Synthesis and Structure of a Trinuclear Manganese(II) Complex containing Low-spin Metal \dagger

Surajit Chattopadhyay, Partha Basu, Samudranil Pal, and Animesh Chakravorty*
Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Calcutta 700032, India

The reaction of α-phenylazobenzaldehyde oxime, HL, with manganese(II) salts has afforded the first known mixed-spin trinuclear complex $\left[\mathrm{Mn}_{3}{ }_{3} \mathrm{~L}_{6}\right]$. The structure of the benzene solvate $\left[\mathrm{Mn}_{3} \mathrm{~L}_{6}\right] \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6}$ has been determined by X-ray crystallography. The Mn_{3} fragment is exactly linear with the terminal low-spin ($S=\frac{1}{2}$) metal(11) atoms tris-chelated by azo- and oxime-nitrogen functions into facial pseudo-octahedral MnN_{6} dispositions. Two such [MnL_{3}] moieties sequester the central high-spin ($S=\frac{5}{2}$) manganese (II) atom into an O_{6} environment using oximato oxygen donors. The average $\mathrm{Mn} \cdots \mathrm{Mn}, \mathrm{Mn}-\mathrm{N}$, and $\mathrm{Mn}-\mathrm{O}$ distances are 3.577(7), 1.956(18), and $2.146(15) \AA$ respectively. It is proposed that oximato nitrogen co-ordination is primarily responsible for the low-spin configuration of the terminal manganese(II) atoms.

The high-spin ($S=\frac{5}{2}$) state is ubiquitous in manganese(II) chemistry but examples of low-spin ($S=\frac{1}{2}$) species are very rare. ${ }^{1,2}$ In a recent communication we described the arylazo oxime complex $\left[\mathrm{Mn}_{3} \mathrm{~L}_{6}\right]$ ($\mathrm{HL}=\alpha$-phenylazobenzaldehyde oxime), predicted to contain two terminal low-spin $\mathrm{Mn}^{\mathrm{II}}$ atoms, and a central high-spin $\mathrm{Mn}^{\text {II }}$ atom, on the basis of molecular weight data, magnetic properties, and certain analogies. ${ }^{3}$ In this

HL
work we report the synthetic details and the X-ray structure of a benzene solvate of this very unusual molecule which constitutes the only known system of trinuclear manganese(II) chelates ${ }^{4-9}$ containing the metal in low-spin configuration.

Results and Discussion

Synthesis.-In neutral methanolic solution HL does not react with manganese(il) salts. Upon deprotonation by base, however, a rapid reaction occurs affording a dark green solution from which the non-electrolyte $\left[\mathrm{Mn}_{3} \mathrm{~L}_{6}\right]$ deposits as a dark solid. The complex $\left[\mathrm{Mn}_{3} \mathrm{~L}_{6}\right]$ crystallises from benzene solutions as a disolvate which rapidly loses solvent and crystallinity in air without apparent loss of external shape. This misled us in our earlier unsuccessful attempts to obtain single crystals. ${ }^{3}$

Structure of $\left[\mathrm{Mn}_{3} \mathrm{~L}_{6}\right] \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6}$. -Two inequivalent but similar trinuclear moieties are present in the unit cell. Views of relevant molecular fragments and the atom numbering scheme are depicted in Figures 1 and 2. Selected bond parameters are listed in Table 1. Owing to the relatively weakly diffracting nature of the crystals and consequently limited volume of the data set

[^0]

Figure 1. ORTEP plot of the co-ordination polyhedra about the manganese atoms
collected only moderate precision could be achieved for the derived bond parameters.

For both the independent molecules the Mn_{3} fragment (Figure 1) is exactly linear with the central manganese atoms $\mathrm{Mn}(2)$ and $\mathrm{Mn}(4)$ occupying crystallographic inversion centres. In this regard $\left[\mathrm{Mn}_{3} \mathrm{~L}_{6}\right]$ is similar to $\left[\mathrm{AsPh}_{4}\right]\left[\mathrm{Mn}_{3}(\mathrm{CO})_{14}\right]$. ${ }^{8 c}$ Two of the four benzene molecules in the unit cell occupy general positions. The centroids of the other two lie at crystallographic inversion centres. A molecular packing diagram is displayed in Figure 3.

Each terminal manganese atom is tris-chelated by azo- and oxime-nitrogen atoms into a facial pseudo-octahedral disposition (Figure 2). The two $\left[\mathrm{MnL}_{3}\right]^{-}$moieties act as tridentate oximato-oxygen donors spanning three facial co-ordination sites of a centrally placed manganese(II) atom (Figure 1). The $\mathrm{Mn}(1) \cdots \mathrm{Mn}(2)$ and $\mathrm{Mn}(3) \cdots \mathrm{Mn}(4)$ distances are $3.589(7)$ and $3.565(5) \AA$ respectively. The centrosymmetry of $\left[\mathrm{Mn}_{3} \mathrm{~L}_{6}\right]$ indicates that it is a meso complex with the two $\left[\mathrm{MnL}_{3}\right]$ fragments having opposite chirality, Δ and Λ.

