ or (22) $(0.171 \mathrm{~g}, 0.3$ mmol) and $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\text { tht })\right]^{5}(0.136 \mathrm{~g}, 0.3 \mathrm{mmol})$ in dichloromethane ($20 \mathrm{~cm}^{3}$) was stirred for 2 h . Partial concentration of the solution to $c a .5 \mathrm{~cm}^{3}$ and addition of n-hexane $\left(20 \mathrm{~cm}^{3}\right)$ led to the precipitation of (26) or (27). N.m.r.: (27), $\delta_{\mathrm{P}} 36.98$ p.p.m. (s).
$\left[\mathrm{NBu}_{4}\right]\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{Au}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NS}\right) \mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right]$ (28). A mixture of compound (5) ($0.38 \mathrm{~g}, 0.8 \mathrm{mmol}$), $\left[\mathrm{NBu}_{4}\right]\left[\mathrm{AuBr}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right]^{7}(0.55$ $\mathrm{g}, 0.8 \mathrm{mmol})$, and $\mathrm{Na}_{2} \mathrm{CO}_{3}(1 \mathrm{~g})$ in dichloromethane ($30 \mathrm{~cm}^{3}$) was stirred for 2 h . The excess of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ was filtered off. Evaporation of the solution to $c a .5 \mathrm{~cm}^{3}$ gave (28) as a yellow solid.
$\left[\mathrm{NBu}_{4}\right]\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \mathrm{Au}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NS}\right) \mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right]$ (29). To a suspension of compound (18) $(0.65 \mathrm{~g}, 0.8 \mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}(1 \mathrm{~g})$ in dichloromethane ($20 \mathrm{~cm}^{3}$) was added $\left[\mathrm{NBu}_{4}\right]\left[\mathrm{AuBr}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right]^{7}$ $(0.55 \mathrm{~g}, 0.8 \mathrm{mmol})$ and the mixture was stirred for 2 h . The excesses of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaBr were filtered off and the solution was evaporated to $c a .5 \mathrm{~cm}^{3}$; addition of n-hexane $\left(10 \mathrm{~cm}^{3}\right)$ gave complex (29).
$\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \mathrm{Au}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NS}\right) \mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right](30)$. This complex can be obtained in two different ways. (a) A mixture of compound (18) $(0.65 \mathrm{~g}, 0.8 \mathrm{mmol}),\left[\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)\right](0.396 \mathrm{~g}, 0.8 \mathrm{mmol})$, and $\mathrm{Na}_{2} \mathrm{CO}_{3}(1 \mathrm{~g})$ in dichloromethane ($20 \mathrm{~cm}^{3}$) was stirred for 2 h . The excesses of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaCl were filtered off and the solution was evaporated to $c a .5 \mathrm{~cm}^{3}$; addition of n -hexane (15 cm^{3}) gave complex (30).
(b) A mixture of compound (14) ($0.536 \mathrm{~g}, 0.8 \mathrm{mmol}$), $\left[\mathrm{NBu}_{4}\right]$ $\left[\mathrm{AuBr}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]^{2}(0.816 \mathrm{~g}, 0.8 \mathrm{mmol})$, and $\mathrm{Na}_{2} \mathrm{CO}_{3}(1 \mathrm{~g})$ in dichloromethane ($20 \mathrm{~cm}^{3}$) was stirred for 2 h . The excesses of $\mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{NaBr}$, and $\mathrm{NBu}_{4} \mathrm{ClO}_{4}$ which precipitated were filtered off. Partial concentration of the solution to $c a .5 \mathrm{~cm}^{3}$ and addition of n -hexane $\left(20 \mathrm{~cm}^{3}\right)$ led to precipitation of (30); $\delta_{\mathrm{P}} 34.28$ p.p.m. (s).
$\left[\left\{\mathrm{Au}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NS}\right)\right\}_{n}\right](\mathbf{3 1})$. To a solution of compound (2) (1.37 $\mathrm{g}, 4 \mathrm{mmol})$ in dichloromethane $\left(20 \mathrm{~cm}^{3}\right)$ was added $\mathrm{Na}_{2} \mathrm{CO}_{3}(1$ g). The suspension was stirred for 2 h . The yellow solid (31) which precipitated was filtered off and washed with water ($5 \times 5 \mathrm{~cm}^{3}$). A second crop was obtained by evaporation of the dichloromethane solution to $c a .5 \mathrm{~cm}^{3}$ and addition of diethyl
ether ($20 \mathrm{~cm}^{3}$). Complex (31) was recrystallized from dichloromethane-diethyl ether.
cis- $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NS}\right)\right]$ (32). To a solution of cis$\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left(\mathrm{OEt}_{2}\right)_{2}\right] \mathrm{ClO}_{4}{ }^{8}(1 \mathrm{mmol})$ in diethyl ether $\left(20 \mathrm{~cm}^{3}\right)$ was added $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NS}(0.111 \mathrm{~g}, 1 \mathrm{mmol})$ and the mixture was stirred for 20 h . The white solid which precipitated was recrystallized from dichloromethane-hexane.