The O_{6} co-ordination spheres of $\mathrm{Mn}(2)$ and $\mathrm{Mn}(4)$ are approximately octahedral but with a discernible trigonal elongation along the $\mathrm{Mn}(1) \cdots \mathrm{Mn}(2)$ and $\mathrm{Mn}(3) \cdots \mathrm{Mn}(4)$ axes.

Figure 2. Structures of the two independent low-spin $\left[\mathrm{MnL}_{3}\right]^{-}$fragments

Table 1. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\left[\mathrm{Mn}_{3} \mathrm{~L}_{6}\right] \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6}$

$\mathrm{Mn}(1)-\mathrm{N}(4)$	$1.926(17)$	$\mathrm{Mn}(1)-\mathrm{N}(6)$	$1.959(16)$
$\mathrm{Mn}(1)-\mathrm{N}(7)$	$1.987(17)$	$\mathrm{Mn}(1)-\mathrm{N}(3)$	$1.966(17)$
$\mathrm{Mn}(1)-\mathrm{N}(9)$	$1.971(14)$	$\mathrm{Mn}(1)-\mathrm{N}(1)$	$1.931(15)$
$\mathrm{Mn}(2)-\mathrm{O}(2)$	$2.153(13)$	$\mathrm{Mn}(2)-\mathrm{O}(1)$	$2.156(15)$
$\mathrm{Mn}(2)-\mathrm{O}(3)$	$2.146(9)$	$\mathrm{Mn}(3)-\mathrm{N}(12)$	$1.960(16)$
$\mathrm{Mn}(3)-\mathrm{N}(15)$	$1.935(15)$	$\mathrm{Mn}(3)-\mathrm{N}(10)$	$1.972(16)$
$\mathrm{Mn}(3)-\mathrm{N}(18)$	$1.976(18)$	$\mathrm{Mn}(3)-\mathrm{N}(16)$	$1.965(16)$
$\mathrm{Mn}(3)-\mathrm{N}(13)$	$1.923(18)$	$\mathrm{Mn}(4)-\mathrm{O}(4)$	$2.127(15)$
$\mathrm{Mn}(4)-\mathrm{O}(6)$	$2.123(13)$	$\mathrm{Mn}(4)-\mathrm{O}(5)$	$2.171(10)$
$\mathrm{N}(4)-\mathrm{Mn}(1)-\mathrm{N}(6)$	$76.8(7)$	$\mathrm{N}(4)-\mathrm{Mn}(1)-\mathrm{N}(7)$	$87.5(7)$
$\mathrm{N}(6)-\mathrm{Mn}(1)-\mathrm{N}(7)$	$92.8(7)$	$\mathrm{N}(4)-\mathrm{Mn}(1)-\mathrm{N}(3)$	$97.7(7)$
$\mathrm{N}(6)-\mathrm{Mn}(1)-\mathrm{N}(3)$	$99.6(7)$	$\mathrm{N}(7)-\mathrm{Mn}(1)-\mathrm{N}(3)$	$167.4(7)$
$\mathrm{N}(4)-\mathrm{Mn}(1)-\mathrm{N}(9)$	$161.2(7)$	$\mathrm{N}(6)-\mathrm{Mn}(1)-\mathrm{N}(9)$	$92.4(6)$
$\mathrm{N}(7)-\mathrm{Mn}(1)-\mathrm{N}(9)$	$77.6(7)$	$\mathrm{N}(3)-\mathrm{Mn}(1)-\mathrm{N}(9)$	$99.3(7)$
$\mathrm{N}(4)-\mathrm{Mn}(1)-\mathrm{N}(1)$	$92.0(7)$	$\mathrm{N}(6)-\mathrm{Mn}(1)-\mathrm{N}(1)$	$168.2(6)$
$\mathrm{N}(7)-\mathrm{Mn}(1)-\mathrm{N}(1)$	$90.5(7)$	$\mathrm{N}(3)-\mathrm{Mn}(1)-\mathrm{N}(1)$	$77.8(7)$
$\mathrm{N}(9)-\mathrm{Mn}(1)-\mathrm{N}(1)$	$99.4(6)$	$\mathrm{O}(2)-\mathrm{Mn}(2)-\mathrm{O}(1)$	$88.8(5)$
$\mathrm{O}(2)-\mathrm{Mn}(2)-\mathrm{O}(3)$	$89.7(4)$	$\mathrm{O}(1)-\mathrm{Mn}(2)-\mathrm{O}(3)$	$87.2(5)$
$\mathrm{N}(12)-\mathrm{Mn}(3)-\mathrm{N}(15)$	$95.9(7)$	$\mathrm{N}(12)-\mathrm{Mn}(3)-\mathrm{N}(10)$	$76.2(7)$
$\mathrm{N}(15)-\mathrm{Mn}(3)-\mathrm{N}(10)$	$90.8(6)$	$\mathrm{N}(12)-\mathrm{Mn}(3)-\mathrm{N}(18)$	$103.7(7)$
$\mathrm{N}(15)-\mathrm{Mn}(3)-\mathrm{N}(18)$	$103.2(7)$	$\mathrm{N}(10)-\mathrm{Mn}(3)-\mathrm{N}(18)$	$165.9(6)$
$\mathrm{N}(12)-\mathrm{Mn}(3)-\mathrm{N}(16)$	$93.0(6)$	$\mathrm{N}(15)-\mathrm{Mn}(3)-\mathrm{N}(16)$	$170.3(7)$
$\mathrm{N}(10)-\mathrm{Mn}(3)-\mathrm{N}(16)$	$87.6(7)$	$\mathrm{N}(18)-\mathrm{Mn}(3)-\mathrm{N}(16)$	$78.3(7)$
$\mathrm{N}(12)-\mathrm{Mn}(3)-\mathrm{N}(13)$	$160.8(8)$	$\mathrm{N}(15)-\mathrm{Mn}(3)-\mathrm{N}(13)$	$77.5(8)$
$\mathrm{N}(10)-\mathrm{Mn}(3)-\mathrm{N}(13)$	$85.8(7)$	$\mathrm{N}(18)-\mathrm{Mn}(3)-\mathrm{N}(13)$	$95.4(7)$
$\mathrm{N}(16)-\mathrm{Mn}(3)-\mathrm{N}(13)$	$92.8(7)$	$\mathrm{O}(4)-\mathrm{Mn}(4)-\mathrm{O}(6)$	$88.5(5)$
$\mathrm{O}(4)-\mathrm{Mn}(4)-\mathrm{O}(5)$	$86.7(5)$	$\mathrm{O}(6)-\mathrm{Mn}(4)-\mathrm{O}(5)$	$90.9(4)$

Thus, for a given molecule cis $\mathrm{O}(i)-\mathrm{Mn}(j)-\mathrm{O}(k)$ angles are generally smaller or larger than 90° depending respectively on whether $O(i)$ and $O(j)$ belong to the same or different faces normal to the trigonal axis (Table 1). The MnN_{6} co-ordination spheres in the $\left[\mathrm{MnL}_{3}\right]^{-}$fragments (Figure 2) display severe angular distortions from O_{h} symmetry as is evident in the average values of angles: chelate bite $77.3(8)^{\circ}$, trans $-\mathrm{N}^{a}-\mathrm{Mn}-\mathrm{N}^{\circ}$ $165.5(8)^{\circ}\left(\mathrm{N}^{\mathrm{a}}\right.$ and N^{o} are co-ordinated azo- and oxime-nitrogen atoms respectively). The average $\mathrm{N}^{0}-\mathrm{Mn}-\mathrm{N}^{\mathrm{o}}$ and $\mathrm{N}^{2}-\mathrm{Mn}-\mathrm{N}^{\text {a }}$ angles are respectively $89.3(7)$ and $99.1(7)^{\circ}$. The triangular Na_{3} face is thus selectively subject to substantial trigonal compression but the corresponding N_{3} face is hardly affected. Indeed the surface area of the $\mathrm{N}^{\mathrm{a}}{ }_{3}$ face is $\approx 20 \%$ larger than the $\mathrm{N}_{3}{ }_{3}$ face. The crowding of the pendant phenyl rings near the $\mathrm{N}^{\mathrm{a}}{ }_{3}$ face is believed to be a reason for this. Each N_{3} face abuts the corresponding O_{3} face but the two are not eclipsed. The surface

Figure 3. Packing diagram (down a axis) for $\left[\mathrm{Mn}_{3} \mathrm{~L}_{6}\right] \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6}$. Solvent benzene molecules are indicated by arrows
area of the O_{3} face is approximately equal to that of the $\mathrm{N}_{3}{ }_{3}$ face. The fragments shown in Figure 1 can be envisaged approximately as cylinders with constrictions at the $\mathrm{N}_{3}{ }_{3}$ regions.