X-Ray Crystal Structure Determination of Complex (10).Crystal data. $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{AuClN}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}, M=517.77$, triclinic, space group $P \overline{1}, a=9.609(3), b=15.024(6), c=16.712(7) \AA, \alpha=$ 97.52(4), $\beta=104.17(2), \gamma=104.76(2)^{\circ}, U=2213.6 \AA^{3}, Z=6$, $D_{\mathrm{c}}=2.33 \mathrm{Mg} \mathrm{m}^{-3}, F(000)=1464, \lambda\left(\mathrm{Mo}-K_{\alpha}\right)=0.71069 \AA$, $\mu=10.4 \mathrm{~mm}^{-1}, T=293 \mathrm{~K}$. Yellow prism, $0.35 \times 0.25 \times 0.15$ mm .

Data collection and refinement. Intensity measurements were performed on a Stoe-Siemens four-circle diffractometer using monochromated Mo- K_{α} radiation. Of 7934 reflections to $2 \theta_{\text {max. }}$ $50^{\circ}, 7791$ were unique and 5499 with $F>4 \sigma(F)$ used for all calculations (program system XS/XLS, written by Professor G. M. Sheldrick). An absorption correction based on ψ scans gave transmission factors of $0.58-0.77$. Cell constants were refined from 2θ values of 50 reflections in the range $20-23^{\circ}$.

Structure solution and refinement. The structure was solved by the heavy-atom method and refined anisotropically to $R 0.047$, $R^{\prime} 0.045$. Hydrogen atoms were included using a riding model. The perchlorate ions were refined with $\mathrm{Cl}-\mathrm{O}$ bond lengths and $\mathrm{O} \cdots \mathrm{O}$ non-bonded distances restrained to be equal ($\sigma 0.01$, $0.02 \AA$ respectively). The weighting scheme was $w^{-1}=\sigma^{2}(F)+$ $0.0003 F^{2} ; 545$ parameters; $S 1.3 ; \max . \Delta / \sigma 0.09$; max. $\Delta \rho 1 \mathrm{e} \AA^{-3}$. Final atomic co-ordinates are presented in Table 2, with bond lengths and angles in Tables 3 and 4.

Additional material available from the Cambridge Crystallographic Data Centre comprises H -atom co-ordinates, thermal parameters, and remaining bond lengths and angles.

Acknowledgements

We thank the Dirección General de Investigación Cientifica y Técnica (no. PB88-0075) and the Fonds der Chemischen Industrie for financial support.
X-Ray measurements were performed at the Inorganic Chemistry Institute, University of Göttingen.

References

1 B. J. Hathaway and A. E. Underhill, J. Chem. Soc., 1961, 3091.
2 R. Usón, A. Laguna, M. Laguna, E. Fernández, P. G. Jones, and G. M. Sheldrick, J. Chem. Soc., Dalton Trans., 1982, 1971.
3 R. Usón, A. Laguna, J. García, and M. Laguna, Inorg. Chim. Acta, 1979, 37, 201.
4 Y. Jiang, S. Alvarez, and R. Hoffmann, Inorg. Chem., 1985, 24, 749; P. G. Jones, Gold Bull., 1981, 14, 102; 159; 1983, 16, 114; 1986, 19, 46; H. Schmidbaur, ibid., 1990, 23, 11.

5 R. Usón and A. Laguna, Organomet. Synth., 1986, 3, 322.
6 R. Usón, A. Laguna, M. Laguna, J. Jiménez, and M. E. Durana, Inorg. Chim. Acta, 1990, 168, 89.
7 R. Usón, A. Laguna, and J. Vicente, J. Organomet. Chem., 1977, 131, 471.

8 R. Usón, A. Laguna, M. Laguna, M. N. Fraile, P. G. Jones, and G. M. Sheldrick, J. Chem. Soc., Dalton Trans., 1986, 291.

Received 4th April 1990; Paper 0/01503B

[^0]: * Bis(pyridine-2-thione-S)gold(I) perchlorate.

 Supplementary data available: H-atom co-ordinates, thermal parameters, and structure factors have been deposited at the Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-7514 Eggenstein-Leopoldshafen 2, Federal Republic of Germany. Any request for this material should quote a full literature citation and the reference number CSD 54694.