The average $\mathrm{Mn}-\mathrm{O}$ distance in $\left[\mathrm{Mn}_{3} \mathrm{~L}_{6}\right.$] is $2.146(15) \AA$. This compares well with $\mathrm{Mn}^{11}-\mathrm{O}$ distances in aqua, ${ }^{10 a}$ phenolato, ${ }^{106}$ carboxylato, ${ }^{10 c}$ and acetylacetonato ${ }^{10 d}$ complexes wherein manganese(II) is uniformly high-spin ($S=\frac{5}{2}$). The average $\mathrm{Mn}-\mathrm{N}^{0}$ and $\mathrm{Mn}-\mathrm{N}^{a}$ distances in [$\mathrm{Mn}_{3} \mathrm{~L}_{6}$] are 1.951(18) and $1.961(18) \AA$ respectively. These are significantly shorter than $\mathrm{Mn}^{\mathrm{II}}-\mathrm{N}$ bonds observed ($2.1-2.4 \AA$) in numerous structurally characterised high-spin complexes. The effect of spin-state is thus clearly reflected in the metal-ligand bond distances. The five-membered chelate rings in all the $\left[\mathrm{MnL}_{3}\right]^{-}$fragments are

Table 2. Atomic co-ordinates $\left(\times 10^{4}\right)$ for $\left[\mathrm{Mn}_{3} \mathrm{~L}_{6}\right] \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6}$

Atom	x	y	z	Atom	x	y	z
$\mathrm{Mn}(1)$	$1541(2)$	$2188(2)$	85(2)	Mn(3)	-1218(2)	3 214(2)	-4 374(2)
$\mathrm{Mn}(2)$	0	0	0	$\mathrm{Mn}(4)$	0	5000	-5000
$\mathrm{O}(2)$	-453(9)	$1028(8)$	$-507(6)$	$\mathrm{O}(4)$	-1 255(9)	4 963(8)	-4702(7)
O(1)	1 209(9)	225(7)	- 392(6)	$\mathrm{O}(6)$	611(8)	4 604(8)	-4012(7)
$\mathrm{O}(3)$	926(9)	1063 (8)	$1012(6)$	$\mathrm{O}(5)$	-728(9)	3 565(8)	-5 635(6)
N(4)	162(11)	1879 (11)	-122(8)	N(12)	- 1 178(11)	3 547(10)	- 3 329(8)
N(6)	$1392(11)$	3 321(10)	624(8)	$\mathrm{N}(15)$	-2 618(12)	2720 (10)	-4 830(8)
N(7)	1 642(12)	1 648(10)	953(8)	N(14)	- 3 026(11)	$2728(10)$	- 5 522(9)
N(3)	$1536(10)$	2 496(10)	-861(8)	N (10)	- 1303 (10)	4 485(10)	-4 211(9)
N(9)	2 955(11)	2590 (10)	637(8)	$\mathrm{N}(17)$	148(12)	2 237(10)	-4 205(8)
N(5)	527(11)	3 330(10)	597(8)	C(59)	- $2363(14)$	2 989(12)	- $5874(10)$
C(7)	1 485(13)	1 012(12)	- $1230(10$)	N(18)	-787(12)	2 098(10)	-4 450(8)
N(2)	$1528(10)$	1840 (10)	- $1384(8)$	N (16)	194(11)	3 748(11)	-4078(8)
N(8)	3 255(11)	2 414(9)	$1302(8)$	N(13)	- $1447(13$)	3 219(11)	-5 409(9)
C(20)	-182(14)	2 525(13)	182(10)	$\mathrm{N}(11)$	- $1165(11)$	4385 (10)	-3005(8)
N(1)	$1406(10)$	$1013(10)$	-561(8)	C(72)	675(15)	3 133(14)	-4008(10)
C(33)	2 520(14)	1899 (11)	1 458(10)	C(46)	- $1174(13)$	4 917(13)	- 3 517(11)
C(14)	-1 178(14)	2 433(12)	127(9)	C(40)	-1097(14)	5 893(13)	- 3 241(11)
C(15)	-1 443(15)	3 218(14)	233(10)	C(41)	-541(15)	6 349(14)	-2 508(12)
C(16)	-2 388(16)	3 190(15)	204(11)	C(42)	-407(16)	$7287(15)$	-2 220(13)
C(17)	-3 052(16)	2 396(14)	75(11)	C(43)	-810(15)	$7764(15)$	-2 670(12)
C(18)	-2 825(17)	1 558(16)	-64(11)	C(44)	-1 348(16)	7 342(15)	- 3 403(13)
C(19)	-1889(15)	$1591(14)$	-37(10)	C(45)	-1474(15)	6 403(14)	-3687(12)
C(8)	1 444(13)	3 314(12)	- 1 109(9)	C(47)	-1 245(13)	$2968(12)$	-2 809(10)
C(9)	2052(15)	3 636(13)	- 1 494(11)	C(48)	-769(13)	$2322(11)$	-2 768(10)
C(10)	$1892(17)$	4383 (14)	-1784(12)	C(49)	-873(14)	1750 (13)	-2 299(10)
C(11)	1 179(15)	4 733(13)	- 1700 (11)	C(50)	- $1424(15)$	$1852(14)$	-1 868(11)
C(12)	603(14)	4 420(12)	- 1301 (10)	C(51)	-1 837(14)	$2527(13)$	-1 858(10)
C(13)	757(13)	3 686(11)	-998(9)	C(52)	-1776(14)	3 091(12)	-2 344(10)
C(1)	1409 (12)	238(12)	-1835(10)	C(53)	-2 737(14)	3020 (12)	-6646(10)
C(2)	$1737(14)$	-491(13)	-1 668(11)	C(54)	-2 142(15)	3 271(12)	-7 065(11)
C(3)	1 666(15)	-1 203(15)	-2 260(12)	C(55)	-2 589(16)	3 233(13)	-7825(12)
C(4)	$1335(16)$	-1 171(16)	- 3013 (13)	C(56)	- 3 567(16)	3 011(13)	-8 147(12)
C(5)	$1056(16)$	-426(15)	- $3162(13)$	C(57)	-4 157(18)	2777 (14)	-7 751(13)
C(6)	1 109(15)	271(15)	- $2572(12)$	C(58)	-3738(16)	2 797(13)	-7000(12)
C(21)	2 150(13)	4 152(12)	1 122(10)	C(63)	-4690(17)	2 071(14)	-3 829(11)
C(22)	2 515(15)	$4833(14)$	815(13)	C(62)	-4 034(16)	$1611(15)$	-3770(12)
C(23)	3 240(16)	5 658(15)	1343 (12)	C(61)	- 3 317(15)	1827 (13)	-4 117(11)
C(24)	3 512(14)	5 738(14)	2 081(11)	C(60)	-3360(14)	2 539(13)	-4 471(10)
C(25)	3 157(15)	5 054(14)	2 368(12)	C(65)	-4 038(16)	2 956(15)	-4 535(12)
C(26)	2 448(15)	4 224(14)	$1865(12)$	C(64)	-4 716(19)	2751 (16)	-4 205(13)
C(27)	2 816(14)	$1657(13)$	$2162(10)$	C(73)	-1 332(15)	$1131(13)$	-4 696(10)
C(28)	2340 (16)	837(15)	2 264(12)	C(74)	-926(18)	553(16)	-4 316(13)
C(29)	2 636(16)	640(15)	2 967(13)	C(75)	-1488(20)	-401(19)	-4 602(15)
C(30)	3 431(16)	$1245(15)$	3 566(13)	C(76)	-2 380(18)	-709(16)	-5 113(12)
C(31)	3 907(17)	2 068(16)	3 460(13)	C(77)	-2 774(17)	-124(15)	-5 461(12)
C(32)	3 579(14)	2 235(13)	2769 (11)	C(78)	- 2 224(16)	826(14)	-5 204(11)
C(34)	3 757(13)	3 164(12)	495(10)	C(66)	$1747(14)$	3 378(13)	-3710(10)
C(35)	4 439(13)	3 915(12)	1 071(11)	C(67)	2370 (17)	4 245(15)	-3 578(12)
C(36)	5 200(15)	4389 (13)	903(11)	C(68)	3 392(18)	$4418(17)$	-3 215(12)
C(37)	5320 (15)	4 131(13)	235(12)	C(69)	3 728(22)	3 731(20)	-3 028(15)
C(38)	4 647(15)	3 376(14)	-317(12)	C(70)	$3165(22)$	$2895(21)$	- 3 191(15)
C(39)	3 842(15)	$2858(13)$	-206(11)	C(71)	2 146(18)	2 686(16)	- 3 526(12)
$\mathrm{C}(79)$	5 086(22)	-120(21)	7 432(15)	C(86)	4 655(19)	-389(18)	9 253(16)
C(80)	4 105(22)	-202(20)	7 274(15)	C(87)	5 277(20)	-737(19)	$9711(17)$
C(81)	$3817(21)$	525(19)	7 501(14)	C(85)	4 383(18)	301(18)	9530 (15)
C(82)	4 472(23)	$1377(22)$	7 893(15)	C(89)	4 208(21)	4 504(17)	4 447(17)
C(83)	$5405(25)$	1440 (23)	$8060(16)$	C(90)	5 062(26)	4716 (20)	4315 (18)
C(84)	$5724(22)$	731(19)	$7852(15)$	C(88)	4 124(25)	$4750(21)$	5 124(21)

virtually planar with no atoms deviating by $0.04 \AA$ from the mean planes. The distances and angles within the chelate rings are generally comparable with those in other structurally characterised arylazo oximates. ${ }^{11-17}$

Other Observations and Comments.-Spin-pairing in manganese(II) requires deployment of very strong-field ligands, so that even complexes such as $\left[\mathrm{Mn}(\text { bipy })_{3}\right]^{2+}$ (bipy $=2,2^{\prime}-$
bipyridine) are high-spin. ${ }^{18}$ The very strong-field ligand CN^{-} however does afford low-spin $\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]^{4} .{ }^{1}$ The position of the oximato-nitrogen atom in the spectrochemical series has not been defined precisely but there is good evidence to show that it can bring about large ligand field splitting in octahedral complexes. ${ }^{19}$ We believe that oximato-nitrogen coordination is of crucial significance in making $\left[\mathrm{MnL}_{3}\right]^{-}$ low-spin. Two other low-spin manganese(II) tris-chelates based
on oximato ligands exist: nitrosoacetaldehyde oximates ${ }^{2}$ and 1,2 -quinone oximates. ${ }^{20}$ In both these cases the co-ordination sphere is $\mathrm{MnN}_{3} \mathrm{O}_{3}$, unlike [$\left.\mathrm{MnL}_{3}\right]^{-}$where the sphere is MnN_{6}. The common features of the three groups are oximato-nitrogen co-ordination and five-membered chelation. The non-oxime donor varies considerably: from azo-nitrogen in $\left[\mathrm{MnL}_{3}\right]^{-}$to nitroso-oxygen ${ }^{2}$ to quinone-oxygen. ${ }^{20}$

We have previously demonstrated ${ }^{11,12,21,22}$ that $\mathrm{Fe}^{\mathrm{II}}$ and $\mathrm{Os}^{\mathrm{II}}$ tris-chelates of type $\left[\mathrm{ML}_{3}\right]^{-}$can sequester a variety of metal (M^{\prime}) ions affording trinuclear species of the type $\left[\left(\mathrm{ML}_{3}\right)_{2} \mathrm{M}^{\prime}\right]^{z}(z=0$ or +1$)$, the binding mode being analogous to that in $\left[\mathrm{Mn}_{3} \mathrm{~L}_{6}\right]$. A trinuclear family $\left.\left[\left(\mathrm{FeL}^{\prime}\right)_{2}\right)_{2} \mathrm{M}^{\prime}\right]^{2}$ based on 1,2-quinone 2-oximates (L^{\prime}) has also been described by us. ${ }^{23}$ Attempts to prepare heteronuclear species of type $\left[\left(\mathrm{MnL}_{3}\right)_{2} \mathrm{M}^{\prime}\right]^{z}$ has however not yet been successful for the manganese system.

Experimental

α-Phenylazobenzaldehyde oxime was prepared by using the reported method. ${ }^{24}$ Manganese(II) perchlorate hexahydrate was prepared by dissolving manganese carbonate in 70% aqueous perchloric acid followed by crystallisation. Microanalyses ($\mathrm{C}, \mathrm{H}, \mathrm{N}$) were performed by using a Perkin-Elmer 240 C elemental analyser.

Preparation of $\left[\mathrm{Mn}_{3} \mathrm{~L}_{6}\right]$.-To a solution of HL $(900 \mathrm{mg}, 4.0$ $\mathrm{mmol})$ and $\mathrm{Mn}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(730 \mathrm{mg}, 2 \mathrm{mmol})$ in methanol ($35 \mathrm{~cm}^{3}$) was added dropwise, with stirring, a solution of potassium hydroxide ($110 \mathrm{mg}, 2 \mathrm{mmol}$) in methanol $\left(5 \mathrm{~cm}^{3}\right)$. Immediately a deep green colour developed and stirring was continued for 3 h . A dark solid precipitated which was collected by filtration and washed thoroughly with methanol and water. After drying in vacuo over $\mathrm{P}_{4} \mathrm{O}_{10}$, the compound was dissolved in benzene and filtered. The filtrate was evaporated in vacuo and the shining black solid so obtained was stored in vacuo. Yield $480 \mathrm{mg}(48 \%$) (Found: C, 62.10; H, 4.00; Mn, 10.95; N, 16.50. Calc. for $\mathrm{C}_{78} \mathrm{H}_{60} \mathrm{Mn}_{3} \mathrm{~N}_{18} \mathrm{O}_{6}$: C, 62.05; H, 4.00; Mn, 10.90; N , 16.70%).

For X-ray work dark parallelopiped crystals of composition [$\left.\mathrm{Mn}_{3} \mathrm{~L}_{6}\right] \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6}$ were obtained by slow diffusion of a solution of [$\mathrm{Mn}_{3} \mathrm{~L}_{6}$] ($80 \mathrm{mg}, 0.05 \mathrm{mmol}$) in benzene ($25 \mathrm{~cm}^{3}$) into an overlying layer of hexane ($25 \mathrm{~cm}^{3}$). It was difficult to obtain single crystals and those obtained diffracted only weakly. The best available crystal was chosen and mounted in a thin-walled glass capillary (to avoid loss of solvent of crystallisation).

X-Ray Structure Determination.-Crystal Data. $\mathrm{C}_{90} \mathrm{H}_{72^{-}}$ $\mathrm{Mn}_{3} \mathrm{~N}_{18} \mathrm{O}_{6}, M=1666.5$, triclinic, space group $P \overline{1}, a=$ 15.101(8), $b=15.473(7), c=19.261(5) \AA, \alpha=100.81(3), \beta=$ 107.11(3), $\gamma=103.19(4)^{\circ}, U=4028(3) \AA^{3}$ (by least-squares refinement of 14 accurately measured reflections), $Z=2, D_{\mathrm{c}}=$ $1.374 \mathrm{~g} \mathrm{~cm}^{-3}$, dark parallelopiped ($0.40 \times 0.24 \times 0.16 \mathrm{~mm}$), $\mu\left(\mathrm{Mo}-K_{\alpha}\right)=5.08 \mathrm{~cm}^{-1}, \lambda=0.71073 \AA, F(000)=1722$.

Data collection and processing. Nicolet R3m/V diffractometer, ω-scan method ($2<2 \theta<40^{\circ}$), graphite monochromated MoK_{α} radiation; 7924 independent measured reflections, 2521 observed $[F>6 \sigma(F)]$, corrected for Lorentz and polarisation factors; semiempirical absorption correction (transmission $0.8802-0.9195$). Three standard reflections monitored showed no significant variations.

Solution and refinement. The structure was solved using the heavy-atom method, the positions of the manganese atoms being determined from a Patterson map. The remaining nonhydrogen atoms were determined from successive Fourier difference syntheses. Due to the limited number of observed data only the thermal parameters of the manganese and oxygen atoms were made anisotropic. Hydrogen atoms were included
at calculated positions ($\mathrm{C}-\mathrm{H} 0.96 \AA, U=0.08 \AA^{2}$). The final residuals R and R^{\prime} were 0.0637 and 0.0691 respectively. The function minimised was $\Sigma w(|F|)^{2}$ with the weight, $w=1 /\left[\sigma^{2}(F)\right.$ $\left.+0.001\left(F^{2}\right)\right]$. The maximum and minimum residual electron densities in the final ΔF map were 0.28 and -0.24 e \AA^{-3} respectively. Positional parameters for the non-hydrogen atoms are collected in Table 2. Computations were carried out on a Micro VAX II computer using the SHELXTL-PLUS program system. ${ }^{25}$

Additional material available from the Cambridge Crystallographic Data Centre comprises H-atom co-ordinates, thermal parameters and remaining bond lengths and angles.

Acknowledgements

We thank the Department of Science and Technology, New Delhi for establishing a National Single Crystal Diffractometer Facility at the Department of Inorganic Chemistry, Indian Association for the Cultivation of Science. Financial support received from the Council of Scientific and Industrial Research is also acknowledged.

References

1 W. P. Griffith, Coord. Chem. Rev., 1975, 17, 177 and refs. therein.
2 P. Couzerh, Y. Jeannin, C. Rocchiccioli-Deltcheff, and F. Valentini, J. Coord. Chem., 1979, 6, 221.

3 P. Basu, S. Pal, and A. Chakravorty, Inorg. Chem., 1988, 27, 1848.
4 (a) S. Shibata, S. Onuma, and H. Inoue, Inorg. Chem., 1985, 24, 1723; (b) B. D. Murray, H. Hope, and P. Power, J. Am. Chem. Soc., 1985, 107, 169; (c) S. Gambarotta, C. Floriani, A. Chiesivilla, and C. Guastini, J. Chem. Soc., Chem. Commun., 1983, 1128; (d) G. Vos, J. G. Haasnoot, G. C. Verchoor, J. Reedijk, and P. E. L. Schaminee, Inorg. Chim. Acta, 1985, 105, 31; (e) A. Belforte, F. Calderazzalro, U. Englert, and J. Strahle, J. Chem. Soc., Chem. Commun., 1989, 801.
5 J. L. Seela, K. Folting, R-J. Wang, J. Huffman, G. Chirstou, H-R. Chang, and D. N. Hendrickson, Inorg. Chem., 1985, 24, 4454; X. Li, D. P. Kessissoglou, M. L. Kirk, C. J. Bender, and V. L. Pecoraro, ibid., 1988, 27, 1; J. B. Vincent, H-R. Chang, K. Folting, J. C. Huffman, G. Christou, and D. N. Hendrickson, J. Am. Chem. Soc., 1987, 109, 5703; A. R. E. Baikie, M. B. Hursthouse, D. B. New, and P. Thornton, J. Chem. Soc., Chem. Commun., 1978, 62; D. P. Kessissoglou, M. L. Kirk, C. A. Bender, M. S. Lah, and V. L. Pecoraro, J. Chem. Soc., Chem. Commun., 1989, 84.
6 R. Bhula, G. J. Gainsford, and D. C. Weatherburn, J. Am. Chem. Soc., 1988, 110, 7550.
7 M. C. Bohn, R. D. Ernst, R. Gleiter, and D. R. Wilson, Inorg. Chem., 1983, 22, 3815.
8 (a) S. W. Kirtley, J. P. Olsen, and P. Bau, J. Am. Chem. Soc., 1973, 95, 4532; (b) W. A. Herrmann, M. L. Ziegler, and K. Weidenhammer, Angew. Chem., Int. Ed. Engl., 1976, 15, 368; (c) P. Bau, S. W. Kirtley, T. N. Sorrell, and S. Winkaro, J. Am. Chem. Soc., 1974, 96, 988.

9 K. Wieghardt, Angew. Chem., Int. Ed. Engl., 1989, 28, 1153.
10 (a) H. Tamura, K. Ogawa, T. Sakurai, and A. Nakahara, Inorg. Chim. Acta, 1984, 92, 107; (b) B. Mabad, P. Cassoux, J-P. Tuchagues, and D. N. Hendrickson, Inorg. Chem., 1986, 25, 1420; D. P. Kessissoglou, W. M. Butler, and V. L. Pecoraro, ibid., 1987, 26, 495; (c) C. H. L. Kennard, G. Smith, E. J. O'Reilly, and K. E. Brown, Inorg. Chim. Acta, 1981, 52, 55; (d) F. S. Stephens, Acta Crystallogr., Sect. B, 1977, 33, 3492 and ref 4(a).
11 S. Pal, T. Melton, R. N. Mukherjee, A. R. Chakravarty, M. Tomas, L. R. Falvello, and A. Chakravorty, Inorg. Chem., 1985, 24, 1250.

12 S. Pal, R. N. Mukherjee, M. Tomas, L. R. Falvello, and A. Chakravorty, Inorg. Chem., 1986, 25, 200.
13 D. Bandopadhyay, P. Bandopadhyay, A. Chakravorty, F. A. Cotton, and L. R. Falvello, Inorg. Chem., 1984, 23, 1785.
14 D. Bandopadhyay, P. Bandopadhyay, A. Chakravorty, F. A. Cotton, and L. R. Falvello, Inorg. Chem., 1983, 22, 1315.
15 A. R. Chakravarty, A. Chakravorty, F. A. Cotton, L. R. Falvello, B. K. Ghosh, and M. Tomas, Inorg. Chem., 1983, 22, 1892.

16 P. Bandopadhyay, D. Bandopadhyay, A. Chakravorty, F. A. Cotton, L. R. Falvello, and S. Han, J. Am. Chem. Soc., 1983, 105, 6327.

17 M. H. Dickman and R. J. Doedens, Inorg. Chem., 1980, 19, 3112.
18 F. H. Burnstall and R. S. Nylholm, J. Chem. Soc., 1952, 3570.
19 J. G. Mohanty, R. P. Singh, and A. Chakravorty, Inorg. Chem., 1975, 14, 2178.
20 P. Basu and A. Chakravorty, unpublished work.
21 S. Pal and A. Chakravorty, Inorg. Chem., 1987, 26, 4331.
22 B. K. Ghosh, R. N. Mukherjee, and A. Chakravorty, Inorg. Chem., 1987, 26, 1946.

23 P. Basu, S. Pal, and A. Chakravorty, J. Chem. Soc., Dalton Trans., 1990, 9.
24 K. C. Kalia and A. Chakravorty, J. Org. Chem., 1970, 35, 2231.
25 G. M. Sheldrick, 'SHELXTL-PLUS 88, Structure Determination Software Programs,' Nicolet Instrument Corp., Madison, 1988.

Received 19th June 1990; Paper 0/02740E

[^0]: \dagger Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1990, Issue 1, pp. xix-xxii.

